SUN/211.30

Starlink Project
Starlink User Note 211.30

R.F. Warren-Smith & D.S. Berry
6th Jan 2022
Copyright (C) 2021 East Asian Observatory

. AST .
A Library for Handling
World Coordinate Systems
in Astronomy

V9.2

Programmer’s Guide
(C Version)

rrrrrrrrrrrrrr
oooooooooooooooooooooooooooooooooooooo

Geacentric opparent equatorial coordinates; epoch J1997.5

SUN/211.30 —Abstract ii

Abstract

The AST library provides a comprehensive range of facilities for attaching world coordinate
systems to astronomical data, for retrieving and interpreting that information in a variety of
formats, including FITS-WCS, and for generating graphical output based on it.

This programmer’s manual should be of interest to anyone writing astronomical applications
which need to manipulate coordinate system data, especially celestial or spectral coordinate
systems. AST is portable and environment-independent.

Copyright (C) 2021 East Asian Observatory

iii SUN/211.30—Contents
Contents
I__Introductionl 1
(.1 _What Problems Does AST Tackle?l. 1
1.2 Other Design Objectives| 2
1.3 What Does “AST” Stand For?| 3
2 Overview of AST Concepts| 5
2.1 Relationships Between Coordinate Systems| 5
2.2 Mappings Available|. o 5
23 CompoundMappings| 6
2.4 Representing Coordinate Systems|. 8
2.5 Networks of Coordinate Systems| 9
2.6 Input/Output Facilities|. 10
2.7 Producing Graphical Outpu] 12
B_How To...] 15
B1 ...ObtainandInstall AST] 15
B.2 ...Structure an AST Program| oo oL 15
B3 ...Buildan ASTProgram|. 15
4 R [ibration fromaDatasef] 16
B.5 ...Validate WCS Information| 17
B.6 ...Display ASTData] 17
B.7 _...Convert Between Pi inates| 17
B.8 ...Testif a WCSis a Celestial Coordinate System| 18
B.9 ...Testif a WCSis a Spectral Coordinate System| 18
B.10 ...Format Coordinates for Display| 19
B.IT ...Display Coordinates as they are Transformed] 19
B.12 ...Read Coordinates Entered by aUser| 20
B3 ...Createa New WCS Calibration]. o v vt vv vt 21
B.14 ...Modify a WCS Calibration| 23
B.15 ... Write a Modified WCS Calibration toa Datasefl 24
B.16 ...Display a Graphical Coordinate Grid| 26
17 ... Switch to Plot a Different Celestial Coordin oid ... 29
B.18 ...Give a User Control Over the AppearanceofaPlot, 30
@ An AST Object Primer 33
4.1 ASTObjects| 33
4.2 Object Creationand Pointers| 33
43 TheObject Hierarchy| 34
4.4 Displaying Objects| 35
45 Getting Attribute Values| 35
4.6 Setting Attribute Values| oo oo 36
4.7 Testing, Clearing and Defaulting Attributes| 38
4.8 Transforming Coordinates| L. 39
4.9 Managing Object Pointers|, 40
4.10 AST Pointer Contexts—Beginand End|. 41
411 Exporting, Importing and Exempting AST Pointers| 41
4.12 AST Objects within Multi-threaded Applications| 42

SUN/211.30 —Contents

4.12.1 Locking AST Objects for ExclusiveUse|
47122 ASTPointer Confexts

4.13 ‘Cogzing Objects|

ointer <

4715 Error Detection]o
.16 Sharing the ErrorStatus| oo oo L

[5 Inter-Relating Coordinate Systems (Mappings)|
5.1 TheMappingClass|

b2 TheMappingModel|
5.3 Changing AttributesofaMapping]
b.4 Inputand Output Coordinate Numbers|
5.5 Forward and Inverse Transformations|

P.6 Inverting Mappings|. o o oo
5.7 Finding the Rate of Change of a Mapping Output|

5.8 Reporting Coordinate Transformations|.
5.9 Handling Missing (Bad) Coordinate Values|
b.10 Example—the UnitMap|
.11 Example—the PermMap|

{6 Compound Mappings (CmpMaps)|

6.1 Combining MappingsinSeries|
6.2 Combining Mappingsin Parallel|
6.3 The Component Mappings|.o o i vt
6.4 Creating More Complex Mappings
6.5 Example—Transforming Between Two Calibrated Images|.
6.6 Over-Complex Compound Mappings|
6.7 Simplifying Compound Mappings|

[7__Representing Coordinate Systems (Frames)|
7.1 TheFrameModell

|72 Creatingalbrame| L L L

[73 UsingaFrameasaMapping|.
74 Frame Axis Attributes]

[Z5 Frame Attributes]
|76 Formatting Axis Values|. oL
[77 Normalising Frame Coordinates]
[7.8 Reading Formatted Axis Values|
[79 Permuting Frame Axes|
[710 Selecting Frame Axes|
[711 Calculating Distances, Anglesand Offsets|

/.1 nventions for Domain Names| e

[7.14.1 The Syntax for UnitStrings|
[7.14.2" Side-effects of Changing the Unit attribute]

{8 Celestial Coordinate Systems (Skykrames)|
8.1 The SkyFrameModel| o 000

iv

8.2 Creating a SkyFrame|
8.3 Specifying a Particular Celestial Coordinate System| . .

8.4 Attributes which Qualify Celestial Coordinate Systems|

8.5 Using Default SkyFrame Attributes|.
8.6 Formatting Celestial Coordinates
8.7 Reading Formatted Celestial Coordinates|

.8 Representing Offsets from a Specified Sky Position] . . .

[9__Spectral Coordinate Systems (Speckrames)|

©.1 TheSpecFrameModel,

0.2 Creating aSpecFrame].
9.3 Specifying a Particular Spectral Coordinate System| . .

0.4 Attributes which Qualify Spectral Coordinate Systems|

0.5 Using Default SpecFrame Attributes|
0.6 Creating Spectral Cubes|
0.7 Handling Dual-Sideband Spectral

.71 Aligning Dual-Sideband Spectral

[10 Time Systems (TimekFrames)|
10.1 The TimeFrame Model

11 Compound Frames (CmpFrames)|

(12" An Introduction to Coordinate System Conversions|

[12.1 Converting between Celestial Coordinate Systems] . . .
[12.2_ Converting between Spectral Coordinate Systems| . . .
[12.3 Converting between Time Coordinate Systems|

[12.4 Handling SkyFrame Axis Permutations|
[12.5 Converting Between Frames

|12.6 The Choice of Alignment System|

[13 Coordinate System Networks (FrameSets)|

13.1 The FrameSetModel
[13.2 Creating a FrameSetj.
[13.3 Adding New Frames to a FrameSe|

[13.5 Referring to the Base and Current Frames|

[13.6 Using a FrameSetasa Mapping|.
[13.7 Extracting a Mapping from a FrameSef|.
[13.8 Using a FrameSetasaFrame]

[13.9 Extracting a Frame from a FrameSet|
[13.10Removing a Frame from a FrameSef|

(14 Higher Level Operations on FrameSets|

[10.2 Creating a TimeFrame|
[10.3 Specifying a Particular Time System|
[10.4 Attributes which Qualify Time Coordinate Systems| . .

11.1 Creatinga CmpFrame|
11.2 The Attributes of a CmpFrame|

SUN/211.30 —Contents

SUN/211.30 —Contents

[14.1 Creating FrameSets with astConvert|

[14.2 Converting between FrameSet Coordinate Systems|

[14.3 Example—Registering TwoImages|

[14.4 Re-Defining a FrameSet Coordinate System|

[14.5 Example—Binning an Image

|14.6 Maintaining the Integrity of

[14.7 Merging FrameSets|

[15 Saving and Restoring Objects (Channels)|

15.2 Creating a Channel|

15.3 Writing Objectstoa Channell.

15.4 Reading Objects froma Channel]

15.5 Saving and Restoring Multiple Objects|

15.6 Validating Input|

15.7 Storing an ID String withanObject0 ..

15.8 The Textual Output Format|

[15.9 Controlling the Amountof Outpuf|

15.10Controlling Commenting]. .
15.11Editing Textual Output| . . .

15.12Mixing Objects withother Text|

15.13Reading Objects from Files| .
15.14Writing Objects to Files| . . .

15.15Reading and Writing Objects

[L6 Storing AST Objects in FITS Headers (FitsChans)

16.1 The Native FI1S Encoding| .

16.3 Creating a FitsChan|.
g

[16.4 Addressing CardsinaFitsChan|.

16.5 Writing Native Objectstoa FitsChan|

[16.6 Extracting Individual Cards froma FitsChan|

16.7 The Native FitsChan Output

Format|

[16.8 Adding Individual Cards to a FitsChan| . . .
16.9 Adding Concatenated Cards to a FitsChan| .
[16.10Reading Native Objects From a FitsChan| . .

16.11Saving and Restoring Multiple Objects in a FitsChan[.

16.12Mixing Native Objects with Other FITS Cards|
16.13Finding and Changing Cards in a FitsChan| .
[16.14Source and Sink Functions for FitsChansg|. . .

[17 Using Foreign FITS Encodings|
|17.1 The Foreign FITS Encodings|

[17.2 Limitations of Foreign Encodings|

[17.3 Identifying Foreign EncodingsonTnpuff

[17.4 Reading Foreign WCS Information froma FITSHeader|

[17.5 Removing WCS Information

from FITS Headers—the Destructive Read|

[17.6 Propagating WCS Information through Data Processing Steps|

vi

vii SUN/211.30 —Contents

(17.7 Writing Foreign WCS Information toa FITSHeader| 164

[18 Storing AST Objects as XML (XmlChan)| 167
(18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions| 168

[19 Reading and writing STC-S descriptions (StcsChans)| 171
20 Creating Your Own Private Mappings (IntraMaps)| 173
0.1 The Need for EXEensIIEY] - - . - - - -« « o oo 173
202 TheIntraMapModel| 173
20.3 Limitations of IntraMaps| 173
[20.4 Writing a Transformation Function] 174
[20.5 Registering a Transformation Function|. 175
0.6 CreatinganIntraMap|. 176
[20.7 Restricted Implementations of Transformation Functions| 177
0.8 Variable Numbers of Coordinatesl 177
120.9 Adapting a Transformation Function to Individual IntraMaps) 178
20.10Simplifying IntraMaps| 179
[20.11Writing and Reading IntraMaps|. 180
20.12Managing Transformation Functions in Libraries| 181

21 Producing Graphical Output (Plots)| 183
...................................... 183
21.2 Plotting Symbols| L 183
1.3 Plotting GeodesicCurves| 184
1.4 Plotting Curves Parallelto Axes|. 185
215 Plotting Generalized Curves|. 185
R16 Clipping] 185
R17 UsingaPlotasaMapping| 186
R1.8 UsingaPlotasaFrame|. 186
1.9 Regions of Valid Physical Coordinates| 187
R1.10Plotting Borders| 187
BIIIPIOMNG TOXT - . -+« o o o o oo e e 187
R112PlottingaGrid|. 188
[21.13Controlling the Appearance of Sub-strings| 188
21.14Producing Logarithmic Axes| 189
21.15Choosing a Graphics Package] 190

22 Compiling and Linking Software that Uses AST] 191
22.1 Accessing the "asth” HeaderFile|. 191
222 Linking with AST Facilities| 191
2.3 Building ADAM Applications that Use AST]. 192

A" The AST Class Hierarchy| 193
(B AST Function Descriptions| 195
CastSell . . . o 196
astActiveObjects|. L 198

SUN/211.30 —Contents viii

[astAddColumnl| e 200
[astAddEramel 201
[astAddMocDatal e e 203
astAddMocString| L 205
astAddParameter] e 207

[astAddPixelMask<X>| 208
astAddRegion| o 211

| astAddVariantl 212
astAngle| 213
astAnnull e 214
astAxAnglelo 215

| astAxDistancel e 216
AxNorml. e e e 217

[astAXOMfset]. e e e e 218
astBBufl 219

[astBegin| 220
astBorder 221
astBoundingBox|. 222

[astBoXl. . . . 223
[astChannell e 225
[_astChannelDatal e 227
astChebyDomain| o oo o 228
astChebyMap| 229
astCirclel e 232

[astCirclePars| e e 234
[astClearl. o o e 235
[astClearStatus| e 236
m ... 237
[astCIone] . . . o 239
astCmpkrame) L oo 240
m .. 241
[astCmpRegion]. 243
astColumnName| e e 245

[astColumnNulll e 246
astColumnShape| L o 248

| astColumnSizel. e e e 249
[astConvert] e e e e e e 250
[astConvex<X>| e e e e e e e e 254
[astCopy|. . - 256
astCreatedAtl. e e e 257

[astCurrentTimel e 258
[astCurvel o o 259
astDSBSpeckrame| oo o oo 260

[astDecompose] 261
astDelFits|. e e e 263

3 eletel e 264

[astDistancel e 265

ix

SUN/211.30 —Contents

[astBBufl e 267
astEllipse| 268
astEllipsePars) o 270
W .. 271
astEndl 272
astEscaEesl ... 273
astExempt] 274
M‘ .. 275
[astFindFitsl e 276
[astbBindFramel e 279
FitsChanl. e e 284

[astFitsTablel. e 286
[astbluxFrame| e e 287
[astFormatl. e 289
[astFramel 290
[astFrameSell 292
astFromString| 294
astGenCurvel e e e e e e e e 295

[astGet<<X>|. . . . e e 296
[astGetActiveUnitl e 297
[astGetCelll e e 298
[astGetColumnDatal e 299
astGetFits<X>| e e 300
Framel e 302

[astGetGriContextl e 303
astGetMap 1ng 304
astGetMocDatal 305

[astGetMocHeaderl e 306
astGetMocString|. Lo o 307

[astGetRefPosl. 308
astGetRegionBounds| oo oo 309
astGetRegionDisc| 310

| astGetRegionFrame| 311
[astGetRegionFrameSel] 312
astGetRegionMesh| o oo o 313
astGetRegionPoints| o oo o oo 314
astGetStcCoordl e 316

[astGetStcNCoordl e e e 317
astGetStcRegion|o oo oo 318
astGetTableHeader] 319

[astGetTables| e 320
[astGetUNd e e e 321
astGriPop| 322

[astGrfPushl e 323
[astGrfSel e 324
| astGridl . . . L e e e e 329
[astGridlinel e 330

SUN/211.30 —Contents X

[__astHasAttributel 332
| astHasColumnl. 333
[_astHasParameted o 334
astlmport|. o 335
astIntersectl 336
| astintervall 337
astintraMap|o oo 339
[astlnfraReg]. 341
astlnvertl 344
| astlsA<Class>| 345
astkeyMap|. 346
astLinearApprox| 347
astbockl 349
astbutMap|o 350
astMapbBox| 352
[astMapCopy| 354
[astMapCopyEntry]. 355
astMapDefined| 356
astMapGetO<X>| . . . o v oo 357
astMapGetI<X>| 359
astMapGetC| 361
astMapGetElem<X>| oo oo oo 362
astMapHasKey| oo 364
astMapKey| 365
astMaplenC| 366
astMapLength| o oo 367
[astMapPut0<X>| 368
[astMapPutI<X>| 370
astMapPutElem<X>| L 372
astMapPutU] 374
— ASIMAPREGION -« « « o et 375
astMapRemove] 376
T ASIMAPRENAINE] « « « « e e e e e e e 377
astMapSize|. 378
astMapSplit] 379
astMapTypel 380
astMarkl. 381
| astMask<X>| 382
| astMatchAxes| 385
astMathMap| oo 386
[astMatrixMap| 394
[astMirrorVariantsl 396
[astMod 397
| astMocChanl| 399
astNegate]. L 401
[astNorml 402
astNormMap|.o 403
astNormPoints|. 404

xi

SUN/211.30 —Contents

astNullRegion| 406

[astOKl 407
| astOffset] e e e 408
tfset2l. e 409

[astOutline<X>| 410
astOverlap| 413

[astParameterNamelo 414
astPcdMap|o 415

[aStPerMAXES . « « o o e e 417
astPermMap|o o oo 418
PickAxes| e e 420

[astPIofl o o e 422
[astPlot3D e e 424
astPointlnRegion| oo 426

[astPointlistl 427
astPolyCoeffs| 429
astPolyCurvel 430
astPolyMap| 431
astPolyTran| 433
astPolygon| 435

[astPrisml 437
astPurgeRows|o oo 438
_ast@WC3| 439
astPutCardsl e 440

[astPutChannelDatal e 441
P lumnDatal 442

[astPutFits]. e e e 443
PutTablel. e 444
[__astPutlableHeader] 445
[astPutTables| e 446
astQuadApprox| 447
astRatel e 449
astRateMap| 450
astRead| e e 452
ReadFits|. e e 453

[astRebin<X>| e 454
astRebinSeq<X>| oo o 460
astRegionOutline| 467

[astRemapFrame] 468
[astRemoveColumnl 469
[astRemoveFramel 470
[astRemoveParameter] 471
astRemoveRegions| oo oo 472

[asStReMOVEROW] . .« . v oot e 473
[__astRemovelablesl e 474
astResample<X>| o oo oo 475
astResolvel 485

SUN/211.30 —Contents xii

CastSamel. o 487
astSelectorMap| o o 488
astSetl 490

I astSet<X>| . . . L 492

[astSetActiveUnitl. 493

Fits<X>|. . . . e 495

| astSetFitsCMI L 497

| astSetFitsUl o 498

| astSetPutErrd o o 499

| astSetRefPos| L 500

| astSetStatus| o 501

| astSetUnd|. o 502
astShiftMap| 503
astShow| 504

| astShowkFits| 505

[_astShowMeshl 506
astSimplify|o 507
astSkyFrame| 508
astSkyOffsetMap| L 510

|astSlaAdd| 511
astSlaMap| 514
astSpecAdd| 515
astSpecFluxFrame|. L o 518

[astSpecFrame] 519
astSpecMap| o o 521
astSphMap| 523
astotatus| 525
astStcCatalogEntryLocation|o o000 oL 526

[astStcObsDatalocation] oo v o it 528

[astStcResourceProfilel s 530

[astStcSearchLocationl 532

| astStesChanl o oL 534
astStripEscapes| oo 536
astSwitchMap| o 537
astTablel. 539

| astTableSourcel L 540

[astTesl o 541

| astTestCelll o o 542

TestFits 543

[astlextl o 544

| astThread|. 545

[_astTimeAdd 547

[_astlimeFramel 550
astlimeMap| oo 552

[astToString] 553

[astTrandl 554

xiii SUN/211.30 —Contents
astlranMap| L oo 558

[astTranNl e 560
[astTranl] o e 562
... 564
[astTuneC e 565
astUmnterp| 567
astUkerndl e 570

[astUnformatl o 572
astUnitMap| oo o 576

[astUnitNormMap|o 577
astUnlockl. e 579

[astVersionl e 580
astWarnings| 581
astWatchl e 583
astWesMap|.o oo 584

[astWInMap|. 587
Write]. e e e 589

[astWriteFitsl e e 590
[astXmlChanl e 591
[astYamIChanl. e 593
| astZoomMap|. o 595
[C AST Attribute Descriptions| 597
| Abbrev(axis)| 598
Adaptivelo 599
AlignOffset|. 600
AlignSideBand|. o oo 601
AlignSpecOffset) L 602
AlignStdOfRest] 603
AlignSystem| 604
AlignTimeScale] o oo 605
AllVariants] e e e e 606
AllWarnings| L 607

| AILAXeS| . . . e e 609
| AsTime(axis)|« o o e 610
[Basel . . o o o 611
[Borderl e 612
| Bottom(axis) e e e 613
.. 614

D TIXI. o o o e 615

I 7 5) 616
[Cardl. . . . e e 617
[CardComml. e e e e e 618
[CardNamel o e e e e e e 619
CardTypel. 620
Classl e e 621
I 1. 622

SUN/211.30 —Contents Xiv

I« 7= = R 624
[Closed]ot e 625
| Colour(element)| e 626
| ColumnlLenC(column)f 627
ColumnLength(column)| 628
ColumnNdim(column)| 629
Columnlype(column), o o 630

| Commentl. e e e e 631
L Cummenlo 632
| DSBCentrel 633
ef BIOBOI e 634
Digits/Digits(axis)] 635
Direction(axis)| . . . -« .« o o e e e e e 636

L DISCOl « v v o e e e e 637
... 638
| DrawAXes(axis) - - - v v v v e e e 639
[Drawlitlel. o 640
I 5 641
L Dufdl. . . . e 642
Edge(axis) 643
Encoding| 644
Epochl. o 651

[EquinoX|. 653
[Escape]l 654
FillFactorl e 656

[FitsAxisOrder| e 657
FitsDigits|o 658
FitsRounding| L 659

I 1) 660
| Font(element)| 661
| Forcelabl o e 662
| Format(axis) . . . - - e e 663
... 666
Gap(axis) - - - o . 667

Grfl . 668

I 3T 669
GrismAlpha| 670
GrismEps|. 671
GrismGl e 672

[GrismMI. . .. 673
[GrismNRl e 674
[GrismNRP| 675
[GrismThetal e 676
rismWaveR|. 677

[I . . 678
L TH o e e 679
L Tdenfl oo 680

| Imagkreq| 681

SUN/211.30 —Contents

L Indenfl. oo 682
| InternalUnit(axis) o o e 683
T IREAFIRE] - . » e e e 684
Invertl e 685

[Invisiblelo 686
| IsLatAXis(axis)|. . . -« ¢ v v v i e e e 687
I =) 5 =Y. 688
| ISLONAXIS(AXIS)| - - - v v v e e e e e e e 689
T ISOINPIE - e e e e e 690
[terInverse] 691
I 77 692
eyCasel e 693
eYETTOr| e 694

[TTOffsetl 695
| Label(axis) o o 696
| LabelAt(axis)|. e 697
| LabelUnits(axis)| . . - o o o o o 698
LabelUp(axis) 699
Labelling| 700
LatAxis| 701

L TastSIZE . . . o o e 702
LogGap(axis)| e 703
Loglabel(axis)| 704
LogPlot(axis)|. 705
LogTlicks(axis)| 706
LonAxisl e 707
LutEpsilon| 708

[Luflnferp|. o 709
MajTickLen(axis)| 710
MapLocked| 711
MatchEndl 712

[MaxAxes o e 713
| MaxOrderl e 714
[MaxResl oo e e 715
hSizel e 716

[MINAXES . . o o oo e 717
Order]. e 718

L MANRES| - - o e e e e e e 719
| MinTick(axis)| L e 720
| MinTickLen(axis) o e e 721
[MocAxeal o o e 722
[MocFormatl. o e 723
MocLengthl 724

[Moclinelen] v 725
[MocType] . .. 726
Natlatl o 727

[Naflonl ot o e 728

SUN/211.30 —Contents

Neglon|.

Negatec | ..

NIOWI . . . o o e e
| Numlab(axis)] o e
NumLabGap(axis)|

Po|yTaﬁ| ...

Preserv NE| . . v e e e e e e e e e e e

ProjP@ m)] ..

RegionClass| ..
Reporfl oo e

ReEortLeve1| ..

mplF ...

SipReplace] oo

Size(element)

XVi

xvii SUN/211.30 —Contents

1D« o o 778
SkyRef(axis) 779
SkyRefls| 780
SkyRefP(@xis)]o oot 781
SkyToll 782

ortBy|. . . . o e 783

el . . e 784

SOUTCESYS| o e e e e e e e e e e e 785

[SourceVRE o 786
| SourceVell e 787
SpecOTIgIN| L. 788
SpecVal 789
StesATeal e e e e e e e e e e e 790

| StesCoords| L 791
StesLengthfo 792

[StesProps| 793
[StdOfRestl 794
I 796
Style(element)| 797
Symbol(axis) . « . . v 798
SYSEem| 799

[TabOKl . . ot e 802
lextGaplype|. o 803
TextLab(axis). o e e 804
TextLabGap(axis)| 805
TickAIll e 806
TimeOrigin. 807
TimeScalel. e 808

L Ttle . . o o e e 810
T OTHEGAD] - - - e e 811
T v 812
| [ollnversel 813
TTOPGENE) - - e e e e e 814
IranForward| 815

[Tranlnversel 816
| Unit(axis)| e e e e e e e 817
| UnitRadius|. 818
[UseDefsl. « o v oo e 819
[Variantl e 820
| VerboseRead| 822
Warnings| e 823
WesAxis(lonlat)l 824

[OWGSTypE . . . 825
Width(element)] 826

[XmlFormatl. e 827
XmlLengthl 829

[XmlIPrefiX]. 830

SUN/211.30 —Contents

D

CmEMaEI ..
E 'mﬁ Eegloﬂ ..

ShiftMap|
SKYAXIS|. « ¢
SkyFrame|.
SlaMap|

SpecFluxFrame|

XVviii

Xix SUN/211.30 —Contents
Speckrame| 891

[SpecMap| 892
TTOPRAMAD] . . s e e 893
Std . . . 894
StcCatalogEntryLocation| 00 895
StcObsDatalocationl 896

[StcResourceProfilel. 897
[StcSearchlocationl o s 898
[StesCRan] . . - oo oo 899
SwitchMap|. 901
Tablel 903

[TimeFramel. 905
TimeMap| 906
TranMap| 907
UnitMap| 908
UnitNormMap|. o oo 909
WesMap| . ..o oo 910

[WinMap| 912
L XmlChanlo 913
[YamlChanl 914
| ZoomMap| 915
[E UNIX Command Descriptions| 917
| ast linklo 918
| ast link adam| 921
[FAST Memory Management and Utility Functions| 923
astAppendString] 924
astAppendStringf| L 925
astBrackets| 926

[astCallod v v e 928
[__astChr2Doublel. 929
| astChrCasel 930
hrCleanl 931

[astChrlenl 932
| astChrMatchl o 933
[_astChrMatchN|. 934
| astChrRemoveBlanks| o 935
astChrSplitl 936
astChrSplitCl . oo oo 937
astChrSplitRE] 938
astChrSublo 939

[astChrTrund 941
[astFandll 942
| astFreel 943
| astbreeDoublel o 944
[astGrow] 945

| astlsDynamic| o o oo 946

SUN/211.30 —Contents

astStan ..
astStrmgArraﬂ
astStringCase]

-W overage

[G.T Paper I - General Linear Coordinates|

G.1.1 Requirements for a Successful Write Operation|.
G.1.2 Use and Choice of CTYPE keywords

G.14 Choiceof AxisOrdering|
G.1.5 Alternate Axis Descriptions|
(G2 PaperII - Celestial Coordinates|

G.2.1 Requirements for a Successful Write Operation|.
G.2.2 Choice of LONPOLE/LATPOLE]ttt

2.4 mmon Non-Standard F IeSl. . .o
|G.3 Paper III - Spectral Coordinates|
G.3.1 Requirements for a Successful Write Operation|.

|G.4 Paper 1V - Coordinate Distortions|.

£ 7

g 1 joncodel.

[H_Release Notes|

Changes Introduced in VLTo o
Changes Introduced in VI.2]
Changes Introduced in V1.3
4 Changes Introduced in V1.4
5 Changes Introduced in VI.5
Changes Introduced in V1.6|
H 7 Changes Introduced in VI.7]
Changes Introduced in V1.8-2)
|H 9 ChangesIntroducedin VI.8-3|
[H.10 Changes Introduced in VI.8-4]
11 Changes Introduced in VI.8-5
[H.12 Changes Introduced in VI.8-7
H.13 Changes Introduced in VI.8-§
[H.14 Changes Introduced in VI.8-13|
H.15 Changes Introduced in V2.0]
[H.16 Changes Introduced in V3.0
H.17 Changes Introduced in V3.T|
[H.I8Changes Introduced in V3.2
19 Changes Introduced in V3.3

ke

O'\

fo’s

XX

X1 SUN/211.30 —Contents

IH.20 Changes Introduced in V3.4 983
[H.2T Changes Introduced in V3.5 984
[H.22 Changes Introduced in V3.6 984
[H.23 Changes Introduced in V3.7 985
[H.24 Changes Introduced in V4.0] 985
[H.25Changes Introduced in VAT 985
[H.26 Changes Introduced in V4.2 986
H.27 Changes Introduced in V43| 987
[H.28 Changes Introduced in VA4 988
H.29 Changes Introduced in V4.5 988
[H.30 Changes Introduced in V4.6 989
H.31 Changes Introduced in V5.0 990
[H.32 Changes Introduced in V5.1] 990
H.33 Changes Introduced in V5.2 991
[H.34 Changes Introduced in V5.3 992
[H.35Changes Introduced in V5.3-T) 993
[H.36 Changes Introduced in V5.3-2 994
[H.37 Changes Introduced in V5.4-0 994
H.38 Changes Introduced in V5.5-0 995
[H.39 Changes Introduced in V5.6-0 995

40 ChangesIntroduced in V5.6-1] oo 995
[H41 Changes Introduced in V5.7-0 996
H.42 Changes Introduced in V5.7-1] 996
[H43 Changes Introduced in V5.7-2 997

44 Changes Introduced in V6.0 997
[H.45 Changes Introduced in V6.0-T] o i 998

46 Changes Introduced in VZ7.0.00, 998
[H.47 Changes Introduced in VZ7.0.1] 998
[H.48 Changes Introduced in V7.0.2] 998

49 Changes Introduced in V7.0.3[. L oo L 999
[H.50 Changes Introduced in V7.0.4] 999
H.51 Changes Introduced in V7.0.5] 999
[H.52 Changes Introduced in V7.0.6] 999
H.53 Changes Introduced in VZ.1.0| 1000
[H.54 Changes Introduced in VZ.T.T| 1000
H.55 Changes Introduced in V7.2.00 1000
[H.56 Changes Introduced in V7.3.0]o ottt i it 1000
H.57 Changes Introduced in VZ.3.1f, 1001
[H.58 Changes Introduced in V7.32] 1001
[H.59 Changes Introduced in V7.3.3] 1001

.60 Changes Introduced in V7.34{ Lo L. 1002
H.61 Changes Introduced in VB.0.0] 1002
H.62 Changes Introduced in V8.0.1| 1002
[H.63 Changes Introduced in VB.0.2] 1003

.64 Changes Introduced in V8.0.3|, 1003
[H.65 Changes Introduced in V8.0.4] 1003

.66 Changes Introduced in V8.05[. 1004

|H.67 Changes Introduced in V8.l.0| 1004

SUN/211.30 —Contents xxii

IH.68 Changes Introduced in V8.2 1004
[H.69 Changes Introduced in V8.3 1005
H.70 Changes Introduced in V8.4] 1005
[H.71 Changes Introduced in V8.5 1006
[H.72 Changes Introduced in V8.6.2] 1006
[H.73 Changes Introduced in V8.6.3] 1007
[H.74 Changes Introduced in V8.7.0/ 1007
H.75 Changes Introduced in V8.7.1] 1008
[H.76 Changes Introduced in VB.7.2] 1008
H.77 Changes Introduced in V9.0.0/ 1008
[H.78 Changes Introduced in V9.0.2] 1009
H.79 Changes Introduced in V9.1.0] 1009
[H.80 Changes Introduced in V9.1.2] 1009

81 Changes Introduced in V9.1.3 1009
[H.82 Changes Introduced in V9.2.0/ 1010
[H.83 Changes Introduced in V9.2.4] 1010
[H.84 Changes Introduced in V9.25 1010
[H.85 Changes Introduced in V9.2.6] 1011
[H.86 Changes Introduced in V9.2.7] 1011

[H.87 Changes Introduced in V9.2.8) 1011

xxiii SUN/211.30—List of Figures

List of Figures
[l A Mapping viewed as a “black box” for transforming coordinates. 5
2 A CmpMap composed of two component Mappings joined in series| 7
B~ A CmpMap composed of two Mappings joined in parallel| 7
4 CmpMaps may be nested in order to construct complex Mappings out of simpler |
| building blocks.| oo oo o 8
b Representing coordinate systems as Frames.| 9
6 A CmpFrame (compound Frame) formed by combining two simpler Frames.| . . 10
[/___AFrameSetisanetworkof Frames]. 11
8 Alabelled coordinate grid for an all-sky zenithal equal area projection in ecliptic |
[coordinates) 13
9 Anexample of a displayed image with a coordinate grid plotted overit| 27
0 An over-complex compound Mapping| 61
11 A dual-sideband spectrum is formed by superimposing the signal received from |
| twospectral windows| o oo oo 98

12 When a FrameSet pointer is used to change the attributes of its current Frame (C)
a copy of the original current Frame is first made (C’) and the requested attribute
changes are applied to this copy. The Mapping from the original Frame to the
modified Frame is then found using the astConvert function. The modified Frame |
(C’) 1s then added into the FrameSet, using the Mapping returned by astConvert
(shown by the dotted arrow) to connect it to the original Frame (C). Finally, the
original Frame is removed leaving the new modified Frame as the current Frame.

The base Frame (B) isunchanged.|. 101

13 Two observations of a single line are made - observation 1 places the line in the |
LSB and observation 2 places the lineinthe USB.|. 102

M4 AnexampleFrameSet] 117

[15 FrameSet produced when converting between two SkyFrames]. 123

16 Conversion between two FrameSets is performed by establishin a [ink between a [

| pair of Frames, one from each FrameSet/ 125

17 Interposing a Mapping intoa FrameSet|] 129
18 Two FrameSets in the process of being merged] 132

1 SUN/211.30 —Introduction

This is the C version of this document.
For the Fortran version, please see SUN/210.

1 Introduction

Welcome to the AST library. If you are writing software for astronomy and need to use celestial
coordinates (e.g. RA and Dec), spectral coordinates (e.g. wavelength, frequency, etc.), or other
coordinate system information, then this library should be of interest. It provides solutions for
most of the problems you will meet and allows you to write robust and flexible software. It is
able to read and write WCS information in a variety of formats, including FITS-WCS.

1.1 What Problems Does AST Tackle?

Here are some of the main problems you may face when handling world coordinate system
(WCS) information and the solutions that AST provides:

1. The Variety of Coordinate Systems

Astronomers use a wide range of differing coordinate systems to describe positions within
a variety of physical domains. For instance, there are a large number of celestial coordinate
systems in use within astronomy to describe positions on the sky. Understanding these,
and knowing how to convert coordinates between them, can require considerable expertise.
It can also be difficult to decide which of them your software should support. The same
applies to coordinate systems describing other domains, such as position within an electro-
magnetic spectrum.

Solution. AST has built-in knowledge of many coordinate systems and allows you to
convert freely between them without specialist knowledge. This avoids the need to embed
details of specific coordinate systems in your software. You also benefit automatically
when new coordinate systems are added to AST.

2. Storing and Retrieving WCS Information
Storing coordinate system information in astronomical datasets and retrieving it later
can present a considerable challenge. Typically, it requires knowledge of rather complex
conventions (e.g. FITS) which are low-level, often mis-interpreted and may be subject to
change. Exchanging information with other software systems is further complicated by
the number of different conventions in use.

Solution. AST combines a unifying high-level description of WCS information with the
ability to save and restore this using a variety of formats. Details of the formats, which
include FITS, are handled internally by AST. This frees you from the need to understand
them or embed the details in your software. Again, you benefit automatically when new
formats are added to AST.

3. Generating Graphical Output
Producing graphical displays involving curvilinear coordinate systems, such as celestial

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://fits.gsfc.nasa.gov/fits_wcs.html

SUN/211.30 —Introduction 2

coordinate grids, can be complicated. Particular difficulties arise when handling large
areas of sky, the polar regions and discontinuous (e.g. segmented) sky projections. Even
just numbering and labelling curvilinear axes is rarely straightforward.

Solution. AST provides plotting facilities especially designed for use with curvilinear
coordinate systems. These include the plotting of axes and complete labelled coordinate
grids. A large number of options are provided for tailoring the output to your specific
needs. Three dimensional coordinate grids can also be produced.

4. Aligning Data from Different Sources
One of the main uses of coordinate systems is to facilitate the inter-comparison of data
from different sources. A typical use might be to plot (say) radio contours over an optical
image. In practice, however, different celestial coordinate systems may have been used,
making accurate alignment far from simple.

Solution AST provides a one-step method of aligning datasets, searching for all possible
intermediate coordinate systems. This makes it simple to directly inter-relate the pixel
coordinates of different datasets.

5. Handling Different Types of Coordinate [System|
Not all coordinate systems used in astronomy are celestial ones, so if you are writing
general-purpose software such as (say) a display tool, you may also need to handle axes
representing wavelength, distance, time or whatever else comes along. Obviously, you
would prefer not to handle each one as a special case.

Solution AST uses the same flexible high-level model to describe all types of coordinate
system. This allows you to write software that handles different kinds of coordinate axis
without introducing special cases.

1.2 Other Design Objectives

As well as its scientific objectives, the AST library’s design includes a number of technical
criteria intended to make it applicable to as wide a range of projects as possible. The main
considerations are described here:

(1) Minimum Software Dependencies. The AST library depends on no other other softwardﬂ

(2) Environment Independence. AST is designed so that it can operate in a variety of “pro-
gramming environments” and is not tied to any particular one. To allow this, it uses
simple, flexible interfaces to obtain the following services:

e Data Storage. Data I/O operations are based on text and/or FITS headers. This
makes it easy to interface to a wide variety of astronomical data formats in a machine-
independent way.

e Graphics. Graphical output is produced via a simple generic graphics interface,
which may easily be re-implemented over different graphics systems. AST pro-
vides a default implementation based on the widely-used PGPLOT graphics system
(SUN/15).

11t comes with bundled copies of the ERFA and Starlink PAL libraries which are built at the same time as
the other AST internal libraries. Alternatively, external PAL and ERFA libraries may be used by specifying the
“-with-external_pal” option when configuring AST

http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun268.htx/sun268.html?xref_

)

SUN/211.30 —Introduction

e Error Handling. Error messages are written to standard error by default, but go
through a simple generic interface similar to that used for graphics (above). This
permits error message delivery via other routes when necessary (e.g. in a graphical
interface).

Multiple Language Support. AST has been designed to be called from more than one
language. Both C and Fortran interfaces are available (see SUN /210 for the Fortran version)
and use from C++ is also straightforward if the C interface is included using;:

extern "C" {
#include "star/ast.h"

}

A JNI interface (known as “JNIAST” - see http://www.starlink.ac.uk/jniast/) has also
been developed by Starlink which allows AST to be used from Java.

(4) Oriented Design. AST uses “object oriented” techniques internally in order to

)

1.3

provide a flexible and easily-extended programming model. A fairly traditional call-
ing interface is provided, however, so that the library’s facilities are easily accessible to
programmers using C and Fortran.

Portability. AST is implemented entirely in ANSI standard C and, when called via its C
interface, makes no explicit use of any machine-dependent facilities.

The Fortran interface is, unavoidably, machine dependent. However, the potential for
problems has been minimised by encapsulating the interface layer in a compact set of C
macros which facilitate its transfer to other platforms. No Fortran compiler is needed to
build the library.

Currently, AST is supported by Starlink on PC Linux, Sun Solaris and Tru64 Unix (formerly
DEC UNIX) platforms.

What Does “AST” Stand For?

The library name “AST” stands for “ASTrometry Library”. The name arose when it was thought
that knowledge of “astrometry” (i.e. celestial coordinate systems) would form the bulk of the
library. In fact, it turns out that astrometry forms only a minor component, but the name AST
has stuck.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/jniast/

SUN/211.30 —Introduction

5 SUN/211.30 —Overview of AST Concepts

2 Overview of AST Concepts

This section presents a brief overview of AST concepts. It is intended as a basic orientation
course before you move on to the more technical considerations in subsequent sections.

2.1 Relationships Between Coordinate Systems

The relationships between coordinate systems are represented in AST by Objects called Map-
pings. A does not represent a coordinate system itself, but merely the process by which
you move from one coordinate system to another related one.

A convenient picture of a Mapping is as a “black box” (Figure|1) into which you can feed sets of
coordinates.

Forward
/
*—>»
Input . Output
Coordinates A Mapplng Coordinates
*—>»
.
h Inverse

Figure 1: A Mapping viewed as a “black box” for transforming coordinates.

For each set you feed in, the Mapping returns a corresponding set of transformed coordinates.
Since each set of coordinates represents a point in a coordinate space, the Mapping acts to
inter-relate corresponding positions in the two spaces, although what these spaces represent
is unspecified. Notice that a Mapping need not have the same number of input and output
coordinates. That is, the two coordinate spaces which it inter-relates need not have the same
number of dimensions.

In many cases, the transformation can, in principle, be performed in either direction: either from
the input coordinate space to the output, or vice versa. The first of these is termed the forward
transformation and the other the inverse transformation.

Further reading: For a more complete discussion of Mappings, see

2.2 Mappings Available

The basic concept of a (§2.1) is rather generic and obviously it is necessary to have spe-
cific Mappings that implement specific relationships between coordinate systems. AST provides
a range of these, to perform transformations such as the following and, where appropriate, their
inverses:

SUN/211.30 —Overview of AST Concepts 6

e Conversions between various celestial coordinate systems (the(SlaMap).

e Conversions between various spectral coordinate systems (the SpecMap|and |GrismMap).

e Conversions between various time systems (the TimeMap).

e Conversion between 2-dimensional spherical celestial coordinates (longitude and latitude)

and a 3-dimensional vectorial positions (the[SphMap).

e Various projections of the celestial sphere on to 2-dimensional coordinate spaces—i.e. map
projections (the [DssMap|and [WcsMap).

e Permutation, introduction and elimination of coordinates (the PermMap).

e Various linear coordinate transformations (the MatrixMap} WinMapl} [ShiftMap|and |[ZoomMap).

e General N-dimensional polynomial transformations (the [PolyMap|and [ChebyMap).
e Lookup tables (the [LutMap).

e General-purpose transformations expressed using arithmetic operations and functions

similar to those available in C (the MathMap).

e Transformations for internal use within a program, based on private transformation

functions which you write yourself in C (the |IntraMap).

Further reading: For a more complete description of each of the Mappings mentioned above, see
its entry in Appendix D} In addition, see the discussion of the PermMap in §5.11} the [UnitMap
in §5.10/and the IntraMap in The ZoomMap is used as an example throughout §4|

2.3 Compound Mappings

The Mappings described in provide a set of basic building blocks from which more complex
Mappings may be constructed. The key to doing this is a type of called a or
compound Mapping. A CmpMap’s role is, in principle, very simple: it allows any other pair of
Mappings to be joined together into a single entity which behaves as if it were a single Mapping.
A CmpMap is therefore a container for another pair of Mappings.

A pair of Mappings may be combined using a CmpMap in either of two ways. The first of these,
in series, is illustrated in Figure [2}

Here, the transformations implemented by each component Mapping are performed one after
the other, with the output from the first Mapping feeding into the second. The second way, in
parallel, is shown in Figure

In this case, each Mapping acts on a complementary subset of the input and output CoordinatesEI

The CmpMap forms the key to building arbitrarily complex Mappings because it is itself a form
of Mapping. This means that a CmpMap may contain other CmpMaps as components (e.g.
Figure). This nesting of CmpMaps can be repeated indefinitely, so that complex Mappings
may be built in a hierarchical manner out of simper ones. This gives AST great flexibility in the

2 A pair of Mappings can be combined in a third way using a A TranMap allows the forward transfor-
mation of one Mapping to be combined with the inverse transformation of another to produce a single Mapping.

7 SUN/211.30 —Overview of AST Concepts

CmpMap

Mapping A Mapping B

Figure 2: A CmpMap (compound Mapping) composed of two component Mappings joined in
series. The output coordinates of the first Mapping feed into the input coordinates of the second
one, so that the whole entity behaves like a single Mapping.

/ CmpMap

Mapping A

Mapping B

Figure 3: A CmpMap composed of two Mappings joined in parallel. Each component Mapping
acts on a complementary subset of the input and output coordinates.

SUN/211.30 —Overview of AST Concepts 8

/

Mapping B

Mapping A

Mapping C

Figure 4: CmpMaps (compound Mappings) may be nested in order to construct complex
Mappings out of simpler building blocks.

coordinate transformations it can describe.

Further reading: For a more complete description of CmpMaps, see §6} Also see the CmpMap
entry in Appendix|D}

2.4 Representing Coordinate Systems

While Mappings (§2.1) represent the relationships between coordinate systems in AST, the
coordinate systems themselves are represented by Objects called Frames (Figure |5).

A Frame is similar in concept to the frame you might draw around a graph. It contains
information about the labels which appear on the axes, the axis units, a title, knowledge of how
to format the coordinate values on each axis, efc. An AST Frame is not, however, restricted to
two dimensions and may have any number of axes.

A basic Frame may be used to represent a Cartesian coordinate system by setting values for
its attributes (all AST Objects have values associated with them called attributes, which may
be set and enquired). Usually, this would involve setting appropriate axis labels and units, for
example. Functions are provided for use with Frames to perform operations such as formatting
coordinate values as text, calculating distances between points, interchanging axes, etc.

There are several more specialised forms of Frame, which provide the additional functionality
required when handling coordinates within some specific physical domain. This ranges from
tasks such as formatting axis values, to complex tasks such as determining the transformation
between any pair of related coordinate systems. For instance, the SkyFrame (Figure [Bp,c),
represents celestial coordinate systems, the represents spectral coordinate systems,
and the represents time coordinate systems. All these provide a wide range of
different systems for describing positions within their associated physical domain, and these
may be selected by setting appropriate attributes.

As with compound Mappings (§2.3), it is possible to merge two Frames together to form a
compound Frame, or in which both sets of axes are combined. One could, for

9 SUN/211.30 —Overview of AST Concepts

x1 b)
x2
SkyFrame
RA
o Dec)
SkyFrame

RA
Dec o

Figure 5: (a) A basic Frame is used to represent a Cartesian coordinate system, here 2-
dimensional. (b) A represents a (spherical) celestial coordinate system. (c) The
axis order of any [Frame|may be permuted to match the coordinate space it describes.

example, have celestial coordinates on two axes and an unrelated coordinate (wavelength,
perhaps) on a third (Figure [p). Knowledge of the relationships between the axes is preserved
internally by the process of constructing the CmpFrame which represents them.

Further reading: For a more complete description of Frames see §7} for SkyFrames see §§and
for SpecFrames see @ Also see the Frame, SkyFrame, SpecFrame, TimeFrame and CmpFrame
entries in Appendix D

2.5 Networks of Coordinate Systems

Mappings and Frames may be connected together to form networks called FrameSets, which
are used to represent sets of inter-related coordinate systems (Figure[7).

A may be extended by adding a new to it, together with an associated [Mapping]

which relates the new coordinate system to one which is already present. This process ensures
that there is always exactly one path, via Mappings, between any pair of Frames. A function is
provided for identifying this path and returning the complete Mapping.

One of the Frames in a FrameSet is termed its base Frame. This underlies the FrameSet’s purpose,
which is to calibrate datasets and other entities by attaching coordinate systems to them. In
this context, the base Frame represents the “native” coordinate system (for example, the pixel
coordinates of an image). Similarly, one Frame is termed the current Frame and represents
the “currently-selected” coordinates. It might, typically, be a celestial or spectral coordinate
system and would be used during interactions with a user, as when plotting axes on a graph or
producing a table of results. Other Frames within the FrameSet represent a library of alternative
coordinate systems which a software user can select by making them current.

SUN/211.30 —Overview of AST Concepts 10

/ CmpFrame

(SkyFrame
RA
Dec

Frame
Wavelength

Figure 6: A CmpFrame (compound Frame) formed by combining two simpler Frames. Note
how the special relationship which exists between the RA and Dec axes is preserved within this
data structure. As with compound Mappings (Figure #), CmpFrames may be nested in order to
build more complex Frames.

Further reading: For a more complete description of FrameSets, see §13{and Also see the
FrameSet entry in Appendix|D}

2.6 Input/Output Facilities

AST allows you to convert any kind of into a stream of text which contains a full
description of that Object. This text may be written out by one program and read back in by
another, thus allowing the original Object to be reconstructed.

The filter which converts Objects into text and back again is itself a kind of Object, called a
A Channel provides a number of options for controlling the information content of the
text, such as the addition of comments for human interpretation. It is also possible to intercept
the text being processed by a Channel so that it may be redirected to/from any chosen external
data store, such as a text file, an astronomical dataset, or a network connection.

The text format used by the basic Channel class is peculiar to the AST library - no other software
will understand it. However, more specialised forms of Channel are provided which use text
formats more widely understood.

To further facilitate the storage of coordinate system information in astronomical datasets, a
more specialised form of Channel called a[FitsChan|is provided. Instead of using free-format text,
a FitsChan converts AST Objects to and from FITS header cards. It also allows the information
to be encoded in the FITS cards in a number of ways (called encodings), so that WCS information
from a variety of sources can be handled.

Another sub-class of Channel, called is a specialised form of Channel that stores
the text in the form of XML markup. Currently, two markup formats are provided by the
XmlChan class, one is closely related to the text format produced by the basic Channel class

11 SUN/211.30 —Overview of AST Concepts

Frame 1 Current Frame
Mappmg

Frame 3

Mapping

Figure 7: A FrameSet is a network of Frames inter-connected by Mappings such that there is
exactly one conversion path, via Mappings, between any pair of Frames.

SUN/211.30 —Overview of AST Concepts 12

(currently, no schema or DTD is available describing this format). The other is a subset of
an early draft of the IVOA Space-Time-Coordinates XML (STC-X) schema (V1.20) described
athttp://www.ivoa.net/Documents/WD/STC/STC-20050225. htmlf} The version of STC-X that
has been adopted by the IVOA differs in several significant respects from V1.20, and therefore
this XmlChan format is of historical interest only.

The[YamIChan|class provides facilities for reading and writing WCS information stored in YAML
format using a subset of the the ASDF model developed at StSci (see http://asdf-standard.
readthedocs. i0).

Finally, the class provides facilities for reading and writing IVOA STC-S region de-
scriptions. STC-S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string
syntax that allows simple specification of STC metadata. AST supports a subset of the STC-S
specification, allowing an STC-S description of a region within an AST-supported astronomical
coordinate system to be converted into an equivalent AST object, and vice-versa.

Further reading: For a more complete description of Channels see and for FitsChans see

and Also see the Channel and FitsChan entries in Appendix[D|and the entry
in Appendix [C}

2.7 Producing Graphical Output

Two dimensional graphical output is supported by a specialised form of [FrameSet| called a
whose base corresponds with the native coordinates of the underlying graphics system.
Plotting operations are specified in physical coordinates which correspond with the Plot’s current
Frame. Typically, this might be a celestial coordinate system.

Three dimensional plotting is also supported, via the [Plot3Djclass - sub-class of Plot.

Operations, such as drawing lines, are automatically transformed from physical to graphical
coordinates before plotting, using an adaptive algorithm which ensures smooth curves (because
the transformation is usually non-linear). “Missing” coordinates (e.g. graphical coordinates
which do not project on to the celestial sphere), discontinuities and generalised clipping are all
consistently handled. It is possible, for example, to plot in equatorial coordinates and clip in
galactic coordinates. The usual plotting operations are provided (text, markers), but a geodesic
curve replaces the primitive straight line element. There is also a separate function for drawing
axis lines, since these are normally not geodesics.

In addition to drawing coordinate grids over an area of the sky, another common use of the
Plot class is to produce line plots such as flux against wavelength, displacement again time, etc.
For these situations the current Frame of the Plot would be a compound Frame
containing a pair of 1-dimensional Frames - the first representing the X axis quantity (wavelength,
time, etc), and the second representing the Y axis quantity (flux, displacement, etc). The Plot
class includes an option for axes to be plotted logarithmically.

Perhaps the most useful graphics function available is for drawing fully annotated coordinate
grids (e.. Figure8).

This uses a general algorithm which does not depend on knowledge of the coordinates being
represented, so can also handle programmer-defined coordinate systems. Grids for all-sky

3XML documents which use only the subset of the STC schema supported by AST can be read by the XmIChan
class to produce corresponding AST objects (subclasses of the[Std|class). However, the reverse is not possible. That is,
AST objects can not currently be written out in the form of STC documents.

http://www.ivoa.net/Documents/WD/STC/STC-20050225.html
http://asdf-standard.readthedocs.io
http://asdf-standard.readthedocs.io
http://www.ivoa.net/Documents/latest/STC-S.html

13 SUN/211.30 —Overview of AST Concepts

Ecliptic coordinates; mean equinox J2000.0

Figure 8: A labelled coordinate grid for an all-sky zenithal equal area projection in ecliptic
coordinates. This was composed and drawn via a Plot using a single function call.

projections, including polar regions, can be drawn and most aspects of the output (colour, line
style, efc.) can be adjusted by setting appropriate Plot attributes.

Further reading: For a more complete description of Plots and how to produce graphical output,
see §21] Also see the Plot entry in Appendix D}

SUN/211.30 —Overview of AST Concepts

14

15 SUN/211.30 —How To. ..

3 How To...

For those of you with a plane to catch, this section provides some instant templates and recipes
for performing the most commonly-required operations using AST, but without going into
detail. The examples given (sort of) follow on from each other, so you should be able to construct
a variety of programs by piecing them together. Note that some of them appear longer than
they actually are, because we have included plenty of comments and a few options that you
probably won’t need.

If any of this material has you completely baffled, then you may want to read the introduction
to AST programming concepts in §4|first. Otherwise, references to more detailed reading are
given after each example, just in case they don’t quite do what you want.

3.1 ...Obtain and Install AST

The AST library is available both as a stand-alone package and also as part of the Starlink
Software Collectiorﬁ If your site has the Starlink Software Collection installed then AST should
already be available.

If not, you can download the AST library by itself from http://www.starlink.ac.uk/ast/.

3.2 ...Structure an AST Program
An AST program normally has the following structure:

/* Include the interface to the AST library. */
#include "star/ast.h"

/* Main program (or could be any function). */
main () {
<normal C declarations and statements>

/* Enclose the parts which use AST between the astBegin and astEnd macros. */
astBegin;
<C statements which use AST>
astEnd;

<maybe more C statements>

The use of [astBegin| and [astEnd)| is optional, but has the effect of tidying up after you have
finished using AST, so is normally recommended. For more details of this, see §4.10, For details
of how to access the “ast.h” header file, see §22.1]

3.3 ...Build an AST Program

To build a simple AST program that doesn’t use graphics, use:

4The Starlink Software Collection can be downloaded from http: //www.starlink.ac.uk/Download/

http://www.starlink.ac.uk/ast/
http://www.starlink.ac.uk/Download/

SUN/211.30 —How To... 16

cc program.c -L/star/lib -I/star/include ‘ast_link‘ -o program
To build a program which uses PGPLOT for graphics, use:
cc program.c -L/star/lib ‘ast_link -pgplot® -o program

For more details about accessing the “ast.h” header file, see §22.1} For more details about linking
programs, see §22.2]and the description of the “fast_link]” command in Appendix[E]

3.4 ...Read a WCS Calibration from a Dataset

Precisely how you extract world coordinate system (WCS) information from a dataset obviously
depends on what type of dataset it is. Usually, however, you should be able to obtain a set
of FITS header cards which contain the WCS information (and probably much more besides).
Suppose that “cards” is a pointer to a string containing a complete set of concatenated FITS
header cards (such as produced by the CFITSIO function fits_hdr2str). Then proceed as follows:

fitsfile *fptr;
AstFitsChan *fitschan;
AstFrameSet *wcsinfo;
char *header;

int nkeys, status;

/* Obtain all the cards in the header concatenated into a single dynamically
allocated null-terminated character string. Note, we do not exclude
any cards since we may later modify the WCS information within the
header and consequently want to write the entire header out again. */
if(fits_hdr2str(fptr, O, NULL, O, &header, &nkeys, &status))
printf (" Error getting header\n");

/* Header obtained succesfully... */
} else {

/* Create a FitsChan and fill it with FITS header cards. */
fitschan = astFitsChan(NULL, NULL, "");
astPutCards(fitschan, header);

/* Free the memory holding the concatenated header cards. */
header = free(header);

/* Read WCS information from the FitsChan. */
wcsinfo = astRead(fitschan);

The result should be a pointer, “wcsinfo”, to a[FrameSet| which contains the WCS information.
This pointer can now be used to perform many useful tasks, some of which are illustrated in the
following recipes.

17 SUN/211.30 —How To. ..

Some datasets which do not easily yield FITS header cards may require a different approach,
possibly involving use of a[Channel| or XmIChan| (§15) rather than a In the case of
the Starlink NDF data format, for example, all the above may be replaced by a single call to the
function ndfGtwcs—see SUN/33. The whole process can probably be encapsulated in a similar
way for most data systems, whether they use FITS header cards or not.

For more details about reading WCS information from datasets, see §17.3/and §17.4] For a more
general description of FitsChans and their use with FITS header cards, see §16/and For
more details about FrameSets, see §13]and

3.5 ...Validate WCS Information

Once you have read WCS information from a dataset, as in you may wish to check that
you have been successful. The following will detect and classify the things that might possibly
go wrong:

#include <string.h>

if (tastOK) {
<an error occurred (a message will have been issued)>
} else if (wecsinfo == AST__NULL) {
<there was no WCS information present>
} else if (strcmp(astGetC(wcsinfo, "Class"), "FrameSet")) {
<something unexpected was read (i.e. not a FrameSet)>
} else {
<WCS information was read OK>

}

For more information about detecting errors in AST functions, see For details of how to
validate input data read by AST, see §15.6/and §17.4]

3.6 ...Display AST Data

If you have a pointer to any AST[Object] you can display the data stored in that Object in textual
form as follows:

astShow(wcsinfo);

Here, we have used a pointer to the [FrameSet| which we read earlier (§3.4). The result is written
to the program’s standard output stream. This can be very useful during debugging.

For more details about using [astShow] see For information about interpreting the output,
also see §15.8]

3.7 ...Convert Between Pixel and World Coordinates

You may use a pointer to a such as we read in to transform a set of points
between the pixel coordinates of an image and the associated world coordinates. If you are
working in two dimensions, proceed as follows:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_ndfGtwcs
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SUN/211.30 —How To... 18

double xpixel[N], ypixel[N];
double xworld[N], yworld[N];

astTran2(wcsinfo, N, xpixel, ypixel, 1, xworld, yworld);

Here, N is the number of points to be transformed, “xpixel” and “ypixel” hold the pixel
coordinates, and “xworld” and “yworld” receive the returned world coordinatesE] To transform
in the opposite direction, interchange the two pairs of arrays (so that the world coordinates are
given as input) and change the fifth argument of to zero.

To transform points in one dimension, use In any other number of dimensions (or if
the number of dimensions is initially unknown), useastTranN|or [astIranP| These functions are
described in Appendix

For more information about transforming coordinates, see and §13.6 For details of how to
handle missing coordinates, see §5.9

3.8 ...Testif a WCS is a Celestial Coordinate System

The world coordinate system (WCS) currently associated with an image may often be a celestial
coordinate system, but this need not necessarily be the case. For instance, instead of right
ascension and declination, an image might have a WCS with axes representing wavelength and
slit position, or maybe just plain old pixels.

If you have obtained a WCS calibration for an image, as in in the form of a pointer “wcsinfo”
toa then you may determine if the current coordinate system is a celestial one or not,
as follows:

AstFrame *frame;
int issky;

/* Obtain a pointer to the current Frame and determine if it is a
SkyFrame. */

frame = astGetFrame(wcsinfo, AST__CURRENT);

issky = astIsASkyFrame(frame);

frame astAnnul (frame);

This will set “issky” to 1 if the WCS is a celestial coordinate system, and to zero otherwise.

3.9 ...Testif a WCS is a Spectral Coordinate System

Testing for a spectral coordinate system is basically the same as testing for a celestial coordinate
system (see the previous section). The one difference is that you use the astIsASpecFrame
function in place of the astIsASkyFrame function.

5By pixel coordinates, we mean a coordinate system in which the first pixel in the image is centred on (1,1) and
each pixel is a unit square. Note that the world coordinates will not necessarily be celestial coordinates, but if they
are, then they will be in radians.

19 SUN/211.30 —How To. ..

3.10 ...Format Coordinates for Display

Once you have converted pixel coordinates into world coordinates (§3.7), you may want to
format them as text before displaying them. Typically, this would convert from (say) radians
into something more comprehensible. Using the [FrameSef] pointer “wcsinfo” obtained in
and a pair of world coordinates “xw” and “yw” (e.. see §3.7), you could proceed as follows:

#include <stdio.h>
const char *xtext, *ytext;
double xw, yw;

xtext = astFormat(wcsinfo, 1, xw);
ytext astFormat(wcsinfo, 2, yw);

(void) printf("Position = %s, %s\n", xtext, ytext);

Here, the second argument to is the axis number.

With celestial coordinates, this will usually result in sexagesimal notation, such as “12:34:56.7”.
However, the same method may be applied to any type of coordinates and appropriate format-
ting will be employed.

For more information about formatting coordinate values and how to control the style of
formatting used, see and If necessary, also see for details of how to “normalise” a
set of coordinates so that they lie within the standard range (e.g. 0 to 24 hours for right ascension
and +90° for declination).

3.11 ...Display Coordinates as they are Transformed

In addition to formatting coordinates as part of a program’s output, you may also want to
examine coordinate values while debugging your program. To save time, you can “eavesdrop”
on the coordinate values being processed every time they are transformed. For example, when

using the[FrameSef pointer “wcsinfo” obtained in §3.4]to transform coordinates (§8.7), you could

inspect the coordinate values as follows:

astSet(wcsinfo, "Report=1");
astTran2(wcsinfo, N, xpixel, ypixel, 1, xworld, yworld);

By setting the FrameSet’s attribute to 1, coordinate transformations are automatically
displayed on the program’s standard output stream, appropriately formatted, for example:

(42.1087, 20.2717) --> (2:06:03.0, 34:22:39)
(43.0197, 21.1705) --> (2:08:20.6, 35:31:24)
(43.9295, 22.0716) --> (2:10:38.1, 36:40:09)
(44.8382, 22.9753) --> (2:12:55.6, 37:48:55)
(45.7459, 23.8814) --> (2:15:13.1, 38:57:40)
(46.6528, 24.7901) --> (2:17:30.6, 40:06:25)
(47.5589, 25.7013) --> (2:19:48.1, 41:15:11)
(48.4644, 26.6149) --> (2:22:05.6, 42:23:56)
(49.3695, 27.5311) --> (2:24:23.1, 43:32:41)
(50.2742, 28.4499) --> (2:26:40.6, 44:41:27)

SUN/211.30 —How To... 20

For a complete description of the Report attribute, see its entry in Appendix [C} For further
details of how to set and enquire attribute values, see and

3.12 ...Read Coordinates Entered by a User

In addition to writing out coordinate values generated by your program (§3.10), you may also
need to accept coordinates entered by a user, or perhaps read from a file. In this case, you will
probably want to allow “free-format” input, so that the user has some flexibility in the format
that can be used. You will probably also want to detect any typing errors.

Let’s assume that you want to read a number of lines of text, each containing the world coordi-
nates of a single point, and to split each line into individual numerical coordinate values. Using
the pointer “wcsinfo” obtained earlier (§3.4), you could proceed as follows:

#include <stdio.h>

char *t;

char text[MAXCHARS + 2];
double coord[10 1;

int iaxis, n, naxes;

/* Obtain the number of coordinate axes (if not already known). */
naxes = astGetI(wcsinfo, "Naxes");

/* Loop to read each line of input text, in this case from the
standard input stream (your programming environment will probably
provide a better way of reading text than this). Set the pointer
"t" to the start of each line read. */

while (t = fgets(text, MAXCHARS + 2, stdin)) {

/* Attempt to read a coordinate for each axis. */
for (iaxis = 1; iaxis <= naxes; iaxis++) {
n = astUnformat(wcsinfo, iaxis, t, &coord[iaxis - 1]);

/* If nothing was read and this is not the first axis or the
end-of-string, try stepping over a separator and reading again. */
if ('n && (iaxis > 1) && *t)

n = astUnformat(wcsinfo, iaxis, ++t, &coord[iaxis - 1]);

/* Quit if nothing was read, otherwise move on to the next coordinate. */
if ('n) break;
t += n;

}

/* Test for the possible errors that may occur... */

/* Error detected by AST (a message will have been issued). */
if (lastOK) {

break;

/* Error in input data at character t[n]. */
} else if (*t || 'n) {

21 SUN/211.30 —How To. ..

<handle the error, or report your own message here>
break;

} else {
<coordinates were read 0K>

}

This algorithm has the advantage of accepting free-format input in whatever style is appropriate
for the world coordinates in use (under the control of the FrameSet whose pointer you provide).
For example, wavelength values might be read as floating point numbers (e.g. “1.047” or “4787”),
whereas celestial positions could be given in sexagesimal format (e.g. “12:34:56” or “12 34.5”)
and would be converted into radians. Individual coordinate values may be separated by white
space and/or any non-ambiguous separator character, such as a comma.

