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Abstract

The ExaNeSt H2020 project will produce a prototype based on ARM64 CPUs

and FPGA-based accelerators implementing a co-design approach where sci-

entific applications requirements are driving the hardware design. We present

strategies adopted in order to port our direct N -body code on an ARM SoC

cluster, called INCAS, deployed at INAF-OATs. Each computational node is

based on 64-bit ARMv8 Cortex-A72/Cortex-A53 core design, powered by the

Mali-T864 GPU. We present the strategies to optimize the code and we dis-

cuss in details results of performance tests carried on ARM CPUs and GPUs,

showing that embedded GPUs can be effectively used to accelerate the calcula-

tion, and that are promising also because of their energy efficiency, which is an

important design in future exascale platforms.
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1. Introduction

The ExaNeSt project will produce a prototype based on low power-consumption

ARM64 processors, accelerators and low-latency interconnections implementing

a co-design approach where scientific applications requirements are driving the

hardware design [1].5
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Graphics Processor Units (GPUs) are widely employed as accelerators in het-

erogeneous computing. They offer high floating-point throughput and memory

bandwidth than multi-core central processing units (CPUs).

Nowadays ARM delivers technology to drive power-efficient SoC solutions

combining CPU and GPU into unified compute sub-system offering double-10

precision floating point arithmetic, and options for high performance I/O and

memory interface.

This work is devoted to measure the performance of ARM64 SoC using the

ExaHiGPUs code [2, 3], which allows us to test the workload across the whole

CPU+GPU system. INCAS1 is the first power-efficient SoC-based ARM cluster15

built at OATs specifically designed to drive the development and re-engineering

of astrophysical applications in order to exploit new Exascale computing facili-

ties. INCAS is fully described in [4].

This technical report is organized as follows. In Section 2 we briefly describe

the GPU architecture, both discrete and embedded. In Section 3 we discuss20

strategies to exploit Mali GPUs. In Section 4 we show our performance results.

2. GPU microarchitecture

Discrete GPUs are connected to their own high-speed memory system and

typically offer 10× the memory bandwidth as compared to their host CPU.

The drawback of this method is that input and output data must be exchanged25

between the host memory and device memory, which adds some overhead as

compared to using the CPU only.

Embedded GPUs generally share memory with their host CPU so they are

not subject to CPU-GPU communication overhead, but, at the same time, they

do not take the advantage of high memory-bandwidth.30

Memory hierarchy differs between CPU and GPU. CPUs derive much of their

performance from their multilevel caches, which support rich feature sets (e.g

1Every computational node on INCAS is equipped with Six-Core ARMv8 64-bit CPU

(Cortex-A72x2 and Cortex-A53x4) and ARM Mali-T864 MP4 Quad-Core GPU.
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prefetching, coherency with other caches). CPUs have small general purpose

register files without a large performance penalty.

On the other hand, GPUs generally have simple or no caches and large35

register files. Registers serve as a work-item’s private memory and must have

sufficient capacity to store all the registers that each work-item needs during

kernel execution, multiplied by the total number of work-items assigned to the

same GPU core.

For most GPUs, the unit of workload assigned to processor cores is the40

work-group (OpenCL terminology). In order to exploit multicore parallelism

a program should instantiate as many work-groups as cores. The work-group

size (i.e. the number of work-items per work-group) has some effects on the

memory system, since only work-items belonging to the same work-group can

share on-chip memory. Having too small work-group size may limit the number45

of work-items that the GPU can map on SIMD lanes or limit the pool of work-

items available to be scheduled for execution in order to hide memory latency

of others work-items. On the other hand, the work-group size is limited by

the hardware, i.e. by the available registers and shared memory usage of the

executed kernel.50

OpenCL allows the programmer to exploit the parallelism at the finest level

possible on the target device. However, general purpose programming for em-

bedded GPUs is still relatively new, and the associated runtime libraries are

often immature.

3. Tuning OpenCL kernel for Mali GPUs55

OpenCL is a portable language but it not always performance portable, so

existing OpenCL code is typically tuned for specific architecture. ARM devel-

oper guide2 says that for best performance on Mali-T864 (Mali Midgard family)

the code should be vectorized to achieve the best performance. Regardless of

2infocenter.arm.com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_

opencl_developer_guide_100614_0303_00_en.pdf
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the native width of the GPU’s SIMD functional units, using wider vectors in60

the kernel may provide the GPU architecture more opportunity for exploiting

data-level parallelism. Kernels in ExaHiGPUs have already been vectorized,

since also discrete GPUs show enhanced performances exploiting vectorization.