For more information on reading coordinate values using the function, see
For details of how sexagesimal formats are handled, and the forms of input that may be used
for celestial coordinates, see

3.13 ...Create a New WCS Calibration

This section describes how to add a WCS calibration to a data set which you are creating from
scratch, rather than modifying an existing data set.

In most common cases, the simplest way to create a new WCS calibration from scratch is
probably to create a set of strings describing the required calibration in terms of the keywords
used by the FITS WCS standard, and then convert these strings into an AST describing
the calibration. This FrameSet can then be used for many other purposes, or simply stored in
the data set.

The full FITS-WCS standard is quite involved, currently running to four separate papers, but the
basic kernel is quite simple, involving the following keywords (all of which end with an integer
axis index, indicated below by < i >):

CRPIX<i>
hold the pixel coordinates at a reference point

CRVAL<i>
hold the corresponding WCS coordinates at the reference point

CTYPE<i>
name the quantity represented by the WCS axes, together with the projection algorithm
used to convert the scaled and rotated pixel coordinates to WCS coordinates.

CD<i>_<j>
a set of keywords which specify the elements of a matrix. This matrix scales pixel offsets
from the reference point into the offsets required as input by the projection algorithm
specified by the CTYPE keywords. This matrix specifies the scale and rotation of the image.
If there is no rotation the off-diagonal elements of the matrix (e.g. CD1_2 and CD2_1) can
be omitted.

SUN/211.30 —How To... 22

As an example consider the common case of a simple 2D image of the sky in which north is
parallel to the second pixel axis and east parallel to the (negative) first pixel axis. The image
scale is 1.2 arc-seconds per pixel on both axes, and the image is presumed to have been obtained
with a tangent plane projection. Furthermore, it is known that pixel coordinates (100.5,98.4)
correspond to an RA of 11:00:10 and a Dec. of -23:26:02. A suitable set of FITS-WCS header cards
could be:

CTYPE1 = ’RA---TAN’ / Axis 1 represents RA with a tan projection
CTYPE2 = ’DEC--TAN’ / Axis 2 represents Dec with a tan projection
CRPIX1 = 100.5 / Pixel coordinates of reference point

CRPIX2 = 98.4 / Pixel coordinates of reference point

CRVAL1 = 165.04167 / Degrees equivalent of "11:00:10" hours

CRVAL2 = -23.433889 / Decimal equivalent of "-23:26:02" degrees
Chi_1 = -0.0003333333 / Decimal degrees equivalent of -1.2 arc-seconds
Ch2_2 = 0.0003333333 / Decimal degrees equivalent of 1.2 arc-seconds

Notes:

e a FITS header card begins with the keyword name starting at column 1, has an equals sign
in column 9, and the keyword value in columns 11 to 80.

e string values must be enclosed in single quotes.

e celestial longitude and latitude must both be specified in decimal degrees.

e the CD1_1 value is negative to indicate that RA increases as the first pixel axis decreases.
o the (RA,Dec) coordinates will be taken as ICRS coordinates. For FK5 you should add:

RADESYS ’FK5?
EQUINOX = 2005.6

The EQUINOX value defaults to J2000.0 if omitted. FK4 can also be used in place of FK5,
in which case EQUINOX defaults to B1950.0.

Once you have created these FITS-WCS header card strings, you should store them in a
and then read the corresponding FrameSet from the FitsChan. How to do this is described in

£4
Having created the WCS calibration, you may want to store it in a data file. How to do this is

described in §3.15) f]

If the required WCS calibration cannot be described as a set of FITS-WCS headers, then a
different approach is necessary. In this case, you should first create a describing pixel
coordinates, and store this Frame in a new FrameSet. You should then create a new Frame
describing the world coordinate system. This Frame may be a specific subclass of Frame such as
a for celestial coordinates, a[SpecFrame|for spectral coordinates, a Timeframe for time
coordinates, or a for a combination of different coordinates. You also need to create
a suitable Mapping| which transforms pixel coordinates into world coordinates. AST provides
many different types of Mappings, all of which can be combined together in arbitrary fashions
to create more complicated Mappings. The WCS Frame should then be added into the FrameSet,
using the Mapping to connect the WCS Frame with the pixel Frame.

o1f you are writing the WCS calibration to a FITS file you obviously have the choice of storing the FITS-WCS cards
directly.

23 SUN/211.30 —How To. ..

3.14 ...Modify a WCS Calibration

The usual reason for wishing to modify the WCS calibration associated with a dataset is that the
data have been geometrically transformed in some way (here, we will assume a 2-dimensional
image dataset). This causes the image features (stars, galaxies, etc.) to move with respect to the
grid of pixels which they occupy, so that any coordinate systems previously associated with the
image become invalid.

To correct for this, it is necessary to set up a[Mapping|which expresses the positions of image
features in the new data grid in terms of their positions in the old grid. In both cases, the grid
coordinates we use will have the first pixel centred at (1,1) with each pixel being a unit square.

AST allows you to correct for any type of geometrical transformation in this way, so long as a
suitable Mapping to describe it can be constructed. For purposes of illustration, we will assume
here that the new image coordinates “xnew” and “ynew” can be expressed in terms of the old
coordinates “xold” and “yold” as follows:

double xnew, xold, ynew, yold;
double m[4 1, z[2 1;

xnew = xold * m[0] + yold * m[1] +
ynew = xold * m[2] + yold * m[3] +

where “m” is a 2 x2 transformation matrix and “z” represents a shift of origin. This is there-
fore a general linear coordinate transformation which can represent displacement, rotation,
magnification and shear.

In AST, it can be represented by concatenating two Mappings. The first is a which
implements the matrix multiplication. The second is a which linearly transforms one
coordinate window on to another, but will be used here simply to implement the shift of origin
(alternatively, a could have been used in place of a WinMap). These Mappings may be
constructed and concatenated as follows:

AstCmpMap *newmap;
AstMatrixMap *matrixmap;
AstWinMap *winmap;

/* The MatrixMap may be constructed directly from the matrix "m". */
matrixmap = astMatrixMap(2, 2, 0, m, "");

/* For the WinMap, we set up the coordinates of the corners of a unit
square (window) and then the same square shifted by the required
amount. */

{
double inal] = { 0.0, 0.0 };
double inb[] = { 1.0, 1.0 };
double outal] = { z[01, z[11 };
double outb[] = { 1.0+ z[01, 1.0+ z[11 };

SUN/211.30 —How To... 24

/* The WinMap will then implement this shift. */
winmap = astWinMap(2, ina, inb, outa, outb, "");

}

/* Join the two Mappings together, so that they are applied one after
the other. */
newmap = astCmpMap(matrixmap, winmap, 1, "");

You might, of course, create any other form of Mapping depending on the type of geometrical
transformation involved. For an overview of the Mappings provided by AST, see and for
a description of the capabilities of each class of Mapping, see its entry in Appendix D] For an
overview of how individual Mappings may be combined, see (§6] gives more details).

Assuming you have obtained a WCS calibration for your original image in the form of a

pointer to a “wesinfol” (§3.4), the Mapping created above may be used to produce a
calibration for the new image as follows:

AstFrameSet *wcsinfol, *wcsinfo?2;

/* If necessary, make a copy of the WCS calibration, since we are
about to alter it. */
wcsinfo2 = astCopy(wcsinfol);

/* Re-map the base Frame so that it refers to the new data grid
instead of the old one. */
astRemapFrame(wcsinfo2, AST__BASE, newmap);

This will produce a pointer, “wcsinfo2”, to a new FrameSet in which all the coordinate systems
associated with your original image are modified so that they are correctly registered with the
new image instead.

For more information about re-mapping the Frames within a FrameSet, see §14.4, Also see §14.5]
for a similar example to the above, applicable to the case of reducing the size of an image by
binning.

3.15 ...Write a Modified WCS Calibration to a Dataset

If you have modified the WCS calibration associated with a dataset, such as in the example
above (§3.14), then you will need to write the modified version out along with any new data.

In the same way as when reading a WCS calibration (§3.4), how you do this will depend on your
data system, but we will assume that you wish to generate a set of FITS header cards that can be
stored with the data. You should usually make preparations for doing this when you first read
the WCS calibration from your input dataset by modifying the example given in as follows:

AstFitsChan *fitschanl;
AstFrameSet *wcsinfol;
const char *encode;

25

SUN/211.30 —How To. ..

/* Create an input FitsChan and fill it with FITS header cards. Note,
if you have all the header cards in a single string, use astPutCards in
place of astPutFits. x/
fitschanl = astFitsChan(NULL, NULL, "");
for (icard = 0; icard < ncard; icard++) astPutFits(fitschanl, cards[icard], 0);

/* Note which encoding has been used for the WCS information. */
encode = astGetC(fitschanl, "Encoding");

/* Rewind the input FitsChan and read the WCS information from it. */
astClear(fitschanl, "Card");
wcsinfol = astRead(fitschanl);

Note how we have added an enquiry to determine how the WCS information is encoded in the
input FITS cards, storing a pointer to the resulting string in the “encode” variable. This must be
done before actually reading the WCS calibration.

(N.B. If you will be making extensive use of astGetC in your program, then you should allocate a buffer

and make a copy of this string, because the pointer returned by astGetC will only remain valid for 50

invocations of the function, and you will need to use the value again later on.)

Once you have produced a modified WCS calibration for the output dataset (e.g. §3.14), in
the form of a[FrameSet]identified by the pointer “wcsinfo2”, you can produce a new

containing the output FITS header cards as follows:

AstFitsChan *fitschan?2;
AstFrameSet *wcsinfo?2;

/* Make a copy of the input FitsChan, AFTER the WCS information has
been read from it. This will propagate all the input FITS header
cards, apart from those describing the input WCS calibration. */

fitschan2 = astCopy(fitschanl);

/* If necessary, make modifications to the cards in "fitschan2"
(e.g. you might need to change NAXIS1, NAXIS2, etc., to account for
a change in image size). You probably only need to do this if your
data system does not provide these facilities itself. */

<details not shown - see below>

/* Alternatively, if your data system handles the propagation of FITS
header cards to the output dataset for you, then simply create an
empty FitsChan to contain the output WCS information alone.

fitschan2 = astFitsChan(NULL, NULL, "");

*/

/* Rewind the new FitsChan (if necessary) and attempt to write the
output WCS information to it using the same encoding method as the
input dataset. */

astSet(fitschan2, "Card=1, Encoding=/s", encode);

if (lastWrite(fitschan2, wcsinfo2)) {

SUN/211.30 —How To... 26

/* If this didn’t work (the WCS FrameSet has become too complex), then
use the native AST encoding instead. */
astSet(fitschan2, "Encoding=NATIVE");
(void) astWrite(fitschan2, wcsinfo2);

¥
For details of how to modify the contents of the output FitsChan in other ways, such as by
adding, over-writing or deleting header cards, see §16.4} §16.9, §16.8and §16.13

Once you have assembled the output FITS cards, you may retrieve them from the FitsChan that
contains them as follows:

#include <stdio.h>
char card[81];

astClear(fitschan2, "Card");
while (astFindFits(fitschan2, "%f", card, 1)) (void) printf("%s\n", card);

Here, we have simply written each card to the standard output stream, but you would obviously
replace this with a function invocation to store the cards in your output dataset.

For data systems that do not use FITS header cards, a different approach may be needed, possibly
involving use of a|Channel or XmIChan| (§I5) rather than a FitsChan. In the case of the Starlink
NDF data format, for example, all of the above may be replaced by a single call to the function
ndfPtwcs—see SUN/33. The whole process can probably be encapsulated in a similar way for
most data systems, whether they use FITS header cards or not.

For an overview of how to propagate WCS information through data processing steps, see
For more information about writing WCS information to FitsChans, see and
For information about the options for encoding WCS information in FITS header cards, see
and the description of the Encoding attribute in Appendix [C| For a complete
understanding of FitsChans and their use with FITS header cards, you should read and

3.16 ...Display a Graphical Coordinate Grid

A common requirement when displaying image data is to plot an associated coordinate grid
(e.g. Figure[9) over the displayed image.

The use of AST in such circumstances is independent of the underlying graphics system, so
starting up the graphics system, setting up a coordinate system, displaying the image, and
closing down afterwards can all be done using the graphics functions you would normally use.

However, displaying an image at a precise location can be a little fiddly with some graphics
systems, and obviously the grid drawn by AST will not be accurately registered with the image
unless this is done correctly. In the following template, we therefore illustrate both steps, basing
the image display on the C interface to the PGPLOT graphics packageﬂ Plotting a coordinate
grid with AST then becomes a relatively minor part of what is almost a complete graphics
program.

7 An interface is provided with AST that allows it to use PGPLOT (SUN/15) for its graphics, although interfaces
to other graphics systems may also be written.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_ndfPtwcs
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_

27 SUN/211.30 —How To. ..

FK5 coordinates; mean equinox J2000.0

S

s X
TN

i
\] = J
R A e
= /\
[\
\
A
0 23 22 21 20 19 18

Right ascension

N

Declination

60

(]

50
|/
. -
3 2 1

Figure 9: An example of a displayed image with a coordinate grid plotted over it.

SUN/211.30 —How To... 28

Once again, we assume that a pointer, “wcsinfo”, to a suitable associated with the
image has already been obtained (§3.4).

#include "cpgplot.h"

AstPlot *plot;

const float *data;

float hi, lo, scale, x1, x2, xleft, xright, xscale;
float y1, y2, ybottom, yscale, ytop;

int nx, ny;

/* Access the image data, which we assume has dimension sizes "nx" and
"ny", and will be accessed via the "data" pointer. Also derive
limits for scaling it, which we assign to the variables "hi" and
"10". */

<this stage depends on your data system, so is not shown>

/* Open PGPLOT using the device given by environment variable
PGPLOT_DEV and check for success. */
if(cpgbeg(O, " ", 1, 1) ==1) {

/* Clear the screen and ensure equal scales on both axes. */

cpgpage () ;
cpgwnad(0.0f, 1.0f, 0.0f, 1.0f);

/* Obtain the extent of the plotting area (not strictly necessary for
PGPLOT, but possibly for other graphics systems). From this, derive
the display scale in graphics units per pixel so that the image
will fit within the display area. */
cpgawin(&x1, &x2, &yl, &y2);
xscale = (x2 - x1) / nx;
yscale = (y2 - y1) / ny;
scale = (xscale < yscale) 7 xscale : yscale;

/* Calculate the extent of the area in graphics units that the image
will occupy, so as to centre it within the display area. */

xleft = 0.5f *x (x1 + X2 - nx * scale);
xright = 0.5f * (x1 + x2 + nx * scale);
ybottom = 0.5f * (yl + y2 - ny * scale);
ytop = 0.5f * (y1 + y2 + ny * scale);

/* Set up a PGPLOT coordinate transformation matrix and display the
image data as a grey scale map (these details are specific to
PGPLOT) . */

{
float tr[] = { xleft - 0.5f * scale, scale, 0.0f,
ybottom - 0.5f * scale, 0.0f, scale };
cpggray(data, nx, ny, 1, nx, 1, ny, hi, lo, tr);
}

/* BEGINNING OF AST BIT x*/
/* */
/* Store the locations of the bottom left and top right corners of the

29 SUN/211.30 —How To. ..

region used to display the image, in graphics coordinates. */

{
float gbox[] = { xleft, ybottom, xright, ytop };

/* Similarly, store the locations of the image’s bottom left and top
right corners, in pixel coordinates -- with the first pixel centred
at (1,1). */

double pbox[] = { 0.5, 0.5, nx + 0.5, ny + 0.5 };

/* Create a Plot, based on the FrameSet associated with the
image. This attaches the Plot to the graphics surface so that it
matches the displayed image. Specify that a complete set of grid
lines should be drawn (rather than just coordinate axes). */
plot = astPlot(wcsinfo, gbox, pbox, "Grid=1");
X

/* Optionally, we can now set other Plot attributes to control the
appearance of the grid. The values assigned here use the
colour/font indices defined by the underlying graphics system. */
astSet(plot, "Colour(grid)=2, Font(textlab)=3");

/* Use the Plot to draw the coordinate grid. */
astGrid(plot);

<maybe some more AST graphics here>
/* Annul the Plot when finished (or use the astBegin/astEnd technique
shown earlier). */

plot = astAnnul(plot);

/* END OF AST BIT x*/
/* */

/* Close down the graphics system. */
cpgend () ;

Note that once you have set up a[Plot|which is aligned with a displayed image, you may also use
it to generate further graphical output of your own, specified in the image’s world coordinate
system (such as markers to represent astronomical objects, annotation, etc.). There is also a range
of Plot attributes which gives control over most aspects of the output’s appearance. For details
of the facilities available, see §21]and the description of the Plot class in Appendix D}

For details of how to build a graphics program which uses PGPLOT, see and the description
of the command in Appendix

3.17 ...Switch to Plot a Different Celestial Coordinate Grid
Once you have set up a to draw a coordinate grid (§3.16), it is a simple matter to change

things so that the grid represents a different celestial coordinate system. For example, after
creating the Plot with you could use:

astSet(plot, "System=Galactic");

SUN/211.30 —How To... 30

or:
astSet(plot, "System=FK5, Equinox=J2010");

and any axes and/or grid drawn subsequently would represent the new celestial coordinate
system you specified. Note, however, that this will only work if the original grid represented
celestial coordinates of some kind (see for how to determine if this is the caseEb. If it did not,
you will get an error message.

For more information about the celestial coordinate systems available, see the descriptions of
the |System| [Equinox|and [Epoch|attributes in Appendix

3.18 ...Give a User Control Over the Appearance of a Plot

The idea of using a[Ploffs attributes to control the appearance of the graphical output it produces
(§3.1¢and §3.17) can easily be extended to allow the user of a program complete control over
such matters.

For instance, if the file “plot.config” contains a series of plotting options in the form of Plot
attribute assignments (see below for an example), then we could create a Plot and implement
these assignments before producing the graphical output as follows:

#include <stdio.h>
#define MAXCHARS 120

FILE *stream;

char line[MAXCHARS + 2];
int base;

/* Create a Plot and define the default appearance of the graphical
output it will produce. */
plot = astPlot(wcsinfo, gbox, pbox,
"Grid=1, Colour(grid)=2, Font(textlab)=3");

/* Obtain the value of any Plot attributes we want to preserve. */
base = astGetI(plot, "Base");

/* Open the plot configuration file, if it exists. Read each line of
text and use it to set new Plot attribute values. Close the file
when done. */
if (stream = fopen("plot.config", "r")) {
while (fgets(line, MAXCHARS + 2, stream)) astSet(plot, "¥s", line);
close(stream);

}

/* Restore any attribute values we are preserving. */
astSetI(plot, "Base", base);

/* Produce the graphical output (e.g.). */
astGrid(plot);

8Note that the methods applied to a may be used equally well with a Plot.

31 SUN/211.30 —How To. ..

Notice that we take care that the Plot’s[Base|attribute is preserved so that the user cannot change
it. This is because graphical output will not be produced successfully if the base does not
describe the plotting surface to which we attached the Plot when we created it.

The arrangement shown above allows the contents of the “plot.config” file to control most
aspects of the graphical output produced (including the coordinate system used; the colour, line
style, thickness and font used for each component; the positioning of axes and tick marks; the
precision, format and positioning of labels; etc.) via assignments of the form:

System=Galactic, Equinox = 2001
Border = 1, Colour(border) = 1
Colour(grid) = 2

DrawAxes = 1

Colour(axes) = 3

Digits = 8

Labelling = Interior

For a more sophisticated interface, you could obviously perform pre-processing on this input—
for example, to translate words like “red”, “green” and “blue” into colour indices, to permit
comments and blank lines, efc.

For a full list of the attributes that may be used to control the appearance of graphical output, see
the description of the Plot class in Appendix[D] For a complete description of each individual
attribute (e.g. those above), see the attribute’s entry in Appendix

SUN/211.30 —How To...

32

33 SUN/211.30 —An AST Object Primer

4 An AST Object Primer

The AST library deals throughout with entities called Objects and a basic understanding of how
to handle these is needed before you can use the library effectively. If you are already familiar
with an object-oriented language, such as C++, few of the concepts should seem new to you. Be
aware, however, that AST is designed to be used via fairly conventional C and Fortran interfaces,
so some things have to be done a little differently.

If you are not already familiar with object-oriented programming, then don’t worry—we will not
emphasise this aspect more than is necessary and will not assume any background knowledge.
Instead, this section concentrates on presenting all the fundamental information you will
need, explaining how AST Objects behave and how to manipulate them from conventional C
programs.

If you like to read documents from cover to cover, then you can consider this section as an
introduction to the programming techniques used in the rest of the document. Otherwise, you
may prefer to skim through it on a first reading and return to it later as reference material.

4.1 AST Objects

An AST is an entity which is used to store information and Objects come in various kinds,
called classes, according to the sort of information they hold. Throughout this section, we will
make use of a simple Object belonging to the “fZoomMap]” class to illustrate many of the basic
concepts.

A ZoomMap is an Object that contains a recipe for converting coordinates between two hypo-
thetical coordinate systems. It does this by multiplying all the coordinate values by a constant
called the factor. A ZoomMap is a very simple Object which exists mainly for use in
examples. It allows us to illustrate the ways in which Objects are manipulated and to introduce
the concept of a[Mapping}—a recipe for converting coordinates—which is fundamental to the
way the AST library works.

4.2 Object Creation and Pointers
Let us first consider how to create a This is done very simply as follows:

#include "star/ast.h"
AstZoomMap *zoommap;

zoommap = astZoomMap(2, 5.0, "")

The first step is to include the header file “ast.h” which declares the interface to the AST library.
We then declare a pointer of type AstZoomMapx to receive the result and invoke the function
astZoomMap| to create the ZoomMap. The pattern is the same for all other classes of AST
Objectt—you simply prefix “ast” to the class name to obtain the function that creates the Object
and prefix “Ast” to obtain the type of the returned pointer.

SUN/211.30 —An AST Object Primer 34

These functions are called constructor functions, or simply constructors (you can find an individual
description of all AST functions in Appendix[B) and the arguments passed to the constructor are
used to initialise the new Object. In this case, we specify 2 as the number of coordinates (i.e. we
are going to work in a 2-dimensional space) and 5.0 as the factor to be applied. Note that
this is a C double value. We will return to the final argument, an empty string, shortly (§4.6).

The value returned by the constructor is termed an Object pointer or, in this case, a ZoomMap
pointer and is used to refer to the Object. You perform all subsequent operations on the Object
by passing this pointer to other AST functions.

4.3 The Object Hierarchy

Now that we have created our first let us examine how it relates to other kinds of
[Object|before investigating what we can do with it.

We have so far indicated that a ZoomMap is a kind of Object and have also mentioned that it is a
kind of as well. These statements can be represented very simply using the following
hierarchy:

Object

Mapping
ZoomMap

which is a way of stating that a ZoomMap is a special class of Mapping, while a Mapping, in
turn, is a special class of Object. This is exactly like saying that an Oak is a special form of Tree,
while a Tree, in turn, is a special form of Plant. This may seem almost trivial, but before you
turn to read something less dull, be assured that it is a very important idea to keep in mind in
what follows.

If we look at some of the other Objects used by the AST library, we can see how these are all
related in a similar way (don’t worry about what they do at this stage):

Object

Mapping

Frame
FrameSet
Plot

UnitMap
ZoomMap

Channel
FitsChan
XmlChan

Notice that there are several different types of Mapping available (i.e. there are classes of Object
indented beneath the “Mapping” heading) and, in addition, other types of Object which are not
Mappings—Channels for instance (which are at the same hierarchical level as Mappings).

The most specialised Object we have shown here is the (which we will not discuss in detail

until §21). As you can see, a Plot is a ..and a .. and a Mapping. .. and, like

everything else, ultimately an Object.

What this means is that you can use a Plot not only for its own specialised behaviour, but also
whenever any of these other less-specialised classes of Object is called for. The general rule is

35 SUN/211.30 —An AST Object Primer

that an Object of a particular class may substitute for any of the classes appearing above it in
this hierarchy. The Object is then said to inherit the behaviour of these higher classes. We can
therefore use our ZoomMap whenever a ZoomMap, a Mapping or an Object is called for.

Sometimes, this can lead to some spectacular short-cuts by avoiding the need to break large
Objects down in order to access their components. With some practice and a little lateral thinking
you should soon be able to spot opportunities for this.

You can find the full class hierarchy, as this is called, for the AST library in Appendix|Aland you
may need to refer to it occasionally until you are familiar with the classes you need to use.

4.4 Displaying Objects

Let us now return to the that we created earlier (§4.2) and examine what it’s made
of. There is a function for doing this, called which is provided mainly for looking at
Objects while you are debugging programs.

If you consult the description of astShow in Appendix[B} you will find that it takes a pointer to
an (of type AstObjectx) as its argument. Although we have only a ZoomMap pointer
available, this is not a problem. If you refer to the brief class hierarchy described above (§4.3),
you will see that a ZoomMap is an Object, albeit a specialised one, so it inherits the properties of
all Objects and can be substituted wherever an Object is required. We can therefore pass our
ZoomMap pointer directly to astShow, as follows:

astShow(zoommap);

The output from this will appear on the standard output stream and should look like the
following:

Begin ZoomMap
Nin = 2

IsA Mapping
Zoom = 5

End ZoomMap

Here, the “Begin” and “End” lines mark the beginning and end of the ZoomMap, while the
values 2 and 5 are simply the values we supplied to initialise it (§4.2). These have been given
simple names to make them easy to refer to.

The line in the middle which says “IsA [Mapping|” is a dividing line between the two values.
It indicates that the “INin|’ value is a property shared by all Mappings, so the ZoomMap has
inherited this from its parent class (Mapping). The “{Zoom|” value, however, is specific to a
ZoomMap and isn’t shared by other kinds of Mappings.

4.5 Getting Attribute Values

We saw above (§4.4) how to display the internal values of an but what about accessing
these values from a program? Not all internal Object values are accessible in this way, but many
are. Those that are, are called attributes. A description of all the attributes used by the AST
library can be found in Appendix|C]

SUN/211.30 —An AST Object Primer 36

Attributes come in several data types (character string, integer, boolean and floating point) and
there is a standard way of obtaining their values. As an example, consider obtaining the value
of the attribute for the created earlier. This could be done as follows:

int nin;

nin = astGetI(zoommap, "Nin");

Here, the function astGetl is used to extract the attribute value by giving it the ZoomMap pointer
and the attribute name (attribute names are not case sensitive, but we have used consistent
capitalisation in this document in order to identify them). Remember to use the “ast.h” header
file to include the function prototype.

If we had wanted the value of the attribute, we would probably have used astGetD
instead, this being a double version of the same function, for example:

double zoom;

zoom = astGetD(zoommap, "Zoom");

However, we could equally well have read the Nin value as double, or the Zoom value as an
integer, or whatever we wanted.

The data type you want returned is specified simply by replacing the final character of the
astGetX function name with C (character string), D (double), F (float), I (int) or L (long). If
possible, the value is converted to the type you want. If not, an error message will result. Note
that all floating point values are stored internally as double, and all integer values as int. Boolean
values are also stored as integers, but only take the values 1 and 0 (for true/false).

4.6 Setting Attribute Values

Some attribute values are read-only and cannot be altered after an [Object| has been created. The
attribute of a (describing the number of coordinates) is like this. It is defined
when the ZoomMap is created, but cannot then be altered.

Other attributes, however, can be modified whenever you want. A ZoomMap’s attribute
is like this. If we wanted to change it, this could be done simply as follows:

astSetD(zoommap, "Zoom", 99.6);
which sets the value to 99.6. As when getting an attribute value (§4.5), you have a choice of
which data type you will use to supply the new value. For instance, you could use an integer

value, as in:

astSetI(zoommap, "Zoom", 99);

37 SUN/211.30 —An AST Object Primer

and the necessary data conversion would occur. You specify the data type you want to supply
simply by replacing the final character of the astSetX function name with C (character string),
D (double), F (float), I (int) or L (long). Setting a boolean attribute to any non-zero integer causes
it to take the value 1.

An alternative way of setting attribute values for Objects is to use the [astSet| function (i.e. with no
final character specifying a data type). In this case, you supply the attribute values in a character
string. The big advantage of this method is that you can assign values to several attributes at
once, separating them with commas. This also reads more naturally in programs. For example:

astSet(zoommap, "Zoom=99.6, Report=1");

would set values for both the Zoom attribute and the attribute (about which more
shortly—§4.8). You don’t really have to worry about data types with this method, as any
character representation will do. Note, when using astSet, a literal comma may be included in
an attribute value by enclosed the value in quotation marks:

astSet(skyframe, ’SkyRef="12:13:32,-23:12:44"’);

Another attractive feature of astSet is that you can build the character string which contains the
attribute settings in the same way as when using the C run time library “printf” function. This
is most useful when the values you want to set are held in other variables. For example:

double zoom = 99.6;
int report = 1;

astSet(zoommap, "Zoom=%g, Report=Yd", zoom, report);

would replace the “%” conversion specifications by the values supplied as additional arguments.
Any number of additional arguments may be supplied and the formatting rules are exactly the
same as for the C “printf” family of functions. This is a very flexible technique, but does contain
one pitfall:

Pitfall. The default precision used by “printf” (and astSet) for floating point values
is only 6 decimal digits, corresponding approximately to float on most machines,
whereas the AST library stores such values internally as doubles. You should be
careful to specify a larger precision (such as DBL_DIG, as defined in <float.h>)
when necessary. For example:

#include <float.h>

astSet(zoommap, "Zoom=%.*g", DBL_DIG, double_value);

Substituted strings may contain commas and this is a useful way of assigning such strings as
attribute values without the comma being interpreted as an assignment separator, for example:

SUN/211.30 —An AST Object Primer 38

astSet(object, "Attribute=Js", "A string, containing a comma");

This is equivalent to using astSetC and one of these two methods should always be used when
assigning string attribute values which might potentially contain a comma (e.g. strings obtained
from an external source). However, you should not attempt to use astSet to substitute strings
that contain newline characters, since these are used internally as separators between adjacent
attribute assignments.

Finally, a very convenient way of setting attribute values is to do so at the same time as you create
an Object. Every Object constructor function has a final character string argument which allows
you to do this. Although you can simply supply an empty string, it is an ideal opportunity to
initialise the Object to have just the attributes you want. For example, we might have created
our original ZoomMap with:

zoommap = astZoomMap(2, 5.0, "Report=1");

and it would then start life with its Report attribute set to 1. The “printf”-style substitution
described above may also be used here.

4.7 Testing, Clearing and Defaulting Attributes

You can use the astGetX family of functions (§4.5) to get a value for any [Object|attribute at any
time, regardless of whether a value has previously been set for it. If no value has been set, the
AST library will generate a suitable default value.

Often, the default value of an attribute will not simply be trivial (zero or blank) but may involve
considerable processing to calculate. Wherever possible, defaults are designed to be real-life,
sensible values that convey information about the state of the Object. In particular, they may
often be based on the values of other attributes, so their values may change in response to
changes in these other attributes. The class that we have studied so far is a little too
simple to show this behaviour, but we will meet it later on.

An attribute that returns a default value in this way is said to be un-set. Conversely, once an
explicit value has been assigned to an attribute, it becomes set and will always return precisely
that value, never a default.

The distinction between set and un-set attributes is important and affects the behaviour of
several key routines in the AST library. You can test if an attribute is set using the function
which returns a boolean (integer) result, as in:

if (astTest(zoommap, "Report")) {
<the Report attribute is set>

}

Once an attribute is set, you can return it to its un-set state using The effect is as if it
had never been set in the first place. For example:

astClear(zoommap, "Report");

would ensure that the default value of the attribute is used subsequently.

39 SUN/211.30 —An AST Object Primer

4.8 Transforming Coordinates

We now have the necessary apparatus to start using our[ZoomMap] to show what it is really for.
Here, we will also encounter a routine that is a little more fussy about the type of pointer it will
accept.

The purpose of a ZoomMap is to multiply coordinates by a constant zoom factor. To witness
this in action, we will first set the attribute for our ZoomMap to a non-zero value:

astSet(zoommap, "Report=1");

This boolean (integer) attribute, which is present in all Mappings (and a ZoomMap is a[Mapping),
causes the automatic display of all coordinate values that the Mapping converts. It is not a good
idea to leave this feature turned on in a finished program, but it can save a lot of work during
debugging.

Our next step is to set up some coordinates for the ZoomMap to work on, using two arrays “xin”
and “yin”, and two arrays to receive the transformed coordinates, “xout” and “yout”. Note that
these are arrays of double, as are all coordinate data processed by the AST library:

double xin[10]
double yin[10]
double xout[10];
double yout[10 1;

> > B 3
6

{0.0, 1.0, 2.0 , 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
{ 0.0, 2.0, 4.0, 8 1

.0 0
.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0 };

We will now use the function to transform the input coordinates. This is the most
commonly-used (2-dimensional) coordinate transformation function. If you look at its descrip-
tion in Appendix B} you will see that it requires a pointer to a Mapping, so we cannot supply
just any old [Object| pointer, as we could with the functions discussed previously. If we passed it
a pointer to an inappropriate Object, an error message would result.

Fortunately, a ZoomMap is a Mapping (Appendix[A), so we can use it with astTran2 to transform
our coordinates, as follows:

astTran2(zoommap, 10, xin, yin, 1, xout, yout);

Here, 10 is the number of points we want to transform and the fifth argument value of 1 indicates
that we want to transform in the forward direction (from input to output).

Because our ZoomMap’s Report attribute is set to 1, this will cause the effects of the ZoomMap
on the coordinates to be displayed on the standard output stream:

(0, 0) --> (0, 0)

(1, 2) --> (5, 10)

(2, 4) --> (10, 20)
(3, 6) --> (15, 30)
(4, 8) --> (20, 40)
(5, 10) --> (25, 50)
(6, 12) --> (30, 60)
(7, 14) --> (35, 70)
(8, 16) --> (40, 80)
(9, 18) --> (45, 90)

SUN/211.30 —An AST Object Primer 40

This shows the coordinate values of each point both before and after the ZoomMap is applied.
You can see that each coordinate value has been multiplied by the factor 5 determined by the
attribute value. The transformed coordinates are now stored in the “xout” and “yout”
arrays.

If we wanted to transform in the opposite direction, we need simply change the fifth argument
of astTran2 from 1 to 0. We can also feed the output coordinates from the above back into the
function:

astTran2(zoommap, 10, xout, yout, O, xin, yin);
The output would then look like:

(0, 0) --> (0, 0)

(5, 10) --> (1, 2)

(10, 20) --> (2, 4
(15, 30) --> (3, 6)
(20, 40) --> (4, 8)
(26, 50) --> (5, 10)
(30, 60) --> (6, 12)
(35, 70) --> (7, 14)
(40, 80) --> (8, 16)
(45, 90) --> (9, 18)

This is termed the inverse transformation (we have converted from output to input) and you can
see that the original coordinates have been recovered by dividing by the Zoom factor.

4.9 Managing Object Pointers

So far, we have looked at creating Objects and using them in various simple ways but have not
yet considered how to get rid of them again.

Every consumes various computer resources (principally memory) and should be dis-
posed of when it is no longer required, so as to free up these resources. One way of doing this
(not necessarily the best—§4.10) is to annul each Object pointer once you have finished with it,

using For example:

zoommap = astAnnul (zoommap) ;

This indicates that you have finished with the pointer. Since astAnnul always returns the null
value AST__NULL (as defined in “ast.h”), the recommended way of using it, as here, is to
assign the returned value to the pointer being annulled. This ensures that any attempt to use the
pointer again will generate an error message.

In general, this process may not delete the Object, because there may still be other pointers
associated with it. However, each Object maintains a count of the number of pointers associated
with it and will be deleted if you annul the final pointer. Using astAnnul consistently will
therefore ensure that all Objects are disposed of at the correct time. You can determine how
many pointers are associated with an Object by examining its (read-only) attribute.

41 SUN/211.30 —An AST Object Primer

4.10 AST Pointer Contexts—Begin and End
The use of (§4.9) is not completely foolproof, however. Consider the following:

astShow(astZoomMap(2, 5.0, ""));

This creates a and displays it on standard output (§4.4). Using function invocations
as arguments to other functions in this way is very convenient because it avoids the need for
intermediate pointer variables. However, the pointer generated by [astZoomMaplis still active,
and since we have not stored its value, we cannot use astAnnul to annul it. The ZoomMap will
therefore stay around until the end of the program.

A simple way to avoid this problem is to enclose all use of AST functions between invocations
of lastBegin|and [astEnd}, for example:

astBegin;
astShow(astZoomMap(2, 5.0, ""));
astEnd;

When the expansion of astEnd (which is a macro) executes, every|[Object pointer created since the
previous use of astBegin (also a macro) is automatically annulled and any Objects left without
pointers are deleted. This provides a simple solution to managing Objects and their pointers,
and allows you to create Objects very freely without needing to keep detailed track of each one.
Because this is so convenient, we implicitly assume that astBegin and astEnd are used in most
of the examples given in this document. Pointer management is not generally shown explicitly
unless it is particularly relevant to the point being illustrated.

If necessary, astBegin and astEnd may be nested, like blocks delimited by “{...}” in C, to define
a series of AST pointer contexts. Each use of astEnd will then annul only those Object pointers
created since the matching use of astBegin.

411 Exporting, Importing and Exempting AST Pointers

The function allows you to export particular pointers from one AST context (§4.10) to
the next outer one, as follows:

astExport(zoommap);

This would identify the pointer stored in “zoommap” as being required after the end of the
current AST context. It causes any pointers nominated in this way to survive the next use of
(but only one such use) unscathed, so that they are available to the next outer context.
This facility is not needed often, but is invaluable when the purpose of your ..astEnd
block is basically to generate an pointer. Without this, there is no way of getting that
pointer out.

The routine can be used in a similar manner to import a pointer into the current
context, so that it is deleted when the current context is closed using astEnd.

Sometimes, you may also want to exempt a pointer from all the effects of AST contexts. You
should not need to do this often, but it will prove essential if you ever need to write a library

SUN/211.30 —An AST Object Primer 42

of functions that stores AST pointers as part of its own internal data. Without some form of
exemption, the caller of your routines could cause the pointers you have stored to be annulled—
thus corrupting your internal data—simply by using astEnd. To avoid this, you should use

on each pointer that you store, for example:

astExempt (zoommap) ;

This will prevent the pointer being affected by any subsequent use of astEnd. Of course, it then
becomes your responsibility to annul this pointer (using when it is no longer required.

4.12 AST Objects within Multi-threaded Applications

When the AST library is built from source, the build process checks to see if the POSIX threads
library (“pthreads”) is available. If so, appropriate pthreads calls are inserted into the AST
source code to ensure that AST is thread-safe, and the AST__ THREADSAFE macro (defined in
the “ast.h” header file) is set to “1”. If the pthreads library cannot be found when AST is built, a
working version of the AST library will still be created, but it will not be thread-safe. In this case
the AST__ THREADSAFE macro will be set to “0” in ast.h. The rest of this section assumes that
the thread-safe version of AST is being used.

Note, some AST functions call externally specified functions (e.g. the source and sink functions
used by the class or the graphics primitives functions used by the class). AST does
not know whether such functions are thread-safe or not. For this reason, invocations of these
functions within a multi-threaded environment are serialised using a mutex in order to avoid
two or more threads executing an external function simultaneously.

If an application uses more than one thread, the possibility arises that an [Object| created by one
thread may be accessed by another thread, potentially simultaneously. If any of the threads
modifies any aspect of the Object, this could lead to serious problems within the other threads.
For this reason, some restrictions are placed on how Objects can be used in a multi-threaded
application.

4121 Locking AST Objects for Exclusive Use

The basic restriction is that a thread can only access Objects that it has previously locked for its
own exclusive use. If a thread attempts to access any [Object| that it has not locked, an error is
reported.

The function is the one exception to this restriction. Pointers for Objects not currently
locked by the calling thread can be annulled succesfully using astAnnul. This means that a
thread that has finished with an Object pointer can unlock the Object by passing the pointer to
(so that other threads can use the Object via their own cloned pointers), and can then
annul the pointer using astAnnul. Note, however, that an error will be reported by astAnnul if
the supplied pointer has been locked by another thread using[astLockl

When an Object is created, it is initially locked by the calling thread. Therefore a thread does not
need to lock an Object explicitly if it was created in the same thread.

If the Object pointer is then passed to another thread, the first thread must unlock the Object
using astUnlock and the second thread must then lock it using astLock. Once an object has been

43 SUN/211.30 —An AST Object Primer

locked or unlocked by a thread using a particular pointer, the locked or unlocked state of the
Object will also be visible through any other cloned pointers to the same Object.

If a thread attempts to lock an Object that is already locked by another thread, it can choose to
report an error immediately or to wait until the Object is available.

The function can be used to determine whether an Object is locked by the running
thread, locked by another thread, or unlocked.

If two or more threads need simultaneous access to an Object, a deep copy of the Object should

be taken for each thread, using and then the copies should be unlocked and passed
to the othe threads, which should then lock them. Note, if a thread modifies the Object, the
modification will have no effect on the other threads, because the Object copies are independent
of each other.

4.12.2 AST Pointer Contexts

Each thread maintains its own set of nested AST contexts, so when [astEnd)is called, only Objects
that are locked by the current thread will be annulled.

If an [Object)is unlocked by a thread using it is exempted from context handling so

that subsequent invocations of astEnd will not cause it to be annulled (this is similar to using
astExempt on the Object). When the Object is subsequently locked by another thread using
astLock} it will be imported into the context that was active when astLock was called.

4.13 Copying Objects

The AST library makes extensive use of pointers, not only for accessing Objects directly, but also
as a means of storing Objects inside other Objects (a number of classes of [Object|are designed
to hold collections of other Objects). Rather than copy an Object in its entirety, a pointer to the
interior Object is simply stored in the enclosing Object.

This means that Objects may frequently not be completely independent of each other because,
for instance, they both contain pointers to the same sub-Object. In this situation, changing one
Object (say assigning an attribute value) may affect the other one via the common Object.

It is difficult to describe all cases where this may happen, so you should always be alert to the
possibility. Fortunately, there is a simple solution. If you require two Objects to be independent,

then simply use to make a copy of one, e.g.:

AstZoomMap *zoommapl, *zoommap2;

zoommap2 = astCopy(zoommapl);

This process will create a true copy of any Object and return a pointer to the copy. This copy
will not contain any pointers to any component of the original Object (everything is duplicated),
so you can then modity it safely, without fear of affecting either the original or any other Object.

SUN/211.30 —An AST Object Primer 44

4.14 C Pointer Types

At this point it is necessary to confess to a small amount of deception. So far, we have been
passing [Object| pointers to AST functions in order to perform operations on those Objects. In
fact, however, what we were using were not true C functions at all, but merely macros which
invoke a related set of hidden functions with essentially the same arguments. In practical terms,
this makes very little difference to how you use the functions, as we will continue to call themﬂ

The reason for this deception has to do with the rules for data typing in C. Recall that most AST
functions can be used to process Objects from a range of different classes (§4.3). In C, this means
passing different pointer types to the same function and most C compilers will not permit this
(at least, not without grumbling) because it usually indicates a programming error. In AST,
however, it is perfectly safe if done properly. Some way is therefore needed of circumventing
the normal compiler checking.

The normal way of doing this in C is with a cast. This approach quickly becomes cumbersome,
however, so we have adopted the strategy of wrapping each function in a macro which applies
the appropriate cast for you. This means that you can pass pointers of any type to any AST

function. For example, in passing a pointer to

AstZoomMap *zoommap;

zoommap = astZoomMap(2, 5.0, "");
astShow(zoommap) ;

we are exploiting this mechanism to avoid a compiler warning, because the notional type of
astShow’s parameter is AstObject* (not AstZoomMapx).

We must still guard against programming errors, however, so every pointer’s type is checked
by the enclosing macro immediately before any AST function executes. This allows pointer
mis-matches (in the more liberal AST sense—i.e. taking account of the class hierarchy, rather
than the stricter C sense) to be detected at run-time and a suitable error message will be reported.
This message should also identify the line where the error occurs.

A similar strategy is used when pointers are returned by AST functions (i.e. as the function
result). In this case the pointer is cast to void*, although we retain the notional pointer type in
the function’s documentation (e.g. Appendix[B). This allows you to assign function results to
pointer variables without using an explicit cast. For example, the function returns an
Object pointer, but might be used to read (say) a ZoomMap as follows:

AstChannel *channel;
AstZoomMap *zoommap;

zoommap = astRead(channel);

9 About the only difference is that you cannot store a pointer to an AST “function” in a variable and use the
variable’s value to invoke that function again later.

45 SUN/211.30 —An AST Object Primer

Strictly, there is a C pointer mis-match here, but it is ignored because the operation makes perfect
sense to AST.

There is an important exception to this, however, in that constructor functions always return
strongly-typed pointers. What we mean by this is that the returned pointer is never implicitly
cast to void*. You must therefore match pointer types when you initially create an Object using
its constructor, such as in the following;:

AstZoomMap *zoommap;

zoommap = astZoomMap(2, 5.0, "");

If the variable receiving the pointer is of a different type, an appropriate cast should be used, as
in:

AstMapping *mapping;

mapping = (AstMapping *) astZoomMap(2, 5.0, "");

This is an encouragement for you to declare your pointer types consistently, since this is of great
benefit to anyone trying to understand your software.

Finally, we should also make one more small confession—AST pointers are not really pointers
at all. Although they behave like pointers, the actual “values” stored are not the addresses of C
data structures. This means that you cannot de-reference an AST pointer to examine the data
within (although you can use astShow instead—§4.4). This is necessary so that AST pointers can
be made unique even although several of them might reference the same Object.

4.15 Error Detection

If an error occurs in an AST function (for example, if you supply an invalid argument, such as
a pointer to the wrong class of |Object), an error message will be written to the standard error
stream and the function will immediately return.

To indicate than an error has occurred, an AST error status value is used. This integer value is
stored internally by AST and is initially clear (i.e. set to zerom to indicate no error). If an error
occurs, it becomes set to a different error value, which allows you to detect the error, as follows:

zoommap = astZoomMap(2, 5.0, "Title=My ZoomMap");
if (lastOK) {
<an error has occurred>

}

10We will assume throughout that the “OK” value is zero, as it currently is. However, a different value could, in
principle, be used if the environment in which AST is running requires it. This is why a simple interface is provided
to isolate you from the actual value of the error status.

SUN/211.30 —An AST Object Primer 46

The macro is used to test whether the AST error status is still OK. In this example it
would not be, because we have attempted to set a value for the attribute of a
and a ZoomMap does not have such an attribute. The actual value of the AST error status can

be obtained using the macro, as follows:

int status;

status = astStatus;

A consequence of the AST error status being set is that almost all AST functions will subsequently
cease to function and will instead simply return without action. This means that you do not
need to use astOK to check for errors very frequently. Instead, you can usually simply invoke
a succession of AST functions. If an error occurs in any of them, the following ones will do
nothing and you can check for the error at the end, for example:

astFunctionA(...);
astFunctionB(...);
astFunctionC(D

if ('astOK) {
<an error has occurred>

}

There are, however, a few functions which do not adhere to this general rule and which will
attempt to execute if the AST error status is set. These functions, such as are concerned
with cleaning up and recovering resources. For example, in the following:

zoommap = astZoomMap(2, 5.0, "");
astFunctionX(...);
astFunctionY(...);
astFunctionZ(...);

zoommap = astAnnul(zoommap);
if (lastOK) {
<an error has occurred>

}

astAnnul will execute normally in order to recover the resources associated with the ZoomMap
that was created earlier, regardless of whether an error has occurred in any of the intermedi-
ate functions. Functions which behave in this way are noted in the relevant descriptions in

Appendix

If a serious error occurs, you will probably want to abort your program, but sometimes you may
want to recover and carry on. Because very few AST functions will execute once the AST error
status has been set, you must first clear this status by using the [astClearStatus| macro, as follows:

astClearStatus;

47 SUN/211.30 —An AST Object Primer

This will restore the AST error status to its OK value, so that AST functions execute normally
again.

Occasionally, you may also need to set the AST error status to an explicit error value (see §15.14
for an example). This is done using astSetStatus|and can be used to communicate to AST that an
error has occurred in some other item of software, for example:

int new_status;

astSetStatus(new_status);

The effect is that most AST routines will subsequently return without action, just as if an error
had occurred within the AST library itself.

4.16 Sharing the Error Status

In some software, it is usual to maintain a single integer error status variable which is accessed
by each function as it executes. If an error occurs, this status variable is set and other functions
can detect this and take appropriate action.

If you use AST in such a situation, it can be awkward to have a separate internal error status
used by AST functions alone. To remedy this, AST is capable of sharing the error status variable
used by any other software, so long as they use the same conventions (i.e. a C int with the
same “OK” value). To enable this facility, you should pass the address of your status variable to
astWatch| as follows:

int my_status;
int *old_address;

old_address = astWatch(&my_status);

Henceforth, instead of using its own internal error status variable, AST will use the one you
supply, so that it can detect errors flagged by other parts of your software. The address of the
original error status variable is returned by astWatch, so you can restore the original behaviour
later if necessary.

Note that this facility is not available via the Fortran interface to the AST library.

SUN/211.30 —An AST Object Primer

48

49 SUN/211.30 —Inter-Relating Coordinate Systems (Mappings)

5 Inter-Relating Coordinate Systems (Mappings)

In §4 we used the as an example of a We saw how it could be used to

transform coordinates from its input to its output and back again (§4.8). We also saw how its
behaviour could be controlled by setting various attributes, such as the factor and the
attribute that made it display coordinate values as it transformed them.

In this section, we will look at Mappings a bit more thoroughly and explore the behaviour which
is common to all the Mappings provided by AST. This is good background for what follows,
because many of the Objects we discuss later will also turn out to be Mappings in various
disguises.

5.1 The Mapping Class

Before we start, it is worth taking a quick look at the class as a whole and some of the
sub-classes it contains:

Mapping
CmpMap
DssMap
GrismMap
IntraMap
LutMap
MathMap
MatrixMap
PermMap
PolyMap

ChebyMap
SlaMap
SpecMap
TimeMap
UnitMap
WcsMap
ZoomMap

Frame
<various types of Frame>

The sub-class has been separated out here because it is covered in detail in §7] We start
by looking at the parent class, Mapping.

AST does not provide a function to create a basic Mapping (i.e. the astMapping constructor does
not exist). This is because the Mapping class itself is “virtual” and basic Mappings are of no use
in themselves. The Mapping class serves simply to contain the various specialised Mappings
that exist. However, it provides more than just a convenient heading for them because it bestows
all classes of Mapping with common properties (e.g. attributes) and behaviour. By examining the
Mapping class, we are therefore examining the things that all other Mappings have in common.

SUN/211.30 —Inter-Relating Coordinate Systems (Mappings) 50

5.2 The Mapping Model

The concept of a was illustrated in Figure[l] It is a black box which you can supply
with a set of coordinate values in return for a set of transformed coordinates. The two sets are
termed input and output coordinates. You can also go back the other way and transform output
coordinates back into input coordinates, as we saw in

5.3 Changing Attributes of a Mapping

Many classes of Mapping|have attributes that provide values for parameter used within the
transformation. For instance, the class has an attribute called “{Zoom]” that gives
the scalar value by which each coordinate is to be multiplied. These attribute values should
be set when the Mapping is created and should not be changed afterwards. Indeed, the AST
library will report an error if an attempt is made to change the value of a Mapping attribute.
This is because, once created, Mappings are often later included within other objects such as
FrameSets and CmpMaps. This means that in general there could be many active references
to a single Mapping object within a program. Changing an attribute of the Mapping via one
particular reference (i.e pointer) would cause all the other references to change too, with often
undesirable or unpredictable consequences. To avoid this, Mappings are considered immutable
in most situations. The one exception is if the Mapping has not yet been cloned or included in
another (i.e. it has a reference couint of one) - changing the attributes of such a Mapping
is allowed, and will not generate an error.

Note, the attribute of a Mapping is not subject to this rule and can be changed at any time.

5.4 Input and Output Coordinate Numbers

In general, the number of coordinates you feed into a to represent a single point need
not be the same as the number that comes out. Often these numbers will be the same, and often
they will both equal 2 (because 2-dimensional coordinate systems are common), but this needn’t
necessarily be the case.

The number of coordinates required to specify an input point is represented by the integer
attribute and the number required to specify an output point is represented by [Nout] These
are read-only attributes common to all Mappings. Generally, their values are fixed when a
Mapping is created.

In we saw how the Nin attribute for alZoomMap|was initialised by the call to the constructor
function [astZoomMap| which created it. In this case, the Nout attribute was not needed and
it implicitly took the same value as Nin, but we could have enquired about its value had we
wanted, as follows:

#include "star/ast.h"
AstZoomMap *zoommap;
int nout;

nout = astGetI(zoommap, "Nout");

51 SUN/211.30 —Inter-Relating Coordinate Systems (Mappings)

5.5 Forward and Inverse Transformations

We stated earlier that a may be used to transform coordinates either from input to
output, or vice versa. These are termed its forward and inverse transformations.

This statement was not quite accurate, however, because in general Mappings are only poten-
tially capable of working in both directions. In practice, coordinate transformation may only
be feasible in one direction or the other because some functions are not easily inverted (they
may be multi-valued, for instance). Allowance must be made for this, so each Mapping has two
read-only boolean (integer) attributes, {IranForward|and [TranInverse, which indicate whether
each transformation is available.

A transformation is available if the corresponding attribute is non-zero, otherwise it is notErI If
you enquire about the value of these attributes, a value of 0 or 1 is returned. Attempting to use a
Mapping to apply a transformation which is not available will result in an error.

5.6 Inverting Mappings

An important attribute, common to all Mappings, is the flag. This is a boolean (integer)
attribute that can be assigned a new value at any time. If it is non-zero, it has the effect of
interchanging the[Mappingfs input and output coordinates and the Mapping is then said to be
inverted. By default, the Invert attribute is zero.

There is no magic in this. There is no fancy arithmetic involved in inverting mathematical
functions, for instance. The Invert flag is simply a switch that interchanges a Mapping’s input
and output ports. If it is non-zero, the Mapping’s and attributes are swapped, its
[TranForward|and [IranInverse| attributes are swapped, and when you ask for what was once the
forward transformation you get the inverse transformation instead (and vice versa). When you
return the Invert attribute to zero, or clear it, the Mapping returns to its original behaviour.

Often, the actual value of the Invert attribute is unimportant and you simply wish to invert its
boolean sense, so that what was the Mapping’s input becomes its output and vice versa. This is

most easily accomplished using|astInvert, as follows:

AstMapping *mapping;

astInvert(mapping);

If the Mapping you have happens to be the wrong way around, astInvert allows you to correct
the problem.

5.7 Finding the Rate of Change of a Mapping Output

The function can be used to find the rate of change of any Mapping|output with respect

to any Mapping input, at a given input position. The method used produces good accuracy
(typically a relative error of 10E-10 or less) but may require the Mapping to be evaluated 100 or
more times. An estimate of the second derivative is also produced by this function.

U Most of the Mappings provided by the AST library work in both directions, although the can behave
otherwise.

SUN/211.30 —Inter-Relating Coordinate Systems (Mappings) 52

5.8 Reporting Coordinate Transformations

We have already seen (§4.8) how the boolean (integer) attribute of a[Mapping|works. If it

is non-zero, the operation of transforming a set of coordinates will result in a report being written
to standard output. This will display the coordinate values before and after transformation. It
can save considerable time during program development by eliminating the need to add loops
and output statements to your program.

In a finished program, however, you should be careful that the Report attribute is not set to
a non-zero value unless you want to see the output (there may often be rather a lot of this!).
To help prevent unwanted output being produced by accident, the Report attribute is unusual
in that its value is not preserved when a Mapping is copied using|astCopy|(§4.13). Instead, it
reverts to its default of zero (i.e. un-set) in the copy. It also reverts to zero when a Mapping is

written out, e.¢. to a file using a (§15).

5.9 Handling Missing (Bad) Coordinate Values

Even when coordinates can, in principle, be transformed in either direction by a there
may still be instances where specific coordinate values cannot be handled. For example, the
Mapping may be mathematically intractable (e.g. singular) in certain places, or it may map a
subset of one space on to another, so that some points in one space are not represented in the
other. Sky projections often show this behaviour, since it is quite common to project only half of
the celestial sphere on to two dimensions, omitting points on the opposite side of the sky. There
are many other examples.

To indicate when coordinates cannot be transformed, for whatever reason, AST substitutes a
special output coordinate value given by the macro AST__BAD (as defined in the “ast.h” header
file). Before making use of coordinates generated by any of the AST transformation functions,
therefore, you may need to check for the presence of this value.

Because coordinates with the value AST__BAD can be generated in this way, all other AST
functions are also capable of recognising this value and handling it appropriately. The coordinate
transformation functions do this by propagating any missing input coordinate information
through to their output. This means that if you supply coordinates with the value AST__BAD,
the returned coordinates are also likely to contain this value. Here, for example, is what happens

if you use a (with [Zoom|factor 5) to transform such a set of coordinates:

(0, 0) --> (0, 0

(<bad>, 2) --> (<bad>, 10)

(2, 4) --> (10, 20)

(3, 6) --> (15, 30)

(4, <bad>) --> (20, <bad>)

(5, 10) --> (25, 50)

(<bad>, <bad>) --> (<bad>, <bad>)
(7, 14) --> (35, 70)

(8, 16) --> (40, 80)

(9, 18) --> (45, 90)

The AST__BAD value is represented by the string “<bad>". This is a case of “garbage in,
garbage out” but at least it’s consistent garbage that you can recognise!

53 SUN/211.30 —Inter-Relating Coordinate Systems (Mappings)

Note how the presence of the AST__BAD value in one input dimension does not necessarily
result in the loss of information for all output dimensions. Sometimes, such loss will be
unavoidable, but in general an attempt is made to preserve information as far as possible. The
exact behaviour will depend on the Mapping involved.

510 Example—the UnitMap

The is the simplest of Mappings. It is a null Its purpose is simply to copy

coordinate values, unaltered, from its input to its output and vice versa.

A UnitMap has no additional attributes beyond those of a basic Mapping. Its and
attributes are always equal and are specified by the first argument supplied to its constructor.
For example:

AstUnitMap *unitmap;

unitmap = astUnitMap(2, "");

will create a UnitMap that copies 2-dimensional coordinates. Inverting a UnitMap has no effect
beyond changing the value of its attribute.

The main use of a UnitMap is to allow a Mapping to be supplied when one is required (as an
argument to a function, for example) but you wish it to leave coordinate values unchanged.

511 Example—the PermMap
The is a rather more complicated than we have met previously. Its purpose

is to change the order, or number, of coordinates. It is also able to substitute fixed values for
coordinates.

To illustrate its action, suppose our input coordinates are denoted by (x1,x7,x3,x4) in a 4-
dimensional space and suppose our output coordinates are to be (x4, x1, X2, x3). Our PermMap,
therefore, should rotate the coordinate values by one position.

To create such a PermMap, we first set up two integer arrays. One of these, “outperm”, controls
the selection of input coordinates for use in the output and the other, “inperm”, controls selection
of output coordinates for use in the input:

int outperm[4 1 = { 4, 1, 2, 3 };
int inperm[4] ={ 2, 3, 4, 1 };

Note that the numbers we store in these arrays are the indices of the coordinates that we want
to select. We have chosen these so that the forward and inverse transformations will perform
complementary permutations on the coordinates.

The PermMap is then created by passing these arrays to its constructor, as follows:

AstPermMap *permmap;

permmap = astPermMap(4, inperm, 4, outperm, NULL, "");

SUN/211.30 —Inter-Relating Coordinate Systems (Mappings) 54

Note that we specify the number of input and output coordinates separately, but set both to 4 in
this example. The resulting PermMap would have the following effect when used to transform
coordinates:

Forward:
(1, 2, 3, 4) --> (4, 1, 2, 3)
2, 4, 6, 8) --> (8, 2, 4, 6)
(3, 6, 9, 12) --> (12, 3, 6, 9)
(4, 8, 12, 16) --> (16, 4, 8, 12)
(5, 10, 15, 20) --> (20, 5, 10, 15)

Inverse:
4, 1, 2, 3) --> (1, 2, 3, 4)
(8, 2, 4, 6) --> (2, 4, 6, 8)
(12, 3, 6, 9) --> (3, 6, 9, 12)
(16, 4, 8, 12) --> (4, 8, 12, 16)
(20, 5, 10, 15) --> (5, 10, 15, 20)

If the number of input and output coordinates are unequal so, also, will be the size of the
“outperm” and “inperm” arrays. This means, however, that we cannot fill them with coordinate
indices so that they perform complementary permutations, because one transformation will lose
information (discard a coordinate) that the other cannot recover. To give an example, consider
the following:

int outperm[31 = { 4, 3, 2 };
int inperm[4 1 = { -1, 3, 2, 1 };
double con[1 1 = { 99.004 };

In this case, the forward transformation will change (x1, x2, x3, x4) into (x4, x3, x2) and will discard
x1. The inverse transformation restores the original coordinate order, but has no value to assign
to the first coordinate. In this case, the number entered in the “inperm” array is —1.

This negative value indicates that the coordinate value should be obtained by addressing the
first element of the “con” array (i.e. element zero). This array, ignored in the previous example,
may then be used to supply a value for the missing coordinate.

The constructor function:
permmap = astPermMap(4, inperm, 3, outperm, con, "");
will then create a PermMap with the following effect when used to transform coordinates:

Forward:
1, 2, 3, 4) --> (4, 3, 2)
(2, 4, 6, 8) --> (8, 6, 4)
3, 6, 9, 12) --> (12, 9, 6)
(4, 8, 12, 16) --> (16, 12, 8)
(5, 10, 15, 20) --> (20, 15, 10)

Inverse:
(4, 3, 2) --> (99.004, 2, 3, 4)

55 SUN/211.30 —Inter-Relating Coordinate Systems (Mappings)

(8, 6, 4) --> (99.004, 4, 6, 8)

(12, 9, 6) --> (99.004, 6, 9, 12)
(16, 12, 8) --> (99.004, 8, 12, 16)
(20, 15, 10) --> (99.004, 10, 15, 20)

The “con” array may contain more than one value if necessary and may be addressed by both
the “inperm” and “outperm” arrays using coordinate indices —1, —2, —3, efc. to refer to the first,
second, third, efc. elements.

If there is no suitable replacement value that can be supplied via the “con” array, a value of zero
may be entered into the “outperm” and/or “inperm” arrays. This causes the value AST__BAD
to be used for the affected coordinate (as defined in the “ast.h” header file), thus indicating a
missing coordinate value (§5.9).

The principle use for a PermMap lies in matching a coordinate system to a data array where
there is a choice of storage order for the data. PermMaps are also useful for discarding unwanted
coordinates so as to reduce the number of dimensions, such as when selecting a “slice” from a
multi-dimensional array.

SUN/211.30 —Inter-Relating Coordinate Systems (Mappings)

56

57 SUN/211.30 —Compound Mappings (CmpMaps)

6 Compound Mappings (CmpMaps)

We now turn to a rather special form of Mapping, the CmpMap| The Mappings we have
considered so far have been atomic, in the sense that they perform pre-defined elementary
transformations. A CmpMap, however, is a compound Mapping. In essence, it is a framework
for containing other Mappings and its purpose is to allow those Mappings to work together in
various combinations while appearing as a single A CmpMap’s behaviour is therefore
not pre-defined, but is determined by the other Mappings it contains.

6.1 Combining Mappings in Series

Consider a simple example based on two 2-dimensional coordinate systems. Suppose that to
convert from one to the other we must swap the coordinate order and multiply both coordinates
by 5, so that the coordinates (x1, x7) transform into (5x3, 5x1). This can be done in two stages:

(1) Apply a[PermMap|(§5.11) to swap the coordinate order.
(2) Apply a (§4.8) to multiply both coordinate values by the constant 5.

The PermMap and ZoomMap are then said to operate in series, because they are applied

sequentially (c.f. Figure[2). We can create a that applies these Mappings in series as
follows:

#include "star/ast.h"
AstCmpMap *cmpmap;
AstPermMap *permmap;
AstZoomMap *zoommap;

/* Create the individual Mappings. */
{
int inperm[2] = { 2, 1 };
int outperm[2] = { 2, 1 };
permmap = astPermMap(2, inperm, 2, outperm, NULL, "");
}
zoommap = astZoomMap(2, 5.0, "")

/* Combine them in series. */
cmpmap = astCmpMap(permmap, zoommap, 1, "");

/* Annul the individual Mapping pointers. */
permmap = astAnnul(permmap);
zoommap = astAnnul(zoommap) ;

Here, the third argument (1) of the constructor function indicates “in series”.

When used to transform coordinates in the forward direction, the resulting CmpMap will apply
the first component[Mapping] (the PermMap) and then the second one (the ZoomMap). When

SUN/211.30 —Compound Mappings (CmpMaps) 58

transforming in the inverse direction, it will apply the second one (in the inverse direction)
and then the first one (also in the inverse direction). In general, although not in this particular
example, the order in which the two component Mappings are supplied is significant. Clearly,
also, the attribute (number of output coordinates) for the first Mapping must equal the
attribute (number of input coordinates) for the second one.

6.2 Combining Mappings in Parallel

Connecting two Mappings in series (§6.1) is not the only way of combining them. The alternative,
in parallel, involves applying the two Mappings at once but on different subsets of the coordinate
values.

Consider, for example, a set of 3-dimensional coordinates and suppose we wish to transform
them by swapping the first two coordinate values and multiplying the final one by 5, so that
(x1, x2, x3) transforms into (x3, x1, 5x3). Again, we can perform each of these steps individually
using Mappings similar to the [PermMap|and [ZoomMap|used earlier (§6.1). In this case, how-
ever, the ZoomMap is 1-dimensional and the individual Mappings are applied in parallel (c.f.
Figure [3)).

Creating a for this purpose is also very simple:

cmpmap = astCmpMap(permmap, zoommap, O, "");

The only difference is that the third argument of astCmpMap|is now zero, meaning “in parallel”.

As before, the order in which the two component Mappings are supplied is significant. The
first one acts on the lower-numbered input coordinate values (however many it needs) and
produces the lower-numbered output coordinates, while the second acts on the
higher-numbered input coordinates (however many remain) and generates the remaining
higher-numbered output coordinates. When the CmpMap transforms coordinates in the inverse
direction, both component Mappings are applied to the same coordinates, but in the inverse
direction.

Note that the and attributes of the component Mappings (i.e. the numbers of input
and output coordinates) will sum to give the Nin and Nout attributes of the overall CmpMap.

6.3 The Component Mappings

A does not store copies of its component Mappings, but simply holds pointers to
them. In the example above (§6.1), we were free to annul the individual pointers
after creating the CmpMap because the pointers held internally by the CmpMap increased
the reference count attribute) of each component Mapping by one. The individual
components are therefore not deleted by but retained until the CmpMap itself is
deleted and annuls the pointers it holds. Consistent use of astAnnul (§4.9) and/or pointer
contexts (will therefore ensure that all Objects are deleted at the appropriate time.

Note that access to a CmpMap’s component Mappings is not generally available unless pointers
to them are retained when the CmpMap is created. If such pointers are retained, then subsequent
modifications to the individual components can be used to indirectly modify the behaviour of
the overall CmpMap.

59 SUN/211.30 —Compound Mappings (CmpMaps)

There is an important exception to this, however, because a CmpMap retains a copy of the initial
flag settings of each of its components and uses these in order to ignore any subsequent
external changes. This means that you may invert either component Mapping before inserting it
into a CmpMap and need not worry if you un-invert it again later. The CmpMap’s behaviour
will not be affected by the later action.

6.4 Creating More Complex Mappings

Because a isitself a any existing CmpMap can substitute (§4.3) as a com-
ponent Mapping when constructing a new CmpMap using This has the effect

of nesting one CmpMap inside another and opens up many new possibilities. For example,
combining three Mappings in series can be accomplished as follows:

AstMapping *mapl, *map2, *map3;

cmpmap = astCmpMap(mapl, astCmpMap(map2, map3, 1, ""), 1, "");

The way in which the individual component Mappings are grouped within the nested CmpMaps
is not usually important.

A similar technique can be used to combine multiple Mappings in parallel and, of course,
mixed series and parallel combinations are also possible (Figure[d). There is no built-in limit to
how many CmpMaps may be nested in this way, so this mechanism provides an indefinitely
extensible method of building complex Mappings out of the elemental building blocks provided
by AST.

In practice, you might not need to construct such complex CmpMaps yourself very frequently,
but they will often be returned by AST routines. Nested CmpMaps underlie the library’s entire
ability to represent a wide range of different coordinate transformations.

6.5 Example—Transforming Between Two Calibrated Images

Consider, as a practical example of CmpMaps, two images of the sky. Suppose that for each
image we have a[Mapping|which converts from pixel coordinates to a standard celestial coordi-
nate system, say FK5 (J2000.0). If we wish to inter-compare these images, we can do so by using
this celestial coordinate system to align them. That is, we first convert from pixel coordinates
in the first image into FK5 coordinates and we then convert from FK5 coordinates into pixel
coordinates in the second image.

If “mapa” and “mapb” are pointers to our two original Mappings, we could form a
which transforms directly between the pixel coordinates of the first and second images by
combining these Mappings, as follows:

AstCmpMap *alignmap;
AstMapping *mapa, *mapb;

SUN/211.30 —Compound Mappings (CmpMaps) 60

astInvert(mapb);
alignmap = astCmpMap(mapa, mapb, 1, "");
astInvert(mapb);

Here, we have used (§5.6) to invert “mapb” before inserting it into the CmpMap
because, as supplied, it converted in the wrong direction. Afterwards, we invert it again to
return it to its original state. The CmpMap, however, will ignore this subsequent change (§6.3).

The forward transformation of the resulting CmpMap will now transform from pixel coordinates
in the first image to pixel coordinates in the second image, while its inverse transformation will
convert in the opposite direction.

6.6 Over-Complex Compound Mappings

While a[CmpMap]| provides a very flexible way of constructing arbitrarily complex Mappings
(, it unfortunately also provides an opportunity for representing simple Mappings in
complex ways. Sometimes, unnecessary complexity can be difficult to avoid but can obscure
important simplifications.

Consider the example above (§6.5), in which we inter-related two images of the sky via a
CmpMap. If the two images turned out to be simply offset from each other by a shift along
each pixel axis, then this approach would align them correctly, but it would be inefficient.
This is because it would introduce unnecessary and expensive transformations to and from an
intermediate celestial coordinate system, whereas a simple shift of pixel origin would suffice.

Recognising that a simpler and more efficient solution exists obviously requires a little more
than simply joining two Mappings end-to-end. We must also determine whether the resulting
CmpMap is more complex than it needs to be, i.e. contains redundant information. If it is, we
then need a way to simplify it.

The problem is not always just one of efficiency, however. Sometimes we may also need to know
something about the actual form a[Mapping]|takes—i.e. the nature of the operations it performs.
Unnecessary complexity can obscure this, but such complexity can easily accumulate during
normal data processing.

For example, a Mapping that transforms pixel coordinates into positions on the sky might be
repeatedly modified as changes are made to the shape and size of the image. Typically, on each
occasion, another Mapping will be concatenated to reflect what has happened to the image. This
could soon make it difficult to discern the overall nature of the transformation from the complex
CmpMap that accumulates. If only shifts of origin were involved on each occasion, however,
they could be combined into a single shift which could be represented much more simply.

Suppose we now wanted to represent our image’s celestial coordinate calibration using FITS
conventions (§17). This requires AST to determine whether the Mapping which relates pixel
coordinate to sky positions conforms to the FITS model (for example, whether it is equivalent to
applying a single set of shifts and scale factors followed by a map projection). Clearly, there is
an important use here for some means of simplifying the internal structure of a CmpMap.

6.7 Simplifying Compound Mappings

The ability to simplify compound Mappings is provided by the function. This func-
tion encapsulates a number of heuristics for converting Mappings, or combinations of Mappings

61 SUN/211.30 —Compound Mappings (CmpMaps)

|HHHHHHHI'

ZoomMaps

Figure 10: An over-complex compound Mapping, consisting of PermMaps, ZoomMaps and a
which can be simplified to become a single UnitMap. The enclosing nested CmpMaps
have been omitted for clarity.

within a into simpler, equivalent ones. When applied to a CmpMap, astSimplify tries
to reduce the number of individual Mappings within it by merging neighbouring component
Mappings together. It will do this with both series and parallel combinations of Mappings, or
both, and will handle CmpMaps nested to any depth (§6.4).

To illustrate how astSimplify works, consider the combination of Mappings shown in Figure

If this were contained in a CmpMap, it could be simplified as follows:

AstMapping *simpler;

simpler = astSimplify(cmpmap);

In this case, the result would be a simple 3-dimensional UnitMap (the identity Mapping). To
reach this conclusion, astSimplify will have made a number of deductions, roughly as follows:

(1) The two 2-dimensional ZoomMaps in series are equivalent to a single[ZoomMap| with a
combined factor of unity. This, in turn, is equivalent to a 2-dimensional UnitMap.

(2) This UnitMap in parallel with the other 1-dimensional UnitMap is equivalent to a single
3-dimensional UnitMap. This UnitMap, sandwiched between any other pair of Mappings,
can then be eliminated.

(3) The remaining two PermMaps in series are equivalent to a single 3-dimensional
When these are combined, the resulting PermMap is found to be equivalent to a
3-dimensional UnitMap.

This example is a little contrived, but illustrates how astSimplify can deal with even quite
complicated compound Mappings through a series of incremental simplifications. Where
possible, this will result in either a simpler compound Mapping or, if feasible, an atomic (non-
compound) Mapping, as here. If no simplification is possible, astSimplify will just return a
pointer to the original Mapping.

SUN/211.30 —Compound Mappings (CmpMaps) 62

Although astSimplify cannot identify every simplification that is theoretically possible, sufficient
rules are included to deal with the most common and important cases.

63 SUN/211.30 —Representing Coordinate Systems (Frames)

7 Representing Coordinate Systems (Frames)

An AST [Frameis an [Object| that is used to represent a coordinate system. Contrast this with a
Mapping] (§5), which is used to describe how to convert between coordinate systems. The two
concepts are complementary and we will see how they work together in

In this section we will discuss only basic Frames, which represent Cartesian coordinate systems.
More specialised types of Frame (e.g. the which represents celestial coordinate
systems, and the which represents spectral coordinate systems) are covered later
(§8/and §9) and, naturally, inherit the properties and behaviour of the simple Frames discussed
here.

7.1 The Frame Model

The best way to think about a is like the frame that you would plot around a graph. In
two dimensions, you would have an “x” and a “y” axis, a title on the graph and labels on the
axes, together with an indication of the physical units being plotted. The values marked along
each axis would be formatted in a human-readable way. The frame around a graph therefore
defines a coordinate space within which you can locate points, draw lines, calculate distances,

etc.

An AST Frame works in much the same way, embodying all of these concepts and a few more.
It also allows any number of axes, which means that a Frame can represent coordinate systems
with any number of dimensions. You specify how many when you create it.

Remember that the basic Frame we are considering here is completely general. It knows nothing
of celestial coordinates, for example, and all its axes are equivalent. It can be adapted to describe
any general purpose Cartesian coordinate system by setting its attributes, such as its and
axis Labels, etc. to appropriate values.

7.2 Creating a Frame
Creating a[Framelis straightforward and follows the usual pattern:

#include "star/ast.h"
astFrame *frame;

frame = astFrame(2, "");

The first argument of the constructor function specifies the number of axes which the
Frame should have.

7.3 Using a Frame as a Mapping

We should briefly point out that the [Frame| we created above (§7.2) is also a (§5.1) and

therefore inherits the properties and behaviour common to other Mappings.

SUN/211.30 —Representing Coordinate Systems (Frames) 64

One way to see this is to set the Frame’s attribute (inherited from the Mapping class) to
a non-zero value and pass the Frame pointer to a coordinate transformation function, such as
astTran?]

double xin[5]
double yin[5]
double xout[5 1;
double yout[5];

I

astSet(frame, "Report=1");
astTran2(frame, 5, xin, yin, 1, xout, yout);

The resulting output might then look like this:

(1, 2) -=> 1, 2
(2, 4) --> (2, 4
(3, 6) --> (3, 6)
(4, 8) --> (4, 8)
(5, 10) --> (5, 10)

This is not very exciting because a Frame implements an identity transformation just like a
UnitMapl|(§5.10). However, it illustrates that a Frame can be used as a Mapping and that its
and |Nout|attributes are both equal to the number of Frame axes.

When we consider more specialised Frames (e.g. §13), we will see that using them as Mappings
can be very useful indeed.

7.4 Frame Axis Attributes

Frames have a number of attributes which can take multiple values, one for each axis. These
separate values are identified by appending the axis number in parentheses to the attribute
name. For example, the Label(1) attribute is a character string containing the label which appears
on the first axis.

attributes are accessed in the same way as all other attributes (§4.5] and §4.7). For

example, the Label on the second axis might be obtained as follows:

const char *label;

label = astGetC(frame, "Label(2)");

Other attribute access functions (astSetX, |astTest| and [astClear) may also be applied to axis
attributes in the same way.

If the axis number is stored in a program variable, then its value must be formatted to generate a
suitable attribute name before using this to access the attribute itself. For example, the following

will print out the Label value for each axis of a

65 SUN/211.30 —Representing Coordinate Systems (Frames)

#include <stdio.h>
char name[18];
int iaxis, naxes;

naxes = astGetI(frame, "Naxes");
for (iaxis = 1; iaxis <= naxes; iaxis++) {
(void) sprintf(name, "Label(%d)", iaxis);
label = astGetC(frame, name);
(void) printf("Label %2d: %s\n", iaxis, label);

Note the use of the Naxes attribute to determine the number of Frame axes.

The output from this might look like the following:

Label 1: Axis 1
Label 2: Axis 2

In this case, the Frame’s default axis Labels have been revealed as rather un-exciting. Nor-
mally, you would set much more useful values, typically when you create the Frame—perhaps
something like:

frame = astFrame(2, "Label(1)=0ffset from centre of field,"
"Unit(1) =mm,"
"Label (2)=Transmission coefficient,"
"Unit(2) =%");

Here, we have also set the (character string) Unit attribute for each axis to describe the physical
units represented on that axis. All the attribute assignments have been combined into a single
string, separated by commas.

7.5 Frame Attributes

We will now briefly outline the various attributes associated with a (this is, of course, in

addition to those inherited from the class). We will not delve too deeply into the details
of each attribute, for which you should consult the appropriate description in Appendix [C]
Instead, we aim simply to sketch the range of facilities available:

Naxes|
A read-only integer giving the number of Frame axes.

Mitle]

A string describing the coordinate system which the Frame represents.

A label string for each axis.

SUN/211.30 —Representing Coordinate Systems (Frames)

A string describing the physical units on each axis. You can choose whether to
make this attribute “active” or “passive” (using astSetActiveUnit)). If active,
its value will be taken into account when finding the Mapping between two
Frames (e.g. a scaling of 0.001 would be used to connect two axis with units
of “km” and “m”). If passive, its value is ignored. Its use is described in more

detail in §7.14

A string containing a “short form” symbol (e.g. like “X” or “Y”) used to represent
the quantity plotted on each axis.

[Digits/Digits(axis)|
The preferred number of digits of precision to be used when formatting values
for display on each axis.

A string containing a format specifier which determines exactly how values
should be formatted for display on each axis (§7.6). If this attribute is un-set, the
formatting is based on the Digits value, otherwise the Format string over-rides
the Digits value.

[Direction(axis)|
A boolean (integer) value which indicates in which direction each axis should
be plotted. If it is non-zero (the default), the axis should be plotted in the con-
ventional direction—i.e. increasing to the right for the abscissa and increasing
upwards for the ordinate. If it is zero, the axis should be plotted in reverse. This
attribute is provided as a hint only and programs are free to ignore it if they
wish.

A character string which identifies the physical domain to which the Frame’s
coordinate system applies. The primary purpose of this attribute is to prevent
unwanted conversions from occurring between coordinate systems which are
not related. Its use is described in more detail in

A character string which identifies the specific coordinate system used to de-
scribe positions within the physical domain represented by the Frame. For
a simple Frame, this attribute currently has a fixed value of “Cartesian”, but
could in principle be extended to include options such as “Polar”, “Cylindrical”,
etc. More specialised Frames such as the [SkyFrame} [IlimeFrame|and |[SpecFrame)}
re-define the allowed values to be appropriate to the domain which they de-
scribe. For instance, the SkyFrame allows values such as “FK4” and “Galactic”,
and the SpecFrame allows values such as “frequency” and “wavelength”.
This value is used to qualify a coordinate system by giving the moment in time
when the coordinates are correct. Usually, this will be the date of observation.
The Epoch value is important in cases where coordinates systems move with
respect to each other over time. An example of two such coordinate systems
are the FK4 and FKS5 celestial coordinate systems.

ObsLon
Specifies the longitude of the observer (assumed to be on the surface of the

66

67 SUN/211.30 —Representing Coordinate Systems (Frames)

earth). The basic Frame class does not use this value, but specialised sub-classes
may. For instance, the SpecFrame class uses it to calculate the relative velocity of
the observer and the centre of the earth for use in converting between standards
of rest.

ObsLati

Specifies the latitude of the observer. Use in conjunction with ObsLon.

There are also some further Frame attributes, not described above, which are important when
Frames are used as templates to search for other Frames. Their use goes beyond the present
discussion.

7.6 Formatting Axis Values

The coordinate values associated with each axis of a are stored (e.g. within your program)
as double values. The Frame class therefore provides a function, to convert these
values into formatted strings for display:

const char *string
double value;

string = astFormat(frame, iaxis, value);

Here, the astFormat function is passed a Frame pointer, the number of an axis (“iaxis”) and a
double precision value to format (“value”). It returns a pointer to character string containing
the formatted value.

By default, the formatting applied will be determined by the Frame’s Digits attribute and will
normally display results with seven digits of precision (corresponding approximately to the C
“float” data type on many machines). Setting a different Digits value, however, allows you to
adjust the precision as necessary to suit the accuracy of the coordinate data you are processing.
If finer control is needed, it is also possible to set a Digits value for each individual axis by
appending an axis number to the attribute name (e.g. “Digits(2)”). If this is done, it over-rides
the effect of the Frame’s main Digits value for that axis.

Even finer control is possible by setting the (character string) Format attribute for a Frame axis.
The string given should contain a C format specifier which explicitly determines how the values
on that axis should be formatted. This will over-ride the effects of any Digits ValueE} Any valid
“printf” format specifier may be used so long as it consumes exactly one double value.

When setting Format values, remember that the “%” which appears in the format specifier may
need to be doubled to “%%” if you are using a function (such as [astSet) which interprets “printf”
format specifiers itself.

It is recommended that you use astFormat whenever you display formatted coordinate values,
even although you could format them yourself using “sprintf”. This is because it puts the Frame
in control of formatting. When you start to handle more elaborate Frames (representing, say,

u L

12The exception to this rule is that if the Format value includes a precision of “.+”, then Digits will be used to
determine the actual precision used.

SUN/211.30 —Representing Coordinate Systems (Frames) 68

celestial coordinates), you will need different formatting methods. This approach delivers them
without any change to your software.

You should also consider regularly using the[astNorm|function, described below (§7.7), for any
values that will be made visible to the user of your software.

7.7 Normalising Frame Coordinates

The function [astNorm|is provided to cope with the fact that some coordinate systems do not
extend indefinitely in all directions. Some may have boundaries, outside which coordinates
are meaningless, while others wrap around on themselves, so that after a certain distance you
return to the beginning again (coordinate systems based on circles and spheres, for instance). A
basic [Frame| has no such complications, but other more specialised Frames (such as SkyFrames,
representing the celestial sphere—§8) do.

The role played by astNorm is to normalise any arbitrary set of coordinates by converting them
into a set which is “within bounds”, interpreted according to the particular Frame in question.
For example, on the celestial sphere, a right ascension value of 24 hours or more can have a
suitable multiple of 24 hours subtracted without affecting its meaning and astNorm would
perform this task. Similarly, negative values of right ascension would have a multiple of 24 hours
added, so that the result lies in the range zero to 24 hours. The coordinates in question are
modified in place by astNorm, as follows:

double point[2 1;

astNorm(frame, point);

If the coordinates supplied are initially OK, as they would always be with a basic Frame, then
they are returned unchanged.

Because the main purpose of astNorm is to convert coordinates into the preferred range for
human consumption, its use is almost always appropriate immediately before formatting
coordinate values for display using (§7.6). Even if the Frame in question does not
restrict the range of coordinates, so that astNorm does nothing, using it will allow you to
process other more specialised Frames, where normalisation is important, without changing
your software.

7.8 Reading Formatted Axis Values

The process of converting a formatted coordinate value for a axis, such as might be
produced by (§7.6), back into a numerical (double) value ready for processing is
performed by However, although this process is essentially the inverse of that
performed by astFormat, there are a number of additional difficulties that must be addressed in
practice.

The main use for astUnformat is in reading formatted coordinate values which have been
entered by the user of a program, or read from a file. As such, we can rarely assume that the
values are neatly formatted in the way that astFormat would produce. Instead, it is usually

69 SUN/211.30 —Representing Coordinate Systems (Frames)

desirable to allow considerable flexibility in the form of input that can be accommodated, so as
to permit “free-format” data input by the user. In addition, we may need to extract individual
coordinate values embedded in other textual data.

Underlying these requirements is the root difficulty that the textual format used to represent a
coordinate value will depend on the class of Frame we are considering. For example, for a basic
Frame, astUnformat may have to read a value like “1.25e-6”, whereas for a more specialised
Frame representing celestial coordinates it may have to handle a value like “-07d 49m 13s”. Of
course, the format might also depend on which axis is being considered.

Ideally, we would like to write software that can handle any kind of Frame. However, this
makes it a little more difficult to analyse textual input data to extract individual coordinate
values, since we cannot make assumptions about how the values are formatted. It would not be
safe, for example, simply to assume that the values being read are separated by white space.
This is not just because they might be separated by some other character, but also because
celestial coordinate values might themselves contain spaces. In fact, to be completely safe, we
cannot make any assumptions about how a formatted coordinate value is separated from the
surrounding text, except that it should be separated in some way which is not ambiguous.

This is the very basic assumption upon which astUnformat works. It is invoked as follows:

int n;

n = astUnformat(frame, iaxis, string, &value);

It is supplied with a Frame pointer (“frame”), the number of an axis (“iaxis”) and a character
string to be read (“string”). If it succeeds in reading a value, astUnformat returns the resulting
coordinate to the address supplied via the final argument (“&value”). The returned function
value indicates how many characters were read from the string in order to obtain this result.

The string is read as follows:

(1) Any white space at the start is skipped over.

(2) Further characters are considered, one at a time, until the next character no longer matches
any of the acceptable forms of input (given the characters that precede it). The longest
sequence of characters which matches is then considered “read”.

(3) If a suitable sequence of characters was read successfully, it is converted into a coordinate
value which is returned. Any white space following this sequence is then skipped over
and the total number of characters consumed is returned as the function value.

(4) If the sequence of characters read is empty, or insufficient to define a coordinate value,
then the string does not contain a value to read. In this case, the read is aborted and
astUnformat returns a function value of zero and no coordinate value. However, it returns
without error.

Note that failing to read a coordinate value does not constitute an error, at least so far as
astUnformat is concerned. However, an error can occur if the sequence of characters read

SUN/211.30 —Representing Coordinate Systems (Frames) 70

appears to have the correct form but cannot be converted into a valid coordinate value. Typically,
this will be because it violates some constraint, such as a limit on the value of one of its fields.
The resulting error message will give details.

For any given Frame axis, astUnformat does not necessarily always use the same algorithm for
converting the sequence of characters it reads into a coordinate value. This is because some
forms of input (particularly free-format input) can be ambiguous and might be interpreted in
several ways depending on the context. For example, the celestial longitude “12:34:56.7” could
represent an angle in degrees or a right ascension in hours. To decide which to use, astUnformat
may examine the Frame’s attributes and, in particular, the appropriate string
which is used by astFormat when formatting coordinate values (§7.6). This is done in order that
astFormat and astUnformat should complement each other—so that formatting a value and
then un-formatting it will yield the original value, subject to any rounding error.

To give a simple (but crucially incomplete!) example, consider reading a value for the axis of a
basic Frame, as follows:

n = astUnformat(frame, iaxis, " 1.5e6 -99.0", &value);

astUnformat will skip over the initial space in the string supplied and then examine each
successive character. It will accept the sequence “1.5e6” as input, but reject the space which
follows because it does not form part of the format of a floating point number. It will then
convert the characters “1.5e6” into a coordinate value and skip over the three spaces which
follow them. The returned function value will therefore be 9, equal to the total number of
characters consumed. This result may be used to address the string during a subsequent read,
so as to commence reading at the start of “-99.0”.

Most importantly, however, note that if the user of a program mistakenly enters the string
“1.5r6..."” instead of “ 1.5e6..."”, a coordinate value of 1.5 and a function result of 4 will be
returned, because the “r” would prematurely terminate the attempt to read the value. Because
this sort of mistake does not automatically result in an error but can produce incorrect results, it
is vital to check the returned function value to ensure that the expected number of characters
have been readF_gl For example, if the string is expected to contain exactly one value, and nothing

else, then the following would suffice:

n = astUnformat(frame, iaxis, string, &value);
if (astOK) {

if (stringln] || 'n) {
<error in input data>
} else {

<value read correctly>

}

If astUnformat does not detect an error itself, we check that it has read to the end-of-string
and consumed at least one character (which traps the case of a zero-length input string). If this
reveals an error, the value of “n” indicates where it occurred.

Another common requirement is to obtain a position by reading a list of coordinates from
a string which contains one value for each axis of a Frame. We assume that the values are

13 Anyone who seriously uses the C run time library “scanf” function will know about the need for this check!

71 SUN/211.30 —Representing Coordinate Systems (Frames)

separated in some unambiguous manner, perhaps using white space and/or some unspecified
single-character separator. The choice of separator is up to the data supplier, who must choose it
so as not to conflict with the format of the coordinate values, but our software does not need to
know what it is. The following is a template algorithm for reading data in this form:

const char *s;
double values[10 1;

/* Initialise a string pointer. */
s = string;

/* Obtain the number of Frame axes and loop through them. */
naxes = astGetI(frame, "Naxes");
for (iaxis = 1; iaxis <= naxes; iaxis++) {

/* Attempt to read a value for this axis. */
n = astUnformat(frame, iaxis, s, &values[iaxis - 11);

/* If nothing was read and this is not the first axis or the
end-of-string, try stepping over a separator and reading again. */
if ('n && (iaxis > 1) && *s)

n = astUnformat(frame, iaxis, ++s, &values[iaxis - 1]);

/* Quit if nothing was read, otherwise move on to the next value. */
if (!'n) break;
s += n;

/* Check for possible errors. */
if (astOK) {

if (*s || 'n) {
<error in input data>
} else {

<values read correctly>

}

“"_rm
S

In this case, “s” will point to the location of any input error.

Note that this algorithm is insensitive to the precise format of the data and will therefore work
with any class of Frame and any reasonably unambiguous input data. For example, here is a
range of suitable input data for a 3-dimensional basic Frame:

SUN/211.30 —Representing Coordinate Systems (Frames) 72

7.9 Permuting Frame Axes

Once a[Frame|has been created, it is not possible to change the number of axes it contains, but it
is possible to change the order in which these axes occur. To do so, an integer permutation array
is filled with the numbers of the axes so as to specify the new order, e.g.:

int perm[2 1 = { 2, 1 3};

In this case, the axes of a 2-dimensional Frame could be interchanged by passing this permutation
array to the function. That is, an (x1, x2) coordinate system would be changed into
an (xp, x1) coordinate system by:

astPermAxes(frame, perm);

If the axes are permuted more than once, the effects are cumulative. You are, of course, not
restricted to Frames with only two axes.

710 Selecting Frame Axes

An alternative to changing the number of [Frame|axes, which is not allowed, is to create a new
Frame by selecting axes from an existing one. The method of doing this is very similar to the
way [astPermAxes|is used (§7.9), in that we supply an integer array filled with the numbers of
the axes we want, in their new order. In this case, however, the number of array elements need
not equal the number of Frame axes.

For example, we could select axes 3 and 2 (in that order) from a 3-dimensional Frame as follows:

astFrame *framel, *frame?2;
astMapping *mapping;
int pick[21 = { 3, 2 };

frame2 = astPickAxes(framel, 2, pick, &mapping);

This would return a pointer to a 2-dimensional Frame (“frame2”) which contains the information
associated with axes 3 and 2, in that order, from the original Frame (“framel”). The original
Frame is not altered by this process. Beware, however, that the axis information may still be
shared by both Frames, so if you wish to alter either of them independently you may first need
to use astCopy| (§4.13) to make an independent copy.

In addition to the new Frame pointer, will also return a pointer to a new

via its fourth argument (you may supply a NULL pointer as an argument if you do not want
this Mapping). This Mapping will inter-relate the two Frames. By this we mean that its forward
transformation will convert coordinates originally in the coordinate system represented by
“framel” into that represented by “frame2”, while its inverse transformation will convert in the
opposite direction. In this particular case, the Mapping would be a[PermMap] (§5.11) and would
implement the following transformations:

73 SUN/211.30 —Representing Coordinate Systems (Frames)

Forward:
(1, 2, 3) --> (3, 2)
(2, 4, 6) --> (6, 4)
(3, 6, 9 --> (9, 6)
(4, 8, 12) --> (12, 8)
(5, 10, 15) --> (15, 10)

Inverse:
(3, 2) --> (<bad>, 2, 3)
(6, 4) --> (<bad>, 4, 6)
(9, 6) --> (<bad>, 6, 9)
(12, 8) --> (<bad>, 8, 12)
(15, 10) --> (<bad>, 10, 15)

This is our first introduction to the idea of inter-relating pairs of Frames via a Mapping, but this
will assume a central role later on.

Note that when using astPickAxes, it is also possible to request more axes than there were in the
original Frame. This will involve selecting axes from the original Frame that do not exist. To do
this, the corresponding axis number (in the “pick” array) should be set to zero and the effect is
to introduce an additional new axis which is not derived from the original Frame. This axis will
have default values for all its attributes. You will need to do this because astPickAxes does not
allow you to select any of the original axes more than once@

711 Calculating Distances, Angles and Offsets

Some complementary functions are provided for use with Frames to allow you to perform
geometric operations without needing to know the nature of the coordinate system represented

by the[Frame

Functions can be used to find the distance between two points, and to offset a specified distance
along a line joining two points, etc. In essence, these define the metric of the coordinate space
which the Frame represents. In the case of a basic Frame, this is a Cartesian metric.

The first of these functions, returns a double distance value when supplied with the
Frame coordinates of two points. For example:

double dist;
double pointi[2] =
double point2[2] =

= O
o O
= O

-

I

- -
o o
s

dist = astDistance(frame, pointl, point2);

This calculates the distance between the origin (0,0) and a point at position (1,1). In this case,
the result, as you would expect, is 1/2. However, this is only true for the Cartesian coordinate
system which a basic Frame represents. In general, astDistance will calculate the geodesic
distance between the two points, so that with a more specialised Frame (such as a
representing the celestial sphere) a great-circle distance might be returned.

147t will probably not be obvious why this restriction is necessary, but consider creating a Frame with one longitude
axis and two latitude axes. Which latitude axis should be associated with the longitude axis?

SUN/211.30 —Representing Coordinate Systems (Frames) 74

The function is really the inverse of astDistance. Given two points in a Frame, it
calculates the coordinates of a third point which is offset a specified distance away from the first
point along the geodesic joining it to the second one. For example:

double pointli[2]
double point2[2] =
double point3[2];

{ 0.0, 0.0 };
{1.0, 1.0 };

B >

ast0ffset(frame, pointl. point2, 0.5, point3);

This would fill the “point3” array with the coordinates of a point which is offset 0.5 units away
from the origin (0,0) in the direction of the position (1,1). Again, this is a simple result in a
Cartesian Frame, as varying the offset will trace out a straight line. On the celestial sphere,
however (e.g. using a SkyFrame), it would trace out a great circle.

The functions astAxDistance|and astAxOffset|are similar to astDistance and astOffset, except
that the curves which they use as “straight lines” are not geodesics, but curves parallel to a
specified axiﬁ One reason for using these functions is to deal with the cyclic ambiguity of
longitude and latitude axes.

The jastOffset2| function is similar to astOffset, but instead of using the geodesic which passes
through two positions, it uses the geodesic which passes at a given position angle through the
starting position.

Position angles are always measured from the positive direction of the second Frame axis to
the required line, with positive angles being in the same sense as rotation from the positive
direction of the second axis to the positive direction of the first Frame axis. This definition
applies to all classes of Frame, including SkyFrame. The default ordering of axes in a SkyFrame
makes the second axis equivalent to north, and so the definition of position angle given above
corresponds to the normal astronomical usage, “from north, through east”. However, it should
be remembered that it is possible to permute the axes of a SkyFrame (or indeed any Frame),
so that north becomes axis 1. In this case, an AST “position angle” would be the angle “from
east, through north”. Always take the axis ordering into account when deriving an astronomical
position angle from an AST position angle.

Within a Cartesian coordinate system, the position angle of a geodesic (i.e. a straight line) is
constant along its entire length, but this is not necessarily true of other coordinate systems.
Within a spherical coordinate system, for instance, the position angle of a geodesic will vary
along its length (except for the special cases of a meridian and the equator). In addition to
returning the required offset position, the astOffset2 function returns the position angle of the
geodesic at the offset position. This is useful if you want to trace out a path which involves
turning through specified angles. For instance, tracing out a rectangle in which each side is
a geodesic involves turning through 90 degrees at the corners. To do this, use astOffset2 to
calculate the position of each corner, and then add (or subtract) 90 degrees from the position
angle returned by astOffset2.

The[astAngle]function calculates the angle subtended by two points, at a third point. If used with
a 2-dimensional Frame the returned angle is signed to indicate the sense of rotation (clockwise

15For instance, a line of constant Declination is not a geodesic

75 SUN/211.30 —Representing Coordinate Systems (Frames)

or anti-clockwise) in taking the “shortest route” from the first point to the second. If the Frame
has more than 2 axes, the result is un-signed and is always in the range zero to 7.

The function is similar to astAngle, but the “reference direction”, from which angles
are measured, is a specified axis.

The function resolves a given displacement within a Frame into two components,
parallel and perpendicular to a given reference direction.

The displacement is specified by two positions within the Frame; the starting and ending
positions. The reference direction is defined by the geodesic curve passing through the starting
position and a third specified position. The lengths of the two components are returned, together
with the position on the reference geodesic which is closest to the third supplied point.

7.12 The Domain Attribute

The attribute is one of the most important properties of a although the concept
it expresses can sometimes seem a little subtle. We will introduce it here, but its true value will
probably not become apparent until later (§14.2).

To understand the need for the Domain attribute, consider using different Frames to represent
the following different coordinate systems associated with a CCD image:

(1) A coordinate system based on pixel numbers.

)
(2) Positions on the CCD chip, measured in ym.
(3) Positions in the focal plane of the telescope, measured in mm.
)

(4) A celestial coordinate system, measured in radians.

If we had two such CCD images, we might legitimately want to align them pixel-for-pixel (i.e.
using the coordinate system based on pixel numbers) in order to, say, divide by a flat-field
exposure. We might similarly consider aligning them using any of the other coordinate systems
so as to achieve different results. For example, we might consider merging separate images from
a CCD mosaic by using focal plane positions.

It would obviously not be legitimate, however, to directly compare positions in one image
measured in pixels with positions in the other measured in mm, nor to equate chip positions in
pum with sky coordinates in radians. If we wanted to inter-compare these coordinates, we would
need to do it indirectly, using other information based on the experimental set-up. For instance,
we might need to know the size of the pixels expressed in mm and the orientation of the CCD
chip in the focal plane.

Note that it is not simply the difference in physical units which prevents certain coordinates from
being directly inter-compared (because the appropriate unit scaling factors could be included
without any additional information). Neither is it the fact that different coordinate systems are
in use (because we could legitimately inter-compare two different celestial coordinate systems
without any extra information). Instead, it is the different nature of the coordinate spaces to
which these coordinate systems have been applied.

We normally express this by saying that the coordinate systems apply to different physical
domains. Although we may establish ad hoc relationships between coordinates in different

SUN/211.30 —Representing Coordinate Systems (Frames) 76

physical domains, they are not intrinsically related to each other and we need to supply extra
information before we can convert coordinates between them.

In AST, the role of the (character string) Domain attribute is to assign Frames to their respective
physical domains. The way it operates is as follows:

e Coordinate systems which apply to the same physical domain (i.e. whose Frames have the
same Domain value) can be directly inter-compared.

If the domain has several coordinate systems associated with it (e.g. the celestial sphere),
then a coordinate conversion may be involved. Otherwise, coordinate values may simply
be equated.

e Coordinate systems which apply to different physical domains (i.e. whose Frames have
different Domain values) cannot be directly inter-compared.

If any relationship does exist between such coordinate systems—and it need not—then
additional information must be supplied in order to establish the relationship between
them in any particular case. We will see later (§I3) how to establish such relationships
between Frames in different domains.

With the basic Frames we are considering here, each physical domain only has a single (Cartesian)
coordinate system associated with it, so that if two such Frames have the same Domain value,
their coordinate systems will be identical and may simply be equated. With more specialised
Frames, however, more than one coordinate system may apply to each domain. In such cases, a
coordinate conversion may need to be performed.

When a basic Frame is created, its Domain attribute defaults to an empty string. This means that
all such Frames belong to the same (null) domain by default and therefore describe the same
unspecified physical coordinate space. In order to assign a Frame to a different domain, you
simply need to set its Domain value. This is normally most conveniently done when it is created,
as follows:

framel = astFrame(2, "Domain=CCD_CHIP,"
"Unit(1)=micron,"
"Unit(2)=micron");
frame2 = astFrame(2, "Domain=FOCAL_PLANE,"
"Unit(1)=mm,"
"Unit (2)=mm"

Here, we have created two Frames in different physical domains. Although their coordinate
values all have units of length, they cannot be directly inter-compared (because their axes may
be rotated with respect to each other, for instance).

All Domain values are automatically converted to upper case and white space is removed, but
there are no other restrictions on the names you may use to label different physical domains.
From a practical point of view, however, it is worth following a few conventions (§7.13).

7.13 Conventions for Domain Names

When choosing a value for the attribute of a it obviously makes sense to avoid
generic names which might clash with those used for similar (but subtly different!) purposes by

77 SUN/211.30 —Representing Coordinate Systems (Frames)

other programmers. If you are developing software for an instrument, for example, and want to
identify an instrumental coordinate system, then it is sensible to add a distinguishing prefix. For
instance, you might use <INST>_FOCAL_PLANE, where <INST> (e.g. an acronym) identifies
your instrument.

For some purposes, however, a standard choice of Domain name is desirable so that different
items of software can communicate. For this purpose, the following Domain names are reserved
by AST and the use recommended below should be carefully observed:

GRAPHICS
Identifies the coordinate space used by an underlying computer graphics system
to specify plotting operations. Typically, when performing graphical operations,
AST is used to define additional coordinate systems which are related to these
“native” graphical coordinates. Plotting may be carried out in any of these
coordinate systems, but the GRAPHICS domain identifies the native coordinates
through which AST communicates with the underlying graphics system.

GRID
Identifies the instantaneous data grid used to store and handle data, together
with an associated coordinate system. In this coordinate system, the first
element stored in an array of data always has a coordinate value of unity
at its centre and all elements have unit extent. This applies to all dimensions.
If data are copied or transformed to a new data grid (by whatever means), or a
subset of the original grid is extracted, then the same rules apply to the copy
or subset. Its first element therefore has GRID coordinate values of unity at
its centre. Note that this means that GRID coordinates remain attached to the
first element of the data grid and not to its data content (e.g. the features in an
image).

PIXEL
Identifies an array of pixels and an associated pixel-based coordinate system
which is related to the GRID coordinate system (above) simply by a shift of
origin along each axis. This shift may be integral, fractional, positive, negative
or zero. The data elements retain their unit extent along each axis.
Because the amount of shift is unspecified, the PIXEL domain is distinct from the
GRID domain. The relationship between them contains a degree of uncertainty,
such as typically arises from the different conventions used by different software
systems. For instance, in some software the first pixel is regarded as being
centred at (1,1), while in other software it is at (0.5,0.5). In addition, some
software packages implement a “pixel origin” which allows pixel coordinates
to start at an arbitrary value.
The GRID domain (which corresponds with the pixel-numbering convention
used by FITS) is a special case of the PIXEL domain and avoids this uncertainty.
In general, additional information is required in order to convert from one to
the other.

SKY
Identifies the domain which contains all equivalent celestial coordinate systems.
Because these are represented in AST by SkyFrames (§8), it should be no surprise
that the default Domain value for a is SKY. Since there is only one
sky, you probably won’t need to change this very often.

SUN/211.30 —Representing Coordinate Systems (Frames) 78

SPECTRUM
Identifies the domain used to describe positions within an electro-magnetic
spectrum. The AST[SpecFrame|(§9) class describes positions within this domain,
allowing a wide range of different coordinate systems to be used (frequency,
wavelength, etc). The default Domain value for a SpecFrame is SPECTRUM.

TIME
Identifies the domain used to describe moments in time. The AST [TimeFramel
class describes positions within this domain, allowing a wide range of different
coordinate systems and timescales to be used. The default Domain value for a
TimeFrame is TIME.

Although we have drawn a necessary distinction here between the GRID and PIXEL domains,
we will continue to refer in general terms to image “pixels” and “pixel coordinates” whenever
this distinction is not important. This should not be taken to imply that the GRID convention for
numbering pixels is excluded—in fact, it is usually to be preferred (at the level of data handling
being discussed in this document) and we recommend it.

7.14 The Unit Attribute

Each axis of a has a Unit attribute which holds the physical units used to describe
positions on the axis. The index of the axis to which the attribute refers should normally be
placed in parentheses following the attribute name (“Unit(2)” for instance). However, if the
Frame has only a single axis, then the axis index can be omitted.

In versions of AST prior to version 2.0, the Unit attribute was nothing more than a descriptive
string intended purely for human readers—no part of the AST system used the Unit string for
any purpose (other than inclusion in axis labels produced by the class). In particular, no
account was taken of the Unit attribute when finding the Mapping|between two Frames. Thus if
the conversion between a pair of 1-dimensional Frames representing velocity was found (using
lastConvert]) the returned Mapping would always be a even if the Unit attributes of
the two Frames were “km/h” and “m/s”. This behaviour is referred to below as a passive Unit
attribute.

As of AST version 2.0, a facility exists which allows the Unit attribute to be active; that is,
differences in the Unit attribute may be taken into account when finding the Mapping between
two Frames. In order to minimise the risk of breaking older software, the default behaviour of
simple Frames and SkyFrames is unchanged from previous versions (i.e. they have passive
Unit attributes). However, the new functions jastSetActiveUnit|and jastGetActiveUnit|allow this
default behaviour to be changed. The [SpecFrame|and [TimeFrame|classes always have an active
Unit attribute (attempts to change this are ignored).

For instance, consider the above example of two 1-dimensional Frames describing velocity.
These Frames can be created as follows:

AstFrame *framel, *frame2;
framel = astFrame(1, "Domain=VELOCITY,Unit=km/h");
frame2 = astFrame(1, "Domain=VELOCITY,Unit=m/s");

By default, these Frames have passive Unit attributes, and so an attempt to find a Mapping
between them would ignore the difference in their Unit attributes and return a unit Mapping.
To avoid this, we indicate that we want these Frames to have active Unit attributes, as follows:

79 SUN/211.30 —Representing Coordinate Systems (Frames)

astSetActiveUnit(framel, 1);
astSetActiveUnit(frame2, 1)

If we then find the Mapping between them as follows:

AstFrameSet *cvt;

cvt = astConvert(framel, frame2, "");

the Mapping contained within the returned by astConvert will be a one-dimensional
[ZoomMap| which simply scales its input (a velocity in km/h) by a factor of 0.278 to create its
output (a velocity in m/s).

In fact we need not have set the Unit attribute active in “framel” since the behaviour of
astConvert is determined by its “to” Frame (the second Frame parameter).

7.14.1 The Syntax for Unit Strings

Conversion between units systems relies on the use of a specific syntax for the Unit attribute. If
the value of the Unit attribute does not conform to this syntax, then an error will be reported if
an attempt is made to use it to determine an inter-unit[Mapping|(this will never happen if the
Unit attribute is passive).

The adopted syntax is that described in FITS-WCS paper I "Representation of World Coordinate
in FITS" by Greisen & Calabretta. We distinguish here between “basic” units and “derived”
units: derived units are defined in terms of other units (either derived or basic), whereas basic
units have no such definitions. Derived units may be represented by their own symbol (e.g.
“Jy”—the Jansky) or by a mathematical expression which combines other symbols and constants
to form a definition of the unit (e.g. “km/s”—kilometres per second). Unit symbols may be
prefixed by a string representing a standard multiple or sub-multiple.

In addition to the unit symbols listed in FITS-WCS Paper I, any other arbitrary unit symbol
may be used, with the proviso that it will not be possible to convert between Frames using
such units. The exception to this is if both Frames refer to the same unknown unit string. For
instance, an axis with unknown unit symbol "flop" could be converted to an axis with unit
"Mflop" (Mega-flop).

Unit symbols (optionally prefixed with a multiple or sub-multiple) can be combined together
using a limited range of mathematical operators and functions, to produce new units. Such
expressions may also contain parentheses and numerical constants (these may optionally use
“scientific” notation including an “E” character to represent the power of 10).

The following tables list the symbols for the basic and derived units which may be included in a
units string, the standard prefixes for multiples and sub-multiples, and the strings which may
be used to represent mathematical operators and functions.

7.14.2 Side-effects of Changing the Unit attribute

If an[Axis| has an active Unit attribute, changing its value (either by setting a new value or by
clearing it so that the default value is re-instated) may cause the Label and Symbol attributes to
be changed accordingly. For instance, if an Axis has Unit, Label and Symbol of “Hz”, “Frequency”

SUN/211.30 —Representing Coordinate Systems (Frames) 80

Basic units

Quantity Symbol | [Fulll Name
length m metre
mass g gram
time s second
plane angle rad radian
solid angle sr steradian
temperature K Kelvin
electric current A Ampere
amount of substance | mol mole
luminous intensity | cd candela

and “nu”, then changing its Unit attribute to “log(Hz)” will cause AST to change its Label and
Symbol to “log(Frequency)” and “Log(nu)”. These changes are only made if the Unit attribute
is active, and a can be found from the old units to the new units. On the other hand,
changing the Unit from “Hz” to “MHz"” would not cause any change to the Label or Symbol
attributes.

81 SUN/211.30 —Representing Coordinate Systems (Frames)
Derived units
Quantity Symbol Full Name Definition
area barn barn 1.0E-28 m**2
area pix pixel
area pixel pixel
electric capacitance F Farad Cc/v
electric charge C Coulomb As
electric conductance | S Siemens A/V
electric potential \% Volt J/C
electric resistance Ohm Ohm V/A
energy J Joule Nm
energy Ry Rydberg 13.605692 eV
energy eV electron-Volt 1.60217733E-19]
energy erg erg 1.0E-7]
events count count
events ct count
events ph photon
events photon photon
flux density Jy Jansky 1.0E-26 W /m**2 /Hz
flux density R Rayleigh 1.0E10/(4*PI) photon.m**-2 /s/sr
flux density mag magnitude
force N Newton kg m/s**2
frequency Hz Hertz 1/s
illuminance Ix lux Im/m**2
inductance H Henry Wb/A
length AU astronomical unit 1.49598E11 m
length Angstrom | Angstrom 1.0E-10 m
length lyr light year 9.460730E15 m
length pc parsec 3.0867E16 m
length solRad solar radius 6.9599E8 m
luminosity solLum solar luminosity 3.8268E26 W
luminous flux Im lumen cd sr
magnetic field G Gauss 1.0E-4T
magnetic flux Wb Weber Vs
mass solMass solar mass 1.9891E30 kg
mass u unified atomic mass unit | 1.6605387E-27 kg
magnetic flux density | T Tesla Wb /m**2
plane angle arcmin arc-minute 1/60 deg

D D

D |

1 /™Nr,OYny 1 o

SUN/211.30 —Representing Coordinate Systems (Frames)

Prefixes for multiples & sub-multiples

Sub-multiple Name Prefix | Sub-multiple Name Prefix
1071 deci d 10 deca da
1072 centi ¢ 102 hecto h
103 milli m 103 kilo k
1076 micro u 10° mega M
1077 nano n 10° giga G
10712 pico p 102 tera T
1071 femto f 10%° peta P
10718 atto a 10'8 exa E
10~ zepto z 102 zetta Z
10~ yocto 'y 10% yotta Y
Mathematical operators & functions

String Meaning
syml sym2 | multiplication (a space)
syml*sym2 | multiplication (an asterisk)
syml.sym2 | multiplication (a dot)
syml/sym2 | division
syml**y exponentiation (y must be a numerical constant)
syml-y exponentiation (y must be a numerical constant)
log(sym1) common logarithm
In(sym1) natural logarithm
exp(syml) | exponential

sqrt(sym1)

square root

82

83 SUN/211.30 —Celestial Coordinate Systems (SkyFrames)

8 Celestial Coordinate Systems (SkyFrames)

A which is specialised for representing coordinate systems on the celestial sphere is
obviously of great importance in astronomy. The is such a Frame. In this section we
examine the additional properties and behaviour of a SkyFrame that distinguish it from a basic

Frame (7).
8.1 The SkyFrame Model

A is, of course, a (§7) and also a (§5), so it inherits all the properties

and behaviour of these two ancestral classes. When used as a Mapping, a SkyFrame implements
a unit transformation, exactly like a basic Frame (§7.3) or a so this aspect of its
behaviour is not of great importance.

When used as a Frame, however, a SkyFrame represents a 2-dimensional spherical coordinate
system, in which the shortest distance between two points is a great circle. A SkyFrame
therefore always has exactly two axes which represent the longitude and latitude of a coordinate
system residing on the celestial sphere. Many such coordinate systems can be represented by a
SkyFrame, as we will see shortly.

A SkyFrame can represent any of the commonly used celestial coordinate systems. Optionally,
the origin of the longitude/latitude system can be moved to any specified point in the standard
celestial system, allowing a SkyFrame to represent offsets from a specified sky position.

When it is first created, a SkyFrame’s axes are always in the order (longitude, latitude) but this
can be changed, if required, by using the [astPermAxes| function (§7.9). The order of the axes can
be determined at any time using the|LatAxis|and [LonAxis|attributes. A SkyFrame’s coordinate
values are always stored as angles in (double precision) radians, regardless of the setting of the
Unit attribute

8.2 Creating a SkyFrame

The constructor function is particularly simple and a SkyFrame with default attributes
is created as follows:

#include "star/ast.h"
AstSkyFrame *skyframe;

skyframe = astSkyFrame("");

Such a SkyFrame would represent the default celestial coordinate system which, at present, is
the ICRS system (the default was "FK5(J2000)" in versions of AST prior to 3.0).

16The units used for the internal floating-point representation of an axis value can be determined by examining
the InternalUnit attribute of the Frame. For most Frames, the Unit and InternalUnit attributes will be equal, but
InternalUnit is always set to “rad” for SkyFrames.

SUN/211.30 —Celestial Coordinate Systems (SkyFrames) 84

8.3 Specifying a Particular Celestial Coordinate System

For many purposes, the ICRS coordinate system is perfectly adequate. In order to support
conversion between a variety of celestial coordinate systems, however, you can create SkyFrames
that represent any of these.

Selection of a particular coordinate system is performed simply by setting a value for the
SkyFramefs (character string) attribute. This setting is most conveniently done when the
SkyFrame is created. For example, a SkyFrame representing the old FK4 (B1950.0) coordinate
system would be created by:

skyframe = astSkyFrame("System=FK4");

Note that specifying “System=FK4” also changes the associated equinox (from J2000.0 to
B1950.0). This is because the default value of the SkyFrame’s attribute (§8.4) depends
on the System attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix [C|and include a variety of
equatorial coordinate systems, together with ecliptic and galactic coordinates.

General spherical coordinates are supported by specifying “System=unknown”. You should
note, though, that no can be created to convert between “unknown” coordinates and
any of the other celestial coordinate systems (see)-

8.4 Attributes which Qualify Celestial Coordinate Systems

Many celestial coordinate systems have some additional free parameters which serve to identify
a particular coordinate system from amongst a broader class of related coordinate systems. For
example, the FK5 (J2010.0) system is distinguished from the FK5 (J2000.0) system by a different
equinox—and the coordinates of a fixed astronomical source would have different values when
expressed in these two systems.

In AST, these free parameters are represented by additional attributes, each of which
has a default appropriate to (i.e. defined by) the setting of the main attribute. Each of
these qualifying attributes may, however, be assigned an explicit value so as to select a particular
coordinate system. Note, it is usually best to assign explicit values whenever possible rather
than relying on defaults. Attribute should only be left at their default value if you “don’t care”
what value is used. In certain circumstances (particularly, when aligning two Frames), a default
value for an attribute may be replaced by the value from another similar Such value
replacement can be prevented by assigning an explicit value to the attribute, rather than simply
relying on the default.

The main SkyFrame attributes which qualify the System attribute are:

This attribute is inherited from the Frame class. It gives the moment in time
when the coordinates are correct for the astronomical source under study (usu-

ally the date of observation).

85 SUN/211.30 —Celestial Coordinate Systems (SkyFrames)

This value is used to qualify celestial coordinate systems that are notionally
based on the Earth’s equator and/or the ecliptic (the plane of the Earth’s orbit
around the Sun). The position of either of these planes is difficult to specify
precisely, so in practice a model mean equator and/or ecliptic are used instead.
These, together with the point on the sky that defines the coordinate origin
(termed the mean equinox) move with time according to some model which
smoothes out the more rapid fluctuations. The SkyFrame class supports both
the old FK4 model and the newer FK5 one.

Coordinates expressed in any of these systems vary with time due to movement
(by definition) of the coordinate system itself, and must therefore be qualified
by a moment in time (the epoch of the mean equinox, or “equinox” for short) which
specifies the position of the model coordinate system on the sky. This is the role
of the Equinox attribute.

Note that it is quite valid and common to relate the position of a source to an
equinox other than the date of observation. Usually a standard equinox such
as J2000.0 is used, meaning that the coordinates are referred to axes defined by

where the model mean equator and ecliptic would lie on the sky at the Julian
epoch J2000.0.

For further details of these attributes you should consult their descriptions in Appendix|C|and
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix [C). For the interested reader, an excellent overview of celestial
coordinate systems can also be found in the documentation for the SLALIB library (SUN/67).

The value of these qualifying attributes is most conveniently set at the same time as the System
value, e.g. when a SkyFrame is created. For instance:

skyframe = astSkyFrame("System=Ecliptic, Equinox=J2005.5");
would create a SkyFrame representing an ecliptic coordinate system referred to the mean equinox
and ecliptic of Julian epoch J2005.5.

Note that it does no harm to assign values to qualifying attributes which are not relevant to the
main System value. Any such values are stored, but are not used unless the System value is later
set so that they become relevant.

8.5 Using Default SkyFrame Attributes

The default values supplied for many attributes will depend on the value of the
SkyFrame’s attribute. In practice, this means that there is usually little need to specify
many of these attributes explicitly unless you have some special requirement. This can be

illustrated by using to examine a SkyFrame, as follows:

astShow(astSkyFrame("System=FK4-NO-E, Epoch=1958"));

The output from this might look like the following:

http://www.starlink.ac.uk/cgi-bin/htxserver/sun67.htx/sun67.html?xref_

SUN/211.30 —Celestial Coordinate Systems (SkyFrames) 86

Begin SkyFrame # Description of celestial coordinate system
Title = "FK4 equatorial coordinates; no E-terms; mean equinox B1950.0;
epoch B1958.0" # Title of coordinate system

Naxes = 2 # Number of coordinate axes

Domain = "SKY" # Coordinate system domain
Epoch = 1958 # Besselian epoch of observation
Lbll = "Right ascension" # Label for axis 1
Lbl2 = "Declination" # Label for axis 2
System = "FK4-NO-E" # Coordinate system type
Unil = "hh:mm:ss.s" # Units for axis 1
Uni2 = "ddd:mm:ss" # Units for axis 2
Dirl =0 # Plot axis 1 in reverse direction
Bot2 = -1.5707963267949 # Lowest legal axis value
Top2 = 1.5707963267949 # Highest legal axis value
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
IsA Frame # Coordinate system description
Eqnox = 1950 # Besselian epoch of mean equinox

End SkyFrame

Note that the defaults (indicated by the “#” comment character at the start of the line) for
attributes such as the axis Labels and Format specifiers are all set to values appropriate for
the particular equatorial coordinate system that the SkyFrame represents.

This means, for example, that if we were to use this SkyFrame to format a right ascension value
stored in radians using (§7.6), it would automatically result in a string in sexagesimal
notation (such as “12:14:35.7”) suitable for display. If we changed the value of the SkyFrame’s
Digits attribute (which is inherited from the [Frame|class), the number of digits appearing would
also change accordingly.

These choices would be appropriate for a System value of “FK4-NO-E”, but if a different System
value were set, the defaults would be correspondingly different. For example, ecliptic longitude
is traditionally expressed in degrees, so setting “System=ecliptic” would result in coordinate
values being formatted as degrees by default.

Of course, if you do not like any of these defaults, you may always over-ride them by setting
explicit attribute values yourself.

8.6 Formatting Celestial Coordinates

SkyFrames use for formatting coordinate values in the same way as other Frames
(§7.6). However, they offer a different set of formatting options more appropriate to celestial
coordinates.

The Digits attribute of a[SkyFrame|behaves in essentially the same way as for a basic
(§7.6), so the precision with which celestial coordinates are displayed can also be adjusted in this
way. However, the range of format specifiers that can be given for the attribute,
and the default format resulting from any particular Digits value, is different.

87 SUN/211.30 —Celestial Coordinate Systems (SkyFrames)

The syntax of SkyFrame format specifiers is detailed under the description of the Format(axis)
attribute in Appendix|C| Briefly, however, it allows celestial coordinates to be expressed either
as angles or times and to include one or more of the fields:

e degrees or hours
e arc-minutes or minutes

e arc-seconds or seconds

with a specified number of decimal places for the final field. A range of field separators is also
available, as the following examples show:

Format Specifier | Example Formatted Value
d 219

d.3 219.123

dm 219:05

dm.2 219:05.44
dms 219:05:42
hms.1 15:44:13.8
bdms . 2 219 05 42.81
lhms.3 15h44m13.88s
+zlhms +06h10m44s
ms.1 13145:42.8
Imst.3 876m22.854s
s.2 788742.81

Note the following key points:

4

e The required fields are specified using characters chosen from either “dms” or “hms’
according to whether the value is to be formatted as an angle (in degrees) or a time (in
hours).

e If no degrees or hours field is required, the distinction between angle and time may be
made by including “t” to request time.

e The number of decimal places (for the final field) is indicated using “.” followed by an
integer. An asterisk can be used in place of an integer, in which case the number of decimal
places is chosen so that the total number of digits in the formatted value is equal to the
value of the Digits attribute.

l/ll/

e “b” causes fields to be separated by blanks, while
appropriate letters (the default being a colon).

causes them to be separated by the

SUN/211.30 —Celestial Coordinate Systems (SkyFrames) 88

"

e “z” causes padding with leading zeros.

"o,y

e “+” cause a plus sign to be prefixed to positive values (negative values always have a
minus sign).

The formatting performed by a SkyFrame is also influenced by the attribute, which
has a boolean (integer) value for each SkyFrame axis. It determines whether the default format
specifier for an axis will present values as angles (e.g. in degrees) if it is zero, or as times (e.g. in
hours) if it is non-zero.

The default AsTime value depends on the celestial coordinate system which the SkyFrame
represents which, in turn, depends on its attribute value. For example, equatorial
longitude values (right ascension) are normally expressed in hours, whereas ecliptic longitudes
are normally expressed in degrees, so their default AsTime values will reflect this difference.

The value of the AsTime attribute may be set explicitly to over-ride these defaults if required,
with the formatting precision being determined by the [Digits/Digits(axis) value. Alternatively,
the Format(axis) attribute may be set explicitly to specify both the format and precision required.
Setting an explicit Format value always over-rides the effects of both the Digits and AsTime
attributes (unless the Format value does not specify the required number of decimal places, in
which case Digits is used to determine the default number of decimal places)

8.7 Reading Formatted Celestial Coordinates

The process of converting formatted celestial coordinates, such as might be produced by the
astFormat] function (§8.6), into numerical (double) coordinate values is performed by using
astUnformat] (§7.8) and passing it a pointer to a The use of a SkyFrame means that
the range of input formats accepted is appropriate to positions on the sky expressed as angles
and/or times, while the returned value is in radians.

The following describes the forms of celestial coordinate which are supported:

¢ You may supply an optional sign, followed by between one and three fields representing
either degrees, arc-minutes, arc-seconds or hours, minutes, seconds (e.g. “—12 42 03”).

e Each field should consist of a sequence of one or more digits, which may include leading
zeros. At most one field may contain a decimal point, in which case it is taken to be the
final field (e.g. decimal degrees might be given as “124.707”, while degrees and decimal
arc-minutes might be given as “—13 33.8”).

o The first field given may take any value, allowing angles and times outside the conven-
tional ranges to be represented. However, subsequent fields must have values of less than
60 (e.g. “72045 31” is valid, whereas “11 45 61” is not).

",

e Fields may be separated by white space or by “:” (colon), but the choice of separator must
be used consistently throughout the value. Additional white space may be present around
fields and separators (e.g. “— 2: 04:7.1”).

e The following field identification characters may be used as separators to replace those
above (or may be appended to the final field), in order to identify the field to which they
are appended:

89

SUN/211.30 —Celestial Coordinate Systems (SkyFrames)

d - degrees

h - hours

m — minutes (of arc or time)
s — seconds (of arc or time)

) — arc-minutes

" arc-seconds

Either lower or upper case may be used. Fields must be given in order of decreasing
significance (e.g. “—11D 3’ 14.4"” or “22h14m11.2s”).

The presence of certain field identification characters indicates whether the value is to be
interpreted as an angle or a time (with 24 hours corresponding to 360 degrees), as follows:

d - angle
> — angle
" — angle
h - time

Incompatible angle/time identification characters may not be mixed (e.g. “10h14°3"” is
not valid). The remaining field identification characters and separators do not specify a
preference for an angle or a time and may be used with either.

If no preference for an angle or a time is expressed anywhere within the value, then it
is interpreted as an angle if the Format attribute string associated with the SkyFrame
axis generates an angle and as a time otherwise. This ensures that values produced by
astFormat (§8.6) are correctly interpreted by astUnformat.

Fields may be omitted, in which case they default to zero. The remaining fields may
be identified by using appropriate field identification characters (see above) and/or by
adding extra colon separators (e.g. “—05m13s” is equivalent to “—:05:13”). If a field is
not identified explicitly, it is assumed that adjacent fields have been given, after taking
account of any extra separator characters. For example:

SUN/211.30 —Celestial Coordinate Systems (SkyFrames) 90

10d — degrees

10d12 - degrees and arc-minutes

11:14" - arc-minutes and arc-seconds

9h13s - hours and seconds of time

45:33 - minutes and seconds (of arc or time)
:55: — minutes (of arc or time)

13 — seconds (of arc or time)

—6:2.5 - degrees/hours and seconds (of arc or time)
07ml14 - minutes and seconds (of arc or time)
—8:14° - degrees and arc-minutes

—h3:14 - minutes and seconds of time

h:2.1 — seconds of time

o If fields are omitted in such a way that the remaining ones cannot be identified uniquely
(e.g. “01:02"), then the first field (either given explicitly or implied by an extra leading
colon separator) is taken to be the most significant field that astFormat would produce
when formatting a value (using the Format attribute associated with the SkyFrame axis).
By default, this means that the first field will normally be interpreted as degrees or hours.
However, if this does not result in consistent field identification, then the last field (either
given explicitly or implied by an extra trailing colon separator) is taken to to be the least
significant field that astFormat would produce.

This final convention is intended to ensure that values formatted by astFormat which contain
less than three fields will be correctly interpreted if read back using astUnformat, even if they
do not contain field identification characters. However, it also affects other forms of input.
For example, if the string were set to “mst.1” (producing two fields representing
minutes and seconds of time), then formatted input would be interpreted by astUnformat as
follows:

91 SUN/211.30 —Celestial Coordinate Systems (SkyFrames)

1213 - minutes and seconds

12 — minutes

:13 — seconds

—18: - minutes

12.8 — minutes

123 - hours, minutes and seconds
4> — arc-minutes

60:" - degrees

—23:" - arc-minutes

—33h - hours

(in the last four cases, explicit field identification has been given which overrides the implicit
identification).