On the Mali GPU, the global and local OpenCL address spaces are mapped

to main host memory. This means that explicit data copies from global to local65

memory and associated barrier synchronizations are not necessary. Thus, using

local memories as a cache can waste both performance and power on the Mali

GPU. We implemented a specific ARM version of all kernels of ExaHiGPUs

in which the local memory is not used.

4. Performance results70

The 6th order Hermite integration scheme implemented in ExaHiGPUs re-

lies on three different stages, described in [2]. We just focus on the evaluation

stage, which is the most computationally demanding (with N bodies the algo-

rithm requires O(N2) computational cost). We measured the performance for

both ARM CPU and GPU, testing how the running time (average of 10 runs75

of the kernel) changes as a function of the number of OpenMP threads in the

CPU code, and of the work-group size in the GPU code. On the GPU side we

have also investigated the impact of specific ARM optimizations as discussed

in Section 3. Performances have been measured for both double precision (DP)

and extended precision (EX) arithmetic.80

In Appendix A DP kernels for discrete GPUs and embedded GPUs are

shown.

4.1. ARM CPUs performance results

ARM big.LITTLE processors have three main software execution models:

cluster migration (a single cluster is active at a time, and migration is triggered85

on a given workload threshold), CPU migration (pairing every big core with

a LITTLE core. Each pair of cores acts as a virtual core in which only one
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actual core a is powered up and running at a time), heterogeneous multipro-

cessing mode (also known as Global Task Scheduling, allows using all of the

cores simultaneously).90

Figure 1: Host speedup for DP-arithmetic (left panels) and EX-arithmetic (right panels)

varying OpenMP threads as a function of the number of particles. Top panels for ARM

Cortex-A53x4 CPU and bottom panels for ARM Cortex-A72x2 CPU.

We studied the CPUs speedup, i.e. the ratio of the serial execution time

to the parallel execution time utilizing multiple cores by means of OpenMP

threads. Kernel execution time on both ARM Cortex-A53x4 and Cortex-A72x2

CPUs have been obtained setting explicit CPU affinity and using the Linux

system function getrusage, getting the total amount of time spent executing95

in user mode.

Figure 1 shows the speedup for both ARM Cortex-A53x4 and Cortex-A72x2
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Figure 2: Speed comparison between ARM Cortex-A53x4 and Cortex-A72x2 CPUs for both

DP-arithmetic (red line) and EX-arithmetic (blue line).

CPUs varying the number of OpenMP threads as a function of the number

of particles. On the ARM Cortex-A53x4, for both DP-arithmetic and EX-

arithmetic, some speedup is obtained only when the number of particles ex-100

ceeds 4096 in number. As expected, the best performance is achieved with four

OpenMP threads, where most likely there is one thread per available core. On

the ARM Cortex-A72x2 one thread is always faster then multiple threads for

DP-arithmetic and only a minor speedup is achieved with two threads adopting

EX-arithmetic.105

We also directly compared the performance of ARM CPUs. Figure 2 shows

the ratio of the best running time achieved by the CPUs as a function of the
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number of particles for both arithmetic. ARM Cortex-A72x2 is faster than

Cortex-A53x4 by approximately a factor of two.

4.2. ARM GPU performance results110

Figure 3: GPU speedup for DP-arithmetic (left panels) and EX-arithmetic (right-panels)

varying the OpenCL work-group size as a function of the number of particles. Speedup is

normalized by the time to solution with work-group of size 4. Top panels for GPGPU kernel

code and bottom panels for ARM-optimized kernel code.

We studied how the work-group size affects the ARM Mali-T864 GPU per-

formance. Figure 3 shows the speedup achieved varying the OpenCL work-group

size for GPGPU kernel code (top panels) and embedded-ARM-optimized kernel

code (bottom panels) as a function of the number of particles. The speedup is

normalized by the time to solution obtained with work-group size of four. Kernel115

execution times on the GPU have been obtained by means of OpenCL’s built-in
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Figure 4: Impact of ARM-optimizations on time to solution for Mali-T864 GPU as a function

of the number of particles. Red line for DP-arithmetic and blue-line for EX-arithmetic.

profiling functionality, which allows the host to collect runtime information. It

is worth noting that work-group sizes of 128 and 256 cause a failure to execute

the GPGPU kernel (top panels of Fig. 3) because of insufficient local memory

on the GPU. Only ARM-optimized version of the kernel, which avoids the usage120

of local memory, can be run with those work-group sizes (the maximum possible

work-group size on ARM Mali-T864 is 256). Despite ARM recommends for best

performance using a work-group size that is between 4 and 64 inclusive, our re-

sults show that speedup is not driven by any specific work-group size, regardless
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the usage of local memory. For our kernel we suggest to let the driver to pick125

the work-group size it thinks as best (the driver usually selects the work-group

size as 64).