Alternatively, if the Format(axis) string were set to “s.3” (producing only an arc-seconds field),
then formatted input would be interpreted by astUnformat as follows:

12.8 - arc-seconds

1213 - arc-minutes and arc-seconds

12 — arc-seconds

13: — arc-minutes

123 - degrees, arc-minutes and arc-seconds

In general, if you are preparing formatted input data containing celestial coordinates and wish
to omit certain fields, then you are advised to identify clearly those that you do provide by using
the appropriate field identification characters and/or extra colon separators. This prevents you
depending on the implicit field identification described above which, in turn, depends on an
appropriate Format(axis) string having been set.

When writing software, it is also a good idea to set the Format(axis) string so that data input
will be as simple as possible for the user. Unless some special effect is desired, this normally
means that it should contain “d” or “h” to ensure that the first field entered by the user will be
interpreted as degrees or hours, unless otherwise identified. This is the normal behaviour unless
an explicit Format(axis) value has been set to override the default.

8.8 Representing Offsets from a Specified Sky Position

A can be modified so that its longitude and latitude axes are referred to an origin
at any specified sky position. Such a coordinate system is referred to as an “offset” coordinate

system. First, the attribute should be set to represent the celestial coordinate system

SUN/211.30 —Celestial Coordinate Systems (SkyFrames) 92

in which the origin is to be specified. Then the SkyRef attribute should be set to hold the
coordinates of the origin within the selected celestial coordinate system.

By default, “north” in the new offset coordinate system is parallel to north in the original celestial
coordinate system. However, the direction of north in the offset system can be controlled by
assigning a value to the SkyRefP attribute. This attribute should be assigned the celestial
coordinates of a point which is on the zero longitude meridian and which has non-zero latitude.

By default, the position given by the SkyRef attribute is used as the origin of the new longi-
tude/latitude system, but an option exists to use it as the north pole of the system instead. This
option is controlled by the attribute. The choice of value for SkyRefls depends on what
sort of offset coordinate system you want. Setting SkyRefIs to “Origin” (the default) produces
an offset coordinate system which is approximately Cartesian close to the specified position.
Setting SkyRefls to “Pole” produces an offset coordinate system which is approximately Polar
close to the specified position.

93 SUN/211.30 —Spectral Coordinate Systems (SpecFrames)

9 Spectral Coordinate Systems (SpecFrames)

The [SpecFrameis a|[Frame|which is specialised for representing coordinate systems which de-
scribe a position within an electro-magnetic spectrum. In this section we examine the additional
properties and behaviour of a SpecFrame that distinguish it from a basic Frame (§7).

9.1 The SpecFrame Model

As for a[SkyFrame} a[SpecFramelis a[Frame|(§7) and also a[Mapping](§5), so it inherits all the
properties and behaviour of these two ancestral classes. When used as a Mapping, a SpecFrame

implements a unit transformation, exactly like a basic Frame (§7.3)) or a so this aspect
of its behaviour is not of great importance.

When used as a Frame, however, a SpecFrame represents a wide range of different 1-dimensional
coordinate system which can be used to describe positions within a spectrum. The options
available largely mirror those described in the FITS-WCS paper III Representations of spectral
coordinates in FITS (Greisen, Valdes, Calabretta & Allen).

9.2 Creating a SpecFrame

The constructor function is particularly simple and a SpecFrame with default at-
tributes is created as follows:

#include "star/ast.h"
AstSpecFrame *specframe;

specframe = astSpecFrame("");

Such a SpecFrame would represent the default coordinate system which is heliocentric wave-
length in metres (i.e. wavelength corrected to take into account the Doppler shift caused by the
velocity of the observer around the sun).

9.3 Specifying a Particular Spectral Coordinate System

Selection of a particular coordinate system is performed simply by setting a value for the

SpecFramefs (character string) attribute. This setting is most conveniently done when

the SpecFrame is created. For example, a SpecFrame representing Energy would be created by:

specframe = astSpecFrame("System=Energy");

Note that specifying “System=Energy” also changes the associated Unit (from metres to Joules).
This is because the default value of the SpecFrame’s Unit attribute depends on the System
attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix [C|and include a variety of
velocity systems, together with frequency, wavelength, energy, wave-number, efc.

SUN/211.30 —Spectral Coordinate Systems (SpecFrames) 94

9.4 Attributes which Qualify Spectral Coordinate Systems

Many spectral coordinate systems have some additional free parameters which serve to identify
a particular coordinate system from amongst a broader class of related coordinate systems. For
example, the velocity systems are all parameterised by a rest frequency—the frequency which
defines zero velocity, and all coordinate systems are qualified by a ‘standard of rest” which
indicates the rest frame to which the values refer.

In AST, these free parameters are represented by additional [SpecFrame]attributes, each of which
has a default appropriate to (i.e. defined by) the setting of the main attribute. Each of
these qualifying attributes may, however, be assigned an explicit value so as to select a particular
coordinate system. Note, it is usually best to assign explicit values whenever possible rather
than relying on defaults. Attribute should only be left at their default value if you “don’t care”
what value is used. In certain circumstances (particularly, when aligning two Frames), a default
value for an attribute may be replaced by the value from another similar Such value
replacement can be prevented by assigning an explicit value to the attribute, rather than simply
relying on the default.

The main SpecFrame attributes which qualify the System attribute are:

This attribute is inherited from the Frame class. It gives the moment in time
when the coordinates are correct for the astronomical source under study (usu-
ally the date of observation). It is needed in order to calculate the Doppler shift
produced by the velocity of the observer relative to the centre of the earth, and
of the earth relative to the sun.

d O est
This specifies the rest frame in which the coordinates are correct. Transforming
between different standards of rest involves taking account of the Doppler shift
introduced by the relative motion of the two standards of rest.

Specifies the frequency which correspond to zero velocity. When setting a
value for this attribute, the value may be supplied as a wavelength (including
an indication of the units being used, “nm” “Angstrom”, etc.), which will be
automatically be converted to a frequency.
RefRA;

Specifies the RA (FK5 J2000) of the source. This is used when converting
between standards of rest. It specifies the direction along which the component
of the relative velocity of the two standards of rest is taken.

Specifies the Dec (FK5 J2000) of the source. Used in conjunction with REFRA.

[SourceVell
This defines the “source” standard of rest. This is a rest frame which is mov-
ing towards the position given by RefRA and RefDec, at a velocity given by
SourceVel. The velocity is stored internally as a heliocentric velocity, but can be
given in any of the other supported standards of rest.

95 SUN/211.30 —Spectral Coordinate Systems (SpecFrames)

For further details of these attributes you should consult their descriptions in Appendix[Cland
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix[C).

Note that it does no harm to assign values to qualifying attributes which are not relevant to the
main System value. Any such values are stored, but are not used unless the System value is later
set so that they become relevant.

9.5 Using Default SpecFrame Attributes

The default values supplied for many attributes will depend on the value of the
SpecFrame’s attribute. In practice, this means that there is usually little need to specify
many of these attributes explicitly unless you have some special requirement. This can be
illustrated by using [astShow] to examine a SpecFrame, as follows:

astShow(astSpecFrame("System=Vopt, RestFreq=250 GHz"));
The output from this might look like the following:

Begin SpecFrame # Description of spectral coordinate system
Title = "Optical velocity, rest frequency = 250 GHz" # Title
of coordinate system

Naxes = 1 # Number of coordinate axes

Domain = "SPECTRUM" # Coordinate system domain
Epoch = 2000 # Julian epoch of observation
Lbll = "Optical velocity" # Label for axis 1
System = "VOPT" # Coordinate system type
Unil = "km/s" # Units for axis 1
Ax1 = # Axis number 1
Begin Axis # Coordinate axis
End Axis
IsA Frame # Coordinate system description
SoR = "Heliocentric" # Standard of rest
RstFrq = 250000000000 # Rest frequency (Hz)

End SpecFrame

Note that the defaults (indicated by the “#” comment character at the start of the line) for
attributes such as the axis Labels and Unit specifiers are all set to values appropriate for
the particular velocity system that the SpecFrame represents.

These choices would be appropriate for a System value of “Vopt”, but if a different System value
were set, the defaults would be correspondingly different. For example, by default frequency is
measured in units of GHz, not km /s, so setting “System=freq” would change the appropriate
line above from:

Unil "km/s" # Units for axis 1
to

Unil

"GHz" # Units for axis 1

SUN/211.30 —Spectral Coordinate Systems (SpecFrames) 96

Of course, if you do not like any of these defaults, you may always over-ride them by setting
explicit attribute values yourself. For instance, you may choose to have your frequency axis
expressed in “kHz"” rather than “GHz”. To do this simply set the attribute value as follows:

astSetC(specframe, "Unit", "kHz");

No error will be reported if you accidentally set an inappropriate Unit value (say "J" - Joules)—
after all, AST cannot tell what you are about to do, and you may be about to change the System
value to “Energy”. However, an error will be reported if you attempt to find a conversion
between two SpecFrames (for instance using[astConvert)) if either SpecFrame has a Unit value
which is inappropriate for its System value.

SpecFrame attributes, like all other attributes, all have default value. However, be aware that for
some attributes these default values can never be more than “a legal numerical value” and have
no astronomical significance. For instance, the RefRA|and [RefDed|attributes (which give the
source position) both have a default value of zero. So unless your source happens to be at that
point (highly unlikely!) you will need to set new values. Likewise, the (rest frequency)
attribute has an arbitrary default value of 1.0E5 GHz. Some operations are not affected by
inappropriate values for these attributes (for instance, converting from frequency to wavelength,
changing axis units, efc), but some are. For instance, converting from frequency to velocity
requires a correct rest frequency, moving between different standards of rest requires a correct
source position. The moral is, always set explicit values for as many attributes as possible.

9.6 Creating Spectral Cubes

You can use a to describe the spectral axis in a data cube containing two spatial axes
and a spectral axis. To do this you would create an appropriate SpecFrame, together with a
2-dimensional (often a[SkyFrame) to describe the spatial axes. You would then combine

these two Frames together into a single

AstSkyFrame *skyframe;
AstSpecFrame *specframe;
AstCmpFrame *cmpframe;

skyframe = astSkyFrame("Epoch=J2002");
specframe = astSpecFrame("System=Freq,StdOfRest=LSRK");
cmpframe = astCmpFrame(skyframe, specframe, "");

In the resulting CmpFrame, axis 1 will be RA, axis 2 will be Dec and axis 3 will be Frequency. If
this is not the order you want, you can permute the axes using

There is one potential problem with this approach if you are interested in unusually high
accuracy. Conversion between different standards of rest involves taking account of the Doppler
shift caused by the relative motion of the two standards of rest. At some point this involves
finding the component of the relative velocity in the direction of interest. For a SpecFrame,
this direction is always given by the [RefRA]and [RefDed attributes, even if the SpecFrame is
embedded within a CmpFrame as above. It would be more appropriate if this “direction of
interest” was specified by the values passed into the CmpFrame on the RA and DEC axes,
allowing each pixel within a data cube to have a slightly different correction for Doppler shift.

97 SUN/211.30 —Spectral Coordinate Systems (SpecFrames)

Unfortunately, the SpecFrame class cannot do this (since it is purely a 1-dimensional Frame),
and so some small degree of error will be introduced when converting between standards of
rest, the size of the error varying from pixel to pixel. It is hoped that at some point in the future
a sub-class of CmpFrame (a SpecCubeFrame) will be added to AST which allows for this spatial
variation in Doppler shift.

The maximum velocity error introduced by this problem is of the order of V x SIN(FOV'), where
FOV is the angular field of view, and V is the relative velocity of the two standards of rest. As
an example, when correcting from the observers rest frame (i.e. the topocentric rest frame) to the
kinematic local standard of rest the maximum value of V is about 20 km /s, so for 5 arc-minute
tield of view the maximum velocity error introduced by the correction will be about 0.03 km/s.
As another example, the maximum error when correcting from the observers rest frame to the
local group is about 5 km /s over a 1 degree field of view.

9.7 Handling Dual-Sideband Spectra

Dual sideband super-heterodyne receivers produce spectra in which each channel contains con-
tributions from two different frequencies, referred to as the “upper sideband” (USB) frequency
and the “lower sideband” (LSB) frequency. In the rest frame of the observer (topocentric), these
are related to each other as follows:

flsh = 2'fLO - fusb 1)

where f10 is a fixed frequency known as the “local oscillator frequency”. In other words, the
local oscillator frequency is always mid-way between any pair of corresponding upper and
lower sideband frequencie This is illustrated in Figure|11] The astronomical signal received
in the two spectral windows (one corresponding to each sideband) are superimposed in the final
measured spectrum, with the signal from the USB window first being reversed in frequency.

To describe the spectral axis of the final measured spectrum using a[SpecFrame|you must choose
whether you want the SpecFrame to describe the frequency of the LSB window (f;s) or of
the USB window (f,s) - a basic SpecFrame cannot describe both sidebands simultaneously.
However, there is a sub-class of SpecFrame, called [DSBSpecFrame, which overcomes this
difficulty.

A DSBSpecFrame has a attribute which indicates if the DSBSpecFrame is currently
being used to describe the upper or lower sideband spectral axis. The value of this attribute can
be changed at any time. A DSBSpecFrame knows how to transform frequencies between the
two sidebands. For instance, if you have two DSBSpecFrame objects that describe topocentric
frequency and are identical except that they describe opposite sidebands, then the
function will return a that implement equation m If the DSBSpecFrames describe
anything other than topocentric frequency, then the returned Mapping will be more complicated
since it will include conversions to and from topocentric frequency.

In practice, the local oscillator frequency for a dual sideband instrument may not be easily
available to an observer. Instead, it is common practice to specify the spectral position of some
central feature in the observation (commonly the centre of the instrument passband), together

17Note, this simple relationship only applies if all frequencies are topocentric.
18This requires the AlignSideband attribute to be set to a non-zero value in both DSBSpecFrames.

SUN/211.30 —Spectral Coordinate Systems (SpecFrames) 98

LO

I I > Topocentric
frequency

At '~J-r¢u'r-:mlqu.‘\tﬁ-fm*f.um_ur-.-‘4'111"-'.-“‘~v'w~\-h.*-+'rAr‘i‘*’“"ﬁ-.ll'w

DsbCentre aa- - a

Figure 11: A dual-sideband spectrum is formed by superimposing the signal received from
two spectral windows—the lower sideband (LSB) and upper sideband (USB). In topocentric
frequency, the two sidebands are equally spaced on either side of the local oscillator (LO)
frequency. In other spectral systems the width and placement of the windows may not be
symetric about the LO.

with an “intermediate frequency”. Together, these two values allow the local oscillator frequency
to be determined. The intermediate frequency is the difference between the topocentric frequency
at the central spectral position and the topocentric frequency of the local oscillator. So:

fLO = fcentml + fif ()

The DSBSpecFrame class uses the attribute to specify the central spectral position
(feentrar), and the [IH attribute to specify the intermediate frequency (f;¢). This is illustrated in
Figure [11, where the values of the DSBCentre and IF attributes have been chosen to put an
emission line at the centre of the LSB window. The DSBSpecFrame determines LO from these
two attribute values.

Note, in principle there is no reason why the attribute values should not have been chosen to
put the spectral line in the USB instead of the LSB. The choice of which sideband to use for the
observed feature is usually made in order to exclude any bright features from the other window.
The sideband that contains the observation centre is known as the “observed” sideband, and the
other sideband is known as the “image” sideband.

The DSBCentre value is given and returned in the spectral system described by the DSB-
SpecFrame (thus you do not need to calculate the corresponding topocentric frequency yourself
- this will be done automatically by the DSBSpecFrame when you assign a new value to the
DSBCentre attribute). The value assigned to the IF attribute should always be a topocentric
frequency in units of Hz. It’s sign indicates whether the observation centre (given by DSBCentre)

99 SUN/211.30 —Spectral Coordinate Systems (SpecFrames)

is in the LSB or the USB—a positive IF puts the observation centre in the LSB and a negative IF
puts it in the USB.

9.7.1 Aligning Dual-Sideband Spectra

Usually, a[DSBSpecFrame|will be used to describe the WCS for a 1-dimensional array of data
values measured using a dual-sideband instrument. The for this sort of situation will
typically contain two Frames: the base [Frame|will be a simple 1-dimensional Frame describing
the value used to index the data array (i.e. “pixel” coordinates) and the current Frame will be
a DSBSpecFrame with values for the and [[F| attributes that match the settings of
the dual side-band instrument. The connecting the base (pixel) Frame to the current
(spectral) Frame will depend on exactly how the instrument samples the spectrum (linear,
logarithmic, etc) but should always generate spectral Valueﬁ within the window corresponding
to the value of the attribute in the DSBSpecFrame. For instance, if the SideBand
attribute is set to USB, then the Mapping should generate the USB frequency (or wavelength,
velocity, etc@ for each pixel.

As an example, the following code creates a FrameSet that associates a radio velocity (km/s) in
the LSRK standard of rest with each element in an array of 1000 data values. The velocity range
-100 to 100 km/s in the LSB window (see Figure|11) is mapped linearly onto the pixel array. The
spectral feature of interest is at 10 km/s (i.e. within the velocity range of the LSB window) and
the IF is +5 GHz (topocentric).

/* Declare AST functions */
#include "ast.h"

/* Declare local variables */
AstFrame *pixel_frame;
AstDSBSpecFrame *spectral_frame;
AstWinMap *pix_to_spec;
AstFrameSet *frameset;
double pix_lo, pix_hi, vel_lo, vel_hi, xin[2], vout[2];

/* Create a Frame to describe 1-D pixel coordinates within the data
1%
array. */
pixel_frame = astFrame(1, "Domain=PIXEL");

/* Create a DSBSpecFrame to describe radio velocity in the LSB window of

the dual-sideband spectral axis. */

spectral_frame = astDSBSpecFrame("System=VRAD,"
"StdOfRest=LSRK,"
"Unit=km/s,"
"RefRA=7:10:04.5,"
"RefDec=-10:48:50,"
"Epoch=2020-0ct-2T12:13:56.985,"
"RestFreq=345.7959899 GHz,"
"SideBand=LSB, "

YWithin the spectral system described by the attributes of the parent class -|Systeml [StdOfRest} Units,

ete.
U

As selected by the System attribute.

SUN/211.30 —Spectral Coordinate Systems (SpecFrames) 100

"DSBCentre=10.0,"
"IF=5.0 GHz");

/* Create a linear mapping to describe the transformation from pixel
coordinate to the spectral coordinate system described by spectral_frame.
The definition of pixel coordinates used here puts the centre of the
first pixel at pixel coordinate 1.0, corresponding to a velocity of
-100.0 km/s, and puts the centre of the last pixel at pixel coordinate
1000.0, corresponding to a velocity of +100.0 km/s. */
pix_lo = 1.0;
pix_hi = 1000.0;
vel_lo = -100.0;
vel_hi 100.0;
pix_to_spec = astWinMap(1, &pix_lo, &pix_hi, &vel_lo, &vel_hi, " ");

/* Construct the FrameSet. First create a FrameSet holding just the pixel
Frame (which becomes the base Frame). Then add in the spectral Frame,
using the above mapping to connect it to the pixel Frame (i.e. the base
Frame). The spectral Frame becomes the current Frame (the base Frame
remains the pixel Frame). */
frameset = astFrameSet(pixel_frame, " ");
astAddFrame(frameset, AST__BASE, pix_to_spec, spectral_frame);

/* Use the FrameSet as a Mapping to get the range of radio velocity
spanned by the pixel array. This is done by transforming the first and
last pixel coordinate into radio velocity. The displayed velocity range
should be vel_lo to vel_hi. */
xin[0] = pix_lo;
xin[1] = pix_hi;
astTranl(frameset, 2, xin, 1, vout);
printf ("The %s window covers the radio velocity range [%g,%gl %s\n",

astGetC(frameset, "SideBand"), vout[O], vout[1 1],
astGetC(frameset, "Unit"));

/* Now change the FrameSet so that the DSBSpecFrame represents the USB
instead of the LSB. Doing this modifies the Mapping inside the
FrameSet so that transforming a given pixel position generates the
equivalent USB velocity rather tha the original LSB velocity. */
astSet(frameset, "Sideband=USB");

/* Display the range of USB radio velocity now spanned by the pixel
array. */
astTranl(frameset, 2, xin, 1, vout);
printf("The %s window covers the radio velocity range [lg,%g]l %s\n",
astGetC(frameset, "SideBand"), vout[O], vout[1],
astGetC(frameset, "Unit"));

The code above should generate the following screen output:

The LSB window covers the radio velocity range [-100,100] km/s
The USB window covers the radio velocity range [-8549.46,-8749.46] km/s

Note, changing the value of the Sideband attribute using the FrameSet pointer, as is done above,
automatically causes the Mapping inside the FrameSet to be updated to include the mapping

101 SUN/211.30 —Spectral Coordinate Systems (SpecFrames)

C C |3 C C

B B B

Figure 12: When a FrameSet pointer is used to change the attributes of its current Frame (C) a
copy of the original current Frame is first made (C’) and the requested attribute changes are
applied to this copy. The Mapping from the original Frame to the modified Frame is then found
using the astConvert function. The modified Frame (C’) is then added into the FrameSet, using
the Mapping returned by astConvert (shown by the dotted arrow) to connect it to the original
Frame (C). Finally, the original Frame is removed leaving the new modified Frame as the current
Frame. The base Frame (B) is unchanged.

from LSB frequency to USB frequency. This automatic modification of the Mappings inside a
FrameSet is described further in §14.6|and illustrated in Figure[12] It relies on the

function to find the Mapping that converts values from one DSBSpecFrame to another.

When the astConvert function to used to find the Mapping between two DSBSpecFrames, it is
sometimes appropriate for it to take account of the potentially different settings of the Sideband
attribute in the two DSBSpecFrames. The above example, in which astConvert is used to modify
the Mapping inside a FrameSet to accomodate a change to the Sideband attribute of the current
Frame, is such a case - astConvert returns a Mapping that implements equation [I]in some form.

However, there are also cases where it is better for astConvert not to take account of differences
in the settings of the Sideband attribute. For instance, if a spectral line is observed twice such
that the line is in the LSB in one observation and in the USB in the other, as illustrated in
Figure 13} then it would be inappropriate to take account of this difference when co-adding the
two observations. In this case, a frequency in one observation should be matched to exactly the
same frequency in the other observation, regardless of the difference in Sideband.

The AlignSideband attribute is used to determine whether any difference is Sideband setting
should be taken into account when finding the Mapping between two DSBSpecFrame objects.
The default for this attribute is zero, meaning that the Sideband settings are usually ignored
by the astConvert and astFindframe functions (i.e. the DSBSpecFrames are aligned as if they
were simple SpecFrames). The one exception is that differences in Sideband are always taken
into account, regardless of the value of the AlignSideband atribute, when using astConvert to
find the Mapping required to restore a FrameSet’s integrity following a change to the Sideband
attribute in the current Frame (as described earlier in this section).

If an attempt is made to find the Mapping between a pair of DSBSpecFrame, then the Sideband
attribute will be ignored if the AlignSideband attribute is zero in either of the DSBSpecFrames.
In other words, the Mapping will be determined as if both objects were simple SpecFrames
rather than DSBSpecFrames. This also happens if an attempt is made to align a DSBSpecFrame
with a simple SpecFrame. See for more about how simple SpecFrames align.

If both DSBSpecFrames have non-zero AlignSideband attributes, the Mapping from one to the

SUN/211.30 —Spectral Coordinate Systems (SpecFrames) 102

} } i ; ; p Obs. 2

P Obs. 1

Figure 13: Two observations of a single line are made - observation 1 places the line in the LSB
and observation 2 places the line in the USB.

other is made of three parts in series:

(1) A Mapping which converts the first DSBSpecFrame into its observed sideband representa-
tion (i.e. the sideband that contains the DSBCentre value). If the DSBSpecFrame already
represents its observed sideband, this Mapping will be a

(2) A Mapping which converts from the first to the second DSBSpecFrame, treating them as if
they were both basic SpecFrames. This takes account of any difference in units, standard
of rest, system, etc between the two DSBSpecFrames.

(3) A Mapping which converts the second DSBSpecFrame from its observed sideband repre-
sentation to its current sideband. If the DSBSpecFrame currently represents its observed
sideband, this Mapping will be a UnitMap.

103 SUN/211.30 —Time Systems (TimeFrames)

10 Time Systems (TimeFrames)

The [IimeFrame|is a|[Frame|which is specialised for representing moments in time. In this section
we examine the additional properties and behaviour of a TimeFrame that distinguish it from a
basic Frame (§7).

10.1 The TimeFrame Model

As for a[SkyFrame| a[TimeFrameis a[Frame|(§7) and also a (§9), so it inherits all the
properties and behaviour of these two ancestral classes. When used as a Mapping, a TimeFrame
implements a unit transformation, exactly like a basic Frame (§7.3) or a so this aspect
of its behaviour is not of great importance.

When used as a Frame, however, a TimeFrame represents a wide range of different 1-dimensional
coordinate system which can be used to describe moments in time. Absolute times and relative
(i.e. elapsed) times are supported (attributeTimeOrigin), as are a range of different time scales
(attribute [TimeScale). An absolute or relative value in any time scale can be represented in
different forms such as Modified Julian Date, Julian[Epoch] etc (attribute [System)). AST extends
the definition of these systems to allow them to be used with any unit of time (attribute Unit).
The TimeFrame class also allows times to formatted as either a simple floating point value or as
a Gregorian date and time of day (attribute Format).

10.2 Creating a TimeFrame

The constructor function is particularly simple and a TimeFrame with default
attributes is created as follows:

#include "star/ast.h"
AstTimeFrame *timeframe;

timeframe = astTimeFrame("");

Such a TimeFrame would represent the default coordinate system which is Modified Julian Date
(with the usual units of days) in the International Atomic Time (TAI) time scale.

10.3 Specifying a Particular Time System

By setting the[System|attribute appropriately, the can represent Julian Date, Modified
Julian Date, Julian[Epoch|or Besselian Epoch (the time scale is specified by a separate attribute

called [TimeScale).

Selection of a particular coordinate system is performed simply by setting a value for the
TimeFrame’s (character string) System attribute. This setting is most conveniently done when
the TimeFrame is created. For example, a TimeFrame representing Julian Epoch would be
created by:

SUN/211.30 —Time Systems (TimeFrames) 104

timeframe = astTimeFrame("System=JEPOCH");

Note that specifying “System=JEPOCH”" also changes the associated default Unit (from days
to years). This is because the default value of the TimeFrame’s Unit attribute depends on the
System attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix

10.4 Attributes which Qualify Time Coordinate Systems

Time coordinate systems require some additional free parameters to identify a particular co-
ordinate system from amongst a broader class of related coordinate systems. For example, all
TimeFrames are qualified by the time scale (that is, the physical process used to define the flow
of time), and some require the position of the observer’s clock.

In AST, these free parameters are represented by additional attributes, each of which
has a default appropriate to (i.e. defined by) the setting of the main attribute. Each of
these qualifying attributes may, however, be assigned an explicit value so as to select a particular
coordinate system. Note, it is usually best to assign explicit values whenever possible rather
than relying on defaults. Attribute should only be left at their default value if you “don’t care”
what value is used. In certain circumstances (particularly, when aligning two Frames), a default
value for an attribute may be replaced by the value from another similar Such value
replacement can be prevented by assigning an explicit value to the attribute, rather than simply
relying on the default.

The main TimeFrame attributes which qualify the System attribute are:

MimeScale]

This specifies the time scale.

This specifies the offset from Local Time to UTC in hours (time zones east of
Greenwich have positive values). Note, AST uses the value as supplied without
making any correction for daylight saving.
TimeOrigin|

This specifies the zero point from which time values are measured, within the
system specified by the System attribute. Thus, a value of zero (the default)
indicates that time values represent absolute times. Non-zero values may be
used to indicate that the TimeFrame represents elapsed time since the specified
origin.

For further details of these attributes you should consult their descriptions in Appendix [Cland
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix |C).

Note that it does no harm to assign values to qualifying attributes which are not relevant to
the main System or TimeScale value. Any such values are stored, but are not used unless the
System and/or TimeScale value is later set so that they become relevant.

105 SUN/211.30 —Compound Frames (CmpFrames)

11 Compound Frames (CmpFrames)

We now turn to a rather special form of [Mapping| the CmpFrame| The Frames we have
considered so far have been atomic, in the sense that they represent pre-defined elementary
physical domains. A CmpFrame, however, is a compound In essence, it is a structure for
containing other Frames and its purpose is to allow those Frames to work together in various
combinations while appearing as a single A CmpFrame’s behaviour is therefore not
pre-defined, but is determined by the other Frames it contains (its “component” Frames).

As with compound Mappings, compound Frames can be nested within each other, forming
arbitrarily complex Frames.

11.1 Creating a CmpFrame

A very common use for a[CmpFrame|within astronomy is to represent a “spectral cube”. This
is a 3-dimensional in which one of the axes represents position within a spectrum, and
the other two axes represent position on the sky (or some other spatial domain such as the
focal plane of a telescope). As an example, we create such a CmpFrame in which axes 1 and 2
represent Right Ascension and Declination (ICRS), and axis 3 represents wavelength (these are

the default coordinate Systems represented by a and a respectively):

AstSkyFrame *skyframe;
AstSpecFrame *specframe;
AstCmpFrame *cmpframe;

skyframe = astSkyFrame("");

specframe = astSpecFrame("");
cmpframe = astCmpFrame(skyframe, specframe, "");

If it was desired to make RA and Dec correspond to axes 1 and 3, with axis 2 being the spectral
axis, then the axes of the CmpFrame created above would need to be permuted as follows:

int perm[3];

perm[0 1 = 0O;
perm[1] = 2;
perm[2] = 1;

astPermAxes(cmpframe, perm);

11.2 The Attributes of a CmpFrame

A[CmpFramelis a[Frame|and so has all the attributes of a Frame. The default value for the[Domain]
attribute for a CmpFrame is formed by concatenating the Domains of the two component Frames,
separated by a minus sign (”-”) The (fixed) value for its attribute is ”Compound” A

211f both component Frames have blank Domains, then the default Domain for the CmpFrame is the string “CMP”".
22 Any attempt to change the System value of a CmpFrame is ignored.

SUN/211.30 —Compound Frames (CmpFrames) 106

CmpFrame has no further attributes over and above those common to all Frames. However,
attributes of the two component Frames can be accessed as if they were attributes of the
CmpFrame, as described below.

Frame attributes which are specific to individual axes (such as Label(2), Format(1), etc) simply
mirror the corresponding axes of the relevant component Frame. That is, if the “Label(2)”
attribute of a CmpFrame is accessed, the CmpFrame will forward the access request to the
component Frame which contains axis 2. Thus, default values for axis attributes will be the
same as those provided by the component Frames.

An axis index can optionally be appended to the name of Frames attributes which do not
normally have such an index (System, Domain, etc). If this is done, the access
request is forwarded to the component Frame containing the indicated axis. For instance, if a
CmpFrame contains a and a in that order, and the axes have not been
permuted, then getting the value of attribute “System” will return “Compound” as mentioned
above (that is, the System value of the CmpFrame as a whole), whereas getting the value of
attribute “System(1)” will return “Spectral”(that is, the System value of the component Frame
containing axis 1 — the SpecFrame).

This technique is not limited to attributes common to all Frames. For instance, the SkyFrame
class defines an attribute called [Equinox which is not held by other classes of Frames. To set a
value for the Equinox attribute of the SkyFrame contained within the above CmpFrame, assign
the value to the “Equinox(2)” attribute of the CmpFrame. Since the SkyFrame defines both axes
2 and 3 of the CmpFrame, we could equivalently have set a value for “Equinox(3)” since this
would also result in the attribute access being forwarded to the SkyFrame.

Finally, if an attribute is not qualified by a axis index, attempts will be made to access it using
each of the CmpFrame axes in turn. Using the above example of the spectral cube, if an attempt
was made to get the value of attribute “Equinox” (with no axis index), each axis in turn would
be used. Since axis 1 is contained within a SpecFrame, the first attempt would fail since the
SpecFrame class does not have an Equinox attribute. However, the second attempt would
succeed because axis 2 is contained within a SkyFrame which does have an Equinox attribute.
Thus the returned attribute value would be that obtained from the SkyFrame containing axis
2. When getting or testing an attribute value, the returned value is determined by the first axis
which recognises the attribute. When setting an attribute value, all axes which recognises the
attribute have the attribute value set to the given value. Likewise, when clearing an attribute
value, all axes which recognises the attribute have the attribute value cleared.

107 SUN/211.30 —An Introduction to Coordinate System Conversions

12 An Introduction to Coordinate System Conversions

In this section, we start to look at techniques for converting between different coordinate systems.
At this stage, the tools we have available are Frames (, SkyFrames (, SpecFrames (,
TimeFrames (§10) and various Mappings (§5). These are sufficient to allow us to begin examining
the problem, but more sophisticated approaches will also emerge later (§14.2).

12.1 Converting between Celestial Coordinate Systems

We begin by examining how to convert between two celestial coordinate systems represented
by SkyFrames, as this is both an illuminating and practical example. Consider the problem of
converting celestial coordinates between:

(1) The old FK4 system, with no E terms, a Besselian epoch of 1958.0 and a Besselian equinox
of 1960.0.

(2) An ecliptic coordinate system based on the mean equinox and ecliptic of Julian epoch
2010.5.

This example is arbitrary but not completely unrealistic. Unless you already have expertise with
such conversions, you are unlikely to find it straightforward.

Using AST, we begin by creating two SkyFrames to represent these coordinate systems, as

follows:

#include "star/ast.h"
AstSkyFrame *skyframel, *skyframe2;

skyframel = astSkyFrame("System=FK4-NO-E, Epoch=B1958, Equinox=B1960");
skyframe2 = astSkyFrame("System=Ecliptic, Equinox=J2010.5");

Note how specifying the coordinate systems consists simply of initialising the attributes of each
appropriately. The next step is to find a way of converting between these SkyFrames.

This is done using as follows:

AstFrameSet *cvt;

cvt = astConvert(skyframel, skyframe2, "");
if (cvt == AST__NULL) {

<conversion is not possible>
} else {

<conversion is possible>

}

SUN/211.30 —An Introduction to Coordinate System Conversions 108

The third argument of astConvert is not used here and should be an empty string.

astConvert will return a null result, AST__NULL (as defined in the “ast.h” header file), if
conversion is not possible. In this example, conversion is possible, so it will return a pointer to a
new that describes the conversion.

The Object returned is called a We have not discussed FrameSets yet (§13), but for the
present purposes we can consider them simply as Objects that can behave both as Mappings
and as Frames. It is the FrameSet’s behaviour as a[Mapping|in which we are mainly interested
here, because the Mapping it implements is the one we require—i.e. it converts between the two

celestial coordinate systems (§14.1)).

For example, if “alphal” and “deltal” are two arrays containing the longitude and latitude, in
radians, of N points on the sky in the original coordinate system (corresponding to “skyframel”),
then they could be converted into the new coordinate system (represented by “skyframe2”) as
follows:

#define N 10
double alphall N], deltaill[N];
double alpha2[N], delta2[N];

astTran2(cvt, N, alphal, deltal, 1, alpha2, delta2);

The new coordinates are returned via the “alpha2” and “delta2” arrays. To transform coordinates
in the opposite direction, we simply invert the 5th (boolean int) argument to as follows:

astTran2(cvt, N, alpha2, delta2, 0, alphal, deltal);

The FrameSet returned by astConvert also contains information about the SkyFrames used in
the conversion (§14.1). As we mentioned above, a FrameSet may be used as a and in
this case it behaves like the “destination” Frame used in the conversion (i.e. like “skyframe2”).
We could therefore use the “cvt” FrameSet to calculate the distance between two points (with
coordinates in radians) in the destination coordinate system, using [astDistance}

double distance, pointl[2], point2[2];

distance = astDistance(cvt, pointl, point2);

and the result would be the same as if the “skyframe2” SkyFrame had been used.

Another way to see how the FrameSet produced by astConvert retains information about the
coordinate systems involved is to set its attribute (inherited from the Mapping class) so
that it displays the coordinates before and after conversion (§4.8):

astSet(cvt, "Report=1");
astTran2(cvt, N, alphal, deltal, 1, alpha2, delta2);

The output from this might look like the following:

109 SUN/211.30 —An Introduction to Coordinate System Conversions

(2:06:03.0, 34:22:39) --> (42.1087, 20.2717)
(2:08:20.6, 35:31:24) --> (43.0197, 21.1705)
(2:10:38.1, 36:40:09) --> (43.9295, 22.0716)
(2:12:55.6, 37:48:55) --> (44.8382, 22.9753)
(2:15:13.1, 38:57:40) --> (45.7459, 23.8814)
(2:17:30.6, 40:06:25) --> (46.6528, 24.7901)
(2:19:48.1, 41:15:11) --> (47.5589, 25.7013)
(2:22:05.6, 42:23:56) --> (48.4644, 26.6149)
(2:24:23.1, 43:32:41) --> (49.3695, 27.5311)
(2:26:40.6, 44:41:27) --> (50.2742, 28.4499)

Here, we see that the input FK4 equatorial coordinate values (given in radians) have been
formatted automatically in sexagesimal notation using the conventional hours for right ascension
and degrees for declination. Conversely, the output ecliptic coordinates are shown in decimal
degrees, as is conventional for ecliptic coordinates. Both are displayed using the default precision
of 7 digitsEs]

In fact, the “cvt” FrameSet has access to all the information in the original SkyFrames which
were passed to astConvert. If you had set a new Digits attribute value for either of these, the
formatting above would reflect the different precision you requested by displaying a greater or
smaller number of digits.

12.2 Converting between Spectral Coordinate Systems

The principles described in the previous section for converting between celestial coordinate
systems also apply to the task of converting between spectral coordinate systems. As an example,
let’s look at how we might convert between frequency measured in GHz as measured in the
rest frame of the telescope, and radio velocity measured in km /s measured with respect the
kinematic Local Standard of Rest.

First we create a default[SpecFrame| and then set its attributes to describe the required radio
velocity system (this is slightly more convenient, given the relatively large number of attributes,
than specifying the attribute values in a single string such as would be passed to the SpecFrame
constructor). We then take a copy of this SpecFrame, and change the attribute values so that
the copy describes the original frequency system (modifying a copy, rather than creating a new
SpecFrame from scratch, avoids the need to specify the epoch, reference position, etc a second
time since they are all inherited by the copy):

#include "star/ast.h"
AstSpecFrame *specframel, *specframe?2;

specframel = astSpecFrame("");

astSet(specframel, "System=vradio");

astSet(specframel, "Unit=km/s");

astSet(specframel, "Epoch=1996-0ct-2 12:13:56.985");
astSet(specframel, "ObsLon=W155:28:18");

astSet(specframel, "ObsLat=N19:49:34");

astSet(specframel, "RefRA=18:14:50.6");

23The leading digit is zero and is therefore not seen in this particular example.

SUN/211.30 —An Introduction to Coordinate System Conversions 110

astSet(specframel, "RefDec=-4:40:49");
astSet(specframel, "RestFreq=230.538 GHz");
astSet(specframel, "StdOfRest=LSRK");

specframe2 = astCopy(specframel);

astSet(specframel, "System=freq");

astSet(specframel, "Unit=GHz");

astSet(specframel, "StdOfRest=Topocentric");

Note, the fact that a SpecFrame has only a single axis means that we were able to refer to the
Unit attribute without an axis index. The other attributes are: the time of of observation (Epoch),
the geographical position of the telescope (ObsLat| & |ObsLonl), the position of the source on the

sky (RefRA| & [RefDed), the rest frequency (RestFreq) and the standard of rest (StdOfRest).

The next step is to find a way of converting between these SpecFrames. We use exactly the same
code that we did in the previous section where we were converting between celestial coordinate
systems:

AstFrameSet *cvt;

cvt = astConvert(specframel, specframe2, "");
if (cvt == AST__NULL) {

<conversion is not possible>
} else {

<conversion is possible>

}

A before, this will give us a (assuming conversion is possible, which should always be
the case for our example), and we can use the FrameSet to convert between the two spectral

coordinate systems. We use in place of [astTran2]since a SpecFrame has only one axis
(unlike a which has two).

For example, if “frq” is an array containing the observed frequency, in GHz, of N spectral
channels (describe by “specframel”), then they could be converted into the new coordinate
system (represented by “specframe2”) as follows:

#define N 10

double frql[N 1;
double vel[N];

astTranl(cvt, N, frq, 1, vel);
The radio velocity values are returned in the “vel” array.
12.3 Converting between Time Coordinate Systems

All the principles outlined in the previous section about aligning spectral cocordinate sys-
tems (SpecFrames) can be applied directly to the problem of aligning time coordinate systems
(TimeFrames).

111 SUN/211.30 —An Introduction to Coordinate System Conversions

12.4 Handling SkyFrame Axis Permutations
We can illustrate an important point if we swap the axis order of either in the example

above (§12.T) before identifying the conversion. Let’s assume we use (§7.9) to do
this to the second SkyFrame, before applying as follows:

int perm[2 1 = { 2, 1 3};

astPermAxes(skyframe2, perm)
cvt = astConvert(skyframel, skyframe2, "");

Now, the destination SkyFrame system no longer represents the coordinate system:
(ecliptic longitude, ecliptic latitude)

but instead represents the transposed system:
(ecliptic latitude, ecliptic longitude)

As a consequence, when we use the returned by astConvert to apply a coordinate
transformation, we obtain something like the following:

(2:06:03.0, 34:22:39) --> (20.2717, 42.1087)
(2:08:20.6, 35:31:24) --> (21.1705, 43.0197)
(2:10:38.1, 36:40:09) --> (22.0716, 43.9295)
(2:12:55.6, 37:48:55) --> (22.9753, 44.8382)
(2:15:13.1, 38:57:40) --> (23.8814, 45.7459)
(2:17:30.6, 40:06:25) --> (24.7901, 46.6528)
(2:19:48.1, 41:15:11) --> (25.7013, 47.5589)
(2:22:05.6, 42:23:56) --> (26.6149, 48.4644)
(2:24:23.1, 43:32:41) --> (27.5311, 49.3695)
6

(2:26:40.6, 44:41:27) --> (28.4499, 50.2742)

When compared to the original (§12.1)), the output coordinate order has been swapped to
compensate for the different destination SkyFrame axis order.

In all, there are four possible axis combinations, corresponding to two possible axis orders for
each of the source and destination SkyFrames, and astConvert will convert correctly between
any of these. The point to note is that a SkyFrame contains knowledge about how to convert to
and from other SkyFrames. Since its two axes (longitude and latitude) are distinguishable, the
conversion is able to take account of the axis order.

If you need to identify the axes of a SkyFrame explicitly, taking into account any axis permuta-
tions, the|LatAxis|and [LonAxis|attributes can be used. These are read-only attributes which give
the indices of the latitude and longitude axes respectively.

SUN/211.30 —An Introduction to Coordinate System Conversions 112

12.5 Converting Between Frames

Having seen how clever SkyFrames are (§12.1}and §12.4), we will next examine how dumb a
basic |[Frame|can be in comparison. For example, if we create two 2-dimensional Frames and use
astConvert|to derive a conversion between them, as follows:

AstFrame *framel, *frame2;

framel = astFrame(2, "");
frame2 = astFrame(2, "");
cvt = astConvert(framel, frame2, "");

then the coordinate transformation which the “cvt” performs will be as follows:

(1, 2) -—> 1, 2)
(2, 4) --> (2, 4
(3, 6) --> (3, 6)
(4, 8) --> (4, 8)
(5, 10) --> (5, 10)

This is an identity transformation, exactly the same as a[UnitMap|(§5.10). Even if we permute
the axis order of our Frames, as we did above (§12.4)), we will fare no better. The conversion
between our two basic Frames will always be an identity transformation.

The reason for this is that, unlike a all basic Frames start life the same and have
axes that are indistinguishable. Therefore, permuting their axes doesn’t make them look any
different—they still represent the same coordinate system.

12.6 The Choice of Alignment System

In practice, when AST is asked to find a conversion between two Frames describing two different
coordinate systems on a given physical domain, it uses an intermediate “alignment” system.
Thus, when finding a conversion from system A to system B, AST first finds the from
system A to some alignment system, system C, and then finds the Mapping from this system C
to the required system B. It finally concatenates these two Mappings to get the Mapping from
system A to system B.

One advantage of this is that it cuts down the number of conversion algorithms required. If there
are N different Systems which may be used to describe positions within the then this
approach requires about 2 x N conversion algorithms to be written. The alternative approach of
going directly from system A to system B would require about N * N conversion algorithms.

In addition, the use of an intermediate alignment system highlights the nature of the conversion
process. What do we mean by saying that a Mapping “converts a position in one coordinate
system into the corresponding position in another”? In practice, it means that the input and
output coordinates correspond to the same coordinates in some third coordinate system. The choice
of this third coordinate system, the “alignment” system, can completely alter the nature of the
Mapping. The class has an attribute called [AlignSystem| which can be used to specify the

alignment system.

113 SUN/211.30 —An Introduction to Coordinate System Conversions

As an example, consider the case of aligning two spectra calibrated in radio velocity, but each
with a different rest frequency (each spectrum will be described by a[SpecFrame). Since the rest
frequencies differ, a given velocity will correspond to different frequencies in the two spectra.
So when we come to “align” these two spectra (that is, find a Mapping which converts positions
in one SpecFrame to the corresponding positions in the other), we have the choice of aligning
the frequencies or aligning the velocities. Different Mappings will be required to describe these
two forms of alignment. If we set AlignSystem to “Freq” then the returned Mapping will align
the frequencies described by the two SpecFrames. On the other hand, if we set AlignSystem to
“Vradio” then the returned Mapping will align the velocities.

Some choices of alighment system are redundant. For instance, in the above example, changing
the alignment system from frequency to wavelength has no effect on the returned Mapping:
if two spectra are aligned in frequency they will also be aligned in wavelength (assuming the
speed of light doesn’t change).

The default value for AlignSystem depends on the class of Frame. For a SpecFrame, the default
is wavelength (or equivalently, frequency) since this is the system in which observations are
usually made. The SpecFrame class also has an attribute called |AlignStdOfRest|which allows
the standard of rest of the alignment system to be specified. Similarly, the [I[imeFrame|class has
an attribute called |[AlignTimeScale|which allows the time scale of the alignment system to be
specified. Currently, the SkyFrame|uses ICRS as the default for AlignSystem, since this is a close
approximation to an inertial frame of rest.

SUN/211.30 —An Introduction to Coordinate System Conversions 114

115 SUN/211.30 —Coordinate System Networks (FrameSets)

13 Coordinate System Networks (FrameSets)

We saw in how could be used to find a that inter-relates a pair of

coordinate systems represented by Frames. There is a limitation to this, however, in that it
can only be applied to coordinate systems that are inter-related by suitable conventions. In
the case of celestial coordinates, the relevant conventions are standards set out by the Interna-
tional Astronomical Union, and others, that define what these coordinate systems mean. In
practice, however, the relationships between many other coordinate systems are also of practical
importance.

Consider, for example, the focal plane of a telescope upon which an image of the sky is falling.
We could measure positions in this focal plane in millimetres or, if there were a detector system
such as a CCD present, we could count pixels. We could also use celestial coordinates of many
different kinds. All of these systems are equivalent in their effectiveness at specifying positions
in the focal plane, but some are more convenient than others for particular purposes.

Although we could, in principle, convert between all of these focal plane coordinate systems,
there is no pre-defined convention for doing so. This is because the conversions required depend
on where the telescope is pointing and how the CCD is mounted in the focal plane. Clearly,
knowledge about this cannot be built into the AST library and must be supplied in some other
way. Note that this is exactly the same problem as we met in §7.12)when discussing the
attribute—i.e. coordinate systems that apply to different physical domains require that extra
information be supplied before we can convert between them.

What we need, therefore, is a general way to describe how coordinate systems are inter-related,
so that when there is no convention already in place, we can define our own. We can then
look forward to converting, say, from pixels into galactic coordinates and vice versa. In AST, the

class provides this capability.
13.1 The FrameSet Model

Consider a coordinate system (call it number 1) which is represented by a of some kind.
Now consider a[Mapping|which, when applied to the coordinates in system 1 yields coordinates
in another system, number 2. The Mapping therefore inter-relates coordinate systems 1 and 2.

Now consider a second Mapping which inter-relates system 1 and a further coordinate system,
number 3. If we wanted to convert coordinates between systems 2 and 3, we could do so by:

(1) Applying our first Mapping in reverse, so as to convert between systems 2 and 1.

(2) Applying the second Mapping, as given, to convert between systems 1 and 3.

We are not limited to three coordinate systems, of course. In fact, we could continue to introduce
any number of further coordinate systems, so long as we have a suitable Mapping for each one
which relates it to one of the Frames already present. Continuing in this way, we can build up a
network in which Frames are inter-related by Mappings in such a way that there is always a
way of converting between any pair of coordinate systems.

The (Figure [7) encapsulates these ideas. It is a network composed of Frames and
associated Mappings, in which there is always exactly one path, via Mappings, between any pair

SUN/211.30 —Coordinate System Networks (FrameSets) 116

of Frames. Since we assemble FrameSets ourselves, they can be used to represent any coordinate
systems we choose and to set up the particular relationships between them that we want.

13.2 Creating a FrameSet

Before we can create a we must have a of some kind to put into it, so let’s

create a simple one:

#include "star/ast.h"
AstFrame *framel;

framel = astFrame(2, "Domain=A");

We have set this Frame's attribute (§7.12) to A so that it will be distinct from the others
we will be using. We can now create a new FrameSet containing just this Frame, as follows:

AstFrameSet *frameset;

frameset = astFrameSet(framel, "");

So far, however, this Frame isn’t related to any others.

13.3 Adding New Frames to a FrameSet

We can now add further Frames to the created above (§13.2). To do so, we must
supply a new and an associated that relates it to any of the Frames that are

already present (there is only one present so far). To keep the example simple, we will just use a
that multiplies coordinates by 10. The required Objects are created as follows:

AstFrame *frame2;
AstMapping *mappingl?2;

frame2 = astFrame(2, "Domain=B");
mappingl2 = astZoomMap(2, 10.0, "");

To add the new Frame into our FrameSet, we use the function:

astAddFrame(frameset, 1, mappingl2, frame2);

Whenever a Frame is added to a FrameSet, it is assigned an integer index. This index starts
with 1 for the initial Frame used to create the FrameSet (§13.2) and increments by one every
time a new Frame is added. This index is the primary way of identifying the Frames within a
FrameSet.

117 SUN/211.30 —Coordinate System Networks (FrameSets)

Gase Frame FrameSet

@ Current Frame
|| ‘ Frame 3
@

Figure 14: An example FrameSet, in which Frames 2 and 3 are related to Frame 1 by multiplying
its coordinates by factors of 10 and 5 respectively. The FrameSet’s attribute has the value 1
and its attribute has the value 3. The transformation performed when the FrameSet is
used as a Mapping (i.e. from its base to its current Frame) is shown in bold.

When a Frame is added, we also have to specify which of the existing ones the new Frame is
related to. Here, we chose number 1, the only one present so far, and the new one we added
became number 2.

Note that a FrameSet does not make copies of the Frames and Mappings that you insert into it.
Instead, it holds pointers to them. This means that if you retain the original pointers to these
Objects and alter them, you will indirectly be altering the FrameSet’s contents. You can, of

course, always use [astCopy| (§4.13) to make a separate copy of any [Object]if you need to ensure

its independence.

We could also add a third Frame into our FrameSet, this time defining a coordinate system
which is reached by multiplying the original coordinates (of “framel”) by 5:

astAddFrame(frameset, 1, astZoomMap(2, 5.0, ""), astFrame(2, "Domain=C"));

Here, we have avoided storing unnecessary pointer values by using function invocations directly
as arguments for astAddFrame. This assumes that we are using[astBegin|and [astEnd]| (§4.10) to
ensure that Objects are correctly deleted when no longer required.

Our example FrameSet now contains three Frames and two Mappings with the arrangement
shown in Figure[T4] The total number of Frames is given by its read-only attribute.

SUN/211.30 —Coordinate System Networks (FrameSets) 118

13.4 The Base and Current Frames

At all times, one of the Frames in a is designated to be its base and one to be its
current Frame (Figure [14). These Frames are identified by two integer FrameSet attributes, [Base]
and which hold the indices of the nominated Frames within the FrameSet.

The existence of the base and current Frames reflects an important application of FrameSets,
which is to attach coordinate systems to entities such as data arrays, data files, plotting surfaces
(for graphics), etc. In this context, the base Frame represents the “native” coordinate system of
the attached entity—for example, the pixel coordinates of an image or the intrinsic coordinates
of a plotting surface. The other Frames within the FrameSet represent alternative coordinate
systems which may also be used to refer to positions within that entity. The current Frame
represents the particular coordinate system which is currently selected for use. For instance, if
an image were being displayed, you would aim to label it with coordinates corresponding to
the current Frame. In order to see a different coordinate system, a software user would arrange
for a different Frame to be made current.

The choice of base and current Frames may be changed at any time, simply by assigning new
values to the FrameSet’s Base and Current attributes. For example, to make the Frame with
index 3 become the current Frame, you could use:

astSetI(frameset, "Current", 3);

You can nominate the same Frame to be both the base and current Frame if you wish.

By default (i.e. if the Base or Current attribute is un-set), the first Frame added to a FrameSet
becomes its base Frame and the last one added becomes its current Frame? Whenever a new
Frame is added to a FrameSet, the Current attribute is modified so that the new Frame becomes
the current one. This behaviour is reflected in the state of the example FrameSet in Figure

13.5 Referring to the Base and Current Frames

It is often necessary to refer to the base and current Frames (§13.4) within a but it
can be cumbersome having to obtain their indices from the [Base|and [Currentattributes on each
occasion. To make this easier, two macros, AST BASE and AST CURRENT, are defined in
the “ast.h” header file and may be used to represent the indices of the base and current Frames
respectively. They may be used whenever a index is required.

For example, when adding a new Frame to a FrameSet (§13.3), you could use the following to
indicate that the new Frame is related to the existing current Frame, whatever its index happens
to be:

AstFrame *frame;
AstMapping *mapping;

astAddFrame (frameset, AST__CURRENT, mapping, frame);

Of course, the Frame you added would then become the new current Frame.

24 Although this is reversed if the FrameSet’sattribute is non-zero.

119 SUN/211.30 —Coordinate System Networks (FrameSets)

13.6 Using a FrameSet as a Mapping

The class inherits properties and behaviour from the class (§7) and, in turn,
from the class (§5). Its behaviour when used as a Mapping is particularly important.

Consider, for instance, passing a FrameSet pointer to a coordinate transformation function such

asfastTran2}

#define N 10
double xin[N], yin[N], xout[N], yout[N I;

astTran2(frameset, N, xin, yin, 1, xout, yout);

The coordinate transformation applied by this FrameSet would be the one which converts
between its base and current Frames. Using the FrameSet in Figure for example, the
coordinates would be multiplied by a factor of 5. If we instead requested the FrameSet’s inverse
transformation, we would be transforming from its current Frame to its base Frame, so our
example FrameSet would then multiply by a factor of 0.2.

Whenever the choice of base and current Frames changes, the transformations which a FrameSet
performs when used as a Mapping also change to reflect this. The [Nin|and [Nout|attributes
may also change in consequence, because they are determined by the numbers of axes in the
FrameSet’s base and current Frames respectively. These numbers need not necessarily be equal,
of course.

Like any Mapping, a FrameSet may also be inverted by changing the boolean sense of its
attribute, e.g. using [astInvert| (§5.6). If this is happens, the values of the FrameSet’s and
attributes are interchanged, along with its Nin and Nout attributes, so that its base and
current Frames swap places. When used as a Mapping, the FrameSet will therefore perform the
inverse transformation to that which it performed previously.

To summarise, a FrameSet may be used exactly like any other Mapping which inter-relates the
coordinate systems described by its base and current Frames.

13.7 Extracting a Mapping from a FrameSet

Although it is very convenient to use a when a[Mapping]is required (§13.6), a FrameSet

necessarily contains additional information and sometimes this might cause inefficiency or
confusion. For example, if you wanted to use a Mapping contained in one FrameSet and insert
it into another, it would probably not be efficient to insert the whole of the first FrameSet into
the second one, although it would work.

In such a situation, thelastGetMapping|function allows you to extract a Mapping from a FrameSet.
You do this by specifying the two Frames which the Mapping should inter-relate using their
indices within the FrameSet. For example:

map = astGetMapping(frameset, 2, 3);

would return a pointer to a Mapping that converted between Frames 2 and 3 in the FrameSet.
Its inverse transformation would then convert in the opposite direction, i.e. between Frames 3

SUN/211.30 —Coordinate System Networks (FrameSets) 120

and 2. Note that this Mapping might not be independent of the Mappings contained within the
FrameSet—i.e. they may share sub-Objects—so should be used to make a copy if you
need to guarantee independence (§4.13).

Very often, the Mapping returned by astGetMapping will be a compound Mapping, or(CmpMap|
(§6). This reflects the fact that conversion between the two Frames may need to be done via an
intermediate coordinate system so that several stages may be involved. You can, however, easily

simplify this Mapping (where this is possible) by using the function (§6.7) and this

is recommended if you plan to use it for transforming a large amount of data.

13.8 Using a FrameSet as a Frame

A can also be used as a in which capacity it almost always behaves as if
its current Frame had been used instead. For example, if you request the attribute of a

FrameSet using:

const char *title;

title = astGetC(frameset, "Title");

the result will be the Title of the current Frame, or a suitable default if the current Frame’'s Title
attribute is un-set. The same also applies to other attribute operations—i.e. setting, clearing and
testing attributes. Most attributes shared by both Frames and FrameSets behave in this way,
such as|Naxes| |Label(axis), [Format(axis), etc. There are, however, a few exceptions:

[CTass|
Has the value “FrameSet”.
Identifies the particular FrameSet (not its current Frame).
[Nin]
Equals the number of axes in the FrameSet’s base Frame.
Is independent of any of the Objects within the FrameSet.
Counts the number of active FrameSets.
RefCount

Counts the number of active pointers to the FrameSet (not to its current Frame).

Note that the set of attributes possessed by a FrameSet can vary, depending on the nature of
its current Frame. For example, if the current Frame is a (§8), then the FrameSet will
acquire an attribute from it which can be set, enquired, etc. However, if the current
Frame is changed to be a basic Frame, which does not have an Equinox attribute, then this
attribute will be absent from the FrameSet as well. Any attempt to reference it will then result in
an error.

121 SUN/211.30 —Coordinate System Networks (FrameSets)

13.9 Extracting a Frame from a FrameSet

Although a[FrameSet|may be used in place of its current in most situations, it is sometimes
convenient to have direct access to a specified Frame within it. This may be obtained using the

function, as follows:

frame = astGetFrame(frameset, AST__BASE);

This would return a pointer (not a copy) to the base Frame within the FrameSet. Note the use of
AST__BASE (§13.5) as shorthand for the value of the FrameSet's attribute, which gives the
base Frame’s index.

13.10 Removing a Frame from a FrameSet

Removing a from a is straightforward and is performed using the

function. You identify the Frame you wish to remove in the usual way, by giving its
index within the FrameSet. For example, the following would remove the Frame with index 1:

astRemoveFrame(frameset, 1);

The only restriction is that you cannot remove the last remaining Frame because a FrameSet
must always contain at least one Frame. When a Frame is removed, the Frames which follow
it are re-numbered (i.e. their indices are reduced by one) so as to preserve the sequence of
consecutive Frame indices. The FrameSet’s attribute is also decremented.

If appropriate, astRemoveFrame will modify the FrameSet's and/or attributes so
that they continue to identify the same Frames as previously. If either the base or current Frame
is removed, however, the corresponding attribute will become un-set, so that it reverts to its
default value (§13.4) and therefore identifies an alternative Frame.

Note that it is quite permissible to remove any Frame from a FrameSet, even although other
Frames may appear to depend on it. For example, in Figure|14} if Frame 1 were removed, the
correct relationship between Frames 2 and 3 would still be preserved, although they would be
re-numbered as Frames 1 and 2.

SUN/211.30 —Coordinate System Networks (FrameSets) 122

123 SUN/211.30 —Higher Level Operations on FrameSets

14 Higher Level Operations on FrameSets

14.1 Creating FrameSets with astConvert

Before considering the important subject of using FrameSets to convert between coordinate
systems (§14.2), let us return briefly to reconsider the output generated by [astConvert] We used
this function earlier (§12), when converting between the coordinate systems represented by
various kinds of and indicated that it returns a to represent the coordinate

conversion it identifies. We are now in a position to examine the structure of this FrameSet.

Take our earlier example (§12.1)) of converting between the celestial coordinate systems repre-
sented by two SkyFrames:

#include "star/ast.h"
AstFrameSet *cvt;
AstSkyFrame *skyframel, *skyframe2;

skyframel = astSkyFrame("System=FK4-NO-E, Epoch=B1958, Equinox=B1960");
skyframe2 = astSkyFrame("System=Ecliptic, Equinox=J2010.5");

cvt = astConvert(skyframel, skyframe2, "");

This will produce a pointer, “cvt”, to the FrameSet shown in Figure

4 FrameSet

////’—fi;

SkyFrame
1 Mapping

Base Frame

Current Frame

Figure 15: The FrameSet produced when astConvert is used to convert between the coordinate
systems represented by two SkyFrames. The source [SkyFrame|becomes the base Frame, while
the destination SkyFrame becomes the current Frame. The Mapping|between them implements
the required conversion.

As can be seen, this FrameSet contains just two Frames. The source Frame supplied to astConvert
becomes its base Frame, while the destination Frame becomes its current Frame. (The FrameSet,
of course, simply holds pointers to these Frames, rather than making copies.) The Mapping
which relates the base Frame to the current Frame is the one which implements the required
conversion.

SUN/211.30 —Higher Level Operations on FrameSets 124

As we noted earlier (§12.1), the FrameSet returned by astConvert may be used both as a Mapping
and as a Frame to perform most of the functions you are likely to need. However, the Mapping
may be extracted for use on its own if necessary, usingastGetMapping| (§13.7), for example:

AstMapping *mapping;

mapping = astGetMapping(cvt, AST__BASE, AST__CURRENT);

14.2 Converting between FrameSet Coordinate Systems

We now consider the process of converting between the coordinate systems represented by two
FrameSets. This is a most important operation, as a subsequent example (§14.3) will show, and
is illustrated in Figure

Recalling (§13.8) that a FrameSet will behave like its current[Frame] when necessary, conversion
between two FrameSets is performed using [astConvert] (§12.T), but supplying pointers to
FrameSets instead of Frames. The effect of this is to convert between the coordinate systems
represented by the current Frames of each FrameSet:

AstFrameSet *frameseta, *framesetb;

cvt = astConvert(frameseta, framesetb, "SKY");

When using FrameSets, we are presented with considerably more conversion options than when
using Frames alone. This is because each current Frame is related to all the other Frames in
its respective FrameSet. Therefore, if we can establish a link between any pair of Frames, one
from each FrameSet, we can form a complete conversion path between the two current Frames

(Figure[16).

This expanded range of options is, of course, precisely the intention. By connecting Frames
together within a FrameSet, we have extended the range of coordinate systems that can be
reached from any one of them. We are therefore no longer restricted to converting between
Frames with the same Domain value (§7.12), but can go via a range of intermediate coordinate
systems in order to make the connection we require. Transformation between different domains
has therefore become possible because, in assembling the FrameSets, we provided the additional
information needed to inter-relate them.

It is important to appreciate, however, that the choice of “missing link” is crucial in determining
the conversion that results. Although each FrameSet may be perfectly self-consistent internally,
this does not mean that all conversion paths through the combined network of Mappings are
equivalent. Quite the contrary in fact: everything depends on where the inter-connecting link
between the two FrameSets is made. In practice, there may be a large number of possible
pairings of Frames and hence of possible links. Other factors must therefore be used to restrict
the choice. These are:

125 SUN/211.30 —Higher Level Operations on FrameSets

Mapptng

F rame 1 Base Frame
/ Mappmg
@

Source

FrameSet A Current Frame

/ A/_ Base Frame
Missing ~> U

W
Mappmg
/ Current Frame

Destination

FrameSet B

Figure 16: Conversion between two FrameSets is performed by establishing a link between a
pair of Frames, one from each [FrameSet} If conversion between these two Frames is possible,
then a route for converting between the current Frames of both FrameSets can also be found. In
practice, there may be many ways of pairing Frames to find the “missing link”, so the Frames’

attribute may be used to narrow the choice.

SUN/211.30 —Higher Level Operations on FrameSets 126

(1) Not every possible pairing of Frames is legitimate. For example, you cannot convert
directly between a basic Frame and a which belong to different classes, so such
pairings will be ignored.

(2) In a similar way, you cannot convert directly between Frames with different Domain
values (§7.12). If the Domain attribute is used consistently (typically only one Frame in
each FrameSet will have a particular Domain value), then this further restricts the choice.

(3) The third argument of astConvert may then be used to specify explicitly which Domain
value the paired Frames should have. You may also supply a comma-separated list of
preferences here (see below).

(4) If the above steps fail to uniquely identify the link, then the first suitable pairing of Frames
is used, so that any ambiguity is resolved by the order in which Frames are considered
for pairing (see the description of the astConvert function in Appendix [B{for details of the
search order)

In the example above we supplied the string “SKY” as the third argument of astConvert. This
constitutes a request that a pair of Frames with the Domain value SKY (i.e. representing celestial
coordinate systems) should be used to inter-relate the two FrameSets. Note that this does not
specify which celestial coordinate system to use, but is a general request that the two FrameSets
be inter-related using coordinates on the celestial sphere.

Of course, it may be that this request cannot be met because there may not be a celestial coordi-
nate system in both FrameSets. If this is likely to happen, we can supply a list of preferences, or
a domain search path, as the third argument to astConvert, such as the following:

cvt = astConvert(frameseta, framesetb, "SKY,PIXEL,GRID,");

Now, if the two FrameSets cannot be inter-related using the SKY domain, astConvert will
attempt to use the PIXEL domain instead. If this also fails, it will try the GRID domain. A blank
field in the domain search path (here indicated by the final comma) allows any Domain value to
be used. This can be employed as a last resort when all else has failed.

If astConvert succeeds in identifying a conversion, it will return a pointer to a FrameSet (§14.1)
in which the source and destination Frames are inter-connected by the required Mapping. In
this case, of course, these Frames will be the current Frames of the two FrameSets, but in all
other respects the returned FrameSet is the same as when converting between Frames.

Very importantly, however, astConvert may modify the FrameSets you are converting between.
It does this, in order to indicate which pairing of Frames was used to inter-relate them, by
changing the[Base|attribute for each FrameSet so that the Frame used in the pairing becomes its
base Frame (§13.4).

Finally, note that astConvert may also be used to convert between a FrameSet and a Frame,
or vice versa. If a pointer to a Frame is supplied for either the first or second argument, it will
behave like a FrameSet containing only a single Frame.

251f you find that how this ambiguity is resolved actually makes a difference to the conversion that results, then
you have probably constructed a FrameSet which lacks internal self-consistency. For example, you might have two
Frames representing indistinguishable coordinate systems but inter-related by a non-null

127 SUN/211.30 —Higher Level Operations on FrameSets

14.3 Example—Registering Two Images

Consider two images which have been calibrated by attaching FrameSets to them, such that the
base of each[FrameSet|corresponds to the raw data grid coordinates of each image (the
GRID domain of . Suppose, also, that these FrameSets contain an unknown number of
other Frames, representing alternative world coordinate systems. What we wish to do is register
these two images, such that we can transform from a position in the data grid of one into the
corresponding position in the data grid of the other. This is a very practical example because
images will typically be calibrated using FrameSets in precisely this way.

The first step will probably involve making a copy of both FrameSets (usinglastCopy—§4.13),
since we will be modifying them. Let “frameseta” and “framesetb” be pointers to these copies.
Since we want to convert between the base Frames of these FrameSets (i.e. their data grid
coordinates), the next step is to make these Frames current. This is simply done by inverting
both FrameSets, which interchanges their base and current Frames. [astInvert| will perform this
task:

astInvert(frameseta);
astInvert(framesetb);

To identify the required conversion, we now use supplying a suitable domain search
path with which we would like our two images to be registered:

cvt = astConvert(frameseta, framesetb, "SKY,PIXEL,GRID");
if (cvt == AST__NULL) {

<no conversion was possible>
} else {

<conversion was possible>

}

The effects of this are:

(1) astConvert first attempts to register the two images on the celestial sphere (i.e. using
the SKY domain). To do this, it searches for a celestial coordinate system, although not
necessarily the same one, attached to each image. If it finds a suitable pair of coordinate
systems, it then registers the images by matching corresponding positions on the sky.

(2) If this fails, astConvert next tries to match positions in the PIXEL domain (. If it
succeeds, the two images will then be registered so that their corresponding pixel positions
correspond. If the PIXEL domain is offset from the data grid (as typically happens in data
reduction systems which implement a “pixel origin”), then this will be correctly accounted
for.

(3) If this also fails, the GRID domain is finally used. This will result in image registration by
matching corresponding points in the data grids used by both images. This means they
will be aligned so that the first element their data arrays correspond.

(4) If all of the above fail, astConvert will return the value AST__NULL. Otherwise a pointer
to a FrameSet will be returned.

SUN/211.30 —Higher Level Operations on FrameSets 128

The resulting “cvt” FrameSet may then be used directly (§12.1) to convert between positions in
the data grid of the first image and corresponding positions in the data grid of the second image.

To determine which domain was used to achieve registration, we can use the fact that the
attribute of each FrameSet is set by astConvert to indicate which intermediate Frames were used.
We can therefore simply invert either FrameSet (to make its base Frame become the current one)

and then enquire the value:

const char *domain;

astInvert(frameseta);
domain = astGetC(frameseta, "Domain");

If conversion was successful, the result will be one of the strings “SKY”, “PIXEL” or “GRID”.

14.4 Re-Defining a FrameSet Coordinate System

As discussed earlier (§13.4), an important application of a[FrameSet|is to allow coordinate system
information to be attached to entities such as images in order to calibrate them. In addition,
one of the main objectives of AST is to simplify the propagation of such information through
successive stages of data processing, so that it remains consistent with the associated image
data.

In such a situation, the FrameSet’s base would correspond with the image’s data grid
coordinates and its other Frames (if any) with the various alternative world coordinate systems
associated with the image. If the data processing being performed does not change the rela-
tionship between the image’s data grid coordinates and any of the associated world coordinate
systems, then propagation of the WCS information is straightforward and simply involves
copying the FrameSet associated with the image.

If any of these relationships change, however, then corresponding changes must be made to the
way Frames within the FrameSet are inter-related. By far the most common case occurs when
the image undergoes some geometrical transformation resulting in “re-gridding” on to another
data grid, but the same principles can be applied to any re-definition of a coordinate system.

To pursue the re-gridding example, we would need to modify our FrameSet to account for the
fact that the image’s data grid coordinate system (corresponding to the FrameSet’s base Frame)
has changed. Looking at the steps needed in detail, we might proceed as follows:

(1) Create a[Mapping|which represents the relationship between the original data grid coordi-
nate system and the new one.

(2) Obtain a Frame to represent the new data grid coordinate system (we could re-use the

original base Frame here, using|astGetFrame|to obtain a pointer to it).

(3) Add the new Frame to the FrameSet, related to the original base Frame by the new
Mapping. This Frame now represents the new data grid coordinate system and is correctly
related to all the other Frames present

26This is because any transformation to or from this new Frame must go via the base Frame representing the
original data grid coordinate system, which we assume was correctly related to all the other Frames present.

129 SUN/211.30 —Higher Level Operations on FrameSets
(4) Remove the original base Frame (representing the old data grid coordinate system).
(5) Make the new Frame the base Frame and restore the original current Frame.

The effect of these steps is to change the relationship between the base Frame and all the other
Frames present. It is as if a new Mapping has been interposed between the Frame we want to
alter and all the other Frames within the FrameSet (Figure [17).

Mapping Mapping

i)

FrameSet @ Base Frame
Current Frame

Figure 17: The effect of jastRemapFrame|is to interpose a Mapping between a nominated Frame
within a FrameSet and the remaining contents of the FrameSet. This effectively “re-defines” the
coordinate system represented by the affected Frame. It may be used to compensate (say) for
geometrical changes made to an associated image. The inter-relationships between all the other
Frames within the FrameSet remain unchanged.

Performing the steps above is rather lengthy, however, so the astRemapFrame function is
provided to perform all of these operations in one go. A practical example of its use is given

below (§14.5).

14.5 Example—Binning an Image

As an example of using [astRemapFrame} consider a case where the pixels of a 2-dimensional
image have been binned 2x2, so as to reduce the image size by a factor of two in each dimension.
We must now modify the associated to reflect this change to the image. Much the
same process would be needed for any other geometrical change the image might undergo.

We first set up a[Mapping|(a[WinMap|in this case) which relates the data grid coordinates in the
original image to those in the new one:

AstWinMap *winmap;
double inal 2]
double inb[2]

{ 0.5, 0.5 };
{ 2.5, 2.5 };

SUN/211.30 —Higher Level Operations on FrameSets 130

double outal[2] = { 0.5, 0.5 };
double outb[2] = { 1.5, 1.5 };
winmap = astWinMap(2, ina, inb, outa, outb, "");

Here, we have simply set up arrays containing the data grid coordinates of the bottom left
and top right corners of the first element in the output image (“outa” and “outb”) and the
corresponding coordinates in the input image (“ina” and “inb”). then creates a
WinMap which performs the required transformation. We do not need to know the size of the
image.

We can then pass this WinMap to astRemapFrame. This modifies the relationship between our
FrameSet’s base and the other Frames in the FrameSet, so that the base Frame represents
the data grid coordinate system of the new image rather than the old one:

AstFrameSet *frameset;

astRemapFrame(frameset, AST__BASE, winmap);

Any other coordinate systems described by the FrameSet, no matter how many of these there
might be, are now correctly associated with the new image.

14.6 Maintaining the Integrity of FrameSets

When constructing a you are provided with a framework into which you can place
any combination of Frames and Mappings that you wish. There are relatively few constraints
on this process and no checks are performed to see whether the FrameSet you construct makes
physical sense. It is quite possible, for example, to construct a FrameSet containing two identical
SkyFrames which are inter-related by a non-unit[Mappingl AST will not object if you do this,
but it makes no sense, because applying a non-unit Mapping to any set of celestial coordinates
cannot yield positions that are still in the original coordinate system. If you use such a FrameSet
to perform coordinate conversions, you are likely to get unpredictable results because the
information in the FrameSet is corrupt.

It is, of course, your responsibility as a programmer to ensure the validity of any information
which you insert into a FrameSet. Normally, this is straightforward and simply consists of
formulating your problem correctly (a diagram can often help to clarify how coordinate systems
are inter-related) and writing the appropriate bug-free code to construct the FrameSet. However,
once you start to modify an existing FrameSet, there are new opportunities for corrupting it!

Consider, for example, a FrameSet whose current [Framelis a|[SkyFramel We can set a new value
for this SkyFrame’s attribute simply by using [astSet|on the FrameSet, as follows:

astSet(frameset, "Equinox=J2010");

The effect of this will be to change the celestial coordinate system which the current Frame
represents. You can see, however, that this has the potential to make the FrameSet corrupt

131 SUN/211.30 —Higher Level Operations on FrameSets

unless corresponding changes are also made to the Mapping which relates this SkyFrame to
the other Frames within the FrameSet. In fact, it is a general rule that any change to a FrameSet
which affects its current Frame can potentially require corresponding changes to the FrameSet’s
Mappings in order to maintain its overall integrity.

Fortunately, once you have stored valid information in a FrameSet, AST will look after these
details for you automatically, so that the FrameSet’s integrity is maintained. In the example
above, it would do this by appropriately re-mapping the current Frame (as if astRemapFrame|
had been used—§14.4) in response to the use of astSet. One way of illustrating this process is as
follows:

AstSkyFrame *skyframe;

skyframe = astSkyFrame("");
frameSet = astFrameSet(skyframe);
astAddFrame(frameset, 1, astUnitMap(2, ""), skyframe);

This constructs a trivial FrameSet whose base and current Frames are both the same SkyFrame
connected by a You can think of this as a “pipe” connecting two coordinate systems.
At present, these two systems represent identical ICRS coordinates, so the FrameSet implements
a unit Mapping. We can change the coordinate system on the current end of this pipe as follows:

astSet(frameset, "System=Ecliptic, Equinox=J2010");

and the Mapping which the FrameSet implements would change accordingly. To change the
coordinate system on the base end of the pipe, we might use:

astInvert(frameset);
astSet(frameset, "System=Galactic");
astInvert(frameset);

The FrameSet would then convert between galactic and ecliptic coordinates.

Note that astSet is not the only function which has this effect: fastClear|behaves similarly, as also
does (§7.9). If you need to circumvent this mechanism for any reason, this can
be done by going behind the scenes and obtaining a pointer directly to the Frame you wish to
modify. Consider the following, for example:

skyframe = astGetFrame(frameset, AST__CURRENT);
astSet(skyframe, "Equinox=J2010");
skyframe = astAnnul(skyframe);

Here, astSet is applied to the SkyFrame pointer rather than the FrameSet pointer, so the usual
checks on FrameSet integrity do not occur. The SkyFrame’s Equinox attribute will therefore
be modified without any corresponding change to the FrameSet’s Mappings. In this case you
must take responsibility yourself for maintaining the FrameSet’s integrity, perhaps through
appropriate use of astRemapFrame.

SUN/211.30 —Higher Level Operations on FrameSets

14.7 Merging FrameSets

132

As well as adding individual Frames to a[FrameSet] (§13.3), it is also possible to add complete
sets of inter-related Frames which are contained within another FrameSet. This, of course,

corresponds to the process of merging two FrameSets (Figure|18).

Mappmg

Mappmg

New
Mapping
Old Current Frame

Mappmg

Mappmg

e e e e e e e e e e e e e e e e e e e

Base Frame

Frame 3

FrameSet A

Fl‘ame 1 Old Base Frame

Frame 3

Figure 18: Two FrameSets in the process of being merged using FrameSet B
is being added to FrameSet A by supplying a new [Mapping|which inter-relates a nominated
in A (here number 1) and the current Frame of B. In the merged FrameSet, the Frames
contributed by B will be re-numbered to become Frames 4, 5 and 6. The base Frame will remain
unchanged, but the current Frame of B becomes the new current Frame. Note that FrameSet B

itself is not altered by this process.

This process is performed by adding one FrameSet to another using astAddFrame, in much the
same manner as when adding a new Frame to an existing FrameSet (§13.3). It is simply a matter

133 SUN/211.30 —Higher Level Operations on FrameSets

of providing a FrameSet pointer, instead of a Frame pointer, for the 4th argument. In performing
the merger you must, as usual, supply a Mapping, but in this case the Mapping should relate the
current Frame of the FrameSet being added to one of the Frames already present. For example,
you might perform the merger shown in Figure|18|as follows:

AstMapping *mapping;

astAddFrame(frameseta, 1, mapping, framesetb);

The Frames acquired by “frameseta” from the FrameSet being added (“framesetb”) are re-
numbered so that they retain their original order and follow on consecutively after the Frames
that were already present, whose indices remain unchanged. The base Frame of “frameseta”
remains unchanged, but the current Frame of “framesetb” becomes its new current Frame. All
the inter-relationships between Frames in both FrameSets remain in place and are preserved in
the merged FrameSet.

Note that while this process modifies the first FrameSet (“frameseta”), it leaves the original
contents of the one being added (“framesetb”) unchanged.

SUN/211.30 —Higher Level Operations on FrameSets 134

135 SUN/211.30 —Saving and Restoring Objects (Channels)

15 Saving and Restoring Objects (Channels)

Facilities are provided by the AST library for performing input and output (I/O) with any kind
of This means it is possible to write any Object into various external representations
for storage, and then to read these representations back in, so as to restore the original Object.
Typically, an Object would be written by one program and read back in by another.

We refer to “external representations” in the plural because AST is designed to function inde-
pendently of any particular data storage system. This means that Objects may need converting
into a number of different external representations in order to be compatible with (say) the
astronomical data storage system in which they will reside.

In this section, we discuss the basic I/O facilities which support external representations based
on a textual format referred to as the AST “native format”. These are implemented using a new
kind of Object—a We will examine later how to use other representations, based on an
XML format or on the use of FITS headers, for storing Objects. These are implemented using

more specialised forms of Channel called (§18) and (§16).
15.1 The Channel Model

The best way to start thinking about a is like a C file stream, and to think of the process
of creating a Channel as that of opening a file and obtaining a FILE pointer. Subsequently, you
can read and write Objects via the Channel.

7

This analogy is not quite perfect, however, because a Channel has, in principle, two “files”
attached to it. One is used when reading, and the other when writing. These are termed the
Channel’s source and sink respectively. In practice, the source and sink may both be the same, in
which case the analogy with the C file stream is correct, but this need not always be so. It is not
necessarily so with the basic Channel, as we will now see (§15.2).

15.2 Creating a Channel

The process of creating a[Channel|is straightforward. As you might expect, it uses the constructor
function

#include "star/ast.h"
AstChannel *channel;

channel = astChannel(NULL, NULL, "");

The first two arguments to astChannel specify the external source and sink that the Channel
is to use. There arguments are pointers to C functions and we will examine their use in more

detail later (§15.13|and §15.14).

In this very simple example we have supplied NULL pointers for both the source and sink
functions. This requests the default behaviour, which means that textual input will be read from
the program’s standard input stream (typically, this means your keyboard) while textual output

SUN/211.30 —Saving and Restoring Objects (Channels) 136

will go to the standard output stream (typically appearing on your screen). On UNIX systems,
of course, either of these streams can easily be redirected to files. This default behaviour can

be changed by assigning values to the Channel’s and/or attributes. These
attributes specify the paths to text files that are to be used in place of the standard input and

output streams.

15.3 Writing Objects to a Channel

The process of saving Objects is very straightforward. You can simply write any [Object{to a

using the function, as follows:

int nobj;
AstObject *object;

nobj = astWrite(channel, object);

The effect of this will be to produce a textual description of the Object which will appear, by
default, on your program’s standard output stream. Any class of Object may be converted into
text in this way.

astWrite returns a count of the number of Objects written. Usually, this will be one, unless the
Object supplied cannot be represented. With a basic Channel all Objects can be represented,
so a value of one will always be returned unless there has been an error. We will see later,
however, that more specialised forms of Channel may impose restrictions on the kind of Object
you can write (§17.2). In such cases, astWrite may return zero to indicate that the Object was not
acceptable.

15.4 Reading Objects from a Channel

Before discussing the format of the output produced above (, let us consider how to read
it back, so as to reconstruct the original Naturally, we would first need to save the
output in a file. We can do that either by using the attribute, or (on UNIX systems), by
redirecting standard output to a file using a shell command like:

programl >file

Within a subsequent program, we can read this Object back in by using the function,
having first created a suitable

object = astRead(channel);

By default, this function will read from the standard input stream (the default source for a basic
Channel), so we would need to ensure that our second program reads its input from the file in
which the Object description is stored. On UNIX systems, we could again use a shell redirection
command such as:

program2 <file

Alternatively, we could have assigned a value to the SinkFile attribute before invoking astRead.

137 SUN/211.30 —Saving and Restoring Objects (Channels)

15.5 Saving and Restoring Multiple Objects

I/0 operations performed on a basic are sequential. This means that if you write more
than one to a Channel, each new Object’s textual description is simply appended to the
previous one. You can store any number of Objects in this way, subject only to the storage space
you have available.

After you read an Object back from a basic Channel, the Channel is “positioned” at the end
of that Object’s textual description. If you then perform another read, you will read the next
Object’s textual description and therefore retrieve the next Object. This process may be repeated
to read each Object in turn. When there are no more Objects to be read, [astRead| will return the
value AST__NULL to indicate an end-of-file.

15.6 Validating Input

The pointer returned by [astRead)] (§15.4) could identify any class of [Object}—this is determined

entirely by the external data being read. If it is necessary to test for a particular class (say a
[Frame), this may be done as follows using the appropriate member of the[astlsA <Class>|family
of functions:

int ok;

ok = astIsAFrame(object);

Note, however, that this will accept any Frame, so would be equally happy with a basic Frame
ora An alternative validation strategy would be to obtain the value of the Object’s
attribute and then test this character string, as follows:

#include <string.h>

ok = !strcmp(astGetC(object, "Class"), "Frame");

This would only accept a basic Frame and would reject a SkyFrame.

15.7 Storing an ID String with an Object

Occasionally, you may want to store a number of Objects and later retrieve them and use each
for a different purpose. If the Objects are of the same class, you cannot use the attribute
to distinguish them when you read them back (c.f. §15.6). Although relying on the order in
which they are stored is a possible solution, this becomes complicated if some of the Objects are
optional and may not always be present. It also makes extending your data format in future
more difficult.

To help with this, every AST has an[[D|attribute and an attribute, both of which
allows you, in effect, to attach a textual identification label to it. You simply set the ID or Ident
attribute before writing the Object:

SUN/211.30 —Saving and Restoring Objects (Channels) 138

astSet(object, "ID=Calibration");
nobj = astWrite(channel, object);

You can then test its value after you read the Object back:

object = astRead(channel);

if (!strcmp(astGetC(object, "ID"), "Calibration")) {
<the Calibration Object has been read>

} else {
<some other Object has been read>

}

The only difference between the ID and Ident attributes is that the ID attribute is unique to a
particular Object and is lost if, for example, you make a copy of the Object. The Ident attrubute,
on the other hand, is transferred to the new Object when a copy is made. Consequently, it is
safest to set the value of the ID attribute immediately before you perform the write.

15.8 The Textual Output Format

Let us now examine the format of the textual output produced by writing an [Object|to a basic
Channell (§15.3). To give a concrete example, suppose the Object in question is a

written out as follows:

AstSkyFrame *skyframe;

nobj = astWrite(channel, skyframe);

The output should then look like the following:

Begin SkyFrame # Description of celestial coordinate system
Title = "FK4 Equatorial Coordinates, no E-terms, Mean Equinox B1950.0, Epoch B1958.0"
Naxes = 2 # Number of coordinate axes
Domain = "SKY" # Coordinate system domain
Lbll = "Right Ascension" # Label for axis 1
Lbl2 = "Declination" # Label for axis 2
Unil = "hh:mm:ss.s" # Units for axis 1
Uni2 = "ddd:mm:ss" # Units for axis 2
Dirl =0 # Plot axis 1 in reverse direction (hint)
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
IsA Frame # Coordinate system description
System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation
Egnox = 1950 # Besselian epoch of mean equinox

End SkyFrame

139 SUN/211.30 —Saving and Restoring Objects (Channels)

You will notice that this output is designed both for a human reader, in that it is formatted, and
also to be read back by a computer in order to reconstruct the SkyFrame. In fact, this is precisely
the way that[astShow| works (§4.4), this function being roughly equivalent to the following use
of a Channel:

channel = astChannel(NULL, NULL, "");
(void) astWrite(channel, object);
channel = astAnnul(channel);

Some lines of the output start with a “#” comment character, which turns the rest of the line
into a comment. These lines will be ignored when read back in by They typically
contain default values, or values that can be derived in some way from the other data present, so
that they do not actually need to be stored in order to reconstruct the original Object. They are
provided purely for human information. The same comment character is also used to append
explanatory comments to most output lines.

It is not sensible to attempt a complete description of this output format because every class
of Object is potentially different and each can define how its own data should be represented.
However, there are some basic rules, which mean that the following common features will
usually be present:

(1) Each Object is delimited by matching “Begin” and “End” lines, which also identify the
class of Object involved.

7

(2) Within each Object description, data values are represented by a simple “keyword = value’
syntax, with one value to a line.

(3) Lines beginning “IsA” are used to mark the divisions between data belonging to different
levels in the class hierarchy (Appendix [A). Thus, “IsA [Frame]” marks the end of data
associated with the Frame class and the start of data associated with some derived class (a
SkyFrame in the above example). “IsA” lines may be omitted if associated data values are
absent and no confusion arises.

(4) Objects may contain other Objects as data. This is indicated by an absent value, with the
description of the data Object following on subsequent lines.

(5) Indentation is used to clarify the overall structure.

Beyond these general principles, the best guide to what a particular line of output represents
will generally be the comment which accompanies it together with a general knowledge of the
class of Object being described.

15.9 Controlling the Amount of Output

It is not always necessary for the output from [astWrite| (§15.3) to be human-readable, so a
[Channel| has attributes that allow the amount of detail in the output to be controlled.

The first of these is the integer attribute which controls the extent to which optional,
commented out, output lines are produced. By default, Full is zero, and this results in the
standard style of output (§15.8) where default values that may be helpful to humans are included.
To suppress these optional lines, Full should be set to —1. This is most conveniently done when
the Channel is created, so that:

SUN/211.30 —Saving and Restoring Objects (Channels) 140

channel = astChannel(NULL, NULL, "Full=-1");
(void) astWrite(channel, skyframe);
channel = astAnnul(channel);

would result in output containing only the essential information, such as:

Begin SkyFrame # Description of celestial coordinate system
Naxes = 2 # Number of coordinate axes
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
IsA Frame # Coordinate system description
System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation

End SkyFrame

In contrast, setting Full to 41 will result in additional output lines which will reveal every last
detail of the[Objectfs construction. Often this will be rather more than you want, especially for
more complex Objects, but it can sometimes help when debugging programs. This is how a

appears at this level of detail:

Begin SkyFrame # Description of celestial coordinate system
RefCnt =1 # Count of active Object pointers
Nobj =1 # Count of active Objects in same class

IsA Object # Astrometry Object
Nin = 2 # Number of input coordinates
Nout = 2 # Number of output coordinates
Invert = 0 # Mapping not inverted
Fud =1 # Forward transformation defined
Inv = 1 # Inverse transformation defined
Report =0 # Don’t report coordinate transformations

IsA Mapping # Mapping between coordinate systems
Title = "FK4 Equatorial Coordinates, no E-terms, Mean Equinox B1950.0, Epoch B1958.0"

Naxes = 2 # Number of coordinate axes

Domain = "SKY" # Coordinate system domain
Lbll = "Right Ascension" # Label for axis 1
Lbl2 = "Declination" # Label for axis 2
Syml = "RA" # Symbol for axis 1
Sym2 = "Dec" # Symbol for axis 2
Unil = "hh:mm:ss.s" # Units for axis 1
Uni2 = "ddd:mm:ss" # Units for axis 2
Digl =7 # Individual precision for axis 1
Dig2 =7 # Individual precision for axis 2
Digits =7 # Default formatting precision
Fmtl = "hms.1" # Format specifier for axis 1
Fmt2 = "dms" # Format specifier for axis 2
Dirl1 =0 # Plot axis 1 in reverse direction (hint)
Dir2 =1 # Plot axis 2 in conventional direction (hint)
Presrv =0 # Don’t preserve target axes
Permut =1 # Axes may be permuted to match

141

SUN/211.30 —Saving and Restoring Objects (Channels)

MinAx = 2 # Minimum number of axes to match
MaxAx = 2 # Maximum number of axes to match
MchEnd = O # Match initial target axes
Prml =1 # Axis 1 not permuted
Prm2 = 2 # Axis 2 not permuted
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
RefCnt = 1 # Count of active Object pointers
Nobj = 2 # Count of active Objects in same class
IsA Object # Astrometry Object
Label = "Angle on Sky" # Axis Label
Symbol = "delta" # Axis symbol
Unit = "ddd:mm:ss" # Axis units
Digits = 7 # Default formatting precision
Format = "dms" # Format specifier
Dirn =1 # Plot in conventional direction
IsA Axis # Coordinate axis
Format = "dms" # Format specifier
IsLat = 0 # Longitude axis (not latitude)
AsTime = O # Display values as angles (not times)
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
RefCnt = 1 # Count of active Object pointers
Nobj = 2 # Count of active Objects in same class
IsA Object # Astrometry Object
Label = "Angle on Sky" # Axis Label
Symbol = "delta" # Axis symbol
Unit = "ddd:mm:ss" # Axis units
Digits = 7 # Default formatting precision
Format = "dms" # Format specifier
Dirn =1 # Plot in conventional direction
IsA Axis # Coordinate axis
Format = "dms" # Format specifier
IsLat = 0 # Longitude axis (not latitude)
AsTime = O # Display values as angles (not times)

#

End SkyAxis

IsA Frame

Coordinate system description

System = "FK4-NO-E" # Celestial coordinate system type

Epoch = 1958
Egnox = 1950

Besselian epoch of observation
Besselian epoch of mean equinox

End SkyFrame

1510 Controlling Commenting

Another way of controlling output from a is via the boolean (integer) at-

tribute, which controls whether comments are appended to describe the purpose of each value.
Comment has the value 1 by default but, if set to zero, will suppress these comments. This is
normally appropriate only if you wish to minimise the amount of output, for example:

astSet(channel, "Full=-1, Comment=0");
nobj = astWrite(channel, skyframe);

SUN/211.30 —Saving and Restoring Objects (Channels) 142

might result in the following more compact output:

15.11

Begin SkyFrame
Naxes = 2
Ax1 =
Begin SkyAxis
End SkyAxis
Ax2 =
Begin SkyAxis
End SkyAxis
IsA Frame
System = "FK4-NO-E"
Epoch = 1958
End SkyFrame

Editing Textual Output

The safest advice about editing the textual output from jastWrite|(or|astShow] is “don’t!”"—unless
you know what you are doing.

Having given that warning, however, it is sometimes possible to make changes to the text, or
even to write entire descriptions from scratch, and to read the results back in to construct
new Objects. Normally, simple changes to numerical values are safest, but be aware that this is a
back door method of creating Objects, so you are on your own! There are a number of potential
pitfalls. In particular:

. is intended for retrieving data written by astWrite and not for reading data input

by humans. As such, the data validation provided is very limited and is certainly not
foolproof. This makes it quite easy to construct Objects that are internally inconsistent by
this means. In contrast, the normal programming interface incorporates numerous checks
designed to make it impossible to construct invalid Objects. You should not necessarily
think you have found a bug if your changes to an Object’s textual description fail to
produce the results you expected!

In many instances the names associated with values in textual output will correspond with
Object attributes. Sometimes, however, these names may differ from the attribute name.
This is mainly because of length restrictions imposed by other common external formats,
such as FITS headers. Some of the names used do not correspond with attributes at all.

It is safest to change single numerical or string values. Beware of changing the size or
shape of Objects (e.g. the number of axes in a [Frame). Often, these values must match
others stored elsewhere within the Object and changing them in a haphazard fashion will
not produce useful results.

Be wary about un-commenting default values. Sometimes this will work, but often these
values are derived from other Objects stored more deeply in the structure and the proper
place to insert a new value is not where the default itself appears.

143 SUN/211.30 —Saving and Restoring Objects (Channels)

15.12 Mixing Objects with other Text

By default, when you use to read from a basic|Channell (§15.4), it is assumed that you

are reading a stream of text containing only AST Objects, which follow each other end-to-end.
If any extraneous input data are encountered which do not appear to form part of the textual
description of an[Object} then an error will result. In particular, the first input line must identify
the start of an Object description, so you cannot start reading half way through an Object.

Sometimes, however, you may want to store AST Object descriptions intermixed with other
textual data. You can do this by setting the Channel’s boolean (integer) attribute to 1. This
will cause every read to skip over extraneous data until the start of a new AST Object description,
if any, is found. So long as your other data do not mimic the appearance of an AST Object
description, the two sets of data can co-exist.

For example, by setting Skip to 1, the following complete C program will read all the AST Objects
whose descriptions appear in the source of this document, ignoring the other text. is
used to display those found:

#include "star/ast.h"
main() {
AstChannel *channel;
AstObject *object;

channel = astChannel(NULL, NULL, "Skip=1");

while ((object = astRead(channel)) !'= AST__NULL) {
astShow(object);
object = astAnnul(object);

}

channel = astAnnul (channel);

15.13 Reading Objects from Files

Thus far, we have only considered the default behaviour of a[Channel|in reading and writing
Objects through a program’s standard input and output streams. We will now consider how to
access Objects stored in files more directly.

The simple approach is to use the [SinkFile|and [SourceFile|attributes of the Channel. For instance,
the following will read a pair of Objects from a text file called “fred.txt”:

astSet(channel, "SourceFile=fred.txt");
objl = astRead(channel);

obj2 = astRead(channel);

astClear(channel, "SourceFile");

Note, the act of clearing the attribute tells AST that no more Objects are to be read from the file
and so the file is then closed. If the attribute is not cleared, the file will remain open and further
Objects can be read from it. The file will always be closed when the Channel is deleted.

This simple approach will normally be sufficient. However, because the AST library is designed
to be used from more than one language, it has to be a little careful about reading and writing to

SUN/211.30 —Saving and Restoring Objects (Channels) 144

files. This is due to incompatibilities that may exist between the file I/O facilities provided by
different languages. If such incompatibilities prevent the above simple system being used, we
need to adopt a system that off-loads all file I/O to external code.

What this means in practice is that if the above simple approach cannot be used, you must
instead provide some simple C functions that perform the actual transfer of data to and from
files and similar external data stores. The functions you provide are supplied as the source

and/or sink function arguments to[astChannel| when you create a Channel (§15.2). An example
is the best way to illustrate this.

Consider the following simple function called Source. It reads a single line of text from a C input
stream and returns a pointer to it, or NULL if there is no more input:

#include <stdio.h>
#define LEN 200
static FILE *input_stream;

const char *Source(void) {

static char buffer[LEN + 2 1;

return fgets(buffer, LEN + 2, input_stream);
}

Note that the input stream is a static variable which we will also access from our main program.
This might look something like this (omitting error checking for brevity):

/* Open the input file. */
input_stream = fopen("infile.ast", "r");

/* Create a Channel and read an Object from it. */
channel = astChannel(Source, NULL, "");
object = astRead(channel);

/* Annul the Channel and close the file when done. */
channel = astAnnul(channel);
(void) fclose(input_stream);

Here, we first open the required input file, saving the resulting FILE pointer. We then pass a
pointer to our Source function as the first argument to astChannel when creating a new Channel.
When we read an [Object| from this Channel with [astRead]}, the Source function will be called to
obtain the textual data from the file, the end-of-file being detected when this function returns
NULL.

Note, if a value is set for the SourceFile attribute, the astRead function will ignore any source
function specified when the Channel was created.

15.14 Writing Objects to Files

As for reading, writing Objects to files can be done in two different ways. Again, the simple

approach is to use the attribute of the For instance, the following will write a
pair of Objects to a text file called “fred.txt”:

145 SUN/211.30 —Saving and Restoring Objects (Channels)

astSet(channel, "SinkFile=fred.txt");
nobj = astWrite(channel, objectl);
nobj = astWrite(channel, object2);
astClear(channel, "SinkFile");

Note, the act of clearing the attribute tells AST that no more output will be written to the file
and so the file is then closed. If the attribute is not cleared, the file will remain open and further
Objects can be written to it. The file will always be closed when the Channel is deleted.

If the details of the language’s I/O system on the computer you are using means that the above
approach cannot be used, then we can write a Sink function, that writes a line of output text to a
file, and use it in basically the same way as the Source function in the previous section (§15.13):

static FILE *output_stream;

void Sink(const char *line) {
(void) fprintf(output_stream, "%s\n", line);

}

Note that we must supply the final newline character ourselves.

In this case, our main program would supply a pointer to this Sink function as the second

argument to as follows:

/* Open the output file. */
output_stream = fopen("outfile.ast", "w");

/* Create a Channel and write an Object to it. */
channel = astChannel(Source, Sink, "");
nobj = astWrite(channel, object);

/* Annul the Channel and close the file when done. */
channel = astAnnul(channel);
(void) fclose(output_stream);

Note that we can specify a source and/or a sink function for the Channel, and that these may
use either the same file, or different files according to whether we are reading or writing. AST
has no knowledge of the underlying file system, nor of file positioning. It just reads and writes
sequentially. If you wish, for example, to reposition a file at the beginning in between reads and
writes, then this can be done directly (and completely independently of AST) using standard C
functions.

If an error occurs in your source or sink function, you can communicate this to the AST library
by setting its error status to any error value using[astSetStatus| (§4.15). This will immediately
terminate the read or write operation.

Note, if a value is set for the SinkFile attribute, the function will ignore any sink function
specified when the Channel was created.

SUN/211.30 —Saving and Restoring Objects (Channels) 146

15.15 Reading and Writing Objects to other Places

It should be obvious from the above (§15.13| and §15.14) that a [Channels source and sink
functions provide a flexible means of intercepting textual data that describes AST Objects as it
flows in and out of your program. In fact, you might like to regard a Channel simply as a filter
for converting AST Objects to and from a stream of text which is then handled by your source
and sink functions, where the real I/O occurs.

This gives you the ability to store AST Objects in virtually any data system, so long as you
can convert a stream of text into something that can be stored (it need no longer be text) and
retrieve it again. There is generally no need to retain comments. Other possibilities, such as
inter-process and network communication, could also be implemented via source and sink
functions in basically the same way.

147 SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans)

16 Storing AST Objects in FITS Headers (FitsChans)

A FITS header is a sequence of 80-character strings, formatted according to particular rules
defined by the Flexible Image Transport (FITS). FITqZ_7| is a widely-used standard for
data interchange in astronomy and has also been adopted as a data processing format in some
astronomical data reduction systems. The individual 80-character strings in a FITS header are
usually called cards or header cards (for entirely anachronistic reasons).

A sequence of FITS cards appears as a header at the start of every FITS data file, and sometimes
also at other points within it, and is used to provide ancillary information which qualifies or
describes the main array of data stored in the file. As such, FITS headers are prime territory for
storing information about the coordinate systems associated with data held in FITS files.

In this section, we will examine how to store information in FITS headers directly in the form of
AST Objects—a process which is supported by a specialised class of called a
Our discussion here will turn out to be a transitional step that emphasises the similarities
between a FitsChan and a Channel (. At the same time, it will prepare us for the next section
(, where we will examine how to use a FitsChan to tackle some of the more difficult problems
that FITS headers can present.

16.1 The Native FITS Encoding

As it turns out, we are not the first to have thought of storing WCS information in FITS headers.
In fact, the original FITS standard (1981 vintage) defined a set of header keywords for this
purpose which have been widely used, although they have proved too limited for many practical
purposes.

At the time of writing, a number of different ways of using FITS headers for storing WCS
information are in use, most (although not all) based on the original standard. We will refer to
these alternative ways of storing the information as FITS encodings but will defer a discussion of
their advantages and limitations until the next section (§17).

Here, we will examine how to store AST Objects directly in FITS headers. In effect, this defines
a new encoding, which we will term the native encoding. This is a special kind of encoding,
because not only does it allow us to associate conventional WCS calibration information with
FITS data, but it also allows any other information that can be expressed in terms of AST Objects
to be stored as well. In fact, the native encoding provides us with facilities roughly analogous
to those of the (§15)—i.e. alossless way of transferring AST Objects from program to
program—but based on FITS headers instead of free-format text.

16.2 The FitsChan Model

I/0 between AST Objects and FITS headers is supported by a specialised form of
called a A FitsChan contains a buffer which may hold any number, including zero, of
FITS header cards. This buffer forms a workspace in which you can assemble FITS cards and
manipulate them before writing them out to a file.

By default, when a FitsChan is first created, it contains no cards and there are five ways of
inserting cards into it:

27 http:/ /fits.gsfc.nasa.gov /

http://fits.gsfc.nasa.gov/

SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans) 148

(1) You may add cards yourself, one at a time, using|astPutFits| (§16.8).

(2) You may add cards yourself, supplying all cards concatenated into a single string, using
lastPutCards| (§16.9).

(3) You may write an AST to the FitsChan (using[astWrite]), which will have the effect
of creating new cards within the FitsChan which describe the Object (§16.5).

(4) You may assign a value to the attribute of the FitsChan. The value should be
the path to a text file holding a set of FITS header cards, one per line. When the SourceFile

value is set (using astSetC or [astSet), the file is opened and the headers copied from it into
the FitsChan. The file is then immediately closed.

(5) You may specify a source function which reads data from some external store of FITS
cards, just like the source associated with a basic Channel (§15.13). If you supply a source
function, it will be called when the FitsChan is created in order to fill it with an initial set

of cards (§16.14).

There are also four ways of removing cards from a FitsChan:

(1) You may delete cards yourself, one at a time, using|astDelFits| (§16.13).

(2) You may read an AST Object from the FitsChan (using[astRead), which will have the effect
of removing those cards from the FitsChan which describe the Object (§16.10).

(3) You may assign a value to the FitsChan’s attribute. When the FitsChan is deleted,
any remaining headers are written out to a text file with path equal to the value of the
SinkFile attribute.

(4) Alternatively, you may specify a sink function which writes data to some external store of
FITS cards, just like the sink associated with a basic Channel (§15.14). If you supply a sink
function, it will be called when the FitsChan is deleted in order to write out any FITS cards
that remain in it (§16.14). Note, the sink function is not called if the SinkFile attribute has
been set.

Note, in particular, that reading an AST Object from a FitsChan is destructive. That is, it deletes
the FITS cards that describe the Object. The reason for this is explained in §17.5

In addition to the above, you may also read individual cards from a FitsChan using the function
(which is not destructive). This is the main means of writing out FITS cards if you
have not supplied a sink function. astFindFits also provides a means of searching for particular
FITS cards (by keyword, for example) and there are other facilities for overwriting cards when

required (§16.13).

16.3 Creating a FitsChan

The constructor function, [astFitsChan) is straightforward to use:

149 SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans)

#include "star/ast.h"
AstFitsChan *fitschan;

fitschan = astFitsChan(NULL, NULL, "Encoding=NATIVE");

Here, we have omitted any source or sink functions by supplying NULL pointers for the first
two arguments. We have also initialised the FitsChan’s [Encoding]attribute to NATIVE. This
indicates that we will be using the native encoding (§16.I) to store and retrieve Objects. If this
was left unspecified, the default would depend on the FitsChan’s contents. An attempt is made
to use whatever encoding appears to have been used previously. For an empty FitsChan, the
default is NATIVE, but it does no harm to be sure.

16.4 Addressing Cards in a FitsChan

Because a contains an ordered sequence of header cards, a mechanism is needed for
addressing them. This allows you to specify where new cards are to be added, for example, or
which card is to be deleted.

This role is filled by the FitsChan'’s integer attribute, which gives the index of the current
card in the FitsChan. You can nominate any card you like to be current, simply by setting a new
value for the Card attribute, for example:

int icard;

astSetI(fitschan, "Card", icard)

where “icard” contains the index of the card on which you wish to operate next. Some functions
will update the Card attribute as a means of advancing through the sequence of cards, when
reading them for example, or to indicate which card matches a search criterion.

The default value for Card is one, which is the index of the first card. This means that you can
“rewind” a FitsChan to access its first card by clearing the Card attribute:

astClear(fitschan, "Card");

The total number of cards in a FitsChan is given by the integer [Ncard|attribute. This is a read-
only attribute whose value is automatically updated as you add or remove cards. It means you
can address all the cards in sequence using a loop such as the following:

int ncard;

ncard = astGetI(fitschan, "Ncard");

for (icard = 1; icard <= ncard; icard++) {
astSetI(fitschan, "Card", icard);
<access the current card>

SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans) 150

However, it is usually possible to write slightly tidier loops based on the function
described later (§16.6|and §16.13).

If you set the Card attribute to a value larger than Ncard, the FitsChan is regarded as being
positioned at its end-of-file. In this case there is no current card and an attempt to obtain a value
for the Card attribute will always return the value Ncard + 1. When a FitsChan is empty, it is
always at the end-of-file.

16.5 Writing Native Objects to a FitsChan

Having created an empty [FitsChan| (§16.3), you can write any AST n the native

encoding using the astWrite| function. Let us assume we are writing a [SkyFrame}*°|as follows:

AstSkyFrame *skyframe;
int nobj;

nobj = astWrite(fitschan, skyframe);

Since we have selected the native encoding (§16.1), there are no restrictions on the class of Object
we may write, so astWrite should always return a value of one, unless an error occurs. Unlike a
basic|Channel| (§15.3), this write operation will not produce any output from our program. The
FITS headers produced are simply stored inside the FitsChan.

After this write operation, the attribute will be updated to reflect the number of new
cards added to the FitsChan and the attribute will point at the card immediately after the
last one written. Since our FitsChan was initially empty, the Card attribute will, in this example,

point at the end-of-file (§16.4).

The FITS standard imposes a limit of 68 characters on the length of strings which may be stored
in a single header card. Sometimes, a description of an AST Object involves the use of strings
which exceed this limit (e.g. a title can be of arbitrary length). If this occurs, the long string
will be split over two or more header cards. Each “continuation” card will have the keyword
CONTINUE in columns 1 to 8, and will contain a space in column 9 (instead of the usual equals
sign). An ampersand (“&”) is appended to the end of each of the strings (except the last one) to
indicate that the string is continued on the next card.

Note, this splitting of long strings over several cards only occurs when writing AST Objects to
a FitsChan using the astWrite function and the native encoding. If a long string is stored in a
FitsChan using (for instance) the [astPutFits|or fastPutCards|function, it will simply be truncated.

16.6 Extracting Individual Cards from a FitsChan

To examine the contents of the after writing the above (§16.5), we must write

a simple loop to extract each card in turn and print it out. We must also remember to rewind the
FitsChan first, e.g. using[astClear] The following loop would do:

Z8More probably, you would want to write a but for purposes of illustration a SkyFrame contains a more
manageable amount of data.

151 SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans)

#include <stdio.h>
char card[81];

astClear(fitschan, "Card");
while (astFindFits(fitschan, "%f", card, 1)) (void) printf("%s\n", card);

Here, we have used the function to find a FITS card by keyword. It is given a
keyword template of “%f”, which matches any FITS keyword, so it always finds the current
card, which it returns. Its fourth argument is set to 1, to indicate that the attribute should
be incremented afterwards so that the following card will be found the next time around the
loop. astFindFits returns zero when it reaches the end-of-file and this terminates the loop.

If we were storing the FITS headers in an output FITS file instead of printing them out, we might
use a loop like this but replace “printf” with a suitable data storage operation. This would only
be necessary if we had not provided a sink function for the FitsChan (§16.14).

16.7 The Native FitsChan Output Format

If we print out the FITS header cards describing the we wrote earlier (§16.5), we
should obtain something like the following:

COMMENT AST +++++++++++++++++++++++++++++++++HHH+++++++++++HH -+ ++++++ AST

COMMENT AST Beginning of AST data for SkyFrame object AST
COMMENT AST oottt i e e e e AST
BEGAST_A= ’SkyFrame’ / Description of celestial coordinate system
NAXES_A = 2 / Number of coordinate axes

AX1_ A =2 ’ / Axis number 1

BEGAST_B= ’SkyAxis ’ / Celestial coordinate axis

ENDAST_A= ’>SkyAxis ’ / End of object definition

AX2_.A = ’ / Axis number 2

BEGAST_C= ’SkyAxis ’ / Celestial coordinate axis

ENDAST_B= ’SkyAxis ’ / End of object definition

ISA_A = ’Frame ’ / Coordinate system description

SYSTEM_A= ’FK4-NO-E’ / Celestial coordinate system type

EPOCH_A = 1958.0 / Besselian epoch of observation

ENDAST_C= ’SkyFrame’ / End of object definition

COMMENT AST oottt e e e e e AST
COMMENT AST End of AST data for SkyFrame object AST
COMMENT AST — - - mmm oo oo oo oo oo - AST

As you can see, this resembles the information that would be written to a basic to
describe the same SkyFrame (§15.8), except that it has been formatted into 80-character header
cards according to FITS conventions.

There are also a number of other differences worth noting:

(1) There is no unnecessary information about default values provided for the benefit of
the human reader. This is because the attribute for a [FitsChan|defaults to —1, thus
suppressing this information (c.f. §15.9). You can restore the information if you wish by
setting Full to 0 or 41, in which case additional COMMENT cards will be generated to
hold it.

SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans) 152

(2) The information is not indented, because FITS does not allow this. However, if you change
the Full attribute to 0 or +1, comments will be included that are intended to help break
up the sequence of headers and highlight its structure. This will probably only be of use
if you are attempting to track down a problem by examining the FITS cards produced in
detail.

(3) The FITS keywords which appear to the left of the “=" signs have additional characters
("_A”,”_B”, etc.) appended to them. This is done in order to make each keyword unique.

This last point is worth further comment and is necessary because the FITS standard only allows
for certain keywords (such as COMMENT and HISTORY) to appear more than once.
therefore appends an arbitrary sequence of two characters to each new keyword it generates in
order to ensure that it does not duplicate any already present in the FitsChan.

The main risk from not following this convention is that some software might ignore (say) all but
the last occurrence of a keyword before passing the FITS headers on. Such an event is unlikely,
but would obviously destroy the information present, so astWrite enforces the uniqueness of the
keywords it uses. The extra characters added are ignored when the information is read back.

As with a basic Channel, you can also suppress the comments produced in a FitsChan by

setting the boolean (integer) attribute to zero (§15.10). However, FITS headers are
traditionally generously commented, so this is not recommended.

16.8 Adding Individual Cards to a FitsChan

To insert individual cards into a [FitsChan| prior to reading them back as Objects for example,
you should use the |astPutFits| function. You can insert a card in front of the current one as
follows:

astPutFits(fitschan, card, 0);

where the third argument of zero indicates that the current card should not be overwritten. Note
that facilities are not provided by AST for formatting the card contents.

After inserting a card, the FitsChan’s attribute points at the original Card, or at the
end-of-file if the FitsChan was originally empty. Entering a sequence of cards is therefore
straightforward. If “cards” is an array of pointers to strings containing FITS header cards
and “ncards” is the number of cards, then a loop such as the following will insert the cards in
sequence into a FitsChan:

#define MAXCARD 100
char *cards[MAXCARD 1];
int ncard;

for (icard = 0; icard < ncard; icard++) astPutFits(fitschan, cards[icard], 0);

The string containing a card need not be null terminated if it is at least 80 characters long (we
have not allocated space for the strings themselves in this brief example).

Note that astPutFits enforces the validity of a FitsChan by rejecting any cards which do not
adhere to the FITS standard. If any such cards are detected, an error will result.

153 SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans)

16.9 Adding Concatenated Cards to a FitsChan

If you have all your cards concatenated together into a single long string, each occupying
80 characters (with no delimiters), you can insert them into a in a single call using
This call first empties the supplied FitsChan of any existing cards, then inserts
the new cards, and finally rewinds the FitsChan so that a subsequent call to[astRead| will start
reading from the first supplied card. The astPutCards function uses internally to
interpret and store each individual card, and so the caveats in should be read.

For instance, if you are using the CFITSIO library for access to FITS files, you can use the
CFITSIO fits_hdr2str function to obtain a string suitable for passing to astPutCards:

if (!'fits_hdr2str(fptr, O, NULL, O, &header, &nkeys, &status))
fitschan = astFitsChan(NULL, NULL, "");
astPutCards(fitschan, header);
header = free(header);
wcsinfo = astRead(fitschan);

16.10 Reading Native Objects From a FitsChan

Once you have stored a FITS header description of an [Object|in a [FitsChan| using the native
encoding (§16.5), you can read it back using in much the same way as with a basic
[Channel| (§15.4). Similar comments about validating the Object you read also apply (§15.6). If
you have just written to the FitsChan, you must remember to rewind it first:

AstObject *object;

astClear(fitschan, "Card");
object = astRead(fitschan);

An important feature of a FitsChan is that read operations are destructive. This means that
if an Object description is found, it will be consumed by astRead which will remove all the
cards involved, including associated COMMENT cards, from the FitsChan. Thus, if you write
an Object to a FitsChan, rewind, and read the same Object back, you should end up with the
original FitsChan contents. If you need to circumvent this behaviour for any reason, it is a
simple matter to make a copy of a FitsChan using|astCopy]| (§4.13). If you then read from the
copy, the original FitsChan will remain untouched.

After a read completes, the FitsChan’s attribute identifies the card immediately following
the last card read, or the end-of-file of there are no more cards.

Since the native encoding is being used, any long strings involved in the object description will
have been split into two or more adjacent contuation cards when the Object was stored in the
header using function [astWrite] The astRead function reverses this process by concatenating any
such adjacent continuation cards to re-create the original long string.

SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans) 154

16.11 Saving and Restoring Multiple Objects in a FitsChan

When using the native FITS encoding, multiple Objects may be stored and all I/O operations
are sequential. This means that you can simply write a sequence of Objects to a After
each write operation, the attribute will be updated so that the next write appends the next

description to the previous one.

If you then rewind the FitsChan, you can read the Objects back in the original order. Reading
them back will, of course, remove their descriptions from the FitsChan (§16.10) but the behaviour
of the Card attribute is such that successive reads will simply return each Object in sequence.

The only thing that may require care, given that a FitsChan can always be addressed randomly
by setting its Card attribute, is to avoid writing one Object on top of another. For obvious
reasons, the Object descriptions in a FitsChan must remain separate if they are to make sense
when read back.

16.12 Mixing Native Objects with Other FITS Cards

Of course, any real FITS header will contain other information besides AST Objects, if only the
mandatory FITS cards that must accompany all FITS data. When FITS headers are read in from
a real dataset, therefore, any native AST descriptions will be inter-mixed with many other
cards.

Because this is the normal state of affairs, the boolean (integer) attribute for a
defaults to one. This means that when you read an Object From a FitsChan, any irrelevant cards
will simply be skipped over until the start of the next Object description, if any, is found. If you
start reading part way through an Object description, no error will result. The remainder of the
description will simply be skipped.

Setting Skip to zero will change this behaviour to resemble that of a basic [Channel| (§15.12),
where extraneous data are not permitted by default, but this will probably rarely be useful.

16.13 Finding and Changing Cards in a FitsChan

You can search for, and retrieve, particular cards in a by keyword, using the function
astFindFits| This performs a search, starting at the current card, until it finds a card whose
keyword matches the template you supply, or the end-of-file is reached.

If a suitable card is found, astFindFits optionally returns the card’s contents and then sets the
FitsChan’s attribute either to identify the card found, or the one following it. The way you
want the Card attribute to be set is indicated by the final boolean (int) argument to astFindFits.
A value of one is returned to indicate success. If a suitable card cannot be found, astFindFits
returns a value of zero to indicate failure and sets the FitsChan’s Card attribute to the end-of-file.

Requesting that the Card attribute be set to indicate the card that astFindFits finds is useful if
you want to replace that card with a new one, as in this example:

char newcard[81 1;

(void) astFindFits(fitschan, "AIRMASS", NULL, 0);
astPutFits(fitschan, newcard, 1);

155 SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans)

Here, astFindFits is used to search for a card with the keyword AIRMASS, with a NULL pointer
being given to indicate that we do not want the card’s contents returned. If the card is found,
then overwrites it with a new card. Otherwise, the Card attribute ends up pointing at
the end-of-file and the new card is simply appended to the end of the FitsChan.

A similar approach can be used to delete selected cards from a FitsChan using which
deletes the current card:

if (astFindFits(fitschan, "BSCALE", NULL, O)) astDelFits(fitschan);

This deletes the first card, if any, with the BSCALE keyword.

Requesting that astFindFits increments the Card attribute to identify the card following the one
found is more useful when writing loops. For example, the following loop extracts each card
whose keyword matches the template “CD%6d” (that is, “CD” followed by six decimal digits):

while (astFindFits(fitschan, "CD%6d", card, 1) {
<process the card’s contents>

}

For further details of keyword templates, see the description of astFindFits in Appendix

16.14 Source and Sink Functions for FitsChans

The use of source and sink functions with a[FitsChan|is optional. This is because you can always
arrange to explicitly fill a FitsChan with FITS cards (§16.8|and §16.9) and you can also extract
any cards that remain and write them out yourself (§16.6) before you delete the FitsChan.

If you choose to use these functions, however, they behave in a very similar manner to those
used by a[Channel| (§15.13]and §15.174). You supply pointers to these functions, as arguments to
the constructor function [astFitsChan|when you create the FitsChan (§16.3). The source function
is invoked implicitly at this point to fill the FitsChan with FITS cards and the FitsChan is then
rewound, so that the first card becomes current. The sink function is automatically invoked later,
when the FitsChan is deleted, in order to write out any cards that remain in it.

The only real difference between the source and sink functions for a FitsChan and a basic
Channel is that FITS cards are limited in length to 80 characters, so the choice of buffer size is
simplified. The “Source” and “Sink” functions in and could therefore be used
to access FITS headers stored in text files simply by changing LEN to be 80. If you were not
accessing a text file, however, appropriate changes to the I/O statements would be needed since
the separating newline characters would be absent. The details obviously depend on the format
of the file you are handling, which need not necessarily be a true FITS file.

SUN/211.30 —Storing AST Objects in FITS Headers (FitsChans) 156

157 SUN/211.30 —Using Foreign FITS Encodings

17 Using Foreign FITS Encodings

We saw in the previous section (§16) how to store and retrieve any kind of AST in a
FITS header by using a To achieve this, we set the FitsChan's attribute to
NATIVE. However, the Objects we wrote could then only be read back by other programs that
use AST.

In practice, we will also encounter FITS headers containing WCS information written by other
software systems. We will probably also need to write FITS headers in a format that can be
understood by these systems. Indeed, this interchange of data is one of the main reasons for the
existence of FITS, so in this section we will examine how to accommodate these requirements.

17.1 The Foreign FITS Encodings

As mentioned previously (§16.1), there are a number of conventions currently in use for storing
WCS information in FITS headers, which we call encodings. Here, we are concerned with those
encodings defined by software systems other than AST, which we term foreign encodings.

Currently, AST supports six foreign encodings, which may be selected by setting the
attribute of a[FitsChan|to one of the following (character string) values:

DSS

This encoding stores WCS information using the convention developed at the
Space Telescope Science Institute for the Digitised Sky Survey (DSS) astrometric
plate calibrations. DSS images which use this convention are widely available
and it is understood by a number of important and well-established astronomy
applications.

However, the calibration model used (based on a polynomial fit) is not eas-
ily applicable to other types of data and creating the polynomial coefficients
needed to calibrate your own images can prove difficult. For this reason, the
DSS encoding is probably best viewed as a “read-only” format. It is possible,
however, to read in WCS information using this encoding and then to write it
back out again, so long as only minor changes have been made.

FITS-WCS

This encoding is very important because it is based on a new FITS standard
which should, for the first time, address the problem of celestial coordinate sys-
tems in a proper manner, by considerably extending the original FITS standard.
The conventions used are described in a series of papers by E.W. Greisen,
M. Calabretta, et. al., often referred to as the “FITS-WCS papers”. They are
described athttp://fits.gsfc.nasa.gov/fits_wcs.html. Now that the first
two papers in this series have been agreed, this encoding should be understood
by any FITS-WCS compliant software and it is likely to be adopted widely for
FITS data in future. For details of the coverage of these conventions provided
by the FitsChan class, see Appendix

FITS-IRAF
This encoding is based on the conventions described in the document “World
Coordinate Systems Representations Within the FITS Format” by R.J. Hanisch

http://fits.gsfc.nasa.gov/fits_wcs.html

SUN/211.30 —Using Foreign FITS Encodings 158

and D.G. Wells, 1988@ It is employed by the IRAF data analysis facility, so its
use will facilitate data exchange with IRAF. This encoding is in effect a sub-set
of the current FITS-WCS encoding.

FITS-PC
This encoding is based on a previous version of the proposed new FITS WCS

and scaling. Versions of AST prior to V1.5 used this scheme for the FITS-WCS
encoding. As of V1.5, FITS-WCS uses CDi_j keywords insteadm The FITS-PC
encoding is included in AST V1.5 only to allow FITS-WCS data created with
previous versions to be read. It should not, in general, be used to create new
data sets.

FITS-AIPS
This encoding is based on the conventions described in the document “Non-
linear Coordinate Systems in AIPS” by Eric W. Greisen (revised 9th September,
1994)E| It is currently employed by the AIPS data analysis facility, so its use
will facilitate data exchange with AIPS. This encoding uses CROTAi and CDELTi
keywords to describe axis rotation and scaling.

FITS-AIPS++
Encodes coordinate system information in FITS header cards using the con-
ventions used by the AIPS++ project. This is an extension of FITS-AIPS which
includes some of the features of FITS-PC and FITS-IRAF.

For more detail about the above encodings, see the description of the Encoding attribute in
Appendix[C}

17.2 Limitations of Foreign Encodings

The foreign encodings available for storing WCS information in FITS headers have a number of
limitations when compared with the native encoding of AST Objects (§16). The main ones are:

(1) Only one class of AST [Object] the [FrameSet, may be represented using a foreign FITS
encoding. This should not come as a surprise, because the purpose of storing WCS
information in FITS headers is to attach coordinate systems to an associated array of data.
Since the FrameSet is the AST Object designed for the same purpose (§13.4), there is a
natural correspondence.

The way in which a FrameSet is translated to and from the foreign encoding also follows
from this correspondence. The FrameSet’s base identifies the data grid coordinates
of the associated FITS data. These are the same as FITS pixel coordinates, in which the first
pixel (in 2 dimensions) has coordinates (1,1) at its centre. Similarly, the current Frame of
the FrameSet identifies the FITS world coordinate system associated with the data.

(2) You may store a representation of only a single FrameSet in any individual set of FITS
header cards (i.e. in a single[FitsChanl) at one time. If you attempt to store more than one,

2 Available by ftp from fits.cv.nrao.edu /fits/documents/wcs/wcs88.ps.Z

30There are many other differences between the previous and the current FITS-WCS encodings. The keywords to
describe axis rotation and scaling is used purely as a label to identify the scheme.

31 Available by ftp from fits.cv.nrao.edu /fits/documents/wcs/aips27.ps.Z

159 SUN/211.30 —Using Foreign FITS Encodings

you may over-write the previous one or generate an invalid representation of your WCS
information.

This is mainly a consequence of the use of fixed FITS keywords by foreign encodings and
the fact that you cannot, in general, have multiple FITS cards with the same keyword.

(3) In general, it will not be possible to store every possible FrameSet that you might construct.
Depending on the encoding, only certain FrameSets that conform to particular restric-
tions can be represented and, even then, some of their information may be lost. See the
description of the attribute in Appendix|C|for more details of these limitations.

It should be understood that using foreign encodings to read and write information held in AST
Objects is essentially a process of converting the data format. As such, it potentially suffers from
the same problems faced by all such processes, i.e. differences between the AST data model and
that of the foreign encoding may cause some information to be lost. Because the AST model is
extremely flexible, however, any data loss can largely be eliminated when reading. Instead, this
effect manifests itself in the form of the above encoding-dependent restrictions on the kind of
AST Objects which may be written.

One of the aims of the AST library, of course, is to insulate you from the details of these foreign
encodings and the restrictions they impose. We will see shortly, therefore, how AST provides a
mechanism for determining whether your WCS information satisfies the necessary conditions
and allows you to make an automatic choice of which encoding to use.

17.3 Identifying Foreign Encodings on Input

Let us now examine the practicalities of extracting WCS information from a set of FITS header
cards which have been written by some other software system. We will pretend that our program
does not know which encoding has been used for the WCS information and must discover
this for itself. In order to have a concrete example, however, we will use the following set of
cards. These use the FITS-AIPS encoding and contain a typical mix of other FITS cards which
are irrelevant to the WCS information in which we are interested:

SIMPLE = T / Written by IDL: 30-Jul-1997 05:35:42.00
BITPIX = -32 / Bits per pixel.

NAXIS = 2 / Number of dimensions

NAXIS1 = 300 / Length of x axis.

NAXIS2 = 300 / Length of y axis.

CTYPE1 = ’GLON-ZEA’ / X-axis type

CTYPE2 = ’GLAT-ZEA’ / Y-axis type

CRVAL1 = -149.56866 / Reference pixel value

CRVAL2 = -19.758201 / Reference pixel value

CRPIX1 = 150.500 / Reference pixel

CRPIX2 = 150.500 / Reference pixel

CDELT1 = -1.20000 / Degrees/pixel

CDELT2 = 1.20000 / Degrees/pixel

CROTA1 = 0.00000 / Rotation in degrees.