We also quantified the impact of ARM-optimizations. Figure 4 shows the

ratio of the best time to solution achieved by GPGPU kernel code and ARM-

optimized kernel code for both arithmetic. In the case of EX-arithmetic the130

speedup is approximately 10%, while adopting DP-arithmetic the speedup is

nearing 5% increasing the number of particles. Our experiments reveal that

adopting the same optimization strategies as those used for high-performance

GPGPU computing might lead to worse performance on embedded GPUs. This

is in agreement with what was found by [5], when they tested some non-graphic135

benchmarks on embedded GPUs.

4.3. ARM CPU-GPU comparison

It is widely accepted that high-end GPGPUs can greatly speedup the so-

lution of the direct N -body problem. However in this work we want also to

evaluate the performance of low-power embedded GPUs for our kernel. We140

studied the best running time on ARM Cortex-A72x2 as the ratio over the best

execution time taken by our ARM-optimized GPU implementation, as shown

in Figure 5. The ARM-optimized implementation is as fast as the dual-core

implementation on the ARM Cortex-A72x2 using DP-arithmetic, as long as the

GPU is kept fed with enough particles, while is almost three times faster using145

EX-precision.

5. Conclusions

We have shown that SoC boards can be successfully used to execute our

N -body code. Our experience reveals that adopting the same optimization

strategies as those employed for high-end GPUs might not be the best approach150

on embedded low-power GPUs, because of restricted hardware features. Sec-

ondly, in light of our findings, embedded GPUs appear to be attractive from
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Figure 5: Comparison of the time to solution between ARM Cortex-A72x2 CPU and Mali-

T864 GPU for both DP-arithmetic (red line) and DX-arithmetic (blue line) as a function of

the number of particles.

a performance perspective as soon as their DP compute capability increases.

However, the EX precision approach can be a solution to supply enough power

to execute scientific computation and benefit at maximum of the SoC devices.155

In the next technical report, we will quantitatively measure the impact of

our algorithms on power or energy consumption on SoC, possibly shedding some

light on their suitability for exascale applications.

6. Acknowledgments

This work was carried out within the ExaNeSt (FET-HPC) project (grant160

no. 671553) and the ASTERICS project (grant no. 653477), funded by the

10



European Unions Horizon 2020 research and innovation programme.

This research has been made use of IPython [6], Scipy [7], Numpy [8] and

MatPlotLib [9].

Appendix A. Evaluation kernel165

Evaluation kernel optimized for discrete GPUs. This kernel

exploits the local memory of the GPU.

__kernel void DP_Evaluation(__private const unsigned int ParOffset,

__global const double4 *restrict PosPred,

__global const double4 *restrict VelPred,

__global const double4 *restrict AccPred,

__global double4 *restrict aC,

__global double4 *restrict aC1,

__global double4 *restrict aC2)

{

/* work-item gets its own global id */

const unsigned int globalID = get_global_id(0);

/* work-item gets its own local id */

const unsigned int localID = get_local_id(0);

/* position stored in local memory */

__local double4 shPos[LOCAL_WORK_SIZE];

/* velocity stored in local memory */

__local double4 shVel[LOCAL_WORK_SIZE];

/* acceleration stored in local memory */

__local double4 shAcc[LOCAL_WORK_SIZE];

/* Loop over all particles */

for (unsigned int Part=globalID ; Part<PARTICLES ; Part+=GLOBAL_WORK_SIZE)

{
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/* store in private memory acc, jrk and snp */

double4 acc = 0.0;

double4 jrk = 0.0;

double4 snp = 0.0;

/* load particle position in private memory */

double4 myPos = PosPred[Part];

/* load particle velocity in private memory */

double4 myVel = VelPred[Part];

/* load particle acceleration in private memory */

double4 myAcc = AccPred[Part];

/* Loop over PPDEV particles (divided into work-groups) */

for (unsigned int WorkGroup=0 ; WorkGroup<PPDEV ; WorkGroup+=LOCAL_WORK_SIZE)

{

unsigned int local_address = WorkGroup + localID + ParOffset;

/* load positions, velocities and accelerations in local memory */

shPos[localID] = PosPred[local_address];

shVel[localID] = VelPred[local_address];

shAcc[localID] = AccPred[local_address];

/* work-items synchronization */

barrier(CLK_LOCAL_MEM_FENCE);

/* Loop over particles within the work-group */

for (unsigned int j=0 ; j<LOCAL_WORK_SIZE ; j++)

{

double4 r = shPos[j] - myPos; r.w = 0.0;

double r2 = dot(r, r) + EPS2;

double mass_inv_r3 = shPos[j].w * native_rsqrt(pown(r2,3));
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double inv_r2 = native_recip(r2);

double4 v = shVel[j] - myVel; v.w = 0.0;

double4 a = shAcc[j] - myAcc; a.w = 0.0;

double alpha = (dot(r, v) * inv_r2);

double beta = ((dot(v, v) + dot(r, a)) * inv_r2) + (alpha * alpha);

double4 a1 = (mass_inv_r3 * r);

double4 a1dot = (mass_inv_r3 * v) - (3.0 * alpha * a1);

double4 a2dot = (mass_inv_r3 * a) - (6.0 * alpha * a1dot) - (3.0 * beta * a1);

if ((j + WorkGroup + ParOffset) != Part)

{

acc += a1;

jrk += a1dot;

snp += a2dot;

} /* avoid self-interaction */

} /* loop over work-items within the work-group */

/* work-items synchronization */

barrier(CLK_LOCAL_MEM_FENCE);

} /* loop over work-groups */

/* store results in global memory */

aC[Part] = acc;

aC1[Part] = jrk;

aC2[Part] = snp;

} /* loop over particles */

return;
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}

Evaluation kernel optimized for embedded GPUs. This kernel

does not exploit the local memory of the GPU.

__kernel void ARM_DP_Evaluation(__private const unsigned int ParOffset,

__global const double4 *restrict PosPred,

__global const double4 *restrict VelPred,

__global const double4 *restrict AccPred,

__global double4 *restrict aC,

__global double4 *restrict aC1,

__global double4 *restrict aC2)

{

/* work-item gets its own global id */

const unsigned int globalID = get_global_id(0);

/* Loop over all particles */

for (unsigned int Part=globalID ; Part<PARTICLES ; Part+=GLOBAL_WORK_SIZE)

{

/* store in private memory acc, jrk and snp */

double4 acc = 0.0;

double4 jrk = 0.0;

double4 snp = 0.0;

/* load particle position in private memory */

double4 myPos = PosPred[Part];

/* load particle velocity in private memory */

double4 myVel = VelPred[Part];

/* load particle acceleration in private memory */

double4 myAcc = AccPred[Part];

/* Loop over PPDEV particles */

14



for (unsigned int myPart=0 ; myPart<PPDEV ; myPart++)

{

unsigned int address = myPart + ParOffset;

/* Avoid self-interaction */

if (address != Part)

{

double4 r = PosPred[address] - myPos; r.w = 0.0;

double r2 = dot(r, r) + EPS2;

double mass_inv_r3 = PosPred[address].w * native_rsqrt(pown(r2,3));

double inv_r2 = native_recip(r2);

double4 v = VelPred[address] - myVel; v.w = 0.0;

double4 a = AccPred[address] - myAcc; a.w = 0.0;

double alpha = (dot(r, v) * inv_r2);

double beta = ((dot(v, v) + dot(r, a)) * inv_r2) + (alpha * alpha);

double4 a1 = (mass_inv_r3 * r);

double4 a1dot = (mass_inv_r3 * v) - (3.0 * alpha * a1);

double4 a2dot = (mass_inv_r3 * a) - (6.0 * alpha * a1dot) - (3.0 * beta * a1);

acc += a1;

jrk += a1dot;

snp += a2dot;

} /* avoid self-interaction */

} /* Loop over PPDEV particles */

/* store results in global memory */

aC[Part] = acc;

aC1[Part] = jrk;
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aC2[Part] = snp;

} /* Loop over particles */

return;

}
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