SURVEY = ’COBE DIRBE’

BUNITS = ’MJy/sr °’ /

ORIGIN = ’CDAC ’ / Cosmology Data Analysis Center

TELESCOP= ’COBE ’

~

COsmic Background Explorer satellite

SUN/211.30 —Using Foreign FITS Encodings 160

INSTRUME= ’DIRBE ’ / COBE instrument [DIRBE, DMR, FIRAS]
PIXRESOL= 9 / Quad tree pixel resolution [6, 9]

DATE = 227/09/94° / FITS file creation date (dd/mm/yy)
DATE-MAP= ’16/09/94° / Date of original file creation (dd/mm/yy)
COMMENT COBE specific keywords

DATE-BEG= ’08/12/89° / date of initial data represented (dd/mm/yy)
DATE-END= ’25/09/90° / date of final data represented (dd/mm/yy)

The first step is to create a and insert these cards into it. If “cards” is an array of
pointers to character strings holding the header cards and “ncards” is the number of cards, this
could be done as follows:

#include "star/ast.h"
#define MAXCARD 100
AstFitsChan *fitschan;
char *cards[MAXCARD 1];
int icard, ncard;

fitschan = astFitsChan(NULL, NULL, "");
for (icard = 0; icard < ncard; icard++) astPutFits(fitschan, cards[icard 1, 0);

Note that we have not initialised the attribute of the FitsChan as we did in
when we wanted to use the native encoding. This is because we are pretending not to know
which encoding to use and want AST to determine this for us. By leaving the Encoding attribute
un-set, its default value will adjust to whichever encoding AST considers to be most appropriate,
according to the FITS header cards present. For details of how this choice is made, see the
description of the Encoding attribute in Appendix|C}

This approach has the obvious advantages of making our program simpler and more flexible
and of freeing us from having to know about the different encodings available. As a bonus, it
also means that the program will be able to read any new encodings that AST may support in
future, without needing to be changed.

At this point, we could enquire the default value of the Encoding attribute, which indicates
which encoding AST intends to use, as follows:

const char *encode;

encode = astGetC(fitschan, "Encoding");

The result of this enquiry would be the string “FITS-AIPS”. Note that we could also have set the
FitsChan’s Encoding attribute explicitly, such as when creating it:

fitschan = astFitsChan(NULL, NULL, "Encoding=FITS-AIPS");

If we tried to read information using this encoding (§17.4), but failed, we could then change the
encoding and try again. This would allow our program to take control of how the optimum
choice of encoding is arrived at. However, it would also involve using explicit knowledge of the
encodings available and this is best avoided if possible.

161 SUN/211.30 —Using Foreign FITS Encodings

17.4 Reading Foreign WCS Information from a FITS Header

Having stored a set of FITS header cards in a[FitsChan|and determined how the WCS information
is encoded (§17.3), the next step is to read an AST from the FitsChan using
We must also remember to rewind the FitsChan first, if necessary, such as by clearing its
attribute, which defaults to 1:

AstObject *wcsinfo;

astClear(fitschan, "Card");
wcsinfo = astRead(fitschan);

If the pointer returned by astRead is not equal to AST__NULL, then an Object has been read
successfully. Otherwise, there was either no information to read or the choice of FITS encoding

(§17.3) was inappropriate.
At this point you might like to indulge in a little data validation along the lines described in

§15.6, for example:

if (!strcmp(astGetC(wcsinfo, "Class"), "FrameSet")) {
<the Object is a FrameSet, so use it>

} else {
<something unexpected was read>

}

If a foreign encoding has definitely been used, then the Object will automatically be a
(§17.2), so this stage can be omitted. However, if the native encoding (§16.1) might have been
employed, which is a possibility if you accept the FitsChan’s default[Encoding|value, then any
class of Object might have been read and a quick check would be worthwhile.

If you used (§4.4) to examine the FrameSet which results from reading our example
FITS header (§17.3), you would find that its base describes the image’s pixel coordinate
system and that its current Frame is a representing galactic coordinates. These two

Frames are inter-related by aMapping|(actually a[CmpMap) which incorporates the effects of
various rotations, scalings and a “zenithal equal area” sky projection, so that each pixel of the

FITS image is mapped on to a corresponding sky position in galactic coordinates.

Because this FrameSet may be used both as a Mapping (§13.6) and as a Frame (§13.8), it may be
employed directly to perform many useful operations without any need to decompose it into its
component parts. These include:

e Transforming data grid (FITS pixel) coordinates into galactic coordinates and vice versa

(§13.6).

e Formatting coordinate values (either pixel or galactic coordinates) ready for display to a

user (§7.6|and §7.7).

e Enquiring about axis labels (or other axis information—§7.5) which might be used, for
example, to label columns of coordinates in a table (§7.4).

SUN/211.30 —Using Foreign FITS Encodings 162

e Aligning the image with another image from which a similar FrameSet has been obtained

(§14.3).

e Creating a (§21), which can be used to overlay a variety of graphical information
(including a coordinate grid—Figure[8) on the displayed image.

e Generating a new FrameSet which reflects any geometrical processing you perform on
the associated image data (§14.5). This new FrameSet could then be written out as FITS
headers to describe the modified image (§17.7).

If the FrameSet contains other Frames (apart from the base and current Frames), then you would
also have access to information about other coordinate systems associated with the image.

17.5 Removing WCS Information from FITS Headers—the Destructive Read

It is instructive at this point to examine the contents of a after we have read a
from it (§17.4). The following would rewind our FitsChan and display its contents:

#include <stdio.h>
char card[81];

astClear(fitschan, "Card");
while (astFindFits(fitschan, "%f", card, 1)) (void) printf("%s\n", card);

The output, if we started with the example FITS header in §17.3, might look like this:

SIMPLE = T / Written by IDL: 30-Jul-1997 05:35:42.00
BITPIX = -32 / Bits per pixel.

NAXIS = 2 / Number of dimensions

NAXIS1 = 300 / Length of x axis.

NAXIS2 = 300 / Length of y axis.

SURVEY = ’COBE DIRBE’

BUNITS = ’MJy/sr °

ORIGIN = ’CDAC ’ / Cosmology Data Analysis Center

TELESCOP= ’COBE ’ / COsmic Background Explorer satellite
INSTRUME= ’DIRBE ? / COBE instrument [DIRBE, DMR, FIRAS]
PIXRESOL= 9 / Quad tree pixel resolution [6, 9]

DATE = 227/09/94° / FITS file creation date (dd/mm/yy)
DATE-MAP= ’16/09/94° / Date of original file creation (dd/mm/yy)
COMMENT COBE specific keywords

DATE-BEG= ’08/12/89° / date of initial data represented (dd/mm/yy)
DATE-END= ’25/09/90° / date of final data represented (dd/mm/yy)

Comparing this with the original, you can see that all the FITS cards that represent WCS
information have been removed. They have effectively been “sucked out” of the FitsChan by
the destructive read that performs and converted into an equivalent FrameSet. AST
remembers where they were stored, however, so that if we later write WCS information back
into the FitsChan (§I7.7) they will, as far as possible, go back into their original locations. This
helps to preserve the overall layout of the FITS header.

163 SUN/211.30 —Using Foreign FITS Encodings

You can now see why astRead performs destructive reads. It is a mechanism for removing WCS
information from a FITS header while insulating you, as a programmer, from the details of the
encoding being used. It means you can ensure that all relevant header cards have been removed,
giving you a clean slate, without having to know which FITS keywords any particular encoding
uses.

Clearing this WCS information out of a FITS header is particularly important when considering
how to write new WCS information back after processing (§17.7). If any relevant FITS cards are
left over from the input dataset and find their way into the new processed header, they could
interfere with the new information being writtenEZI The destructive read mechanism ensures
that this doesn’t happen.

17.6 Propagating WCS Information through Data Processing Steps

One of the purposes of AST is to make it feasible to propagate WCS information through
successive stages of data processing, so that it remains consistent with the associated image data.
As far as possible, this should happen regardless of the FITS encoding used to store the original
WCS information.

If the data processing being performed does not change the relationship between image pixel
and world coordinates (whatever these may be), then propagation of the WCS information is
straightforward. You can simply copy the FITS header from input to output.

If this relationship changes, however, then the WCS information must be processed alongside
the image data and a new FITS header generated to represent it. In this case, the sequence of
operations within your program would probably be as follows:

(1) Read the image data and associated FITS header from the input dataset, putting the header

cards into a[FitsChan| (§17.3).

(2) Read an AST |Object}, a [FrameSet, from the FitsChan (typically using a foreign FITS
encoding—§17.4).

(3) Process the image data and modify the FrameSet accordingly (e.g. §14.5).

(4) Write the FrameSet back into the FitsChan (§17.7).
(5) Perform any other modification of FITS header cards your program may require.
(6) Write the FitsChan contents (i.e. processed header cards) and image data to the output

dataset.

In stage (2), the original WCS information will be removed from the FitsChan by a destructive
read. Later, in stage (4), new WCS information is written to replace it. This is the process which
we consider next (§17.7).

32This can happen if a particular keyword is present in the input header but is not used in the output header
(whether particular keywords are used can depend on the WCS information being stored). In such a case, the original
value would not be over-written by a new output value, so would remain erroneously present.

SUN/211.30 —Using Foreign FITS Encodings 164

17.7 Writing Foreign WCS Information to a FITS Header

Before we can write processed WCS information held in a back into a in

preparation for output, we must select the FITS encoding to use. Unfortunately, we cannot
simply depend on the default value of the attribute, as we did when reading the input
information (§17.3), because the destructive action of reading the WCS data (§17.5) will have
altered the FitsChan’s contents. This, in turn, will have changed the choice of default encoding,
probably causing it to revert to NATIVE.

We will return to the question of the optimum choice of encoding below. For now, let’s assume
that we want to use the same encoding for output as we used for input. Since we enquired what
that was before we read the input WCS data from the FitsChan (§17.3), we can now set that
value explicitly. We can also set the FitsChan's attribute back to 1 at the same time (because
the write will fail if the FitsChan is not rewound). can then be used to write the output
WCS information into the FitsChan:

int nobj;

astSet(fitschan, "Card=1, Encoding=Ys", encode);
nobj = astWrite(fitschan, wcsinfo);

The value returned by astWrite (assigned to “nobj”) indicates how many Objects were written.
This will either be 1 or zero. A value of zero is used to indicate that the information could not be
encoded in the form you requested. If this happens, nothing will have been written.

If your choice of encoding proves inadequate, the probable reason is that the changes you have
made to the FrameSet have caused it to depart from the data model which the encoding assumes.
AST knows about the data model used by each encoding and will attempt to simplify the
FrameSet you provide so as to fit into that model, thus relieving you of the need to understand
the details and limitations of each encoding yourselfF_j When this attempt fails, however, you
must consider what alternative encoding to use.

Ideally, you would probably want to try a sequence of alternative encodings, using an approach
such as the following:

/x 1. x/
astSet(fitschan, "Card=1, Encoding=FITS-IRAF");
if (lastWrite(fitschan, wcsinfo)) {

/* 2. %/
astSetC(fitschan, "Encoding", encode);
if ('astWrite(fitschan, wcsinfo)) {

/* 3. %/
astSet(fitschan, "Encoding=NATIVE");
(void) astWrite(fitschan, wcsinfo);

}

33Storing values in the FitsChan for FITS headers NAXIS1, NAXIS2, etc. (the grid dimensions in pixels), before
invoking astWrite can sometimes help to produce a successful write.

165 SUN/211.30 —Using Foreign FITS Encodings

That is:

(1) Start by trying the FITS-WCS encoding, on the grounds that FITS should provide a
universal interchange standard in which all WCS information should be expressed if
possible.

(2) If that fails, then try the original encoding used for the input WCS information, on the
grounds that you are at least not making the information any harder for others to read
than it originally was.

(3) If that also fails, then you are probably trying to store fairly complex information for which
you need the native encoding. Only other AST programs will then be able to read this
information, but these are probably the only programs that will be able to do anything
sensible with it anyway.

An alternative approach might be to encode the WCS information in several ways, since this
gives the maximum chance that other software will be able to read it. This approach is only
possible if there is no significant conflict between the FITS keywords used by the different
encodingﬁ Adopting this approach would simply require multiple calls to astWrite, rewinding
the FitsChan and changing its Encoding value before each one.

Unfortunately, however, there is a drawback to duplicating WCS information in the FITS header
in this way, because any program which modifies one version of this information and simply
copies the remainder of the header will risk producing two inconsistent sets of information. This
could obviously be confusing to subsequent software. Whether you consider this a worthwhile
risk probably depends on the use to which you expect your data to be put.

3410 practice, this means you should avoid mixing FITS-IRAF, FITS-WCS, FITS-AIPS, FITS-AIPS++ and FITS-PC
encodings since they share many keywords.

SUN/211.30 —Using Foreign FITS Encodings 166

167 SUN/211.30 —Storing AST Objects as XML (XmIChan)

18 Storing AST Objects as XML (XmlChan)

XML@ is fast becoming the standard format for passing structured data around the internet, and
much general purpose software has been written for tasks such as the parsing, editing, display
and transformation of XML data. The class (a specialised form of [Channel) provides
facilities for storing AST objects externally in the form of XML documents, thus allowing such
software to be used.

The primary XML format used by the XmlChan class is a fairly close transliteration of the
AST native format produced by the basic Channel class. Currently, there is no DTD or schema
defining the structure of data produced in this format by an XmlChan. The following is a native
AST representation of a simple 1-D (including comments and with the attribute set
to zero so that some default attribute values are included as extra comments):

Begin Frame # Coordinate system description
Title = "1-d coordinate system" # Title of coordinate system
Naxes = 1 # Number of coordinate axes
Domain = "SCREEN" # Coordinate system domain
Lbll = "Axis 1" # Label for axis 1
Unil = "cm" # Units for axis 1
Ax1 = # Axis number 1
Begin Axis # Coordinate axis
Unit = "cm" # Axis units
End Axis
End Frame

The corresponding XmlChan output would look like:

<Frame xmlns="http://www.starlink.ac.uk/ast/xml/"
desc="Coordinate system description">
<_attribute name="Title" quoted="true" value="1-d coordinate system"
desc="Title of coordinate system" default="true"/>
<_attribute name="Naxes" value="1" desc="Number of coordinate axes"/>
<_attribute name="Domain" quoted="true" value="SCREEN"
desc="Coordinate system domain"/>
<_attribute name="Lbll" quoted="true" value="Axis 1"
desc="Label for axis 1" default="true"/>
<_attribute name="Unil" quoted="true" value="cm"
desc="Units for axis 1" default="true"/>
<Axis label="Ax1" desc="Coordinate axis">
<!--Axis number 1-->
<_attribute name="Unit" quoted="true" value="cm" desc="Axis units"/>
</Axis>
</Frame>

Notes:

(1) The AST class name is used as the name for an XML element which contain a description
of an AST object.

Bhttp:/ /www.w3.org/ XML/

http://www.w3.org/XML/

SUN/211.30 —Storing AST Objects as XML (XmIChan) 168

(2) AST attributes are described by XML elements with the name “_attribute”. Unfortunately,
the word “attribute” is also used by XML to refer to a “name=value” pair within an
element start tag. So for instance, the “{Title]” attribute of the AST Frame object is described
within an XML element with name “_attribute” in which the XML attribute “name” has
the value “Title”, and the XML attribute “value” has the value “1-d coordinate system”.
The moral is always to be clear clear about the context (AST or XML) in which the word
attribute is being used!

(3) The XML includes comments both as XML attributes with the name “desc”, and as separate
comment tags.

(4) Elements which describe default values are identified by the fact that they have an XML
attribute called “default” set to the value “true”. These elements are ignored when being
read back into an XmlIChan.

(5) The outer-most XML element of an AST object will set the default namespace to http: //www
which will be inherited by all nested elements.

The XmlChan class changes the default value for the and Full attributes (inherited
from the base Channel class) to zero and -1, resulting in terse output by default. With the default
values for these attributes, the above XML is reduced to the following:

<Frame xmlns="http://www.starlink.ac.uk/ast/xml/">
<_attribute name="Naxes" value="1"/>
<_attribute name="Domain" quoted="true" value="SCREEN"/>
<Axis label="Ax1">
<_attribute name="Unit" quoted="true" value="cm"/>
</Axis>
</Frame>

The XmlIChan class uses the attributes very similarly to the Channel class. If Skip is zero
(the default) then an error will be reported if the text supplied by the source function does not
begin with an AST If Skip is non-zero, then initial text is skipped over without error
until the start of an AST object is found. this allows an AST object to be located within a larger
XML document.

18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions

The class also provides support for reading (but not writing) XML documents which
use a restricted subset of an early draft (V1.20) of the IVOA Space-Time-Coordinates XML
(STC-X) system. The version of STC-X finally adopted by the IVOA differs in several significant
respects from V1.20, and so the STC-X support currently provided by AST is mainly of historical
interest. Note, AST also supports the alternative “STC-S” linear string description of the STC

model (see §19).
STC-X V1.20 is documented at http://www.ivoa.net/Documents/WD/STC/STC-20050225. html),

and the current version is documented at http://www.ivoa.net/Documents/latest/STC-X.

html.

When an STC-X document is read using an XmlChan, the read operation produces an AST
of the[Std class, which is itself a subclass of Region] Specifically, each such Object will be

.starlink.ac.u

http://www.ivoa.net/Documents/WD/STC/STC-20050225.html
http://www.ivoa.net/Documents/latest/STC-X.html
http://www.ivoa.net/Documents/latest/STC-X.html

169 SUN/211.30 —Storing AST Objects as XML (XmIChan)

an instance of [StcSearchLocation] [StcResourceProfile} [StcCatalogEntryLocation| or [StcObsDat}

See the description of the XmIChan class and the XmIFormat]attribute for further
details.

SUN/211.30 —Storing AST Objects as XML (XmIChan) 170

171 SUN/211.30 —Reading and writing STC-S descriptions (StcsChans)

19 Reading and writing STC-S descriptions (StcsChans)

The[StcsChan|class provides facilities for reading and writing IVOA “STC-S” descriptions. STC-S
(seehttp://www.ivoa.net/Documents/latest/STC-S.html) is a linear string syntax that allows
simple specification of the STC metadata describing a region in an astronomical coordinate
system. AST supports a subset of the STC-S specification, allowing an STC-S description of
a region within an AST-supported astronomical coordinate system to be converted into an
equivalent AST object, and vice-versa. For further details, see the full description of the
StesChan class in Appendix D}

http://www.ivoa.net/Documents/latest/STC-S.html

SUN/211.30 —Reading and writing STC-S descriptions (StcsChans) 172

173 SUN/211.30 —Creating Your Own Private Mappings (IntraMaps)

20 Creating Your Own Private Mappings (IntraMaps)

20.1 The Need for Extensibility

However many[Mapping]classes are provided by AST, sooner or later you will want to transform
coordinates in some way that has not been foreseen. You might want to plot a graph in some
novel curvilinear coordinate system (perhaps you already have a WCS system in your software
and just want to use AST for its graphical capabilities). Alternatively, you might need to calibrate
a complex dataset (like an objective prism plate) where each position must be converted to
world coordinates with reference to calibration data under the control of an elaborate algorithm.

In such cases, it is clear that the basic pre-formed components provided by AST for building
Mappings are just not enough. What you need is access to a programming language. However,
if you write your own software to transform coordinate values, then it must be made available in
the form of an AST class (from which you can create Objects) before it can be used in conjunction
with other AST facilities.

At this point you might consider writing your own AST class, but this is not recommended. Not
only would the internal conventions used by AST take some time to master, but you might also
find yourself having to change your software whenever a new version of AST was released.
Fortunately, there is a much easier route provided by the class.

20.2 The IntraMap Model

To allow you to write your own Mappings, AST provides a special kind of Mapping]called an
An IntraMap is a sort of “wrapper” for a coordinate transformation function written
in C. You write this function yourself and then register it with AST. This, in effect, creates a new
class from which you can create Mappings (i.e. IntraMaps) which will transform coordinates in
whatever way your transformation function specifies.

Because IntraMaps are Mappings, they may be used in the same way as any other Mapping.
For instance, they may be combined in series or parallel with other Mappings using a
(§6), they may be inverted (§5.6), you may enquire about their attributes (§4.5), they may be
inserted into FrameSets (§13), etc. They do, however, have some important limitations of which
you should be aware before we go on to consider how to create them.

20.3 Limitations of IntraMaps

By now, you might be wondering why any other kind of is required at all. After all,
why not simply write your own coordinate transformation functions in C, wrap them up in
IntraMaps and do away with all the other Mapping classes in AST?

The reason is not too hard to find. Any transformation function you write is created solely by
you, so it is a private extension which does not form a permanent part of AST. If you use it to
calibrate some data and then pass that data to someone else, who has only the standard version
of AST, then they will not be able to interpret it.

Thus, while an is fine for use by you and your collaborators (wWho we assume have
access to the same transformation functions), it does not address the need for universal data

SUN/211.30 —Creating Your Own Private Mappings (IntraMaps) 174

exchange like other AST Mappings do. This is where the “Intra” in the class name “IntraMap”
comes from, implying private or internal usage.

For this reason, it is unwise to store IntraMaps in datasets, unless they will be used solely for
communication between collaborating items of software which share conventions about their
use. A private database describing coordinate systems on a graphics device might be an example
where IntraMaps would be suitable, because the data would probably never be accessed by
anyone else’s software. Restricting IntraMap usage to within a single program (i.e. never writing
it out) is, of course, completely safe.

If, by accident, an IntraMap should happen to escape as part of a dataset, then the unsuspecting
recipient is likely to receive an error message when they attempt to read the data. However, AST
will associate details of the IntraMap’s transformation function and its author (if provided) with
the data, so that the recipient can make an intelligent enquiry to obtain the necessary software if
this proves essential.

20.4 Writing a Transformation Function

The first stage in creating an is to write the coordinate transformation function. This

should have a calling interface like the function provided by AST (g.v.). Here is a
simple example of a suitable transformation function which transforms coordinates by squaring
them:

#include "star/ast.h"
#include <math.h>

void SqrTran(AstMapping *this, int npoint, int ncoord_in,
const double *ptr_in[], int forward, int ncoord_out,
double *ptr_out[]) {
int point, coord;
double x;

/* Forward transformation. */
if (forward) {
for (point = 0; point < npoint; point++) {
for (coord = 0; coord < ncoord_in; coord++) {
x = ptr_in[coord][point];
ptr_out[coord][point] = (x == AST__BAD) 7 AST__BAD : x * Xx;
}
}

/* Inverse transformation. */
} else {
for (point = 0; point < npoint; point++) {
for (coord = 0; coord < ncoord_in; coord++) {
x = ptr_in[coord][point];
ptr_out[coord][point] =
(x<0.0 || x==AST__BAD) 7 AST__BAD : sqrt(x);

175 SUN/211.30 —Creating Your Own Private Mappings (IntraMaps)

As you can see, the function comes in two halves which implement the forward and inverse
coordinate transformations. The number of points to be transformed (“npoint”) and the numbers
of input and output coordinates per point (“ncoord_in” and “ncoord_out”—in this case both
are assumed equal) are passed to the function. A pair of loops then accesses all the coordinate
values. Note that it is legitimate to omit one or other of the forward/inverse transformations
and simply not to implement it, if it will not be required. It is also permissible to require that the
numbers of input and output coordinates be fixed (e.g. at 2), or to write the function so that it
can handle arbitrary dimensionality, as here.

Before using an incoming coordinate, the function must first check that it is not set to the value
AST__BAD, which indicates missing data (§5.9). If it is, the same value is also assigned to any
affected output coordinates. The value AST__BAD is also generated if any coordinates cannot
be transformed. In this example, this can happen with the inverse transformation if negative
values are encountered, so that the square root cannot be taken.

There are very few restrictions on what a coordinate transformation function may do. For
example, it may freely perform I/O to access any external data needed, it may invoke other AST
facilities (but beware of unwanted recursion), etc. Typically, you may also want to pass informa-
tion to it via global variables. Remember, however, that whatever facilities the transformation
function requires must be available in every program which uses it.

Generally, it is not a good idea to retain context information within a transformation function.
That is, it should transform each set of coordinates as a single point and retain no memory of the
points it has transformed before. This is in order to conform with the AST model of a

If an error occurs within a transformation function, it should use the function (§4.15)
to set the AST status to an error value before returning. This will alert AST to the error, causing
it to abort the current operation. The error value AST__ITFER is available for this purpose, but
other values may also be used (e.g. if you wish to distinguish different types of error).

20.5 Registering a Transformation Function

Having written your coordinate transformation function, the next step is to register it with AST.

Registration is performed using[astIntraReg| as follows:

void SqrTran(AstMapping *, int, int, const double *[], int, int, double *[]);

const char *author, *contact, *purpose;

purpose = "Square each coordinate value";
author = "R.F. Warren-Smith & D.S. Berry";
contact = "http://www.starlink.ac.uk/cgi-bin/htxserver/sun211.htx/?xref_SqrTran";

astIntraReg("SqrTran", 2, 2, SqrTran, O, purpose, author, contact);

Note that you should also provide a function prototype to describe the transformation function
(the implementation of the function itself would suffice, of course).

The first argument to astIntraReg is a name by which the transformation function will be known.
This will be used when we come to create an and is case sensitive. We recommend

SUN/211.30 —Creating Your Own Private Mappings (IntraMaps) 176

that you use the actual function name here and make this sufficiently unusual that it is unlikely
to clash with any other functions in most people’s software.

The next two arguments specify the number of input and output coordinates which the transfor-
mation function will handle. These correspond with the and attributes of the IntraMap
we will create. Here, we have set them both to 2, which means that we will only be able to
create IntraMaps with 2 input and 2 output coordinates (despite the fact that the transformation
function can actually handle other dimensionalities). We will see later (§20.8) how to remove
this restriction.

The fourth argument should contain a set of flags which describe the transformation function in
a little more detail. We will return to this shortly (§20.7]& §20.10). For now, we supply a value of
zero.

The remaining arguments are character strings which document the transformation function,
mainly for the benefit of anyone who is unfortunate enough to encounter a reference to it in
their data which they cannot interpret. As explained above (§20.3), you should try and avoid
this, but accidents will happen, so you should always provide strings containing the following:

(1) A short description of what the transformation function is for.
(2) The name of the author.

(3) Contact details, such as an e-mail or WWW address.

The idea is that anyone finding an IntraMap in their data, but lacking the necessary transfor-
mation function, should be able to contact the author and make a sensible enquiry in order to
obtain it. If you expect many enquiries, you may like to set up a World Wide Web page and
use that instead (in the example above, we use the WWW address of the relevant part of this
document).

20.6 Creating an IntraMap
Once a transformation function has been registered, creating an from it is simple:

AstIntraMap *intramap;

intramap = astIntraMap("SqrTran", 2, 2, "");

We simply use the jastintraMap|constructor function and pass it the name of the transformation
function to use. This name is the same (case sensitive) one that we associated with the function

when we registered it using[astIntraReg| (§20.5).

You can, of course, register any number of transformation functions and select which one to use
whenever you create an IntraMap. You can also create any number of independent IntraMaps
using each transformation function. In this sense, each transformation function you register
effectively creates a new “sub-class” of IntraMap, from which you can create Objects just like
any other class. However, an error will occur if you attempt to use a transformation function
that has not yet been registered.

177 SUN/211.30 —Creating Your Own Private Mappings (IntraMaps)

The second and third arguments to astIntraMap are the numbers of input and output coordinates.
These define the and attributes for the IntraMap that is created and they must match
the corresponding numbers given when the transformation function was registered.

The final argument is the usual attribute initialisation string. You may set attribute values for an

IntraMap in exactly the same way as for any other (§4.6, and also see §20.9).

20.7 Restricted Implementations of Transformation Functions

You may not always want to use both the forward and inverse transformations when you create
an so it is possible to omit either from the underlying coordinate transformation
function. Consider the following, for example:

void Poly3Tran(AstMapping *this, int npoint, int ncoord_in,
const double *ptr_in[], int forward, int ncoord_out,
double *ptr_out[]) {
double x;
int point;

/* Forward transformation. */
for (point = 0; point < npoint; point++) {
x = ptr_in[O][point 1;
ptr_out[O][point] = (x == AST__BAD) ? AST__BAD :
6.18 + x * (0.12 + x * (-0.003 + x * 0.0000101));

This implements a 1-dimensional cubic polynomial transformation. Since this is somewhat
awkward to invert, however, we have only implemented the forward transformation. When
registering the function, this is indicated via the “flags” argument to jastIntraReg} as follows:

void Poly3Tran(AstMapping *, int, int, const double *[], int, int, double *[]);

astIntraReg("Poly3Tran", 1, 1, Poly3Tran, AST__NOINV,
purpose, author, contact)

Here, the fifth argument has been set to the flag value AST__NOINYV to indicate the lack of an
inverse. If the forward transformation were absent, we would use AST__NOFOR instead. Flag
values for this argument may be combined using a bitwise OR if necessary.

20.8 Variable Numbers of Coordinates

In our earlier examples, we have used a fixed number of input and output coordinates when
registering a coordinate transformation function. It is not necessary to impose this restriction,
however, if the transformation function can cope with a variable number of coordinates (as with
the example in §20.4). We indicate the acceptability of a variable number when registering the
transformation function by supplying the value AST__ANY for the number of input and/or
output coordinates, as follows:

SUN/211.30 —Creating Your Own Private Mappings (IntraMaps) 178

astIntraReg("SqrTran", AST__ANY, AST__ANY, SqrTran, O,
purpose, author, contact);

The result is that an may now be created with any number of input and output
coordinates. For example:

AstIntraMap *intramapl, *intramap2;

intramapl = astIntraMap("SqrTran", 1, 1, "");
intramap2 astIntraMap("SqrTran", 3, 3, "Invert=1");

It is possible to fix either the number of input or output coordinates (by supplying an explicit
number to astIntraReg]), but more subtle restrictions on the number of coordinates, such as
requiring thatNin|and [Nout|be equal, are not supported. This means that:

intramap = astIntraMap("SqrTran", 1, 2, "");

will be accepted without error, although the transformation function cannot actually handle
such a combination sensibly. If this is important, it would be worth adding a check within the
transformation function itself, so that the error would be detected when it came to be used.

20.9 Adapting a Transformation Function to Individual IntraMaps

In the examples given so far, our coordinate transformation functions have not made use of
the “this” pointer passed to them (which identifies the whose transformation we
are implementing). In practice, this will often be the case. However, the presence of the “this”
pointer allows the transformation function to invoke any other AST function on the IntraMap,
and this permits enquiries about its attributes. The transformation function’s behaviour can
therefore be modified according to any attribute values which are set. This turns out to be a
useful thing to do, so each IntraMap has a special [[ntraFlag|attribute reserved for exactly this
purpose.

Consider, for instance, the case where the transformation function has access to several alterna-
tive sets of internally-stored data which it may apply to perform its transformation. Rather than
implement many different versions of the transformation function, you may switch between
them by setting a value for the IntraFlag attribute when you create an instance of an IntraMap,
for example:

astIntraMap("MyTran", 2, 2, "IntraFlag=A");
astIntraMap("MyTran", 2, 2, "IntraFlag=B");

intramapl
intramap?2

Il

The transformation function may then enquire the value of the IntraFlag attribute (e.g. using
astGetC and passing it the “this” pointer) and use whichever dataset is required for that
particular IntraMap.

This approach is particularly useful when the number of possible transformations is unbounded
or not known in advance, in which case the IntraFlag attribute may be used to hold numerical
values encoded as part of a character string (effectively using them as data for the IntraMap). It

179 SUN/211.30 —Creating Your Own Private Mappings (IntraMaps)

is also superior to the use of a global switch for communication (e.g. setting an index to select the
“current” data before using the IntraMap), because it continues to work when several IntraMaps
are embedded within a more complex compound when you may have no control
over the order in which they are used.

20.10 Simplifying IntraMaps

A notable disadvantage of IntraMaps is that they are “black boxes” as far as AST is concerned.
This means that they have limited ability to participate in the simplification of compound

Mappings performed, e.g., by [astSimplify] (§6.7), because AST cannot know how they interact

with other Mappings. In reality, of course, they will often implement such specialised coordinate
transformations that the simplification possibilities will be rather limited anyway.

One important simplification, however, is the ability of a to cancel with its own inverse
to yield a unit Mapping (a[UnitMap). This is important because Mappings are frequently used
to relate a dataset to some external standard (a celestial coordinate system, for example). When
inter-relating two similar datasets calibrated using the same standard, part of the Mapping often
cancels, because it is applied first in one direction and then the other, effectively eliminating the
reference to the standard. This is often a useful simplification and can lead to greater efficiency.

Many transformations have this property of cancelling with their own inverse, but not necessar-
ily all. Consider the following transformation function, for example:

void MaxTran(AstMapping *this, int npoint, int ncoord_in,
const double *ptr_in[], int forward, int ncoord_out,
double *ptr_out[]) {
double hi, x;
int coord, point;

/* Forward transformation. */
if (forward) {
for (point = 0; point < npoint; point++) {
hi = AST__BAD;
for (coord = 0; coord < ncoord_in; coord++) {
x = ptr_in[coord][point];
if (x '= AST__BAD) {
if (x > hi || hi == AST__BAD) hi = x;
}
}
ptr_out[O][point] = hi;
}

/* Inverse transformation. */
} else {
for (coord = 0; coord < ncoord_out; coord++) {
for (point = 0; point < npoint; point++) {
ptr_out[coord][point] = ptr_in[O][point];
}

SUN/211.30 —Creating Your Own Private Mappings (IntraMaps) 180

This function takes any number of input coordinates and returns a single output coordinate
which is the maximum value of the input coordinates. Its inverse (actually a “pseudo-inverse”)
sets all the input coordinates to the value of the output coordinate

If this function is applied in the forward direction and then in the inverse direction, it does not
in general restore the original coordinate values. However, if applied in the inverse direction
and then the forward direction, it does. Hence, replacing the sequence of operations with an
equivalent UnitMap is possible in the latter case, but not in the former.

To distinguish these possibilities, two flag values are provided for use with jastIntraReg| to
indicate what simplification (if any) is possible. For example, to register the above transformation
function, we might use:

void MaxTran(AstMapping *, int, int, const double *[], int, int, double *[]);

astIntraReg("MaxTran", AST__ANY, 1, MaxTran, AST__SIMPIF,
purpose, author, contact)

Here, the flag value AST__SIMPIF supplied for the fifth argument indicates that simplification
is possible if the transformation is applied in the inverse direction followed by the forward
direction. To indicate the complementary case, the flag AST__SIMPFI would be used instead. If
both simplifications are possible (as with the SqrTran function in , then we would use the
bitwise OR of both values.

In practice, some judgement is usually necessary when deciding whether to allow simplification.
For example, seen in one light our SqrTran function (§20.4) does not cancel with its own inverse,
because squaring a coordinate value and then taking its square root can change the original
value, if this was negative. Therefore, replacing this combination with a UnitMap will change
the behaviour of a compound Mapping and should not be allowed. Seen in another light,
however, where the coordinates being processed are intrinsically all positive, it is a permissible
and probably useful simplification.

If such distinctions are ever important in practice, it is simple to register the same transformation
function twice with different flag values (use a separate name for each) and then use whichever

is appropriate when creating an

20.11 Writing and Reading IntraMaps

It is most important to realise that when you write an [[ntraMap] to a [Channel (§15.3), the
transformation function which it uses is not stored with it. To do so is impossible, because the
function has been compiled and loaded into memory ready for execution before AST gets to see
it. However, AST does store the name associated with the transformation function and various
details about the IntraMap itself.

This means that any program attempting to read the IntraMap (§15.4) cannot make use of it
unless it also has independent access to the original transformation function. If it does not
have access to this function, an error will occur at the point where the IntraMap is read and the

36Remember that “ptr_in” identifies the original “output” coordinates when applying the inverse transformation
and “ptr_out” identifies the original “input” coordinates.

181 SUN/211.30 —Creating Your Own Private Mappings (IntraMaps)

associated error message will direct the user to the author of the transformation function for
more information.

However, if the necessary transformation function is available, and has been registered before
the read operation takes place, then AST is able to re-create the original IntraMap and will do so.
Registration of the transformation function must, of course, use the same name (and, in fact, be
identical in most particulars) as was used in the original program which wrote the data.

This means that a set of co-operating programs which all have access to the same set of trans-
formation functions and register them in identical fashion (see §20.12|for how this can best be
achieved) can freely exchange data that contain IntraMaps. The need to avoid exporting such
data to unsuspecting third parties (§20.3) must, however, be re-iterated.

20.12 Managing Transformation Functions in Libraries

If you are developing a large suite of data reduction software, you may have a need to use
IntraMaps at various points within it. Very probably this will occur in unrelated modules which
are compiled separately and then stored in a library. Since the transformation functions required
must be registered before they can be used, this makes it difficult to decide where to perform
this registration, especially since any particular data reduction program may use an arbitrary
subset of the modules in your library.

To assist with this problem, AST allows you to perform the same registration of a transformation
function any number of times, so long as it is performed using an identical invocation of
on each occasion (i.e. all of its arguments must be identical). This means you do not
have to keep track of whether a particular function has already been registered but could, in
fact, register it on each occasion immediately before it is required (wherever that may be). In
order that all registrations are identical, however, it is recommended that you group them all
together into a single function, perhaps as follows:

void MyTrans(void) {

astIntraReg("MaxTran", AST__ANY, 1, MaxTran, AST__SIMPIF,
purpose, author, contact);

astIntraReg("Poly3Tran", 1, 1, Poly3Tran, AST__NOINV,
purpose, author, contact)

astIntraReg("SqrTran", 2, 2, SqrTran, O,
purpose, author, contact)

}

You can then simply invoke this function wherever necessary. It is, in fact, particularly important
to register all relevant transformation functions in this way before you attempt to read an
that might be (or contain) an {IntraMap|(§20.11). This is because you may not know in advance
which of these transformation functions the IntraMap will use, so they must all be available in
order to avoid an error.

SUN/211.30 —Creating Your Own Private Mappings (IntraMaps) 182

183 SUN/211.30 —Producing Graphical Output (Plots)

21 Producing Graphical Output (Plots)

Graphical output from AST is performed though an[Object|called a which is a specialised
form of A Plot does not represent the graphical content itself, but is a route through
which plotting operations, such as drawing lines and curves, are conveyed on to a plotting
surface to appear as visible graphics.

21.1 The Plot Model

When a is created, it is initialised by providing a[FrameSetjwhose base (as specified by
its attribute) is mapped linearly or logarithmically (as specified by the LogPlot attribues) on

to a plotting area. This is a rectangular region in the graphical coordinate space of the underlying
graphics system and becomes the new base Frame of the Plot. In effect, the Plot becomes
attached to the plotting surface, in rather the same way that a basic FrameSet might be attached
to (say) an image.

The current Frame of the Plot (derived from the current Frame of the FrameSet supplied) is
used to represent a physical coordinate system. This is the system in which plotting operations are
performed by your program. Every plotting operation is then transformed through the
which inter-relates the Plot’s current and base Frames in order to appear on the plotting surface.

An example may help here. Suppose we start with a FrameSet whose base Frame describes
the pixel coordinates of an image and whose current Frame describes a celestial (equatorial)
coordinate system. Let us assume that these two Frames are inter-related by a Mapping within
the FrameSet which represents a particular sky projection.

When a Plot is created from this FrameSet, we specify how the pixel coordinates (the base Frame)
maps on to the plotting surface. This simply corresponds to telling the Plot where we have
previously plotted the image data. If we now use the Plot to plot a line with latitude zero in our
physical coordinate system, as given by the current Frame, this line would appear as a curve
(the equator) on the plotting surface, correctly registered with the image.

There are a number of plotting functions provided, which all work in a similar way. Plotting
operations are transformed through the Mapping which the Plot represents before they appear
on the plotting surfacerI It is possible to draw symbols, lines, axes, entire grids and more in this
way.

21.2 Plotting Symbols

The simplest form of plotting is to draw symbols (termed markers) at a set of points. This is
performed by which is supplied with a set of physical coordinates at which to place
the markers:

#include "star/ast.h"
#define NCOORD 2
#define NMARK 10

37Like any FrameSet, a Plot can be used as a Mapping. In this case it is the inverse transformation which is used
when plotting (i.e. that which transforms between the current and base Frames).

SUN/211.30 —Producing Graphical Output (Plots) 184

double in[NCOORD][NMARK 1];
int type;

astMark(plot, NMARK, NCOORD, NMARK, in, type);

Here, NMARK specifies how many markers to plot and NCOORD specifies how many coor-
dinates are being supplied for each pointﬂ The array “in” supplies the coordinates and the
integer “type” specifies which type of marker to plot.

21.3 Plotting Geodesic Curves

There is no routine to draw a straight line, because any straight line in physical coordinates
can potentially turn into a curve in graphical coordinates. We therefore start by considering how
to draw geodesic curves. These are curves which trace the path of shortest distance between
two points in physical coordinates and are the basic drawing element in a Plot.

In many instances, the geodesic will, in fact, be a straight line, but this depends on the Plot’s
current If this represents a celestial coordinate system, for instance, it will be a great
circle (corresponding with the behaviour of the function which defines the metric
of the physical coordinate space). The geodesic will, of course, be transformed into graphics
coordinates before being plotted. A geodesic curve is plotted using as follows:

double start[NCOORD], finish[NCOORD];

astCurve(plot, start, finish);

Here, “start” and “finish” are arrays containing the starting and finishing coordinates of the
curve. The and astDistance functions can often be useful for computing these (§7.11).

If you need to draw a series of curves end-to-end (when drawing a contour line, for example),
then a more efficient alternative is to use This has the same effect as a sequence of
invocations of astCurve, but allows you to supply a whole set of points at one time. astPolyCurve
then joins them, in sequence, using geodesic curves:

#define NPOINT 100
double coords[NCOORD][NPOINT 1J;

astPolyCurve(plot, NPOINT, NCOORD, NPOINT, coords);

Here, NPOINT specifies how many points are to be joined and NCOORD specifies how many
coordinates are being supplied for each point. The array “coords” supplies the coordinates of
the points in the Plot’s physical coordinate system.

38Remember, the physical coordinate space need not necessarily be 2-dimensional, even if the plotting surface is.

185 SUN/211.30 —Producing Graphical Output (Plots)

21.4 Plotting Curves Parallel to Axes

As there is no function to draw a “straight line”, drawing axes and grid lines to represent
coordinate systems requires a slightly different approach. The problem is that for some coordi-
nate systems, these grid lines will not be geodesics, solastCurve|and [astPolyCurve|(§21.3) cannot
easily be used (you would have to resort to approximating grid lines by many small elements).
Lines of constant celestial latitude provide an example of this, with the exception of the equator
which is a geodesic.

The function allows these curves to be drawn, as follows:

int axis;
double length;

astGridLine(plot, axis, start, length);
Here, “axis” specifies which physical coordinate axis we wish to draw parallel to. The “start”
array contains the coordinates of the start of the curve and “length” specifies the distance to
draw along the axis in physical coordinate space.

21.5 Plotting Generalized Curves

We have seen how geodesic curves and grid lines can be drawn. The class includes another
method, [astGenCurve] which allows curves of any form to be drawn. The caller supplies a
Mapping|which maps offset along the curvelg_ql into the corresponding position in the current
Frame| of the Plot. astGenCurve, then takes care of Mapping these positions into graphics
coordinates. The choice of exactly which positions along the curve are to be used to define the
curve is also made by astGenCurve, using an adaptive algorithm which concentrates points
around areas where the curve is bending sharply or is discontinuous in graphics coordinates.

The class may be of particular use in this context since it allows you to code your own
Mappings to do any transformation you choose.

21.6 Clipping

Like many graphics systems, a allows you to clip the graphics you produce. This means that
plotting is restricted to certain regions of the plotting surface so that anything drawn outside
these regions will not appear. All Plots automatically clip at the edges of the plotting area
specified when the Plot is created. This means that graphics are ultimately restricted to the
rectangular region of plotting space to which you have attached the Plot.

In addition to this, you may also specify lower and upper limits on each axis at which clipping
should occur. This permits you to further restrict the plotting region. Moreover, you may attach
these clipping limits to any of the Frames in the Plot. This allows you to place restrictions on
where plotting will take place in either the physical coordinate system, the graphical coordinate
system, or in any other coordinate system which is described by a[Frame| within the Plot.

39normalized so that the start of the curve is at offset 0.0 and the end of the curve is at offset 1.0 - offset need not be

linearly related to distance.

SUN/211.30 —Producing Graphical Output (Plots) 186

For example, you could plot using equatorial coordinates and set up clipping limits in galactic
coordinates. In general, you could set up arbitrary clipping regions by adding a new Frame
to a Plot (in which clipping will be performed) and inter-relating this to the other Frames in a
suitable way.

Clipping limits are defined using the function, as follows:

#define NAXES 2
int iframe;
double 1lbnd[NAXES], ubnd[NAXES];

astClip(plot, iframe, lbnd, ubnd);

Here, the “iframe” value gives the index of the Frame within the Plot to which clipping is to be
applied, while “Ibnd” and “ubnd” give the limits on each axis of the selected Frame (NAXES is
the number of axes in this Frame).

You can remove clipping by giving a value of AST__NOFRAME for “iframe”.

21.7 Using a Plot as a Mapping

All Plots are also Mappings (just like the FrameSets from which they are derived), so can be
used to transform coordinates.

Like FrameSets, the forward transformation of a [Plotj will convert coordinates between the base
and current Frames (i.e. between graphical and physical coordinates). This would be useful if
you were (say) reading a cursor position in graphical coordinates and needed to convert this
into physical coordinates for display.

Conversely, a Plot’s inverse transformation converts between its current and base Frames (i.e.
from physical coordinates to graphical coordinates). This transformation is applied automatically
whenever plotting operations are carried out by AST functions. It may also be useful to apply it
directly, however, if you wish to perform additional plotting operations (e.g. those provided by
the native graphics system) at positions specified in physical coordinates.

There is, however, one important difference between using a and a Plot to transform
coordinates, and this is that clipping may be applied by a Plot (if it has been enabled using
lastClip}—§21.6). Any point which lies within the clipped region of a Plot will, when transformed,
yield coordinates with the value AST__BAD. If you wish to avoid this clipping, you should
extract the relevant from the Plot (using[astGetMapping) and use this, instead of the
Plot, to transform the coordinates.

21.8 Using a Plot as a Frame

Every [Plot]is also a[Frame] so can be used to obtain the values of Frame attributes such as a
axis Labels, axis Units, etc., which are typically used when displaying data and/or coordinates.
These attributes are, as for any derived from the current Frame of the Plot (§13.8).
They are also used automatically when using the Plot to plot coordinate axes and coordinate

grids (e.g. for labelling them—§21.12).

187 SUN/211.30 —Producing Graphical Output (Plots)

Because the current Frame of a Plot represents physical coordinates, any Frame operation
applied to the Plot will effectively be working in this coordinate system. For example, the
astDistance|and jastOffset|functions will compute distances and offsets in physical coordinate
space, while [astFormat|and [astNorm| will format physical coordinates in an appropriate way for
display.

21.9 Regions of Valid Physical Coordinates

When points in physical coordinate space are transformed by a[Plotjinto graphics coordinates for
plotting, they may not always yield valid coordinates, irrespective of any clipping being applied
(§21.6). To indicate this, the resulting coordinate values will be set to the value AST__BAD (§5.9).

There are a number of reasons why this may occur, but typically it will be because physical
coordinates only map on to a subset of the graphics coordinate space. This situation is commonly
encountered with all-sky projections where, typically, the celestial sphere appears, when plotted,
as a distorted shape (e.g. an ellipse) which does not entirely fill the graphics space. In some cases,
there may even be multiple regions of valid and invalid physical coordinates.

When plotting is performed via a Plot, graphical output will only appear in the regions of valid
physical coordinates. Nothing will appear where invalid coordinates occur. Such output is
effectively clipped. If you wish to plot in these areas, you must change coordinate system and
use, say, graphical coordinates to address the plotting surface directly.

21.10 Plotting Borders

The function is provided to draw a (line) border around your graphical output. With
most graphics systems, this would simply be a rectangular box around the plotting area. With
a however, this boundary follows the edge of each region containing valid, unclipped

physical coordinates (§21.9).

This means, for example, that if you were plotting an all-sky projection, this boundary would
outline the perimeter of the celestial sphere when projected on to your plotting surface. Of
course, if there is no clipping and all physical coordinates are valid, then you will get the
traditional rectangular box. astBorder requires only a pointer to the Plot:

int holes;

holes = astBorder(plot);

It returns a boolean (integer) value to indicate if any invalid or clipped physical coordinates were
found within the plotting area. If they were, it will draw around the valid unclipped regions
and return a value of one. Otherwise, it will draw a simple rectangular border and return zero.

21.11 Plotting Text

Using a to draw text involves supplying a string of text to be displayed and a position in
physical coordinates where the text is to appear. The position is transformed into graphical
coordinates to determine where the text should appear on the plotting surface. You must also

SUN/211.30 —Producing Graphical Output (Plots) 188

provide a 2-element “up” vector which gives the upward direction of the text in graphical
coordinates. This allows text to be drawn at any angle.

Plotting is performed by for example:

char text[21];
double pos[NCOORD];
float up[2] = { 0.0f, 1.0f };

astText(plot, text, pos, up, "TL");

Here, “text” contains the string to be drawn, “pos” is an array of physical coordinates and “up”
specifies the upward vector. In this case, the text will be drawn horizontally. The final argument
specifies the text justification, here indicating that the top left corner of the text should appear at
the position given.

Further control over the appearance of the text is possible by setting values for various Plot
attributes, for example Colour, Font and Size. Sub-strings within the displayed text can be given
different appearances, or turned into super-scripts or sub-scripts, by the inclusion of escape
sequences (see section within the supplied text string.

21.12 Plotting a Grid

The most comprehensive plotting function available is which can be used to draw la-
belled coordinate axes and, optionally, to overlay coordinate grids on the plotting area (Figure 8).
The routine is straightforward to use, simply requiring a pointer to the

astGrid(plot);

It will draw both linear and curvilinear axes and grids, as required by the particular Plot. The
appearance of the output can be modified in a wide variety of ways by setting various Plot
attributes. The Label attributes of the current[Frame|are displayed as the axis labels in the grid,
and the attribute as the plot title. Sub-strings within these strings can be given different
appearances, or turned into super-scripts or sub-scripts, by the inclusion of escape sequences
(see section within the Label attributes.

21.13 Controlling the Appearance of Sub-strings

Normally, each string of characters displayed using a [Plot|will be plotted so that all characters in
the string have the same font size, colour, efc., specified by the appropriate attributes of the Plot.
However, it is possible to include escape sequences within the text to modify the appearance of
sub-strings. sequences can be used to change, colour, font, size, width, to introduce extra
horizontal space between characters, and to change the base line of characters (thus allowing
super-scripts and sub-scripts to be created). See the entry for the Escape attribute in Appendix
for details.

As an example, if the character string “10\%~50%s70+0.5+" is plotted, it will be displayed as
“10%5” - that is, with a super-scripted exponent. The exponent text will be 70% of the size of

189 SUN/211.30 —Producing Graphical Output (Plots)

normal text (as determined by the Size attribute), and its baseline will be raised by 50% of the
height of a normal character.

Such escape sequences can be used in the strings assigned to textual attributes of the Plot (such
as the axis Labels), and may also be included in strings plotted using

The Format attribute for the class includes the “g” option which will cause escape
sequences to be included when formatting celestial positions so that super-script characters are
used as delimiters for the various fields (a super-script “h” for hours, “m” for minutes, etc).

Note, the facility for interpreting escape sequences is only available if the graphics wrapper
functions which provide the interface to the underlying graphics system support all the functions
included in the grf .h file as of AST V3.2. Older grf interfaces may need to be extended by the
addition of new functions before escape sequences can be interpretted.

21.14 Producing Logarithmic Axes

In certain situations you may wish for one or both of the plotted axes to be displayed logarithmi-
cally rather than linearly. For instance, you may wish to do this when using a [Plot|to represent
a spectrum of, say, flux against frequency. In this case, you can cause the frequency axis to be
drawn logarithmically simply by setting the boolean LogPlot attribute for the frequency axis to
a non-zero value. This causes several things to happen:

(1) The pping| between the base [Frame| of the Plot (which represents the underlyin
2 P ymng
graphics world coordinate system) and the base Frame of the supplied when the

Plot was created, is modified. By default, this mapping is linear on both axes, but setting
LogPlot non-zero for an axis causes the Mapping to be modified so that it is logarithmic
on the specified axis. This is only possible if the displayed section of the axis does not
include the value zero (otherwise the attempt to set a new value for LogPlot is ignored,and
it retains its default value of zero).

(2) The major tick marks drawn as part of the annotated coordinate grid are spaced logarith-
mically rather than linearly. That is, major axis values are chosen so that there is a constant
ratio between adjacent tick mark values. This ratio is constrained to be a power of ten. The
minor tick marks are drawn at linearly distributed points between the adjoining major
tick values. Thus if a pair of adjacent major tick values are drawn at axis values 10.0 and
100.0, minor ticks will be placed at 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0 and 90.0 (note only
8 minor tick marks are drawn).

(3) If possible, numerical axis labels are shown as powers of ten. This depends on the facilities
implemented by the graphics wrapper functions (see the next section). Extra functions
were introduced to this set of wrapper functions at AST V3.2 which enable super-scripts
and sub-scripts to be produced. Some older wrappers may not yet have implemented
these functiosn and this will result in axis labels being drawn in usual scientific or decimal
notation.

Whilst the LogPlot attribute can be used to control all three of the above facilities, it is possible to
control them individually as well. The LogTicks and LogLabel attributes control the behaviour
specified in items 2 and 3 above, but the default values for these attributes depend on the setting
of the LogPlot attribute. This means that setting LogPlot non-zero will swicth all three facilites
on, so long as zero values have not been assigned explicitly to LogTicks or LogLabel.

SUN/211.30 —Producing Graphical Output (Plots) 190

21.15 Choosing a Graphics Package

The class itself does not include any code for actually drawing on a graphics device.
Instead, it requires a set of functions to be provided which it uses to draw the required graphics.
These include functions to draw a straight line, draw a text string, etc. You may choose to
provide functions from your favorite graphics package, or you can even write your own! To
accomodate variations in the calling interfaces of different graphics packages, AST defines a
standard interface for these routines. If this interface differs from the interface provided by
your graphics package (which in general it will), then you must write a set of wrapper functions,
which provide the interface expected by AST but which then call functions from your graphics
package to provide the required functionality. AST comes with wrapper functions suitable for
the PGPLOT graphics package (see SUN/15).

There are two ways of indicating which wrapper functions are to be used by the Plot class:

(1) A file containing C functions with pre-defined names can be written and linked with
the application using options of the command. (see §3.3/and Appendix[E). AST
is distributed with such a file (called grf_pgplot.c) which calls PGPLOT functions to
implement the required functionality. This file can be used as a template for writing your
own.

(2) The method of the Plot class can be used to “register” wrapper functions at
run-time. This allows an application to switch between graphics systems if required.
Graphics functions registered in this way do not need to have the pre-defined names used
in the link-time method described above.

For details of the interfaces of the wrapper routines, see either the grf_pgplot. c file included in
the AST source distribution, or the reference documentation for the astGrfSet method.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_

191 SUN/211.30 —Compiling and Linking Software that Uses AST

22 Compiling and Linking Software that Uses AST

A small number of UNIX commands are provided by AST to assist with the process of building
software. A description of these can be found in Appendix|E|and their use is discussed here.
Note that in order to access these commands, the appropriate directory (normally “/star/bin”)
should be on your PATHP_U|

22.1 Accessing the “ast.h” Header File

The “ast.h” header file defines the external interface to the AST library, including all constants,
function prototypes, macros, etc.. It should usually be include into a C source file using the
statement:

#include "star/ast.h"

The header file is usually stored within the directory “/star/include/star” and should be located
using the usual compiler options for finding C include files, for instance:

cc prog.c -I/star/include -o prog

This is preferable to specifying the file’s absolute name within your software.

Note, the default installation procedure places a copy of “ast.h” into both “/star/include” and
“/star/include/star”. This is for the benefit of legacy software that expects to find the AST
header file in “/star/include” rather than “/star/include/star”. The installation of “ast.h” into
“/star/include” can be disabled at build-time by specifying the “~without-topinclude” option
when running the configure script.

22.2 Linking with AST Facilities

C programs which use AST facilities may be linked by including execution of the command
“last_Tink]" on the compiler command line. Thus, to compile and link a program called “prog”,
the following might be used:

cc prog.c -L/star/lib ‘ast_link‘ -o prog

Note the use of backward quote characters, which cause the “ast_link” command to be executed
and its result substituted into the compiler command. An alternative is to save the output from
“ast_link” in (say) a shell variable and use this instead. You may find this a little faster if you are
building software repeatedly during development.

Programs which use AST can also be linked in a number of other ways, depending on the
facilities they require. In the example above, we have used the default method which assumes
that the program will not be generating graphical output, so that no graphics libraries need

0Tf you have not installed AST in the usual location, then substitute the appropriate directory in place of “/star”
wherever it occurs.

SUN/211.30 —Compiling and Linking Software that Uses AST 192

be linked. If you need other facilities, then various switches can be applied to the “ast_link”
command in order to control the linking process.

For example, if you were producing graphical output using the PGPLOT graphics package, you
could link with the AST/PGPLOT interface by using the “—pgplot” switch with “ast_link”, as
followsf]

cc prog.c -L/star/lib ‘ast_link -pgplot¢ -o prog
See the “ast_link” command description in Appendix [E|for details of the options available.

22.3 Building ADAM Applications that Use AST

Users of Starlink’s ADAM) programming environment (SG/4) on UNIX should use the “alink”
command (SUN/144) to compile and link applications and can access the AST library by
including execution of the command “ast_link_adam[” on the command line, as follows:

alink adamprog.c ‘ast_link_adam‘

Note the use of backward quote characters.

By default, AST error messages produced by applications built in this way will be delivered
via the Starlink EMS Error Message Service (SSN/4) so that error handling by AST is consistent
with the inherited status/error handling normally used in Starlink software.

Switches may be given to the “ast_link_adam” command (in a similar way to “fast_link{’—§22.2)
in order to link with additional AST-related facilities, such as a graphics interface. See the
“ast_link_adam” command description in Appendix E|for details of the options available.

41Use the “—pgp” option instead if you wish to use the Starlink version of PGPLOT which uses GKS to generate
its output.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_ADAM_link_scripts
http://www.starlink.ac.uk/cgi-bin/htxserver/sun144.htx/sun144.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn4.htx/ssn4.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_inherited_status

193 SUN/211.30 —The AST Class Hierarchy

A The AST Class Hierarchy

The following table shows the hierarchy of classes in the AST library. For a description of each
class, you should consult Appendix D}

Object - Base class for all AST Objects
Axis - Store axis information
SkyAxis - Store celestial axis information
Channel - Basic (textual) I/0 channel
FitsChan - I/0 Channel using FITS header cards
XmlChan - I/0 Channel using XML
StcsChan - I/0 Channel using IVOA STC-S descriptions
KeyMap - Store a set of key/value pairs
Table - Store a 2-dimensional table of values
Mapping - Inter-relate two coordinate systems
CmpMap - Compound Mapping
DssMap - Map points using Digitised Sky Survey plate solution
Frame - Coordinate system description
CmpFrame - Compound Frame

SpecFluxFrame - Observed value versus spectral position
FluxFrame - Observed value at a given fixed spectral position

FrameSet - Set of inter-related coordinate systems
Plot - Provide facilities for 2D graphical output
Plot3D - Provide facilities for 3D graphical output
Region - Specify areas within a coordinate system
Box - A box region with sides parallel to the axes of a Frame
Circle - A circular or spherical region within a Frame
CmpRegion - A combination of two regions within a single Frame
Ellipse - An elliptical region within a 2-dimensional Frame
Interval - Intervals on one or more axes of a Frame.
Moc - An arbitrary region within a SkyFrame
NullRegion - A boundless region within a Frame
PointList - A collection of points in a Frame
Polygon - A polygonal region within a 2-dimensional Frame
Prism - An extrusion of a Region into orthogonal dimensions
Stc - Represents an generic instance of an IVOA STC-X description
StcResourceProfile - Represents an an IVOA STC-X ResourceProfile
StcSearchlocation - Represents an an IVOA STC-X SearchLocation

StcCatalogEntryLocation - Represents an an IVOA STC-X CatalogEntryLocation
StcObsDataLocation - Represents an an IVOA STC-X ObsDatalocation
SkyFrame - Celestial coordinate system description
SpecFrame - Spectral coordinate system description
DSBSpecFrame - Dual sideband spectral coordinate system description
TimeFrame - Time coordinate system description

GrismMap - Models the spectral dispersion produced by a grism
IntraMap - Map points using a private transformation function
LutMap - Transform 1-dimensional coordinates using a lookup table
MathMap - Transform coordinates using mathematical expressions
MatrixMap - Map positions by multiplying them by a matrix

NormMap - Normalise coordinates using a supplied Frame

PcdMap - Apply 2-dimensional pincushion/barrel distortion

PermMap - Coordinate permutation Mapping

SUN/211.30 —The AST Class Hierarchy 194

PolyMap
ChebyMap
RateMap
SelectorMap
ShiftMap
SlaMap
SpecMap
SphMap
SwitchMap
TimeMap
TranMap
UnitMap
UnitNormMap
WcsMap
WinMap
ZoomMap

General N-dimensional polynomial Mapping
N-dimensional Chebyshev polynomial Mapping
Calculates an element of a Mapping’s Jacobian matrix
Locates positions within a set of Regions

Shifts each axis by a constant amount

Sequence of celestial coordinate conversions
Sequence of spectral coordinate conversions

Map 3-d Cartesian to 2-d spherical coordinates
Encapuslates a set of alternate Mappings

Sequence of time coordinate conversions

Combine fwd. and inv. transformations from two Mappings
Unit (null) Mapping

Converts a vector to a unit vector plus length
Implement a FITS-WCS sky projection

Match windows by scaling and shifting each axis

Zoom coordinates about the origin

195 SUN/211.30 —AST Function Descriptions

SUN/211.30 —AST Function Descriptions 196 astSet

astSet
Set attribute values for an Object

Description:
This function assigns a set of attribute values to an over-riding any previous values. The
attributes and their new values are specified via a character string, which should contain a comma-
separated list of the form:

" attribute_1 = value_1, attribute_2 = value_2, ... "

where " attribute_n" specifies an attribute name, and the value to the right of each " =" sign should
be a suitable textual representation of the value to be assigned. This value will be interpreted
according to the attribute’ s data type.

The string supplied may also contain " printf" -style format specifiers, identified by " %" signs
in the usual way. If present, these will be substituted by values supplied as additional optional
arguments (using the normal " printf" rules) before the string is used.

Synopsis:
void astSet(AstObject *this, const char xsettings, ...)
Parameters:

this
Pointer to the Object.

settings
Pointer to a null-terminated character string containing a comma-separated list
of attribute settings in the form described above.

Optional additional arguments which supply values to be substituted for any "
printf" -style format specifiers that appear in the " settings" string.

Applicability:

Object
This function applies to all Objects.

Examples:

astSet(map, " =1, = 25.0");

Sets the Report attribute for Object " map" to the value 1 and the Zoom
attribute to 25.0.

astSet(frame, " Label(%d) =0ffset along axis %d" , axis, axis);

Sets the attribute for Object " frame" to a suitable string, where
the axis number is obtained from " axis" , a variable of type int.

astSet(frame, " =%s" , mystring);

Sets the Title attribute for Object " frame" to the contents of the string "
mystring"

Notes:

197 astSet SUN/211.30 —AST Function Descriptions

e Attribute names are not case sensitive and may be surrounded by white space.

e White space may also surround attribute values, where it will generally be ignored
(except for string-valued attributes where it is significant and forms part of
the value to be assigned).

e To include a literal comma in the value assigned to an attribute, the whole attribute
value should be enclosed in quotation markes. Alternatively, you can use " %s"
format and supply the value as a separate additional argument to astSet (or use
the astSetC function instead).

e The same procedure may be adopted if " %" signs are to be included and are not
to be interpreted as format specifiers (alternatively, the " printf" convention
of writing " %%" may be used).

e An error will result if an attempt is made to set a value for a read-only attribute.

SUN/211.30 —AST Function Descriptions 198 astActiveObjects

astActiveObjects
Return pointers for all active Objects

Description:
This function returns a holding currently active AST [Object| pointers. Each entry in
the KeyMap will have a key that is an AST class name such as " [FrameSet]' , " |[SkyFrame|" , "
[ZoomMap]" , etc. The value of the entry will be a 1-dimensional list of pointers for objects of the
same class. Note, the returned pointers should NOT be annulled when they are no longer needed.

The pointers to return in the KeyMap may be restricted either by class or by context level using the
function arguments.

Synopsis:
AstKeyMap *astActiveObjects(const char *class, int subclass, int current)

Parameters:

class
If NULL, then the returned KeyMap will contain pointers ofr Objects of all classes.
If not NULL, then " class" should be a pointer to a null-terminated string holding
the name of an AST class. The returned KeyMap will contain pointers only for
the specified class. See also " subclass"

subclass
A Boolean flag indicating if all subclasses of the class specified by " class"
should be included in the returned KeyMap. If zero, then subclass objects are
not returned. Otherwise they are returned. The supplied " subclass" value is
ignored if " class" is NULL.

current
A Boolean flag indicating if the returned list of pointers should be restricted
to pointers issued within the current AST object context (see [astBegin| and [astEnd) .

Returned Value:

astActiveObjects()
A pointer to a new KeyMap holding the required object pointers. They KeyMap pointer
should be annulled when it is no longer needed, but the object pointers within the
KeyMap should not be annulled. A NULL pointer is returned if an error has occurred
prior to calling this function.

The values stored in the KeyMap should be accessed as generic C pointers using the
KeyMap " P" data type (e.g. wusing function astMapGetlemP etc).

Notes:

e This function will only return objects locked by the currently executing thread.

e The KeyMap pointer returned by this function is not included in the list of active
objects stored in the KeyMap.

e Objects that were created using the Fortran interface will have a null " file"
value and will have a routine name equal to the upper case Fortran routine that
issued the pointer (e.g. " AST_CLONE" , " AST_FRAME" , etc).

199 astAddCell SUN/211.30 —AST Function Descriptions

astAddCell
Adds a single HEALPix cell into an existing Moc

Description:
This function modifies a[Mod by combining it with a single specified HEALPix cell. The way in
which they are combined is determined by the " cmode" parameter.

Synopsis:
void astAddCell(AstMoc *this, int cmode, int order, int64_t npix)

Parameters:
this
Pointer to the Moc to be modified.
cmode

Indicates how the Moc and specified cell are to be combined. Any of the following
values may be supplied:

e AST__AND: If the specified cell is included in the Moc, it is removed. Otherwise
the Moc is left unchanged.

e AST__OR: If the specified cell is not included in the Moc, it is added. Otherwise
the Moc is left unchanged.

e AST__XOR: The specified cell is toggled - it is removed from the Moc if originally
present, and it is added to the Moc if not originally present.

order
The HEALPix order of the cell. An error is reported if this is higher than the
maximum order allowed in the Moc (as given by its attribute). If no
value has been set for the MaxOrder attribute, calling this method causes it to
be set to the supplied order value. So the highest order cells should usually
be added first.

npix
The " npix" value identifying the required cell (see the MOC recommendation for
more details).

SUN/211.30 —AST Function Descriptions 200 astAddColumn

astAddColumn
Add a new column definition to a table

Description:
Adds the definition of a new column to the supplied table. Initially, the column is empty. Values
may be added subsequently using the methods of the [KeyMap|class.

Synopsis:

void astAddColumn(AstTable *xthis, const char *name, int type, int ndim, int *dims,
const char #unit)

Parameters:

this
Pointer to the [Tablel

name
The column name. Trailing spaces are ignored (all other spaces are significant).
The supplied string is converted to upper case.

type
The data type associated with the column. See " Applicability:" below.

ndim
The number of dimensions spanned by the values stored in a single cell of the
column. Zero if the column holds scalar values.

dims
An array holding the the lengths of each of the axes spanned by the values stored
in a single cell of the column. Ignored if the column holds scalara values.

unit
A string specifying the units of the column. Supply a blank string if the column
is unitless.

Applicability:

Table
Tables can hold columns with any of the following data types - AST__INTTYPE (for integer),
AST__SINTTYPE (for short int), AST__BYTETYPE (for unsigned bytes - i.e. unsigned chars),
AST__DOUBLETYPE (for double precision floating point), AST__FLOATTYPE (for single precision
floating point), AST__STRINGTYPE (for character string), AST__OBJECTTYPE (for AST
pointer), AST__POINTERTYPE (for arbitrary C pointer) or AST__UNDEFTYPE (for undefined

values created by [astMapPutU) .
[FitsTablel

FitsTables can hold columns with any of the following data types - AST__INTTYPE (for
integer), AST__SINTTYPE (for short int), AST__BYTETYPE (for unsigned bytes - i.e. unsigned
chars), AST__DOUBLETYPE (for double precision floating point), AST__FLOATTYPE (for

single precision floating point), AST__STRINGTYPE (for character string).

Notes:

e This function returns without action if a column already exists in the Table with
the supplied name and properties. However an error is reported if any of the
properties differ.

201 astAddFrame SUN/211.30 —AST Function Descriptions

astAddFrame
Add a Frame to a FrameSet to define a new coordinate system

Description:
This function adds a new and an associated [Mapping|to a[FrameSet|so as to define a new
coordinate system, derived from one which already exists within the FrameSet. The new Frame
then becomes the FrameSet’ s current Frame.

This function may also be used to merge two FrameSets, or to append extra axes to every Frame in
a FrameSet.

Synopsis:
void astAddFrame(AstFrameSet *this, int iframe, AstMapping *map, AstFrame *frame)

Parameters:

this
Pointer to the FrameSet.

iframe
The index of the Frame within the FrameSet which describes the coordinate system
upon which the new one is to be based. This value should lie in the range from
1 to the number of Frames already in the FrameSet (as given by its attribute) .
As a special case, AST__ALLFRAMES may be supplied, in which case the axes defined
by the supplied Frame are appended to every Frame in the FrameSet (see the Notes
section for details).

map
Pointer to a Mapping which describes how to convert coordinates from the old coordinate
system (described by the Frame with index " iframe") into coordinates in the
new system. The Mapping’ s forward transformation should perform this conversion,
and its inverse transformation should convert in the opposite direction. The
supplied Mapping is ignored if parameter " iframe" is equal to AST__ALLFRAMES.

frame
Pointer to a Frame that describes the new coordinate system. Any class of Frame
may be supplied (including Regions and FrameSets).
This function may also be used to merge two FrameSets by supplying a pointer to
a second FrameSet for this parameter (see the Notes section for details).

Notes:

e Deep copies of the supplied " mapping" and " frame" objects are stored within
the modified FrameSet. So any changes made to the FrameSet after calling this
method will have no effect on the supplied Mapping and Frame objects.

e A value of AST__BASE or AST__CURRENT may be given for the " iframe" parameter
to specify the base Frame or the current Frame respectively.

e This function sets the value of the attribute for the FrameSet so that
the new Frame subsequently becomes the current Frame.

e The number of input coordinate values accepted by the supplied Mapping (its
attribute) must match the number of axes in the Frame identified by the " iframe"
parameter. Similarly, the number of output coordinate values generated by this
Mapping (its attribute) must match the number of axes in the new Frame.

SUN/211.30 —AST Function Descriptions 202 astAddFrame

e As a special case, if a pointer to a FrameSet is given for the " frame" parameter,
this is treated as a request to merge a pair of FrameSets. This is done by appending
all the new Frames (in the " frame" FrameSet) to the original FrameSet, while
preserving their order and retaining all the inter-relationships (i.e. Mappings)
between them. The two sets of Frames are inter-related within the merged FrameSet
by using the Mapping supplied. This should convert between the Frame identified
by the " iframe" parameter (in the original FrameSet) and the current Frame of
the " frame" FrameSet. This latter Frame becomes the current Frame in the merged
FrameSet.

e As another special case, if a value of AST__ALLFRAMES is supplied for parameter
" iframe" , then the supplied Mapping is ignored, and the axes defined by the
supplied Frame are appended to each Frame in the FrameSet. In detail, each Frame
in the FrameSet is replaced by a [CmpFrame| containing the original Frame and the
Frame specified by parameter " frame" . In addition, each Mapping in the FrameSet
is replaced by a containing the original Mapping and a in parallel.
The Nin and Nout attributes of the UnitMap are set equal to the number of axes

in the supplied Frame. Each new CmpMap is simplified using before
being stored in the FrameSet.

203 astAddMocData SUN/211.30 —AST Function Descriptions

astAddMocData
Adds a FITS binary table into an existing Moc

Description:
This function modifies a[Mod by combining it with a binary data array describing a MOC read
from a FITS binary table. The way in which they are combined is determined by the " cmode"
parameter.

Synopsis:
void astAddMocData(AstMoc *this, int cmode, int negate, int maxorder, int len, int
nbyte, const void xdata);

Parameters:
this
Pointer to the Moc to be modified.
cmode
Indicates how the Moc and data are to be combined. Any of the following values
may be supplied:

o AST__AND: The modified Moc is the intersection of the original Moc and the
data.

e AST__OR: The modified Moc is the union of the original Moc and the data.

e AST__XOR: The modified Moc is the exclusive disjunction of the original Moc
and the data.

negate
If non-zero, the cells added to the Moc will be those included in the supplied
data array. If zero, the cells added to the Moc will be those not included in
the supplied data array.

maxorder
The maximum HEALPix order to use. If a negative value is supplied, the maximum
order will be determined by searching the data array (this will take extra time).
In either case, if a value has already been set for the attribute in
the Moc, then the attribute value is used in preference to the value supplied
for this parameter. Any HEALPix cells in the data array that refer to an order
greater than " maxorder" are ignored.

len
The length of the supplied array (i.e. the number of 4 or 8 byte integer values
it contains). Note, this class only supports binary MOCs with lengths that can
be represented in a 4 byte signed integer.

nbyte
The number of bytes in each integer value stored in the supplied array. Must
be 4 or 8.

data

Pointer to the data array holding a description of a MOC in the form used by FITS
binary tables. See the IVOA MOC recommendation for details. The values in this
array are signed integers, each with the number of bytes specified by parameter

" nbyte" . The number of bytes in this array should be at least " len*nbyte"

SUN/211.30 —AST Function Descriptions 204 astAddMocData

Notes:

e If no value has yet been set for attribute MaxOrder, then this function will automatically
set it to the value supplied for " Maxorder" , or to the largest order present
in the supplied binary MOC if " Maxorder" is negative.

205 astAddMocString SUN/211.30 —AST Function Descriptions

astAddMocString
Adds a JSON or string-encoded MOC into an existing Moc

Description:
This function modifies a[Moc by combining it with the MOC described by the supplied string
- assumed to be encoded using either the string or JSON serialisation described in the MOC
recommendation. The way in which they are combined is determined by the " cmode" parameter.

Synopsis:
void astAddMocString(AstMoc *xthis, int cmode, int negate, int maxorder, size_t len,
const charkstring, int *json);

Parameters:
this
Pointer to the Moc to be modified.
cmode
Indicates how the supplied MOC is to be combined with the existing Moc. Any of
the following values may be supplied:

o AST__AND: The modified Moc is the intersection of the original Moc and the
sipplied MOC.

e AST__OR: The modified Moc is the union of the original Moc and the supplied
MOC.

e AST__XOR: The modified Moc is the exclusive disjunction of the original Moc
and the supplied MOC.

negate
If non-zero, the cells added to the existing Moc will be those included in the
supplied MOC. If zero, the cells added to the existing Moc will be those not included
in the supplied MOC.

maxorder
The maximum HEALPix order to use. If a negative value is supplied, the maximum
order will be determined by searching the supplied MOC (this will take extra time).
In either case, if a value has already been set for the attribute in
the Moc, then the attribute value is used in preference to the value supplied
for this parameter. Any HEALPix cells in the supplied MOC that refer to an order
greater than " maxorder" are ignored.

len
The number of characters to read from the supplied string. If this is greater
than the length of the string, it is ignored and the whole string is read.

string
Pointer to the array of characters holding the supplied MOC. It should be encoded
using either the string or JSON serialisation described in the MOC recommendation.
The used serialisation is determined from the first non-blank character, which
should be either a curly brace (’ {’> - JSON serialisation) or a digit (string
serialisation).

json
Pointer to an int in which to return a boolean flag indicating if the supplied
string was interpreted using the JSON (non-zero) or string (zero) serialisation.

SUN/211.30 —AST Function Descriptions 206 astAddMocString

Notes:

e If no value has yet been set for attribute MaxOrder, then this function will automatically
set it to the value supplied for " Maxorder" , or to the largest order present
in the supplied string MOC if " Maxorder" is negative.

207 astAddParameter SUN/211.30 —AST Function Descriptions

astAddParameter
Add a new global parameter definition to a table

Description:
Adds the definition of a new global parameter to the supplied table. Note, this does not store a
value for the parameter. To get or set the parameter value, the methods of the paremt[KeyMap)]|
class should be used, using the name of the parameter as the key.
Synopsis:
void astAddParameter(AstTable *this, const char xname)
Parameters:
this
Pointer to the [Tablel.

name
The parameter name. Trailing spaces are ignored (all other spaces are significant).
The supplied string is converted to upper case.

Notes:

e Unlike columns, the definition of a parameter does not specify its type, size
or dimensionality.

SUN/211.30 —AST Function Descriptions 208 astAddPixelMask<X>

astAddPixelMask <X>
Add a set of pixels to a Moc

Description:
This is a set of functions that modifies a[Modby combining it with a subset of the pixel positions
contained within a supplied 2-dimensional array. A [FrameSet| must be supplied describing the
World Coordinate Systems associated with the array. The current[Frame|of this FrameSet must be a
[SkyFrame|or a[CmpFrame|containing a SkyFrame.

The subset of pixels to be combined with the Moc are selected using the " value" and " oper"
parameters. The way in which the existing Moc and the selected pixels are combined together is
determined by the " cmode" parameter.

An adaptive alogorithm is used to find the HEALPix cells that are inside the selected area in the
pixel array. An initial grid, corresponding to the HEALPix cells at the order given by the Moc’ s
" MinOrder|" attribute, is placed over the pixel array. Each of these cells is tested at 9 positions
(corners, edge-centres and cell-centre). If all 9 positions are inside the selected area of pixels, then
the whole cell is assumed to be inside. If no positions are inside the selected area, then the whole
cell is assumed to be outside. If there is a mix of inside and outside positions, the cell is divided
into four sub-cells at HEALPix order " MinOrder+1" , and the same test is applied to each sub-cell
in turn. When the HEALPix order reaches the value of the Moc’ s "[MaxOrder]" attribute, each cell
is tested only at the cell centre, and is assumed to be inside the selected area if the cell centre is
inside the selected area.

This process means that contiguous " islands" or " holes" in the supplied pixel mask may be
missed if they are smaller than the cell size associated with HEALPix order " MinOrder" .

If no value has yet been set for the MaxOrder attribute, then this function will automatically set it
to the smallest value that results in the cells in the Moc being no larger than half the size of the
pixels in the centre of the array. Note, if the value set for attribute MinOrder is greater than or
equal to MaxOrder, a value of (MaxOrder-1) will be used in place of MinOrder.

You should use a function which matches the numerical type of the data you are processing by
replacing <X> in the generic function name astAddPixelMask<X> by an appropriate 1- or 2-
character type code. For example, if you are procesing data with type " float" , you should use the
function astAddPixelMaskF (see the " Data Type Codes" section below for the codes appropriate
to other numerical types).

Synopsis:

void astAddPixelMask<X>(AstMoc #*this, int cmode, AstFrameSet xwcs, <Xtype> value,
int oper, int flags, <Xtype> badval, const <Xtype> array[], const int dims[2])

Parameters:
this
Pointer to the Moc to be modified.
cmode
Indicates how the Moc and select pixels are to be combined. Any of the following
values may be supplied:
e AST__AND: The modified Moc is the intersection of the original Moc and the
selected pixels.
e AST__OR: The modified Moc is the union of the original Moc and the selected
pixels.

e AST__XOR: The modified Moc is the exclusive disjunction of the original Moc
and the selected pixels.

209 astAddPixelMask<X> SUN/211.30 —AST Function Descriptions

WS
Pointer to a FrameSet defining the World Coordinate Systems associated with the
image. The current Frame should be a SkyFrame or a CmpFrame containing a SkyFrame.
The base Frame should have the same number of axes as the current Frame and should
represent " grid" coordinates within a pixel array (i.e. the first pixel is centred
at (1.0,1.0,...) and the distance between pixel centres is 1.0 on both axes).
The array supplied for parameter " array" is assumed to be a 2-dimensional slice
from this array, spanned by the grid axes corresponding to the SkyFrame axes.

value
A data value that specifies the selected pixels. See parameter " oper"

oper
Indicates how the " value" parameter is used to select the required pixels. It
can have any of the following values:

e AST__LT: select pixels with value less than " value"

e AST__LE: select pixels with value less than or equal to " value"

e AST__EQ: select pixels with value equal to " value"

e AST__NE: select pixels with value not equal to " value"

e AST__GE: select pixels with value greater than or equal to " value"

e AST__GT: select pixels with value greater than " value"

flags

The bitwise OR of a set of flag values which may be used to provide additiomal
control over the operation. See the " Control Flags" section below for a description
of the options available. If no flag values are to be set, a value of zero should
be given.

badval
This parameter should have the same type as the elements of the data array. It
specifies the value used to flag missing data (bad pixels). Such pixels are never
included in the Moc.
If the AST__USEBAD flag is set via the " flags" parameter, then this value is
used to test for bad pixels in the supplied data array.

array
Pointer to the 2-dimensional data array. The numerical type of this array should
match the 1- or 2-character type code appended to the function name (e.g. if
you are using astAddPixelMaskF, the type of each array element should be " float"
).
The storage order of data within this array should be such that the index of the
first grid dimension varies most rapidly (i.e. Fortran array indexing is used).
dims
Pointer to an array containing the length of each pixel axis, in pixels.

Control Flags :

The following flags are defined in the " ast.h" header file and may be used to provide

additional control over the process. Having selected a set of flags, you should supply
the bitwise OR of their values via the " flags" parameter:

e AST__USEBAD: Indicates that there may be bad pixels in the input array which must
be recognised by comparing with the value given for " badval" . If this flag
is not set, all input values are treated literally.

Data Type Codes :

SUN/211.30 —AST Function Descriptions 210 astAddPixelMask<X>

To select the appropriate masking function, you should replace <X> in the generic
function name astAddPixelMask<X> with a 1- or 2-character data type code, so as to
match the numerical type <Xtype> of the data you are processing, as follows:

e D: double

e F: float

e L: long int

e UL: unsigned long int

e I: int

e UI: unsigned int

e S: short int

US: unsigned short int
e B: byte (signed char)
e UB: unsigned byte (unsigned char)

For example, astAddPixelMaskD would be used to process " double" data, while astAddPixelMaskS
would be used to process " short int" data, etc.

Handling of Huge Pixel Arrays :

If the input grid is so large that an integer pixel index, (or a count of pixels) could
exceed the largest value that can be represented by a 4-byte integer, then the alternative

" 8-byte" interface for this function should be used. This alternative interface uses

8 byte integer arguments (instead of 4-byte) to hold pixel indices and pixel counts.
Specifically, the argument " dims" is changed from type " int" to type " int64_t" (defined
in header file stdint.h). The function name is changed by inserting the digit " 8"

before the trailing data type code. Thus, astAddPixelMask<X> becomes astAddPixelMask8<X>.

211 astAddRegion SUN/211.30 —AST Function Descriptions

astAddRegion
Add a Region into a Moc

Description:
This function modifies a[Modby combining it with a supplied The Region must be defined
within a[SkyFrame} or within a[CmpFrame|that contains a SkyFrame. The Region will be converted
to ICRS before being combined with the Moc. The way in which they are combined is determined
by the " cmode" parameter.
Note, since Moc is a subclass of Region this method can be used to add a Moc into another Moc. In
such cases, the data is transferred from one Moc to another directly. For other classes of Region an
adaptive algorithm is used to find the HEALPix cells that are inside the Region. An initial grid,
corresponding to the HEALPix cells at the order given by the Moc’ s " [MinOrder]" attribute, is
placed over the bounding box of the supplied Region. Each of these cells is tested at 9 positions
(corners, edge-centres and cell-centre). If all 9 positions are inside the supplied Region, then the
whole cell is assumed to be inside the Region. If no positions are inside the supplied Region,
then the whole cell is assumed to be outside the Region. If there is a mix of inside and outside
positions, the cell is divided into four sub-cells at HEALPix order " MinOrder+1" , and the same
test is applied to each sub-cell in turn. When the HEALPix order reaches the value of the Moc’ s
"[MaxOrder|" attribute, each cell is tested only at the cell centre, and is assumed to be inside the
Region if the cell centre is in the Region.
This process means that contiguous " islands" or " holes" in the supplied region may be missed if
they are smaller than the cell size associated with HEALPix order " MinOrder" .

Synopsis:
void astAddRegion(AstMoc *this, int cmode, AstRegion *region)

Parameters:
this
Pointer to the Moc to be modified.
cmode
Indicates how the Moc and Region are to be combined. Any of the following values
may be supplied:
o AST__AND: The modified Moc is the intersection of the original Moc and the
Region.
e AST__OR: The modified Moc is the union of the original Moc and the Region.
e AST__XOR: The modified Moc is the exclusive disjunction of the original Moc
and the Region.
region
Pointer to the Region to be combined with the Moc.

Notes:

e When combining the Region with the Moc, it is assumed that the Moc has not been
inverted (i.e. the current value of the Moc’ s ’ Negated attribute is ignored).

e If no value has yet been set for attribute MaxOrder, then this function will automatically
set it to a value that depends on the class of Region being added. If the Region
being added is another Moc, the MaxOrder attribute of the Moc is used. For other
classes of Region, the value used corresponds to the resolution closest to 0.1%
of the linear size of the Region being added (determined using method [astGetRegionDisc) .

SUN/211.30 —AST Function Descriptions 212 astAddVariant

astAddVariant
Store a new variant Mapping for the current Frame in a FrameSet

Description:

This function allows a new variant to be stored with the current[Framelin a [FrameSet]

See the " [Variant]" attribute for more details. It can also be used to rename the currently selected
variant Mapping.

Synopsis:
void astAddVariant(AstFrameSet *this, AstMapping *map, const char xname)
Parameters:
this
Pointer to the FrameSet.
map
Pointer to a Mapping which describes how to convert coordinates from the current
Frame to the new variant of the current Frame. If NULL is supplied, then the
name associated with the currently selected variant of the current Frame is set
to the value supplied for " name" , but no new variant is added.

name
The name to associate with the new variant Mapping (or the currently selected
variant Mapping if " map" is NULL).

Notes:

e The newly added Variant becomes the current variant on exit (this is equivalent
to setting the Variant attribute to the value supplied for " name).

e An error is reported if a variant with the supplied name already exists in the
current Frame.

e An error is reported if the current Frame is a mirror for the variant Mappings
in another Frame. This is only the case if the |astMirrorVariants| function has
been called to make the current Frame act as a mirror.

213 astAngle SUN/211.30 —AST Function Descriptions

astAngle
Calculate the angle subtended by two points at a third point

Description:
This function finds the angle at point B between the line joining points A and B, and the line joining
points C and B. These lines will in fact be geodesic curves appropriate to the in use. For

instance, in[SkyFrame}, they will be great circles.

Synopsis:
double astAngle(AstFrame xthis, const double a[], const double b[], const double c[]
)

Parameters:
this
Pointer to the Frame.
a An array of double, with one element for each Frame axis attribute) containing
the coordinates of the first point.

b An array of double, with one element for each Frame axis (Naxes attribute) containing
the coordinates of the second point.

c An array of double, with one element for each Frame axis (Naxes attribute) containing
the coordinates of the third point.

Returned Value:

astAngle
The angle in radians, from the line AB to the line CB. If the Frame is 2-dimensional,
it will be in the range $\pm \pi$, and positive rotation is in the same sense as rotation
from the positive direction of axis 2 to the positive direction of axis 1. If the
Frame has more than 2 axes, a positive value will always be returned in the range zero

to π.
Notes:

e A value of AST__BAD will also be returned if points A and B are co-incident, or
if points B and C are co-incident.

e A value of AST__BAD will also be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 214 astAnnul

astAnnul
Annul a pointer to an Object

Description:
This function annuls a pointer to an[Object|so that it is no longer recognised as a valid pointer by
the AST library. Any resources associated with the pointer are released and made available for
re-use.

This function also decrements the Object’ s[RefCount]attribute by one. If this attribute reaches zero
(which happens when the last pointer to the Object is annulled), then the Object is deleted.

Synopsis:

AstObject *astAnnul(AstObject *this)
Parameters:

this

The Object pointer to be annulled.

Applicability:
Object

This function applies to all Objects.

Returned Value:

astAnnul()
A null Object pointer (AST__NULL) is always returned.

Notes:

e This function will attempt to annul the pointer even if the Object is not currently
locked by the calling thread (see [astLock] .

e This function attempts to execute even if the AST error status is set on entry,
although no further error report will be made if it subsequently fails under these
circumstances. In particular, it will fail if the pointer suppled is not valid,
but this will only be reported if the error status is clear on entry.

215 astAxAngle SUN/211.30 —AST Function Descriptions

astAxAngle
Returns the angle from an axis, to a line through two points

Description:
This function finds the angle, as seen from point A, between the positive direction of a specified
axis, and the geodesic curve joining point A to point B.

Synopsis:
double astAxAngle(AstFrame *this, const double al[], const double b[], int axis)

Parameters:
this
Pointer to the [Framel.

a An array of double, with one element for each Frame axis attribute) containing
the coordinates of the first point.

b An array of double, with one element for each Frame axis (Naxes attribute) containing
the coordinates of the second point.

axis
The number of the Frame axis from which the angle is to be measured (axis numbering
starts at 1 for the first axis).

Returned Value:

astAxAngle
The angle in radians, from the positive direction of the specified axis, to the line
AB. If the Frame is 2-dimensional, it will be in the range [-PI/2,+PI/2], and positive
rotation is in the same sense as rotation from the positive direction of axis 2 to
the positive direction of axis 1. If the Frame has more than 2 axes, a positive value
will always be returned in the range zero to PI.

Notes:

e The geodesic curve used by this function is the path of shortest distance between
two points, as defined by the function.

e This function will return " bad" coordinate values (AST__BAD) if any of the input
coordinates has this value, or if the require position angle is undefined.

SUN/211.30 —AST Function Descriptions 216 astAxDistance

astAxDistance
Find the distance between two axis values

Description:

This function returns a signed value representing the axis increment from axis value v1 to axis
value v2.

For a simple this is a trivial operation returning the difference between the two axis values.
But for other derived classes of Frame (such as a|SkyFrame) this is not the case.

Synopsis:

double astAxDistance(AstFrame xthis, int axis, double v1, double v2)

Parameters:
this
Pointer to the Frame.
axis
The index of the axis to which the supplied values refer. The first axis has
index 1.

vl The first axis value.

v2 The second axis value.
Returned Value:

astAxDistance
The distance from the first to the second axis value.

Notes:

e This function will return a " bad" result value (AST__BAD) if any of the input
values has this value.

e A " bad" value will also be returned if this function is invoked with the AST
error status set, or if it should fail for any reason.

217 astAxNorm SUN/211.30 —AST Function Descriptions

astAxNorm
Normalise an array of axis values

Description:
This function modifies a supplied array of axis values so that they are normalised in the manner
indicated by parameter " oper" .
No normalisation is possible for a simple[Frame|and so the supplied values are returned unchanged.
However, this may not be the case for specialised sub-classes of Frame. For instance, a
has a discontinuity at zero longitude and so a longitude value can be expressed in the range
[-Pi,+PI] or the range [0,2xPI]. See the " Applicability:" section below for details.

Synopsis:
void astAxNorm(AstFrame *this, int axis, int oper, int nval, double xvalues, int *status
)
Parameters:
this
Pointer to the Frame.
axis
The index of the axis to which the supplied values refer. The first axis has
index 1.
oper
Indicates the type of normalisation to be applied. If zero is supplied, the normalisation
will be the same as that performed by function [astNorml. If 1 is supplied, the
normalisation will be chosen automatically so that the resulting list has the
smallest range.
nval
The number of points in the values array.
values
On entry, the axis values to be normalised. Modified on exit to hold the normalised
values.
Applicability:
SkyFrame

If " oper" is 0, longitude values are returned in the range [0,2*PI]. If " oper" is
1, longitude values are returned in either the range [0,2%PI] or [-PI,PI]. The choice
is made so that that the resulting list has the smallest range. Latitude values are
always returned in the range [-PI,PI].

All other classes of Frame
The supplied axis values are returned unchanged.

SUN/211.30 —AST Function Descriptions 218 astAxOffset

astAxOffset
Add an increment onto a supplied axis value

Description:

This function returns an axis value formed by adding a signed axis increment onto a supplied axis
value.

For a simple this is a trivial operation returning the sum of the two supplied values. But for
other derived classes of Frame (such as a[SkyFrame) this is not the case.

Synopsis:
double astAxOffset(AstFrame *this, int axis, double v1, double dist)
Parameters:
this
Pointer to the Frame.
axis
The index of the axis to which the supplied values refer. The first axis has
index 1.

vl The original axis value.
dist
The axis increment to add to the original axis value.

Returned Value:

astAxOffset
The incremented axis value.

Notes:

e This function will return a " bad" result value (AST__BAD) if any of the input
values has this value.

e A " bad" value will also be returned if this function is invoked with the AST
error status set, or if it should fail for any reason.

219 astBBuf SUN/211.30 —AST Function Descriptions

astBBuf
Begin a new graphical buffering context

Description:
This function starts a new graphics buffering context. A matching call to the function

should be used to end the context.
Synopsis:
void astBBuf(AstPlot xthis)
Parameters:
this
Pointer to the [Plotl.

Notes:

e The nature of the buffering is determined by the underlying graphics system (as
defined by the current grf module). Each call to this function to this function
simply invokes the astGBBuf function in the grf module.

SUN/211.30 —AST Function Descriptions 220 astBegin

astBegin
Begin a new AST context

Description:
This macro invokes a function to begin a new AST context. Any [Object| pointers created within this
context will be annulled when it is later ended using[astEnd] (just as iffastAnnullhad been invoked),

unless they have first been exported using [astExport| or rendered exempt using [astExempt] If
annulling a pointer causes an Object’ s attribute to fall to zero (which happens when the

last pointer to it is annulled), then the Object will be deleted.
Synopsis:

void astBegin
Applicability:

Object
This macro applies to all Objects.

Notes:

e astBegin attempts to execute even if the AST error status is set on entry.

e Contexts delimited by astBegin and astEnd may be nested to any depth.

221 astBorder SUN/211.30 —AST Function Descriptions

astBorder
Draw a border around valid regions of a Plot

Description:
This function draws a (line) border around regions of the plotting area of a[Plot|which correspond to
valid, unclipped physical coordinates. For example, when plotting using an all-sky map projection,
this function could be used to draw the boundary of the celestial sphere when it is projected on to
the plotting surface.

If the entire plotting area contains valid, unclipped physical coordinates, then the boundary will
just be a rectangular box around the edges of the plotting area.

If the Plot is a[Plot3D}, this method is applied individually to each of the three 2D Plots encapsulated
within the Plot3D (each of these Plots corresponds to a single 2D plane in the 3D graphics system).
In addition, if the entire plotting volume has valid coordinates in the 3D current [Frame| of the
Plot3D, then additional lines are drawn along the edges of the 3D plotting volume so that the entire
plotting volume is enclosed within a cuboid grid.

Synopsis:
int astBorder(AstPlot *this)
Parameters:
this
Pointer to the Plot.

Returned Value:

astBorder()
Zero is returned if the plotting space is completely filled by valid, unclipped physical
coordinates (so that only a rectangular box was drawn around the edge). Otherwise,
one is returned.

Notes:

e A value of zero will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

e An error results if either the current Frame or the base Frame of the Plot is
not 2-dimensional or (for a Plot3D) 3-dimensional.

e An error also results if the transformation between the base and current Frames
of the Plot is not defined (i.e. the Plot’ s [TranForward| attribute is zero).

SUN/211.30 —AST Function Descriptions 222 astBoundingBox

astBoundingBox
Return a bounding box for previously drawn graphics

Description:
This function returns the bounds of a box which just encompasess the graphics produced by the
previous call to any of the methods which produce graphical output. If no such previous call
has yet been made, or if the call failed for any reason, then the bounding box returned by this
function is undefined.

Synopsis:
void astBoundingBox(AstPlot *this, float lbnd[2], float ubnd[2])
Parameters:
this
Pointer to the Plot.

Ibnd
A two element array in which is returned the lower limits of the bounding box on
each of the two axes of the graphics coordinate system (the base of the
Plot).

ubnd
A two element array in which is returned the upper limits of the bounding box on

each of the two axes of the graphics coordinate system (the base Frame of the
Plot).

Notes:

e An error results if the base Frame of the Plot is not 2-dimensional.

223 astBox SUN/211.30 —AST Function Descriptions

astBox
Create a Box

Description:
This function creates a new and optionally initialises its attributes.

The Box class implements a[Region|which represents a box with sides parallel to the axes of a[Frame|
(i.e. an area which encloses a given range of values on each axis). A Box is similar to an [[ntervall
the only real difference being that the Interval class allows some axis limits to be unspecified. Note,
a Box will only look like a box if the Frame geometry is approximately flat. For instance, a Box

centred close to a pole in a[SkyFrame| will look more like a fan than a box (the class can be

used to create a box-like region close to a pole).

Synopsis:
AstBox *astBox(AstFrame xframe, int form, const double pointl[], const double point2[],
AstRegion *unc, const char xoptions, ...)

Parameters:
frame

A pointer to the Frame in which the region is defined. A deep copy is taken of
the supplied Frame. This means that any subsequent changes made to the Frame
using the supplied pointer will have no effect the Region.

form
Indicates how the box is described by the remaining parameters. A value of zero
indicates that the box is specified by a centre position and a corner position.
A value of one indicates that the box is specified by a two opposite corner positions.

pointl
An array of double, with one element for each Frame axis attribute). If
" form" is zero, this array should contain the coordinates at the centre of the
box. If " form" is one, it should contain the coordinates at the corner of the
box which is diagonally opposite the corner specified by " point2"

point2
An array of double, with one element for each Frame axis (Naxes attribute) containing
the coordinates at any corner of the box.

unc
An optional pointer to an existing Region which specifies the uncertainties associated
with the boundary of the Box being created. The uncertainty in any point on the
boundary of the Box is found by shifting the supplied " uncertainty" Region so
that it is centred at the boundary point being considered. The area covered by
the shifted uncertainty Region then represents the uncertainty in the boundary
position. The uncertainty is assumed to be the same for all points.

If supplied, the uncertainty Region must be of a class for which all instances

are centro-symetric (e.g. Box, [Circle], [E1lipse], etc.) or be a containing
centro-symetric component Regions. A deep copy of the supplied Region will be
taken, so subsequent changes to the uncertainty Region using the supplied pointer
will have no effect on the created Box. Alternatively, a NULL pointer may
be supplied, in which case a default uncertainty is used equivalent to a box 1.0E-6
of the size of the Box being created.

The uncertainty Region has two uses: 1) when the [astOverlap| function compares
two Regions for equality the uncertainty Region is used to determine the tolerance

SUN/211.30 —AST Function Descriptions 224 astBox

on the comparison, and 2) when a Region is mapped into a different coordinate
system and subsequently simplified (using [astSimplify]), the uncertainties are
used to determine if the transformed boundary can be accurately represented by
a specific shape of Region.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Box. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astBox()
A pointer to the new Box.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

225 astChannel SUN/211.30 —AST Function Descriptions

astChannel
Create a Channel

Description:
This function creates a new and optionally initialises its attributes.
A Channel implements low-level input/output for the AST library. Writing an[Object|to a Channel
(using |astWrite]) will generate a textual representation of that Object, and reading from a Channel
(usingastRead) will create a new Object from its textual representation.

Normally, when you use a Channel, you should provide " source" and " sink" functions which
connect it to an external data store by reading and writing the resulting text. By default, however,
a Channel will read from standard input and write to standard output. Alternatively, a Channel
can be told to read or write from specific text files using the [SinkFile|and [SourceFile|attributes, in
which case no sink or source function need be supplied.

Synopsis:
AstChannel *astChannel(const char *(* source)(void), void (% sink) (const char *
), const char xoptions, ...)

Parameters:

source
Pointer to a source function that takes no arguments and returns a pointer to
a null-terminated string. If no value has been set for the SourceFile attribute,
this function will be used by the Channel to obtain lines of input text. On each
invocation, it should return a pointer to the next input line read from some external
data store, and a NULL pointer when there are no more lines to read.
If " source" is NULL and no value has been set for the SourceFile attribute, the
Channel will read from standard input instead.

sink
Pointer to a sink function that takes a pointer to a null-terminated string as
an argument and returns void. If no value has been set for the SinkFile attribute,
this function will be used by the Channel to deliver lines of output text. On
each invocation, it should deliver the contents of the string supplied to some
external data store.
If " sink" is NULL, and no value has been set for the SinkFile attribute, the
Channel will write to standard output instead.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Channel. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astChannel()
A pointer to the new Channel.

SUN/211.30 —AST Function Descriptions 226 astChannel

Notes:

e Application code can pass arbitrary data (such as file descriptors, etc) to source
and sink functions using the [astPutChannelDatal function. The source or sink function

should use the [astChannelDatal macro to retrieve this data.

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

227 astChannelData SUN/211.30 —AST Function Descriptions

astChannelData
Return a pointer to user-supplied data stored with a Channel

Description:
This macro is intended to be used within the source or sink functions associated with a It
returns any pointer previously stored in the Channel (that is, the Channel that has invoked the
source or sink function) using [astPutChannelDatal

This mechanism is a thread-safe alternative to passing file descriptors, etc, via static global variables.
Synopsis:

void *astChannelData
Applicability:

Channel
This macro applies to all Channels.

Returned Value:

astChannelData
The pointer previously stored with the Channel using astPutChannelData. A NULL pointer
will be returned if no such pointer has been stored with the Channel.

Notes:

e This routine is not available in the Fortran 77 interface to the AST library.

SUN/211.30 —AST Function Descriptions 228 astChebyDomain

astChebyDomain
Returns the bounding box of the domain of a ChebyMap

Description:
This function returns the upper and lower limits of the box defining the domain of either the
forward or inverse transformation of a These are the values that were supplied when

the ChebyMap was created.

Synopsis:
void astChebyDomain(AstChebyMap *this, int forward, double xlbnd, double *ubnd)

Parameters:
this
Pointer to the ChebyMap.
forward
A non-zero value indicates that the domain of the ChebyMap’ s forward transformation
is to be returned, while a zero value indicates that the domain of the inverse
transformation should be returned.

Ibnd
Pointer to an array in which to return the lower axis bounds of the ChebyMap domain.
The number of elements should be at least equal to the number of ChebyMap inputs
(if " forward" is non-zero), or outputs (if " forward" is zero).

ubnd
Pointer to an array in which to return the upper axis bounds of the ChebyMap domain.
The number of elements should be at least equal to the number of ChebyMap inputs
(if " forward" is non-zero), or outputs (if " forward" is zero).

Notes:

e If the requested transformation is undefined (i.e. no transformation coefficients
were specified when the ChebyMap was created), this method returns a box determined
using the method on the opposite transformation, if the opposite transformation
is defined.

e If the above procedure fails to determine a bounding box, the supplied arrays
are filled with AST__BAD values but no error is reported.

229 astChebyMap SUN/211.30 —AST Function Descriptions

astChebyMap
Create a ChebyMap

Description:
"ll")his function creates a new and optionally initialises its attributes.
A ChebyMap is a form of Mapping|which performs a Chebyshev polynomial transformation. Each
output coordinate is a linear combination of Chebyshev polynomials of the first kind, of order zero
up to a specified maximum order, evaluated at the input coordinates. The coefficients to be used in
the linear combination are specified separately for each output coordinate.
For a 1-dimensional ChebyMap, the forward transformation is defined as follows:
f(x) =c0.TO(x’) + c1.T1(x’) + c2.T2(x’) + ...
where:

e Tn(x’) is the nth Chebyshev polynomial of the first kind:

e TO(x?)=1

o TI(x’)=x

e Tn+1(x’)=2x’.Tn(x’) + Tn-1(x’)

e X’ is the inpux axis value, X, offset and scaled to the range [-1, 1] as x ranges over a specified
bounding box, given when the ChebyMap is created. The input positions, x, supplied to the

forward transformation must fall within the bounding box - bad axis values (AST__BAD) are
generated for points outside the bounding box.

For an N-dimensional ChebyMap, the forward transformation is a generalisation of the above form.
Each output axis value is the sum of " ncoeff" terms, where each term is the product of a single
coefficient value and N factors of the form Tn(x’ _i), where " x* _i" is the normalised value of the
i’ th input axis value.

The forward and inverse transformations are defined independantly by separate sets of coefficients,
supplied when the ChebyMap is created. If no coefficients are supplied to define the inverse

transformation, the method of the parent[PolyMap]class can instead be used to create an

inverse transformation. The inverse transformation so generated will be a Chebyshev polynomial
with coefficients chosen to minimise the residuals left by a round trip (forward transformation
followed by inverse transformation).

Synopsis:
AstChebyMap *astChebyMap(int nin, int nout, int ncoeff_f, const double coeff_f[], int

ncoeff_i, const double coeff_i[], const double 1lbnd_f[], const double ubnd_f[], const
double 1lbnd_i[], const double ubnd_i[], const char *options, ...)

Parameters:
nin
The number of input coordinates.

nout
The number of output coordinates.

ncoeff f
The number of non-zero coefficients necessary to define the forward transformation
of the ChebyMap. If zero is supplied, the forward transformation will be undefined.

SUN/211.30 —AST Function Descriptions 230 astChebyMap

coeff f
An array containing " ncoeff_f*(2 + nin)" elements. Each group of " 2 4 nin"
adjacent elements describe a single coefficient of the forward transformation.
Within each such group, the first element is the coefficient value; the next element
is the integer index of the ChebyMap output which uses the coefficient within
its defining expression (the first output has index 1); the remaining elements
of the group give the integer powers to use with each input coordinate value (powers
must not be negative, and floating point values are rounded to the nearest integer).
If " ncoeff_f" is zero, a NULL pointer may be supplied for " coeff_ f"
For instance, if the ChebyMap has 3 inputs and 2 outputs, each group consisting
of 5 elements, A groups such as " (1.2, 2.0, 1.0, 3.0, 0.0)" describes a coefficient
with value 1.2 which is used within the definition of output 2. The output value
is incremented by the product of the coefficient value, the value of the Chebyshev
polynomial of power 1 evaluated at input coordinate 1, and the value of the Chebyshev
polynomial of power 3 evaluated at input coordinate 2. Input coordinate 3 is
not used since its power is specified as zero. As another example, the group
" (-1.0, 1.0, 0.0, 0.0, 0.0)" adds a constant value -1.0 onto output 1 (it is
a constant value since the power for every input axis is given as zero).

Each final output coordinate value is the sum of the " ncoeff_f" terms described
by the " ncoeff_f" groups within the supplied array.

ncoeff i
The number of non-zero coefficients necessary to define the inverse transformation
of the ChebyMap. If zero is supplied, the inverse transformation will be undefined.

coeff i
An array containing " ncoeff_ix(2 4 nout)" elements. Each group of " 2 + nout"
adjacent elements describe a single coefficient of the inverse transformation,
using the same schame as " coeff_f" , except that " inputs" and " outputs" are
transposed. If " ncoeff_i" is zero, a NULL pointer may be supplied for " coeff_i"

Ibnd_f
An array containing the lower bounds of the input bounding box within which the
ChebyMap is defined. This argument is not used or accessed if ncoeff_f is zero,
and so a NULL pointer may be supplied. If supplied, the array should contain
" nin" elements.

ubnd_f
An array containing the upper bounds of the input bounding box within which the
ChebyMap is defined. This argument is not used or accessed if ncoeff_f is zero,
and so a NULL pointer may be supplied. If supplied, the array should contain
" nin" elements.

Ibnd_i
An array containing the lower bounds of the output bounding box within which the
ChebyMap is defined. This argument is not used or accessed if ncoeff_i is zero,
and so a NULL pointer may be supplied. If supplied, the array should contain
" nout" elements.

ubnd_i
An array containing the upper bounds of the output bounding box within which the
ChebyMap is defined. This argument is not used or accessed if ncoeff_i is zero,
and so a NULL pointer may be supplied. If supplied, the array should contain
" nout" elements.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new ChebyMap. The syntax

231 astChebyMap SUN/211.30 —AST Function Descriptions

used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astChebyMap()
A pointer to the new ChebyMap.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 232 astCircle

astCircle
Create a Circle

Description:
This function creates a new and optionally initialises its attributes.

A Circle is a[Region| which represents a circle or sphere within the supplied

Synopsis:
AstCircle #*astCircle(AstFrame xframe, int form, const double centre[], const double
point[], AstRegion xunc, const char xoptioms, ...)

Parameters:

frame
A pointer to the Frame in which the region is defined. A deep copy is taken of
the supplied Frame. This means that any subsequent changes made to the Frame
using the supplied pointer will have no effect the Region.

form
Indicates how the circle is described by the remaining parameters. A value of
zero indicates that the circle is specified by a centre position and a position
on the circumference. A value of one indicates that the circle is specified by
a centre position and a scalar radius.

centre
An array of double, with one element for each Frame axis attribute) containing
the coordinates at the centre of the circle or sphere.

point
If " form" is zero, then this array should have one element for each Frame axis
(Naxes attribute), and should be supplied holding the coordinates at a point on
the circumference of the circle or sphere. If " form" is one, then this array
should have one element only which should be supplied holding the scalar radius
of the circle or sphere, as a geodesic distance within the Frame.

unc
An optional pointer to an existing Region which specifies the uncertainties associated
with the boundary of the Circle being created. The uncertainty in any point on
the boundary of the Circle is found by shifting the supplied " uncertainty" Region
so that it is centred at the boundary point being considered. The area covered
by the shifted uncertainty Region then represents the uncertainty in the boundary
position. The uncertainty is assumed to be the same for all points.
If supplied, the uncertainty Region must be of a class for which all instances
are centro-symetric (e.g. [Box], Circle, [Ellipse|, etc.) or be a containing
centro-symetric component Regions. A deep copy of the supplied Region will be
taken, so subsequent changes to the uncertainty Region using the supplied pointer
will have no effect on the created Circle. Alternatively, a NULL pointer
may be supplied, in which case a default uncertainty is used equivalent to a box
1.0E-6 of the size of the Circle being created.
The uncertainty Region has two uses: 1) when the function compares
two Regions for equality the uncertainty Region is used to determine the tolerance
on the comparison, and 2) when a Region is mapped into a different coordinate
system and subsequently simplified (using [astSimplify]), the uncertainties are
used to determine if the transformed boundary can be accurately represented by
a specific shape of Region.

233 astCircle SUN/211.30 —AST Function Descriptions

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Circle. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astCircle()
A pointer to the new Circle.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 234 astCirclePars

astCirclePars
Returns the geometric parameters of an Circle

Description:

This function returns the geometric parameters describing the supplied
Synopsis:

void astCirclePars(AstCircle #*this, double *centre, double *radius, double xpl)
Parameters:

this

Pointer to the [Region|.
centre

Pointer to an array in which to return the coordinates of the Circle centre. The
length of this array should be no less than the number of axes in the associated
coordinate system.

radius
Returned holding the radius of the Circle, as an geodesic distance in the associated
coordinate system.

pl Pointer to an array in which to return the coordinates of a point on the circumference
of the Circle. The length of this array should be no less than the number of
axes in the associated coordinate system. A NULL pointer can be supplied if the
circumference position is not needed.

Notes:

e If the coordinate system represented by the Circle has been changed since it was
first created, the returned parameters refer to the new (changed) coordinate system,
rather than the original coordinate system. Note however that if the transformation
from original to new coordinate system is non-linear, the shape represented by
the supplied Circle object may not be an accurate circle.

235 astClear SUN/211.30 —AST Function Descriptions

astClear
Clear attribute values for an Object

Description:
This function clears the values of a specified set of attributes for an[Object] Clearing an attribute
cancels any value that has previously been explicitly set for it, so that the standard default attribute
value will subsequently be used instead. This also causes the function to return the value
zero for the attribute, indicating that no value has been set.
Synopsis:
void astClear(AstObject *this, const char xattrib)
Parameters:
this
Pointer to the Object.

attrib
Pointer to a null-terminated character string containing a comma-separated list
of the names of the attributes to be cleared.

Applicability:

Object
This function applies to all Objects.

Notes:

e Attribute names are not case sensitive and may be surrounded by white space.
e It does no harm to clear an attribute whose value has not been set.

e An error will result if an attempt is made to clear the value of a read-only attribute.

SUN/211.30 —AST Function Descriptions 236 astClearStatus

astClearStatus
Clear the AST error status

Description:
This macro resets the AST error status to an OK value, indicating that an error condition (if any)
has been cleared.

Synopsis:
void astClearStatus

Notes:

e If the AST error status is set to an error value (after an error), most AST functions
will not execute and will simply return without action. Using astClearStatus
will restore normal behaviour.

237 astClip SUN/211.30 —AST Function Descriptions

astClip
Set up or remove clipping for a Plot

Description:
This function defines regions of a which are to be clipped. Any subsequent graphical output
created using the Plot will then be visible only within the unclipped regions of the plotting area.

See also the attribute.
Synopsis:
void astClip(AstPlot xthis, int iframe, const double lbnd[], const double ubnd[])

Parameters:

this
Pointer to the Plot.

iframe
The index of the within the Plot to which the clipping limits supplied in
" 1bnd" and " ubnd" (below) refer. Clipping may be applied to any of the coordinate
systems associated with a Plot (as defined by the Frames it contains), so this
index may take any value from 1 to the number of Frames in the Plot attribute).
In addition, the values AST__BASE and AST__CURRENT may be used to specify the
base and current Frames respectively.

For example, a value of AST__CURRENT causes clipping to be performed in physical
coordinates, while a value of AST__BASE would clip in graphical coordinates. Clipping
may also be removed completely by giving a value of AST__NOFRAME. In this case

any clipping bounds supplied (below) are ignored.

Ibnd
An array with one element for each axis of the clipping Frame (identified by the
index " iframe"). This should contain the lower bound, on each axis, of the
region which is to remain visible (unclipped) .

ubnd
An array with one element for each axis of the clipping Frame (identified by the
index " iframe"). This should contain the upper bound, on each axis, of the
region which is to remain visible (unclipped).

Notes:

e Only one clipping Frame may be active at a time. This function will deactivate
any previously-established clipping Frame before setting up new clipping limits.

e The clipping produced by this function is in addition to that specified by the
Clip attribute which occurs at the edges of the plotting area established when

the Plot is created (see [astPlot). The underlying graphics system may also impose
further clipping.

e When testing a graphical position for clipping, it is first transformed into the
clipping Frame. The resulting coordinate on each axis is then checked against
the clipping limits (given by " 1lbnd" and " ubnd"). By default, a position is
clipped if any coordinate lies outside these limits. However, if a non-zero value
is assigned to the Plot’ s attribute, then a position is only clipped if
the coordinates on all axes lie outside their clipping limits.

SUN/211.30 —AST Function Descriptions 238 astClip

e If the lower clipping limit exceeds the upper limit for any axis, then the sense
of clipping for that axis is reversed (so that coordinate values lying between
the limits are clipped instead of those lying outside the limits). To produce
a " hole" in a coordinate space (that is, an internal region where nothing is
plotted), you should supply all the bounds in reversed order, and set the ClipOp
attribute for the Plot to a non-zero value.

e Either clipping limit may be set to the value AST__BAD, which is equivalent to
setting it to infinity (or minus infinity for a lower bound) so that it is not
used.

e If a graphical position results in any bad coordinate values (AST__BAD) when transformed
into the clipping Frame, then it is treated (for the purposes of producing graphical
output) as if it were clipped.

e When a Plot is used as a to transform points (e.g. using [astTran2), any

clipped output points are assigned coordinate values of AST__BAD.

e An error results if the base Frame of the Plot is not 2-dimensional.

239 astClone SUN/211.30 —AST Function Descriptions

astClone
Clone (duplicate) an Object pointer

Description:
This function returns a duplicate pointer to an existing It also increments the Object’ s
attribute to keep track of how many pointers have been issued.

Note that this function is NOT equivalent to an assignment statement, as in general the two pointers
will not have the same value.

Synopsis:
AstObject *astClone(AstObject xthis)
Parameters:

this
Original pointer to the Object.

Applicability:

Object
This function applies to all Objects.

Returned Value:

astClone()
A duplicate pointer to the same Object.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 240 astCmpFrame

astCmpFrame
Create a CmpFrame

Description:
This function creates a new and optionally initialises its attributes.
A CmpFrame is a compound [Frame| which allows two component Frames (of any class) to be
merged together to form a more complex Frame. The axes of the two component Frames then
appear together in the resulting CmpFrame (those of the first Frame, followed by those of the
second Frame).
Since a CmpFrame is itself a Frame, it can be used as a component in forming further CmpFrames.
Frames of arbitrary complexity may be built from simple individual Frames in this way.
Also since a Frame is a a CmpFrame can also be used as a Mapping. Normally, a
CmpFrame is simply equivalent to a but if either of the component Frames within a
CmpFrame is a[Region](a sub-class of Frame), then the CmpFrame will use the Region as a Mapping
when transforming values for axes described by the Region. Thus input axis values corresponding
to positions which are outside the Region will result in bad output axis values.

Synopsis:
AstCmpFrame *astCmpFrame(AstFrame *framel, AstFrame xframe2, const char xoptiomns,

)

Parameters:

framel
Pointer to the first component Frame.

frame2
Pointer to the second component Frame.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new CmpFrame. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astCmpFrame()
A pointer to the new CmpFrame.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.
Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

241 astCmpMap SUN/211.30 —AST Function Descriptions

astCmpMap
Create a CmpMap

Description:
This function creates a new and optionally initialises its attributes.
A CmpMap is a compound which allows two component Mappings (of any class) to
be connected together to form a more complex Mapping. This connection may either be " in
series" (where the first Mapping is used to transform the coordinates of each point and the second
mapping is then applied to the result), or " in parallel" (where one Mapping transforms the
earlier coordinates for each point and the second Mapping simultaneously transforms the later
coordinates).
Since a CmpMap is itself a Mapping, it can be used as a component in forming further CmpMaps.
Mappings of arbitrary complexity may be built from simple individual Mappings in this way.

Synopsis:

AstCmpMap *astCmpMap(AstMapping #*mapl, AstMapping *map2, int series, const char *options,
)

Parameters:

mapl
Pointer to the first component Mapping.

map2
Pointer to the second component Mapping.

series
If a non-zero value is given for this parameter, the two component Mappings will
be connected in series. A zero value requests that they are connected in parallel.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new CmpMap. The syntax

used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astCmpMap()
A pointer to the new CmpMap.

Notes:

e If the component Mappings are connected in series, then using the resulting CmpMap
to transform coordinates will cause the first Mapping to be applied, followed
by the second Mapping. If the inverse CmpMap transformation is requested, the
two component Mappings will be applied in both the reverse order and the reverse
direction.

SUN/211.30 —AST Function Descriptions 242 astCmpMap

When connecting two component Mappings in series, the number of output coordinates
generated by the first Mapping (its attribute) must equal the number of input
coordinates accepted by the second Mapping (its attribute).

If the component Mappings of a CmpMap are connected in parallel, then the first
Mapping will be used to transform the earlier input coordinates for each point
(and to produce the earlier output coordinates) and the second Mapping will be
used simultaneously to transform the remaining input coordinates (to produce the
remaining output coordinates for each point). If the inverse transformation is
requested, each Mapping will still be applied to the same coordinates, but in
the reverse direction.

When connecting two component Mappings in parallel, there is no restriction on
the number of input and output coordinates for each Mapping.

Note that the component Mappings supplied are not copied by astCmpMap (the new
CmpMap simply retains a reference to them). They may continue to be used for
other purposes, but should not be deleted. If a CmpMap containing a copy of its
component Mappings is required, then a copy of the CmpMap should be made using

[BStCopy

A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

243 astCmpRegion SUN/211.30 —AST Function Descriptions

astCmpRegion
Create a CmpRegion

Description:
This function creates a new and optionally initialises its attributes.

A CmpRegion is a[Region| which allows two component Regions (of any class) to be combined to
form a more complex Region. This combination may be performed a boolean AND, OR or XOR
(exclusive OR) operator. If the AND operator is used, then a position is inside the CmpRegion
only if it is inside both of its two component Regions. If the OR operator is used, then a position
is inside the CmpRegion if it is inside either (or both) of its two component Regions. If the XOR
operator is used, then a position is inside the CmpRegion if it is inside one but not both of its two
component Regions. Other operators can be formed by negating one or both component Regions
before using them to construct a new CmpRegion.

The two component Region need not refer to the same coordinate but it must be possible
for the function to determine a between them (an error will be reported
otherwise when the CmpRegion is created). For instance, a CmpRegion may combine a Region
defined within an ICRS with a Region defined within a Galactic SkyFrame. This is
acceptable because the SkyFrame class knows how to convert between these two systems, and
consequently the astConvert function will also be able to convert between them. In such cases,
the second component Region will be mapped into the coordinate Frame of the first component
Region, and the Frame represented by the CmpRegion as a whole will be the Frame of the first
component Region.

Since a CmpRegion is itself a Region, it can be used as a component in forming further CmpRegions.
Regions of arbitrary complexity may be built from simple individual Regions in this way.

Synopsis:
AstCmpRegion *astCmpRegion(AstRegion *regionl, AstRegion *region2, int oper, const
char *options, ...)

Parameters:
regionl

Pointer to the first component Region.

region2
Pointer to the second component Region. This Region will be transformed into
the coordinate Frame of the first region before use. An error will be reported
if this is not possible.

oper
The boolean operator with which to combine the two Regions. This must be one
of the symbolic constants AST__AND, AST__OR or AST__XOR.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new CmpRegion. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

SUN/211.30 —AST Function Descriptions 244 astCmpRegion

Returned Value:

astCmpRegion()
A pointer to the new CmpRegion.

Notes:

e If one of the supplied Regions has an associated uncertainty, that uncertainty
will also be used for the returned CmpRegion. If both supplied Regions have associated
uncertainties, the uncertainty associated with the first Region will be used for
the returned CmpRegion.
e Deep copies are taken of the supplied Regions. This means that any subsequent
changes made to the component Regions using the supplied pointers will have no
effect on the CmpRegion.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

245 astColumnName SUN/211.30 —AST Function Descriptions

astColumnName
Get the name of the column at a given index within the Table

Description:
This function returns a string holding the name of the column with the given index within the

This function is intended primarily as a means of iterating round all the columns in a Table. For

this purpose, the number of columns in the Table is given by the attribute of the Table.
This function could then be called in a loop, with the index value going from zero to one less than
Ncolumn.

Note, the index associated with a column decreases monotonically with the age of the column: the
oldest Column in the Table will have index one, and the Column added most recently to the Table
will have the largest index.
Synopsis:
const char *astColumnName(AstTable *this, int index)
Parameters:
this
Pointer to the Table.
index
The index into the list of columns. The first column has index one, and the last
has index " Ncolumn"

Returned Value:

astColumnName()
A pointer to a null-terminated string containing the upper case column name.

Notes:

e The returned pointer is guaranteed to remain valid and the string to which it
points will not be over-written for a total of 50 successive invocations of this
function. After this, the memory containing the string may be re-used, so a copy
of the string should be made if it is needed for longer than this.

e A NULL pointer will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 246 astColumnNull

astColumnNull
Get or set the null value for an integer column of a FITS table

Description:
This function allows a null value to be stored with a named integer-valued column in a
The supplied null value is assigned to the TNULLn keyword in the FITS header associated with
the FitsTable. A value in the named column is then considered to be null if 1) it equals the null
value supplied to this function, or 2) no value has yet been stored in the cell.

As well as setting a new null value, this function also returns the previous null value. If no null
value has been set previously, a default value will be returned. This default will be an integer value
that does not currently occur anywhere within the named column. If no such value can be found,
what happens depends on whether the column contains any cells in which no values have yet been
stored. If so, an error will be reported. Otherwise (i.e. if there are no null values in the column), an
arbitrary value of zero will be returned as the function value, and no TNULLn keyword will be
stored in the FITS header.

A flag is returned indicating if the returned null value was set explicitly by a previous call to this
function, or is a default value.

A second flag is returned indicating if the named column contains any null values (i.e. values equal
to the supplied null value, or cells to which no value has yet been assigned).

Synopsis:

int astColumnNull(AstFitsTable *this, const char *column, int set, int newval, int
*wasset, int *hasnull)

Parameters:
this
Pointer to the FitsTable.

column
The character string holding the name of the column. Trailing spaces are ignored.

set If non-zero, the value supplied for parameter " newval" will be stored as the
current null value, replacing any value set by a previous call to this function.
If zero, the value supplied for parameter " newval" is ignored and the current
null value is left unchanged.

newval
The new null value to use. Ignored if " set" is zero. An error will be reported
if the supplied value is outside the range of values that can be stored in the
integer data type associated with the column.

wasset
Pointer to an int that will be returned non-zero if the returned null value was

set previously via an earlier invocation of this function. Zero is returned otherwise.
If the named column does not exist, or an error occurs, a value of zero is returned.

hasnull
Pointer to an int that will be returned non-zero if and only if the named column
currently contains any values equal to the null value on exit (i.e. " newval"

if " set" is non-zero, or the returned function value otherwise), or contains

any empty cells. If the named column does not exist, or an error occurs, a value
of zero is returned. If a NULL pointer is supplied for " hasnull" , no check

on the presence of null values will be performed.

247 astColumnNull SUN/211.30 —AST Function Descriptions

Returned Value:

astColumnNull()
The null value that was in use on entry to this function. If a null value has been
set by a previous invocation of this function, it will be returned. Otherwise, if
" set" is non-zero, the supplied " newval" value is returned. Otherwise, a default
value is chosen (if possible) that does not currently occur in the named column. If
all available values are in use in the column, an error is reported if and only if
the column contains any empty cells. O0Otherwise, a value of zero is returned. A value
of zero is also returned if the named column does not exist, or an error occurs.

Notes:

e The FITS binary table definition allows only integer-valued columns to have an
associated null value. This routine will return without action if the column
is not integer-valued.

SUN/211.30 —AST Function Descriptions 248 astColumnShape

astColumnShape
Returns the shape of the values in a named column

Description:
This function returns the number of dimensions spaned by each value in a named column of a
together with the length of each dimension. These are the values supplied when the column

was created using [astAddColumn

Synopsis:
void astColumnShape(AstTable xthis, const char *column, int mxdim, int #ndim, int
*dims)

Parameters:
this
Pointer to the Table.
column
The character string holding the upper case name of the column. Trailing spaces
are ignored.

mxdim
The length of the " dims" array.
ndim
Pointer to an int in which to return the number of dimensions spanned by values
in the named column. This will be zero if the column contains scalar values.
dims
Pointer to an array in which to return the length of each dimension. Any excess
trailing elements will be filled with the value 1.

Notes:

e No error is reported if the requested column cannot be found in the given Table.
A value of zero is returned for " ndim" and the supplied values in " dims" are
left unchanged.

e A value of zero is returned for " ndim" if an error occurs.

249 astColumnSize SUN/211.30 —AST Function Descriptions

astColumnSize
Get the number of bytes needed to hold a full column of data

Description:
This function returns the number of bytes of memory that must be allocated prior to retrieving the
data from a column of a[FitsTable| using [astGetColumnData]

Synopsis:
size_t astColumnSize(AstFitsTable *this, const char *column)
Parameters:

this
Pointer to the FitsTable.

column
The character string holding the name of the column. Trailing spaces are ignored.

Returned Value:

astColumnSize()
The number of bytes required to store the column data.

Notes:

e An error will be reported if the named column does not exist in the FitsTable.

e Zero will be returned as the function value in an error occurs.

SUN/211.30 —AST Function Descriptions 250 astConvert

astConvert
Determine how to convert between two coordinate systems

Description:

This function compares two Frames and determines whether it is possible to convert between the
coordinate systems which they represent. If conversion is possible, it returns a[FrameSet| which
describes the conversion and which may be used (as a to transform coordinate values in
either direction.

The same function may also be used to determine how to convert between two FrameSets (or
between a and a FrameSet, or vice versa). This mode is intended for use when (for example)
two images have been calibrated by attaching a FrameSet to each. astConvert might then be used
to search for a celestial coordinate system that both images have in common, and the result could
then be used to convert between the pixel coordinates of both images — having effectively used
their celestial coordinate systems to align them.

When using FrameSets, there may be more than one possible intermediate coordinate system in
which to perform the conversion (for instance, two FrameSets might both have celestial coordinates,
detector coordinates, pixel coordinates, etc.). A comma-separated list of coordinate system domains
may therefore be given which defines a priority order to use when selecting the intermediate
coordinate system. The path used for conversion must go via an intermediate coordinate system
whose attribute matches one of the domains given. If conversion cannot be achieved using
the first domain, the next one is considered, and so on, until success is achieved.

Synopsis:

AstFrameSet *astConvert(AstFrame xfrom, AstFrame *to, const char *xdomainlist)

Parameters:

from
Pointer to a Frame which represents the " source" coordinate system. This is
the coordinate system in which you already have coordinates available.
If a FrameSet is given, its current Frame (as determined by its attribute)
is taken to describe the source coordinate system. Note that the [Base| attribute
of this FrameSet may be modified by this function to indicate which intermediate
coordinate system was used (see under " FrameSets" in the " Applicability" section
for details).

to Pointer to a Frame which represents the " destination" coordinate system. This
is the coordinate system into which you wish to convert your coordinates.

If a FrameSet is given, its current Frame (as determined by its Current attribute)

is taken to describe the destination coordinate system. Note that the Base attribute

of this FrameSet may be modified by this function to indicate which intermediate
coordinate system was used (see under " FrameSets" in the " Applicability" section
for details).

domainlist
Pointer to a null-terminated character string containing a comma-separated list
of Frame domains. This may be used to define a priority order for the different
intermediate coordinate systems that might be used to perform the conversion.

The function will first try to obtain a conversion by making use only of an intermediate

coordinate system whose Domain attribute matches the first domain in this list.

If this fails, the second domain in the list will be used, and so on, until conversion

is achieved. A blank domain (e.g. two consecutive commas) indicates that all
coordinate systems should be considered, regardless of their domains.

251 astConvert SUN/211.30 —AST Function Descriptions

This list is case-insensitive and all white space is ignored. If you do not wish
to restrict the domain in this way, you should supply an empty string. This is
normally appropriate if either of the source or destination coordinate systems
are described by Frames (rather than FrameSets), since there is then usually only
one possible choice of intermediate coordinate system.

Applicability:

DSBSpecFrame

If the attribute is non-zero, alignment occurs in the upper sideband
expressed within the spectral system and standard of rest given by attributes

and [ATignStd0fRest]. If AlignSideBand is zero, the two DSBSpecFrames are aligned as
if they were simple SpecFrames (i.e. the [SideBand| is ignored).

Frame
This function applies to all Frames. Alignment occurs within the coordinate system
given by attribute AlignSystem.

FrameSet
If either of the " from" or " to" parameters is a pointer to a FrameSet, then astConvert
will attempt to convert from the coordinate system described by the current Frame of
the " from" FrameSet to that described by the current Frame of the " to" FrameSet.

To achieve this, it will consider all of the Frames within each FrameSet as a possible

way of reaching an intermediate coordinate system that can be used for the conversion.

There is then the possibility that more than one conversion path may exist and, unless

the choice is sufficiently restricted by the " domainlist" string, the sequence in

which the Frames are considered can be important. In this case, the search for a conversion
path proceeds as follows:

e Each field in the " domainlist" string is considered in turn.

e The Frames within each FrameSet are considered in a specific order: (1) the base
Frame is always considered first, (2) after this come all the other Frames in
Frame-index order (but omitting the base and current Frames), (3) the current
Frame is always considered last. However, if either FrameSet’ s attribute
is set to a non-zero value (so that the FrameSet is inverted), then its Frames
are considered in reverse order. (Note that this still means that the base Frame
is considered first and the current Frame last, because the Invert value will
also cause these Frames to swap places.)

e A1l source Frames are first considered (in the appropriate order) for conversion
to the first destination Frame. If no suitable intermediate coordinate system
emerges, they are then considered again for conversion to the second destination
Frame (in the appropriate order), and so on.

e Generally, the first suitable intermediate coordinate system found is used. However,
the overall Mapping between the source and destination coordinate systems is also
examined. Preference is given to cases where both the forward and inverse transformations
are defined (as indicated by the [TranForward| and [Tranlnverse| attributes). If
only one transformation is defined, the forward one is preferred.

e If the domain of the intermediate coordinate system matches the current " domainlist"
field, the conversion path is accepted. Otherwise, the next " domainlist" field
is considered and the process repeated.

If conversion is possible, the Base attributes of the two FrameSets will be modified
on exit to identify the Frames used to access the intermediate coordinate system which
was finally accepted.

Note that it is possible to force a particular Frame within a FrameSet to be used as
the basis for the intermediate coordinate system, if it is suitable, by (a) focussing

SUN/211.30 —AST Function Descriptions 252 astConvert

attention on it by specifying its domain in the " domainlist" string, or (b) making
it the base Frame, since this is always considered first.

peckrame

Alignment occurs within the spectral system and standard of rest given by attributes
AlignSystem and AlignStdOfRest.

Alignment occurs within the time system and time scale given by attributes AlignSystem
and [AlignTimeScale|.

Returned Value:

astConvert()
If the requested coordinate conversion is possible, the function returns a pointer
to a FrameSet which describes the conversion. Otherwise, a null pointer (AST__NULL)
is returned without error.

If a FrameSet is returned, it will contain two Frames. Frame number 1 (its base Frame)
will describe the source coordinate system, corresponding to the " from" parameter.
Frame number 2 (its current Frame) will describe the destination coordinate system,
corresponding to the " to" parameter. The Mapping which inter-relates these two Frames
will perform the required conversion between their respective coordinate systems.

Note that a FrameSet may be used both as a Mapping and as a Frame. If the result is

used as a Mapping (e.g. with [astTran2), then it provides a means of converting coordinates
from the source to the destination coordinate system (or vice versa if its inverse
transformation is selected). If it is used as a Frame, its attributes will describe

the destination coordinate system.

Examples:
cvt = astConvert(a, b, " ");

Attempts to convert between the coordinate systems represented by " a" and "
b" (assumed to be Frames). If successful, a FrameSet is returned via the " cvt"
pointer which may be used to apply the conversion to sets of coordinates (e.g.
using astTran2).

cvt = astConvert([astSkyFrame|(" "), astSkyFrame(" [EquinoxF2005"), " ");

Creates a FrameSet which describes precession in the default FK5 celestial
coordinate system between equinoxes J2000 (also the default) and J2005. The
returned " cvt" pointer may then be passed to astTran2 to apply this precession
correction to any number of coordinate values given in radians.

Note that the returned FrameSet also contains information about how to format
coordinate values. This means that setting its [Report| attribute to 1 is a simple
way to obtain printed output (formatted in sexagesimal notation) to show the
coordinate values before and after conversion.

cvt = astConvert(a, b, " sky,detector,");

Attempts to convert between the coordinate systems represented by the current
Frames of " a" and " b" (now assumed to be FrameSets), via the intermediate

" SKY" coordinate system. This, by default, is the Domain associated with a
celestial coordinate system represented by a [SkyFrame].

If this fails (for example, because either FrameSet lacks celestial coordinate
information), then the user-defined " DETECTOR" coordinate system is used instead.

253 astConvert SUN/211.30 —AST Function Descriptions

If this also fails, then all other possible ways of achieving conversion are
considered before giving up.

The returned pointer " cvt" indicates whether conversion was possible and will
have the value AST__NULL if it was not. If conversion was possible, " cvt" will
point at a new FrameSet describing the conversion.

The Base attributes of the two FrameSets will be set by astConvert to indicate
which of their Frames was used for the intermediate coordinate system. This
means that you can subsequently determine which coordinate system was used by
enquiring the Domain attribute of either base Frame.

Notes:

e The Mapping represented by the returned FrameSet results in alignment taking place
in the coordinate system specified by the AlignSystem attribute of the " to" Frame.
See the description of the AlignSystem attribute for further details.

e When aligning (say) two images, which have been calibrated by attaching FrameSets
to them, it is usually necessary to convert between the base Frames (representing
" native" pixel coordinates) of both FrameSets. This may be achieved by inverting
the FrameSets (e.g. using so as to interchange their base and current
Frames before using astConvert.

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 254 astConvex<X>

astConvex<X>
Create a new Polygon representing the convex hull of a 2D data grid

Description:
This is a set of functions that create the shortest[Polygon|that encloses all pixels with a specified
value within a gridded 2-dimensional data array (e.g. an image).

A basic 2-dimensional is used to represent the pixel coordinate system in the returned
Polygon. The[Domain]attribute is set to " PIXEL" , the|Title|attribute is set to " Pixel coordinates" ,
and the Unit attribute for each axis is set to " pixel" . All other attributes are left unset. The nature
of the pixel coordinate system is determined by parameter " starpix" .

You should use a function which matches the numerical type of the data you are processing by
replacing <X> in the generic function name astConvex<X> by an appropriate 1- or 2-character
type code. For example, if you are procesing data with type " float" , you should use the function
astConvexF (see the " Data Type Codes" section below for the codes appropriate to other numerical

types).

Synopsis:
AstPolygon xastConvex<X>(<Xtype> value, int oper, const <Xtype> array[], const
int 1bnd[2], const int ubnd[2], int starpix)

Parameters:

value
A data value that specifies the pixels to be included within the convex hull.
oper
Indicates how the " value" parameter is used to select the required pixels. It
can have any of the following values:

e AST__LT: include pixels with value less than " value"

e AST__LE: include pixels with value less than or equal to " value"
e AST__EQ: include pixels with value equal to " value"

e AST__NE: include pixels with value not equal to " value"

e AST__GE: include pixels with value greater than or equal to " value"

e AST__GT: include pixels with value greater than " value"

array
Pointer to a 2-dimensional array containing the data to be processed. The numerical
type of this array should match the 1- or 2-character type code appended to the
function name (e.g. if you are using astConvexF, the type of each array element
should be " float").
The storage order of data within this array should be such that the index of the
first grid dimension varies most rapidly and that of the second dimension least
rapidly (i.e. Fortran array indexing is used).

Ibnd
Pointer to an array of two integers containing the coordinates of the centre of
the first pixel in the input grid along each dimension.

ubnd
Pointer to an array of two integers containing the coordinates of the centre of
the last pixel in the input grid along each dimension.
Note that " 1lbnd" and " ubnd" together define the shape and size of the input
grid, its extent along a particular (j’> th) dimension being ubnd[j]l-lbnd[j]l+1

255 astConvex<X> SUN/211.30 —AST Function Descriptions

(assuming the index " j" to be zero-based). They also define the input grid’ s
coordinate system, each pixel having unit extent along each dimension with integral
coordinate values at its centre or upper corner, as selected by parameter " starpix"

starpix
A flag indicating the nature of the pixel coordinate system used to describe the
vertex positions in the returned Polygon. If non-zero, the standard Starlink definition
of pixel coordinate is used in which a pixel with integer index I spans a range
of pixel coordinate from (I-1) to I (i.e. pixel corners have integral pixel coordinates).
If zero, the definition of pixel coordinate used by other AST functions such as
astResample, astMask, etc., is used. In this definition, a pixel with integer
index I spans a range of pixel coordinate from (I-0.5) to (I40.5) (i.e. pixel
centres have integral pixel coordinates).

Returned Value:

astConvex<X>()
A pointer to the required Polygon. NULL is returned without error if the array contains
no pixels that satisfy the criterion specified by " value" and " oper"

Notes:
e NULL will be returned if this function is invoked with the global error status
set, or if it should fail for any reason.
Data Type Codes :

To select the appropriate masking function, you should replace <X> in the generic
function name astConvex<X> with a 1- or 2-character data type code, so as to match
the numerical type <Xtype> of the data you are processing, as follows:

e D: double

e F: float

e L: long int

e UL: unsigned long int

e I: int

e UI: unsigned int

e S5: short int

e US: unsigned short int

e B: byte (signed char)

e UB: unsigned byte (unsigned char)

For example, astConvexD would be used to process " double" data, while astConvexS would
be used to process " short int" data, etc.

Handling of Huge Pixel Arrays :

If the input grid is so large that an integer pixel index, (or a count of pixels) could

exceed the largest value that can be represented by a 4-byte integer, then the alternative

" 8-byte" interface for this function should be used. This alternative interface uses

8 byte integer arguments (instead of 4-byte) to hold pixel indices and pixel counts.
Specifically, the arguments " lbnd" and " ubnd" are changed from type " int" to type

" int64_t" (defined in header file stdint.h). The function name is changed by inserting

the digit " 8" before the trailing data type code. Thus, astConvex<X> becomes astConvex8<X>.

SUN/211.30 —AST Function Descriptions 256 astCopy

astCopy
Copy an Object

Description:
This function creates a copy of an[Object|and returns a pointer to the resulting new Object. It makes
a " deep" copy, which contains no references to any other Object (i.e. if the original Object contains
references to other Objects, then the actual data are copied, not simply the references). This means
that modifications may safely be made to the copy without indirectly affecting any other Object.
Synopsis:
AstObject xastCopy(const AstObject xthis)
Parameters:
this
Pointer to the Object to be copied.
Applicability:
Object
This function applies to all Objects.
Returned Value:

astCopy()
Pointer to the new Object.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

257 astCreated At SUN/211.30 —AST Function Descriptions

astCreated At
Return the routine, file and line number at which an Object was
created

Description:
This function returns pointers to two strings containing the name of the routine or function within
which the object was created and the name of the source file containing that routine. It also returns
the number of the line within the file at which the object was created. It is intended for use in
debugging memory leaks etc.

Precisely, the information returned identifies the point at which the[Object)’ s public identifier (i.e.
the supplied pointer) was first issued. This may not correspond to the actual creation of the Object
if the object is contained within some higher level Object. For instance, if the method
is used to get a pointer to a[Frame| within a the information returned by this function if
supplied with the Frame pointer would identify the call to astGetFrame, rather than the line at
which the FrameSet created its internal copy of the Frame. Likewise, if this function is used to get
information from an Object pointer returned by [astClone) the information will describe the call to
astClone, not the call that created the original Object.

Synopsis:
void astCreatedAt(AstObject *this, const char xxroutine, const char *xfile, int #*line
)
Parameters:
this
Pointer to the Object.
routine
Address of a pointer to a null terminated C string in which to return the routine
name (the string will reside in static memory). The pointer will be set to NULL
on exit if no routine name is available.
file
Address of a pointer to a null terminated C string in which to return the file
name (the string will reside in static memory). The pointer will be set to NULL
on exit if no file name is available.
line
Address of an int in which to store the line number in the file. A line number
of zero is returned if no line number is available.
Notes:

e NULL pointers and a line number of zero are returned if an error has already occurred
prior to calling this function.

SUN/211.30 —AST Function Descriptions 258 astCurrentTime

astCurrentTime
Return the current system time

Description:
This function returns the current system time, represented in the form specified by the supplied
That is, the returned floating point value should be interpreted using the attribute
values of the TimeFrame. This includes [System| [TimeOrigin| [CTOffset} [TimeScale] and Unit.

Synopsis:

double astCurrentTime(AstTimeFrame *this)

Parameters:
this

Pointer to the TimeFrame.
Returned Value:

astCurrentTime()
A TimeFrame axis value representing the current system time.

Notes:

e Values of AST__BAD will be returned if this function is invoked with the AST error

status set, or if it should fail for any reason.

e It is assumes that the system time (returned by the C time() function) follows
the POSIX standard, representing a continuous monotonic increasing count of SI
seconds since the epoch 00:00:00 UTC 1 January 1970 AD (equivalent to TAI with
a constant offset). Resolution is one second.

e An error will be reported if the TimeFrame has a TimeScale value which cannot
be converted to TAI (e.g. " angular" systems such as UT1, GMST, LMST and LAST).

e Any inaccuracy in the system clock will be reflected in the value returned by
this function.

259 astCurve SUN/211.30 —AST Function Descriptions

astCurve
Draw a geodesic curve

Description:

This function draws a geodesic curve between two points in the physical coordinate system of a
Plotl The curve drawn is the path of shortest distance joining the two points (as defined by the
astDistance| function for the current[Frame]of the Plot). For example, if the current Frame is a basic
Frame, then the curve joining the two points will be a straight line in physical coordinate space. If
the current Frame is more specialised and describes, for instance, a sky coordinate system, then the
geodesic curve would be a great circle in physical coordinate space passing through the two sky
positions given.

Note that the geodesic curve is transformed into graphical coordinate space for plotting, so that
a straight line in physical coordinates may result in a curved line being drawn if the Mapping]
involved is non-linear. Any discontinuities in the Mapping between physical and graphical
coordinates are catered for, as is any clipping established using|[astClip}

If you need to draw many geodesic curves end-to-end, then the function is equivalent
to repeatedly using astCurve, but will usually be more efficient.

If you need to draw curves which are not geodesics, see jastGenCurve|orastGridLine]

Synopsis:
void astCurve(AstPlot #*this, const double start[], const double finish[])
Parameters:
this
Pointer to the Plot.

start
An array, with one element for each axis of the Plot, giving the physical coordinates
of the first point on the geodesic curve.

finish
An array, with one element for each axis of the Plot, giving the physical coordinates
of the second point on the geodesic curve.

Notes:

e No curve is drawn if either of the " start" or " finish" arrays contains any coordinates
with the value AST__BAD.

e An error results if the base Frame of the Plot is not 2-dimensional.

e An error also results if the transformation between the current and base Frames
of the Plot is not defined (i.e. the Plot’ s attribute is zero).

SUN/211.30 —AST Function Descriptions 260 astDSBSpecFrame

astDSBSpecFrame
Create a DSBSpecFrame

Description:
This function creates a new [DSBSpecFrame|and optionally initialises its attributes.

A DSBSpecFrame is a specialised form of which represents positions in a spectrum
obtained using a dual sideband instrument. Such an instrument produces a spectrum in which each
point contains contributions from two distinctly different frequencies, one from the " lower side
band" (LSB) and one from the " upper side band" (USB). Corresponding LSB and USB frequencies
are connected by the fact that they are an equal distance on either side of a fixed central frequency
known as the " Local Oscillator" (LO) frequency.

When quoting a position within such a spectrum, it is necessary to indicate whether the quoted
position is the USB position or the corresponding LSB position. The attribute provides
this indication. Another option that the SideBand attribute provides is to represent a spectral
position by its topocentric offset from the LO frequency.

In practice, the LO frequency is specified by giving the distance from the LO frequency to some
" central" spectral position. Typically this central position is that of some interesting spectral
feature. The distance from this central position to the LO frequency is known as the " intermediate
frequency" ([F). The value supplied for IF can be a signed value in order to indicate whether the
LO frequency is above or below the central position.

Synopsis:
AstDSBSpecFrame *astDSBSpecFrame(const char xoptions, ...)
Parameters:

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new DSBSpecFrame. The
syntax used is identical to that for the function and may include " printf"
format specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astDSBSpecFrame()
A pointer to the new DSBSpecFrame.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

261 astDecompose SUN/211.30 —AST Function Descriptions

astDecompose
Decompose a Mapping into two component Mappings

Description:
This function returns pointers to two Mappings which, when applied either in series or parallel,

are equivalent to the supplied

Since the class inherits from the Mapping class, Frames can be considered as special types
of Mappings and so this method can be used to decompose either CmpMaps or CmpFrames.

Synopsis:

void astDecompose(AstMapping *this, AstMapping **mapl, AstMapping **map2, int *series,
int xinvertl, int *invert2)

Parameters:

this
Pointer to the Mapping.

mapl
Address of a location to receive a pointer to first component Mapping.

map2
Address of a location to receive a pointer to second component Mapping.

series
Address of a location to receive a value indicating if the component Mappings
are applied in series or parallel. A non-zero value means that the supplied Mapping
is equivalent to applying mapl followed by map2 in series. A zero value means
that the supplied Mapping is equivalent to applying mapl to the lower numbered
axes and map2 to the higher numbered axes, in parallel.

invertl
The value of the attribute to be used with mapl.

invert2
The value of the Invert attribute to be used with map2.

Applicability:
If the supplied Mapping is a CmpMap, then mapl and map2 will be returned holding pointers
to the component Mappings used to create the CmpMap, either in series or parallel. Note,
changing the Invert attribute of either of the component Mappings using the returned
pointers will have no effect on the supplied CmpMap. This is because the CmpMap remembers
and uses the original settings of the Invert attributes (that is, the values of the

Invert attributes when the CmpMap was first created). These are the Invert values
which are returned in invertl and invert2.

franMap
If the supplied Mapping is a TranMap, then mapl and map2 will be returned holding pointers
to the forward and inverse Mappings represented by the TranMap (zero will be returned
for series). Note, changing the Invert attribute of either of the component Mappings
using the returned pointers will have no effect on the supplied TranMap. This is because
the TranMap remembers and uses the original settings of the Invert attributes (that
is, the values of the Invert attributes when the TranMap was first created). These
are the Invert values which are returned in invertl and invert2.

SUN/211.30 —AST Function Descriptions 262 astDecompose

Mapping
For any class of Mapping other than a CmpMap, mapl will be returned holding a clone
of the supplied Mapping pointer, and map2 will be returned holding a NULL pointer. Invertl
will be returned holding the current value of the Invert attribute for the supplied
Mapping, and invert2 will be returned holding zero.

mpkrame)

If the supplied Mapping is a CmpFrame, then mapl and map2 will be returned holding
pointers to the component Frames used to create the CmpFrame. The component Frames
are considered to be in applied in parallel.

Frame
For any class of Frame other than a CmpFrame, mapl will be returned holding a clone
of the supplied Frame pointer, and map2 will be returned holding a NULL pointer.

Notes:

e The returned Invert values should be used in preference to the current values
of the Invert attribute in mapl and map2. This is because the attributes may
have changed value since the Mappings were combined.

e Any changes made to the component Mappings using the returned pointers will be
reflected in the supplied Mapping.

263 astDelFits SUN/211.30 —AST Function Descriptions

astDelFits
Delete the current FITS card in a FitsChan

Description:
This function deletes the current FITS card from a[FitsChan] The current card may be selected
using the attribute (if its index is known) or by using |astFindFits|(if only the FITS keyword is
known).

After deletion, the following card becomes the current card.
Synopsis:
void astDelFits(AstFitsChan *this)
Parameters:
this
Pointer to the FitsChan.

Notes:

e This function returns without action if the FitsChan is initially positioned at
the " end-of-file" (i.e. if the Card attribute exceeds the number of cards in
the FitsChan).

e If there are no subsequent cards in the FitsChan, then the Card attribute is left
pointing at the " end-of-file" after deletion (i.e. 1is set to one more than the
number of cards in the FitsChan).

SUN/211.30 —AST Function Descriptions 264 astDelete

astDelete
Delete an Object

Description:
This function deletes an|[Object] freeing all resources associated with it and rendering any remaining
pointers to the Object invalid.

Note that deletion is unconditional, regardless of whether other pointers to the Object are still in
use (possibly within other Objects). A safer approach is to defer deletion, until all references to an
Object have expired, by using [astBegin|/lastEnd| (together with jastClone|and jastAnnul)if necessary).

Synopsis:

AstObject *astDelete(AstObject *this)
Parameters:

this

Pointer to the Object to be deleted.

Applicability:
Object

This function applies to all Objects.
Returned Value:

astDelete()
A null Object pointer (AST__NULL) is always returned.

Notes:

e This function attempts to execute even if the AST error status is set on entry,
although no further error report will be made if it subsequently fails under these
circumstances.

265 astDistance SUN/211.30 —AST Function Descriptions

astDistance
Calculate the distance between two points in a Frame

Description:

This function finds the distance between two points whose coordinates are given. The
distance calculated is that along the geodesic curve that joins the two points.

For example, in a basic Frame, the distance calculated will be the Cartesian distance along the
straight line joining the two points. For a more specialised Frame describing a sky coordinate
system, however, it would be the distance along the great circle passing through two sky positions.

Synopsis:
double astDistance(AstFrame xthis, const double pointl[], const double point2[])
Parameters:
this
Pointer to the Frame.
pointl

An array of double, with one element for each Frame axis attribute) containing
the coordinates of the first point.

point2

An array of double, with one element for each Frame axis containing the coordinates
of the second point.

Returned Value:

astDistance
The distance between the two points.

Notes:

e This function will return a " bad" result value (AST__BAD) if any of the input
coordinates has this value.

e A " bad" value will also be returned if this function is invoked with the AST
error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 266 astDownsize

astDownsize
Reduce the number of vertices in a Polygon

Description:

This function returns a pointer to a new that contains a subset of the vertices in the
supplied Polygon. The subset is chosen so that the returned Polygon is a good approximation to
the supplied Polygon, within the limits specified by the supplied parameter values. That is, the
density of points in the returned Polygon is greater at points where the curvature of the boundary
of the supplied Polygon is greater.

Synopsis:
AstPolygon *astDownsize(AstPolygon xthis, double maxerr, int maxvert)
Parameters:
this
Pointer to the Polygon.

maxerr

The maximum allowed discrepancy between the supplied and returned Polygons, expressed

as a geodesic distance within the Polygon’ s coordinate frame. If this is zero

or less, the returned Polygon will have the number of vertices specified by maxvert.
maxvert

The maximum allowed number of vertices in the returned Polygon. If this is less

than 3, the number of vertices in the returned Polygon will be the minimum needed

to achieve the maximum discrepancy specified by maxerr.

Returned Value:

astDownsize()
Pointer to the new Polygon.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

267 astEBuf SUN/211.30 —AST Function Descriptions

astEBuf
End the current graphical buffering context

Description:
This function ends the current graphics buffering context. It should match a corresponding call to

the function.
Synopsis:
void astEBuf(AstPlot xthis)
Parameters:
this
Pointer to the [Plotl.

Notes:

e The nature of the buffering is determined by the underlying graphics system (as
defined by the current grf module). Each call to this function simply invokes
the astGEBuf function in the grf module.

SUN/211.30 —AST Function Descriptions 268 astEllipse

astEllipse
Create a Ellipse

Description:
This function creates a new and optionally initialises its attributes.

A Ellipse is a[Region|which represents a elliptical area within the supplied 2-dimensional [Frame}
Synopsis:

AstEllipse xastEllipse(AstFrame xframe, int form, const double centre[2], const double
point1[2], const double point2[2], AstRegion *unc, const char *options, ...)

Parameters:

frame
A pointer to the Frame in which the region is defined. It must have exactly 2
axes. A deep copy is taken of the supplied Frame. This means that any subsequent
changes made to the Frame using the supplied pointer will have no effect the Region.

form
Indicates how the ellipse is described by the remaining parameters. A value of
zero indicates that the ellipse is specified by a centre position and two positions
on the circumference. A value of one indicates that the ellipse is specified
by its centre position, the half-lengths of its two axes, and the orientation
of its first axis.

centre
An array of 2 doubles, containing the coordinates at the centre of the ellipse.

pointl
An array of 2 doubles. If " form" is zero, this array should contain the coordinates
of one of the four points where an axis of the ellipse crosses the circumference
of the ellipse. If " form" is one, it should contain the lengths of semi-major
and semi-minor axes of the ellipse, given as geodesic distances within the Frame.

point2
An array of 2 doubles. If " form" is zero, this array should containing the coordinates
at some other point on the circumference of the ellipse, distinct from " pointl"
If " form" is one, the first element of this array should hold the angle between
the second axis of the Frame and the first ellipse axis (i.e. the ellipse axis
which is specified first in the " pointl" array), and the second element will
be ignored. The angle should be given in radians, measured positive in the same
sense as rotation from the positive direction of the second Frame axis to the
positive direction of the first Frame axis.

unc
An optional pointer to an existing Region which specifies the uncertainties associated
with the boundary of the Ellipse being created. The uncertainty in any point
on the boundary of the Ellipse is found by shifting the supplied " uncertainty"
Region so that it is centred at the boundary point being considered. The area
covered by the shifted uncertainty Region then represents the uncertainty in the
boundary position. The uncertainty is assumed to be the same for all points.

If supplied, the uncertainty Region must be of a class for which all instances

are centro-symetric (e.g. [Box|, [Circle], Ellipse, etc.) or be a containing

centro-symetric component Regions. A deep copy of the supplied Region will be
taken, so subsequent changes to the uncertainty Region using the supplied pointer

269 astEllipse SUN/211.30 —AST Function Descriptions

will have no effect on the created Ellipse. Alternatively, a NULL pointer
may be supplied, in which case a default uncertainty is used equivalent to a box
1.0E-6 of the size of the Ellipse being created.

The uncertainty Region has two uses: 1) when the function compares

two Regions for equality the uncertainty Region is used to determine the tolerance
on the comparison, and 2) when a Region is mapped into a different coordinate

system and subsequently simplified (using [astSimplify), the uncertainties are
used to determine if the transformed boundary can be accurately represented by
a specific shape of Region.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Ellipse. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astEllipse()
A pointer to the new Ellipse.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 270 astEllipsePars

astEllipsePars
Returns the geometric parameters of an Ellipse

Description:
This function returns the geometric parameters describing the supplied ellipse.

Synopsis:
void astEllipsePars(AstEllipse *this, double centre[2], double *a, double xb, double
*angle, double p1[2], double p2[2])

Parameters:
this
Pointer to the [Region).
centre

The coordinates of the centre are returned in this arrays.
a Returned holding the half-length of the first axis of the ellipse.
b Returned holding the half-length of the second axis of the ellipse.

angle
If the coordinate system in which the Ellipse is defined has axes (X,Y), then
" xangle" is returned holding the angle from the positive direction of the Y axis
to the first axis of the ellipse, in radians. Positive rotation is in the same
sense as rotation from the positive direction of Y to the positive direction of
X.

pl An array in which to return the coordinates at one of the two ends of the first
axis of the ellipse. A NULL pointer can be supplied if these coordinates are
not needed.

p2 An array in which to return the coordinates at one of the two ends of the second
axis of the ellipse. A NULL pointer can be supplied if these coordinates are
not needed.

Notes:

e If the coordinate system represented by the Ellipse has been changed since it
was first created, the returned parameters refer to the new (changed) coordinate
system, rather than the original coordinate system. Note however that if the
transformation from original to new coordinate system is non-linear, the shape
represented by the supplied Ellipse object may not be an accurate ellipse.

e Values of AST__BAD are returned for the parameters without error if the ellipse
is degenerate or undefined.

271 astEmptyFits SUN/211.30 —AST Function Descriptions

astEmptyFits
Delete all cards in a FitsChan

Description:
This function deletes all cards and associated information from a

Synopsis:
void astEmptyFits(AstFitsChan *this)
Parameters:
this
Pointer to the FitsChan.

Notes:

e This method simply deletes the cards currently in the FitsChan. Unlike |[astWritelits|,
they are not first written out to the sink function or sink file.

e Any Tables or warnings stored in the FitsChan are also deleted.

e This method attempt to execute even if an error has occurred previously.

SUN/211.30 —AST Function Descriptions 272 astEnd

astEnd
End an AST context

Description:
This macro invokes a function to end an AST context which was begun with a matching invocation
of fastBegin] Any [Object| pointers created within this context will be annulled (just as if[astAnnul]
had been invoked) and will cease to be valid afterwards, unless they have previously been exported

using or rendered exempt using If annulling a pointer causes an Object’ s

efCount|attribute to fall to zero (which happens when the last pointer to it is annulled), then the
Object will be deleted.

Synopsis:
void astEnd
Applicability:
Object
This macro applies to all Objects.
Notes:

e astEnd attempts to execute even if the AST error status is set.

e Contexts delimited by astBegin and astEnd may be nested to any depth.

273 astEscapes SUN/211.30 —AST Function Descriptions

astEscapes
Control whether graphical escape sequences are included in strings

Description:

The class defines a set of escape sequences which can be included within a text string in order
to control the appearance of sub-strings within the text. See the[Escape|attribute for a description of
these escape sequences. It is usually inappropriate for AST to return strings containing such escape
sequences when called by application code. For instance, an application which displays the value
of the attribute of a usually does not want the displayed string to include potentially
long escape sequences which a human read would have difficuly interpreting. Therefore the
default behaviour is for AST to strip out such escape sequences when called by application code.
This default behaviour can be changed using this function.

Synopsis:
int astEscapes(int new_value)
Parameters:

new_value
A flag which indicates if escapes sequences should be included in returned strings.
If zero is supplied, escape sequences will be stripped out of all strings returned
by any AST function. If a positive value is supplied, then any escape sequences
will be retained in the value returned to the caller. If a negative value is
supplied, the current value of the flag will be left unchanged.

Applicability:

This macro applies to all Objects.
Returned Value:

astEscapes
The value of the flag on entry to this function.

Notes:

e This function also controls whether the [astStripEscapes| function removes escape
sequences from the supplied string, or returns the supplied string without change.

e This function attempts to execute even if an error has already occurred.

SUN/211.30 —AST Function Descriptions 274 astExempt

astExempt
Exempt an Object pointer from AST context handling

Description:
This function exempts an[Object| pointer from AST context handling, as implemented by [astBegin|
and This means that the pointer will not be affected when astEnd is invoked and will
remain active until the end of the program, or until explicitly annulled using

If possible, you should avoid using this function when writing applications. It is provided mainly
for developers of other libraries, who may wish to retain references to AST Objects in internal data
structures, and who therefore need to avoid the effects of astBegin and astEnd.
Synopsis:
void astExempt(AstObject xthis)
Parameters:
this
Object pointer to be exempted from context handling.
Applicability:

Object
This function applies to all Objects.

275 astExport SUN/211.30 —AST Function Descriptions

astExport
Export an Object pointer to an outer context

Description:
This function exports an pointer from the current AST context into the context that encloses
the current one. This means that the pointer will no longer be annulled when the current context is
ended (with [astEnd), but only when the next outer context (if any) ends.
Synopsis:
void astExport(AstObject #this)
Parameters:
this
Object pointer to be exported.
Applicability:
Object
This function applies to all Objects.

Notes:

e It is only sensible to apply this function to pointers that have been created
within (or exported to) the current context and have not been rendered exempt

using [astExempt|. Applying it to an unsuitable Object pointer has no effect.

SUN/211.30 —AST Function Descriptions 276 astFindFits

astFindFits
Find a FITS card in a FitsChan by keyword

Description:

This function searches for a card in a[FitsChan|by keyword. The search commences at the current
card (identified by the[Card|attribute) and ends when a card is found whose FITS keyword matches
the template supplied, or when the last card in the FitsChan has been searched.

If the search is successful (i.e. a card is found which matches the template), the contents of the
card are (optionally) returned and the Card attribute is adjusted to identify the card found or, if
required, the one following it. If the search is not successful, the function returns zero and the Card
attribute is set to the " end-of-file" .

Synopsis:
int astFindFits(AstFitsChan *this, const char *name, char card[81], int inc)

Parameters:

this
Pointer to the FitsChan.

name
Pointer to a null-terminated character string containing a template for the keyword
to be found. In the simplest case, this should simply be the keyword name (the
search is case insensitive and trailing spaces are ignored). However, this template
may also contain " field specifiers" which are capable of matching a range of
characters (see the " Keyword Templates" section for details). In this case, the
first card with a keyword which matches the template will be found. To find the
next FITS card regardless of its keyword, you should use the template " %f"

card
An array of at least 81 characters (to allow room for a terminating null) in which
the FITS card which is found will be returned. If the search is not successful
(or a NULL pointer is given), a card will not be returned.

inc
If this value is zero (and the search is successful), the FitsChan’ s Card attribute
will be set to the index of the card that was found. If it is non-zero, however,

the Card attribute will be incremented to identify the card which follows the
one found.

Returned Value:

astFindFits()
One if the search was successful, otherwise zero.

Examples:
result = astFindFits(fitschan, " %f" , card, 1);

Returns the current card in a FitsChan and advances the Card attribute to
identify the card that follows (the " %f" template matches any keyword) .

result = astFindFits(fitschan, " BITPIX" , card, 1);

Searches a FitsChan for a FITS card with the " BITPIX" keyword and returns that
card. The Card attribute is then incremented to identify the card that follows
it.

277

astFindFits SUN/211.30 —AST Function Descriptions

result = astFindFits(fitschan, " COMMENT" , NULL, O);

Sets the Card attribute of a FitsChan to identify the next COMMENT card (if
any). The card itself is not returned.

result = astFindFits(fitschan, " CRVAL%1d" , card, 1);

Searches a FitsChan for the next card with a keyword of the form " CRVALi" (for
example, any of the keywords " CRVAL1" , " CRVAL2" or " CRVAL3" would be matched).
The card found (if any) is returned, and the Card attribute is then incremented
to identify the following card (ready to search for another keyword with the same
form, perhaps).

Notes:

e The search always starts with the current card, as identified by the Card attribute.
To ensure you search the entire contents of a FitsChan, you should first clear
the Card attribute (using [astClear]). This effectively " rewinds" the FitsChan.

e If a search is unsuccessful, the Card attribute is set to the " end-of-file" (i.e.
to one more than the number of cards in the FitsChan). No error occurs.

e A value of zero will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

Keyword Templates :

The templates used to match FITS keywords are normally composed of literal characters,
which must match the keyword exactly (apart from case). However, a template may also
contain " field specifiers" which can match a range of possible characters. This allows
you to search for keywords that contain (for example) numbers, where the digits comprising
the number are not known in advance.

A field specifier starts with a " %" character. This is followed by an optional single
digit (0 to 9) specifying a field width. Finally, there is a single character which
specifies the

type of character to be matched, as follows:

e " c" : matches all upper case letters,
e " d" : matches all decimal digits,
e " f" : matches all characters which are permitted within a FITS keyword (upper

case letters, digits, underscores and hyphens).

If the field width is omitted, the field specifier matches one or more characters. If
the field width is zero, it matches zero or more characters. Otherwise, it matches
exactly the number of

characters specified. In addition to this:

e The template " %f" will match a blank FITS keyword consisting of 8 spaces (as
well as matching all other keywords).

e A template consisting of 8 spaces will match a blank keyword (only).

For example:

SUN/211.30 —AST Function Descriptions 278 astFindFits

e The

e The
one

e The
one

e The
e The

template " BitPix" will match the keyword " BITPIX" only.

template " crpix’%1d" will match keywords consisting of " CRPIX" followed by
decimal digit.

template " PYc" will match any keyword starting with " P" and followed by
or more letters.

template " EJ0f" will match any keyword beginning with " E"
template " %f" will match any keyword at all (including a blank one).

279 astFindFrame SUN/211.30 —AST Function Descriptions

astFindFrame
Find a coordinate system with specified characteristics

Description:
This function uses a " template" to search another Frame (or to identify a
coordinate system which has a specified set of characteristics. If a suitable coordinate system can
be found, the function returns a pointer to a FrameSet which describes the required coordinate
system and how to convert coordinates to and from it.

This function is provided to help answer general questions about coordinate systems, such as
typically arise when coordinate information is imported into a program as part of an initially
unknown dataset. For example:

Is there a wavelength scale?

Is there a 2-dimensional coordinate system?

Is there a celestial coordinate system?

e Can I plot the data in ecliptic coordinates?

You can also use this function as a means of reconciling a user’ s preference for a particular
coordinate system (for example, what type of axes to draw) with what is actually possible given
the coordinate information available.

To perform a search, you supply a " target" Frame (or FrameSet) which represents the set of
coordinate systems to be searched. If a basic Frame is given as the target, this set of coordinate
systems consists of the one described by this Frame, plus all other " virtual" coordinate systems
which can potentially be reached from it by applying built-in conversions (for example, any of
the celestial coordinate conversions known to the AST library would constitute a " built-in"
conversion). If a FrameSet is given as the target, the set of coordinate systems to be searched
consists of the union of those represented by all the individual Frames within it.

To select from this large set of possible coordinate systems, you supply a " template" Frame which
is an instance of the type of Frame you are looking for. Effectively, you then ask the function to "
find a coordinate system that looks like this" .

You can make your request more or less specific by setting attribute values for the template
Frame. If a particular attribute is set in the template, then the function will only find coordinate
systems which have exactly the same value for that attribute. If you leave a template attribute
un-set, however, then the function has discretion about the value the attribute should have in any
coordinate system it finds. The attribute will then take its value from one of the actual (rather than
virtual) coordinate systems in the target. If the target is a FrameSet, its[Current]attribute will be
modified to indicate which of its Frames was used for this purpose.

The result of this process is a coordinate system represented by a hybrid Frame which acquires
some attributes from the template (but only if they were set) and the remainder from the target.
This represents the " best compromise" between what you asked for and what was available. A
is then generated which converts from the target coordinate system to this hybrid one,
and the returned FrameSet encapsulates all of this information.

Synopsis:
AstFrameSet *astFindFrame(AstFrame xtarget, AstFrame *template, const char *domainlist

)

Parameters:

SUN/211.30 —AST Function Descriptions 280 astFindFrame

target
Pointer to the target Frame (or FrameSet).

Note that if a FrameSet is supplied (and a suitable coordinate system is found),
then its Current attribute will be modified to indicate which Frame was used to
obtain attribute values which were not specified by the template. This Frame
will, in some sense, represent the " closest" non-virtual coordinate system to
the one you requested.

template
Pointer to the template Frame, which should be an instance of the type of Frame
you wish to find. If you wanted to find a Frame describing a celestial coordinate
system, for example, then you might use a here. See the " Examples"
section for more ideas.

domainlist
Pointer to a null-terminated character string containing a comma-separated list
of Frame domains. This may be used to establish a priority order for the different
types of coordinate system that might be found.

The function will first try to find a suitable coordinate system whose
attribute equals the first domain in this list. If this fails, the second domain
in the list will be used, and so on, until a result is obtained. A blank domain
(e.g. two consecutive commas) indicates that any coordinate system is acceptable
(subject to the template) regardless of its domain.

This list is case-insensitive and all white space is ignored. If you do not wish
to restrict the domain in this way, you should supply an empty string.

Applicability:

Frame
This function applies to all Frames.

FrameSet
If the target is a FrameSet, the possibility exists that several of the Frames within
it might be matched by the template. Unless the choice is sufficiently restricted
by the " domainlist" string, the sequence in which Frames are searched can then become
important. In this case, the search proceeds as follows:

e Each field in the " domainlist" string is considered in turn.

e An attempt is made to match the template to each of the target’ s Frames in the
order: (1) the current Frame, (2) the base Frame, (3) each remaining Frame in
the order of being added to the target FrameSet.

e Generally, the first match found is used. However, the Mapping between the target
coordinate system and the resulting Frame is also examined. Preference is given
to cases where both the forward and inverse transformations are defined (as indicated
by the [TranForward| and [TranInverse| attributes). If only one transformation is
defined, the forward one is preferred.

e If a match is found and the domain of the resulting Frame also matches the current
" domainlist" field, it is accepted. Otherwise, the next " domainlist" field
is considered and the process repeated.

If a suitable coordinate system is found, the Current attribute of the target FrameSet
will be modified on exit to identify the Frame whose match with the target was eventually
accepted.

Returned Value:

281 astFindFrame SUN/211.30 —AST Function Descriptions

astFindFrame()
If the search is successful, the function returns a pointer to a FrameSet which contains
the Frame found and a description of how to convert to (and from) the coordinate system
it represents. Otherwise, a null pointer (AST__NULL) is returned without error.

If a FrameSet is returned, it will contain two Frames. Frame number 1 (its base Frame)
represents the target coordinate system and will be the same as the (base Frame of

the) target. Frame number 2 (its current Frame) will be a Frame representing the coordinate
system which the function found. The Mapping which inter-relates these two Frames

will describe how to convert between their respective coordinate systems.

Note that a FrameSet may be used both as a Mapping and as a Frame. If the result is

used as a Mapping (e.g. with [astTran2), then it provides a means of converting coordinates
from the target coordinate system into the new coordinate system that was found (and

vice versa if its inverse transformation is selected). If it is used as a Frame, its
attributes will describe the new coordinate system.

Examples:

result = astFindFrame(target, [astFramel(3, " "), " ");

Searches for a 3-dimensional coordinate system in the target Frame (or FrameSet).
No attributes have been set in the template Frame (created by astFrame), so no
restriction has been placed on the required coordinate system, other than that
it should have 3 dimensions. The first suitable Frame found will be returned as
part of the " result" FrameSet.

result = astFindFrame(target, [astSkyFrame|(" "), " ");

Searches for a celestial coordinate system in the target Frame (or FrameSet).
The type of celestial coordinate system is unspecified, so astFindFrame will
return the first one found as part of the " result" FrameSet. If the target is a
FrameSet, then its Current attribute will be updated to identify the Frame that
was used.

If no celestial coordinate system can be found, a value of AST__NULL will be
returned without error.

result = astFindFrame(target, astSkyFrame(" [MaxAxesF100"), " ");

This is like the last example, except that in the event of the target being a
[CmpFrame|, the component Frames encapsulated by the CmpFrame will be searched for
a SkyFrame. If found, the returned Mapping will included a which selects
the required axes from the target CmpFrame.

This is acomplished by setting the MaxAxes attribute of the template SkyFrame

to a large number (larger than or equal to the number of axes in the target
CmpFrame). This allows the SkyFrame to be used as a match for Frames containing
from 2 to 100 axes.

result = astFindFrame(target, astSkyFrame(" [SystemfFK5"), " ");

Searches for an equatorial (FK5) coordinate system in the target. The
value for the coordinate system has not been specified, so will be obtained from
the target. If the target is a FrameSet, its Current attribute will be updated
to indicate which SkyFrame was used to obtain this value.

result = astFindFrame(target, astFrame(2, " "), " sky,pixel,");

SUN/211.30 —AST Function Descriptions 282 astFindFrame

Searches for a 2-dimensional coordinate system in the target. Imnitially, a
search is made for a suitable coordinate system whose Domain attribute has the
value " SKY" . If this search fails, a search is then made for one with the
domain " PIXEL" . If this also fails, then any 2-dimensional coordinate system
is returned as part of the " result" FrameSet.

Only if no 2-dimensional coordinate systems can be reached by applying built-in
conversions to any of the Frames in the target will a value of AST__NULL be
returned.

result = astFindFrame(target, astFrame(1, " Domain=WAVELENGTH"), " ");

Searches for any 1-dimensional coordinate system in the target which has the
domain " WAVELENGTH"

result = astFindFrame(target, astFrame(1, " "), " wavelength");

This example has exactly the same effect as that above. It illustrates
the equivalence of the template’ s Domain attribute and the fields in the
domainlist" string.

result = astFindFrame(target, astFrame(1, " MaxAxes=3"), " ");

This is a more advanced example which will search for any coordinate system
in the target having 1, 2 or 3 dimensions. The Frame returned (as part of the
" result" FrameSet) will always be 1-dimensional, but will be related to the
coordinate system that was found by a suitable Mapping (e.g. a PermMap) which
simply extracts the first axis.

If we had wanted a Frame representing the actual (1, 2 or 3-dimensional)
coordinate system found, we could set the attribute to a non-zero
value in the template.

result = astFindFrame(target, astSkyFrame(" O"), " "),

Searches for any celestial coordinate system in the target, but only finds one
if its axes are in the conventional (longitude,latitude) order and have not been

permuted (e.g. with [astPermAxes).
Notes:

e The Mapping represented by the returned FrameSet results in alignment taking place

in the coordinate system specified by the attribute of the " template"
Frame. See the description of the AlignSystem attribute for further details.

e Beware of setting the Domain attribute of the template and then using a " domainlist"
string which does not include the template’ s domain (or a blank field). If you
do so, no coordinate system will be found.

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

More on Using Templates :

A Frame (describing a coordinate system) will be found by this function if (a) it is
" matched" by the template you supply, and (b) the value of its Domain attribute appears

283 astFindFrame SUN/211.30 —AST Function Descriptions

in the " domainlist" string (except that a blank field in this string permits any domain) .
A successful match by the template depends on a number of criteria, as outlined below:

e In general, a template will only match another Frame which belongs to the same
class as the template, or to a derived (more specialised) class. For example,
a SkyFrame template will match any other SkyFrame, but will not match a basic
Frame. Conversely, a basic Frame template will match any class of Frame.

The exception to this is that a Frame of any class can be used to match a CmpFrame,
if that CmpFrame contains a Frame of the same class as the template. Note however,
the MaxAxes and attributes of the template must be set to suitable values
to allow it to match the CmpFrame. That is, the MinAxes attribute must be less
than or equal to the number of axes in the target, and the MaxAxes attribute must
be greater than or equal to the number of axes in the target.

If using a CmpFrame as a template frame, the MinAxes and MaxAxes for the template
are determined by the MinAxes and MaxAxes values of the component Frames within
the template. So if you want a template CmpFrame to be able to match Frames with
different numbers of axes, then you must set the MaxAxes and/or MinAxes attributes
in the component template Frames, before combining them together into the template
CmpFrame.

If a template has a value set for any of its main attributes, then it will only

match Frames which have an identical value for that attribute (or which can be
transformed, using a built-in conversion, so that they have the required value

for that attribute). If any attribute in the template is un-set, however, then

Frames are matched regardless of the value they may have for that attribute. You

may therefore make a template more or less specific by choosing the attributes

for which you set values. This requirement does not apply to ’ descriptive’ attributes
such as titles, labels, symbols, etc.

e An important application of this principle involves the Domain attribute. Setting
the Domain attribute of the template has the effect of restricting the search
to a particular type of Frame (with the domain you specify). Conversely, if the
Domain attribute is not set in the template, then the domain of the Frame found
is not relevant, so all Frames are searched. Note that the " domainlist" string
provides an alternative way of restricting the search in the same manner, but
is a more convenient interface if you wish to search automatically for another
domain if the first search fails.

e Normally, a template will only match a Frame which has the same number of axes
as itself. However, for some classes of template, this default behaviour may
be changed by means of the MinAxes, MaxAxes and attributes. In addition,
the behaviour of a template may be influenced by its Permute and PreserveAxes
attributes, which control whether it matches Frames whose axes have been permuted,
and whether this permutation is retained in the Frame which is returned (as opposed
to returning the axes in the order specified in the template, which is the default
behaviour). You should consult the descriptions of these attributes for details
of this more advanced use of templates.

SUN/211.30 —AST Function Descriptions 284 astFitsChan

astFitsChan
Create a FitsChan

Description:
This function creates a new and optionally initialises its attributes.

A FitsChan is a specialised form of which supports I/O operations involving the use
of FITS (Flexible Image Transport[System) header cards. Writing an [Object|to a FitsChan (using

will, if the Object is suitable, generate a description of that Object composed of FITS
header cards, and reading from a FitsChan will create a new Object from its FITS header card
description.

While a FitsChan is active, it represents a buffer which may contain zero or more 80-character "
header cards" conforming to FITS conventions. Any sequence of FITS-conforming header cards
may be stored, apart from the " END" card whose existence is merely implied. The cards may be
accessed in any order by using the FitsChan’ s integer attribute, which identifies a " current"
card, to which subsequent operations apply. Searches based on keyword may be performed (using
[astFindFits), new cards may be inserted (astPutFits} [astPutCards} [astSetFits <X>) and existing ones

may be deleted (astDelFits) or changed (astSetFits<X>).

When you create a FitsChan, you have the option of specifying " source" and " sink" functions
which connect it to external data stores by reading and writing FITS header cards. If you provide a
source function, it is used to fill the FitsChan with header cards when it is accessed for the first
time. If you do not provide a source function, the FitsChan remains empty until you explicitly
enter data into it (e.g. using astPutFits, astPutCards, astWrite or by using the attribute
to specifying a text file from which headers should be read). When the FitsChan is deleted, any
remaining header cards in the FitsChan can be saved in either of two ways: 1) by specifying a value
for the attribute (the name of a text file to which header cards should be written), or 2) by
providing a sink function (used to to deliver header cards to an external data store). If you do not
provide a sink function or a value for SinkFile, any header cards remaining when the FitsChan is
deleted will be lost, so you should arrange to extract them first if necessary (e.g. using astFindFits

or astRead).

Coordinate system information may be described using FITS header cards using several different
conventions, termed " encodings" . When an AST Object is written to (or read from) a FitsChan,
the value of the FitsChan’ s[Encoding]|attribute determines how the Object is converted to (or from)
a description involving FITS header cards. In general, different encodings will result in different
sets of header cards to describe the same Object. Examples of encodings include the DSS encoding
(based on conventions used by the STScl Digitised Sky Survey data), the FITS-WCS encoding
(based on a proposed FITS standard) and the NATIVE encoding (a near loss-less way of storing
AST Objects in FITS headers).

The available encodings differ in the range of Objects they can represent, in the number of Object
descriptions that can coexist in the same FitsChan, and in their accessibility to other (external)
astronomy applications (see the Encoding attribute for details). Encodings are not necessarily
mutually exclusive and it may sometimes be possible to describe the same Object in several ways
within a particular set of FITS header cards by using several different encodings.

The detailed behaviour of astRead and astWrite, when used with a FitsChan, depends on the
encoding in use. In general, however, all use of astRead is destructive, so that FITS header cards are
consumed in the process of reading an Object, and are removed from the FitsChan (this deletion

can be prevented for specific cards by calling the function).
If the encoding in use allows only a single Object description to be stored in a FitsChan (e.g. the DSS,
FITS-WCS and FITS-IRAF encodings), then write operations using astWrite will over-write any

285 astFitsChan SUN/211.30 —AST Function Descriptions

existing Object description using that encoding. Otherwise (e.g. the NATIVE encoding), multiple
Object descriptions are written sequentially and may later be read back in the same sequence.

Synopsis:
AstFitsChan *astFitsChan(const char x(* source)(void), void (* sink)(const char
*), const char xoptiomns, ...)

Parameters:
source

Pointer to a source function which takes no arguments and returns a pointer to
a null-terminated string. This function will be used by the FitsChan to obtain
input FITS header cards. 0On each invocation, it should read the next input card
from some external source (such as a FITS file), and return a pointer to the (null-terminate
contents of the card. It should return a NULL pointer when there are no more
cards to be read.
If " source" is NULL, the FitsChan will remain empty until cards are explicitly
stored in it (e.g. using astPutCards, astPutFits or via the SourceFile attribute).
sink
Pointer to a sink function that takes a pointer to a null-terminated string as
an argument and returns void. If no value has been set for the SinkFile attribute,
this function will be used by the FitsChan to deliver any FITS header cards it
contains when it is finally deleted. O0On each invocation, it should deliver the
contents of the character string passed to it as a FITS header card to some external
data store (such as a FITS file).
If " sink" is NULL, and no value has been set for the SinkFile attribute, the
contents of the FitsChan will be lost when it is deleted.
options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new FitsChan. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Note, the FITSCHAN_OPTIONS environment variable may be used to specify default
options for all newly created FitsChans.
Returned Value:

astFitsChan()
A pointer to the new FitsChan.

Notes:

e No FITS " END" card will be written via the sink function. You should add this
card yourself after the FitsChan has been deleted.

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

SUN/211.30 —AST Function Descriptions 286 astFitsTable

astFitsTable
Create a FitsTable

Description:
This function creates a new and optionally initialises its attributes.
The FitsTable class is a representation of a FITS binary table. It inherits from the class. The
parent Table is used to hold the binary data of the main table, and a is used to hold the

FITS header. Note, there is no provision for binary data following the main table (such data is
referred to as a " heap" in the FITS standard).

Note - it is not recommended to use the FitsTable class to store very large tables.

Synopsis:
AstFitsTable *astFitsTable(AstFitsChan xheader, const char *options, ...)
Parameters:
header
Pointer to an optional FitsChan containing headers to be stored in the FitsTable.
NULL may be supplied if the new FitsTable is to be left empty. If supplied, and
if the headers describe columns of a FITS binary table, then equivalent (empty)
columns are added to the FitsTable. Each column has the same index in the FitsTable
that it has in the supplied header.
options

Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new FitsTable. The syntax

used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astFitsTable()
A pointer to the new FitsTable.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list described above. This parameter is a pointer to the integer inherited
status variable: " int x*status"

287 astFluxFrame SUN/211.30 —AST Function Descriptions

astFluxFrame
Create a FluxFrame

Description:
This function creates a new and optionally initialises its attributes.
A FluxFrame is a specialised form of one-dimensional which represents various systems
used to represent the signal level in an observation. The particular coordinate system to be used is
specified by setting the FluxFrame’ s attribute qualified, as necessary, by other attributes
such as the units, etc (see the description of the System attribute for details).

All flux values are assumed to be measured at the same frequency or wavelength (as given by the
attribute). Thus this class is more appropriate for use with images rather than spectra.

Synopsis:
AstFluxFrame *astFluxFrame(double specval, AstSpecFrame *specfrm, const char *options,
)
Parameters:
specval
The spectral value to which the flux values refer, given in the spectral coordinate

system specified by " specfrm" . The value supplied for the " specval" parameter

becomes the default value for the SpecVal attribute. A value of AST__BAD may
be supplied if the spectral position is unknown, but this may result in it not

being possible for the function to determine a between the

new FluxFrame and some other FluxFrame.

specfrm
A pointer to a describing the spectral coordinate system in which the
" specval" parameter is given. A deep copy of this object is taken, so any subsequent
changes to the SpecFrame using the supplied pointer will have no effect on the
new FluxFrame. A NULL pointer can be supplied if AST__BAD is supplied for " specval"

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new FluxFrame. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way. If no initialisation
is required, a zero-length string may be supplied.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astFluxFrame()
A pointer to the new FluxFrame.

Notes:

e When conversion between two FluxFrames is requested (as when supplying FluxFrames
to astConvert), account will be taken of the nature of the flux coordinate systems

SUN/211.30 —AST Function Descriptions 288 astFluxFrame

they represent, together with any qualifying attribute values, including the
attribute. The results will therefore fully reflect the relationship between

positions measured in the two systems. In addition, any difference in the Unit
attributes of the two systems will also be taken into account.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

289 astFormat SUN/211.30 —AST Function Descriptions

astFormat
Format a coordinate value for a Frame axis

Description:
This function returns a pointer to a string containing the formatted (character) version of a coordi-
nate value for a axis. The formatting applied is determined by the Frame’ s attributes and,
in particular, by any Format attribute string that has been set for the axis. A suitable default format
(based on the Digits attribute value) will be applied if necessary.

Synopsis:
const char *astFormat(AstFrame #*this, int axis, double value)
Parameters:
this
Pointer to the Frame.
axis
The number of the Frame axis for which formatting is to be performed (axis numbering
starts at 1 for the first axis).

value
The coordinate value to be formatted.

Returned Value:

astFormat()
A pointer to a null-terminated string containing the formatted value.

Notes:

e The returned pointer is guaranteed to remain valid and the string to which it
points will not be over-written for a total of 50 successive invocations of this
function. After this, the memory containing the string may be re-used, so a copy
of the string should be made if it is needed for longer than this.

e A formatted value may be converted back into a numerical (double) value using

[astUnformatl.

e A NULL pointer will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 290 astFrame

astFrame
Create a Frame

Description:
This function creates a new and optionally initialises its attributes.

A Frame is used to represent a coordinate system. It does this in rather the same way that a frame
around a graph describes the coordinate space in which data are plotted. Consequently, a Frame
has a (string) attribute, which describes the coordinate space, and contains axes which in
turn hold information such as Label and Units strings which are used for labelling (e.g.) graphical
output. In general, however, the number of axes is not restricted to two.

Functions are available for converting Frame coordinate values into a form suitable for display,
and also for calculating distances and offsets between positions within the Frame.

Frames may also contain knowledge of how to transform to and from related coordinate systems.

Synopsis:
AstFrame *astFrame(int naxes, const char *options, ...)
Parameters:
naxes
The number of Frame axes (i.e. the number of dimensions of the coordinate space
which the Frame describes).
options

Pointer to a null-terminated string containing an optional comma-separated list

of attribute assignments to be used for initialising the new Frame. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way. If no initialisation

is required, a zero-length string may be supplied.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astFrame()
A pointer to the new Frame.

Examples:
frame = astFrame(2, " Title=Energy Spectrum: %", n);

Creates a new 2-dimensional Frame and initialises its Title attribute to the
string " Energy Spectrum: Plot <n>" , where <n> takes the value of the int
variable " n"

frame = astFrame(2, " Label(1)=Energy, Label(2)=Response");

Creates a new 2-dimensional Frame and initialises its axis Label attributes
to suitable string values.

Notes:

291 astFrame SUN/211.30 —AST Function Descriptions

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 292 astFrameSet

astFrameSet
Create a FrameSet

Description:
This function creates a new and optionally initialises its attributes.

A FrameSet consists of a set of one or more Frames (which describe coordinate systems), connected
together by Mappings (which describe how the coordinate systems are inter-related). A FrameSet
makes it possible to obtain a[Mapping|between any pair of these Frames (i.e. to convert between
any of the coordinate systems which it describes). The individual Frames are identified within the
FrameSet by an integer index, with Frames being numbered consecutively from one as they are
added to the FrameSet.

Every FrameSet has a " base" and a " current" Frame (which are allowed to be the same).
Any of the Frames may be nominated to hold these positions, and the choice is determined by
the values of the FrameSet’ s[Base|and [Current]attributes, which hold the indices of the relevant
Frames. By default, the first Frame added to a FrameSet is its base Frame, and the last one added is
its current Frame.

The base Frame describes the " native" coordinate system of whatever the FrameSet is used to
calibrate (e.g. the pixel coordinates of an image) and the current Frame describes the " apparent"
coordinate system in which it should be viewed (e.g. displayed, etc.). Any further Frames represent
a library of alternative coordinate systems, which may be selected by making them current.

When a FrameSet is used in a context that requires a Frame, (e.g. obtaining its value, or
number of axes), the current Frame is used. A FrameSet may therefore be used in place of its
current Frame in most situations.

When a FrameSet is used in a context that requires a Mapping, the Mapping used is the one
between its base Frame and its current Frame. Thus, a FrameSet may be used to convert " native"
coordinates into " apparent" ones, and vice versa. Like any Mapping, a FrameSet may also be
inverted (see [astInvert), which has the effect of interchanging its base and current Frames and
hence of reversing the Mapping between them.

Regions may be added into a FrameSet (since a is a type of Frame), either explicitly or
as components within CmpFrames. In this case the Mapping between a pair of Frames within a
FrameSet will include the effects of the clipping produced by any Regions included in the path
between the Frames.

Synopsis:
AstFrameSet *astFrameSet(AstFrame kxframe, const char xoptions, ...)

Parameters:

frame
Pointer to the first Frame to be inserted into the FrameSet. This initially becomes
both the base and the current Frame. (Further Frames may be added using the
function.)

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new FrameSet. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way. If no initialisation
is required, a zero-length string may be supplied.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted

293 astFrameSet SUN/211.30 —AST Function Descriptions

for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astFrameSet()
A pointer to the new FrameSet.

Notes:

e If a pointer to an existing FrameSet is given for the " frame" parameter, then
the new FrameSet will (as a special case) be initialised to contain the same Frames
and Mappings, and to have the same attribute values, as the one supplied. This

process is similar to making a copy of a FrameSet (see [astCopyD, except that the
Frames and Mappings contained in the original are not themselves copied, but are

shared by both FrameSets.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 294 astFromString

astFromString
Re-create an Object from an in-memory serialisation

Description:
This function returns a pointer to a new created from the supplied text string, which should

have been created by [astToString]
Synopsis:

AstObject *astFromString(const char #*string)
Parameters:

string
Pointer to a text string holding an Object serialisation created previously by
astToString.

Returned Value:

astFromString|()
Pointer to a new Object created from the supplied serialisation, or NULL if the serialisation
was invalid, or an error occurred.

astGenCurve SUN/211.30 —AST Function Descriptions

astGenCurve
Draw a generalized curve

Description:

This function draws a general user-defined curve defined by the supplied Note that the
curve is transformed into graphical coordinate space for plotting, so that a straight line in physical
coordinates may result in a curved line being drawn if the Mapping involved is non-linear. Any
discontinuities in the Mapping between physical and graphical coordinates are catered for, as is
any clipping established using[astClip|

If you need to draw simple straight lines (geodesics), lastCurve|or [astPolyCurve|will usually be
easier to use and faster.

Synopsis:

void astGenCurve(AstPlot xthis, astMapping xmap)

Parameters:

this
Pointer to the [Plotl

map
Pointer to a Mapping. This Mapping should have 1 input coordinate representing
offset along the required curve, normalized so that the start of the curve is

at offset 0.0, and the end of the curve is at offset 1.0. Note, this offset does
not need to be linearly related to distance along the curve. The number of output

coordinates should equal the number of axes in the current of the Plot.

Mapping should map a specified offset along the curve, into the corresponding

coordinates in the current Frame of the Plot. The inverse transformation need
not be defined.

Notes:

e An error results if the base Frame of the Plot is not 2-dimensional.

e An error also results if the transformation between the current and base Frames
of the Plot is not defined (i.e. the Plot’ s attribute is zero).

SUN/211.30 —AST Function Descriptions 296 astGet<X>

astGet<X>
Get an attribute value for an Object

Description:
This is a family of functions which return a specified attribute value for an [Object| using one of
several different data types. The type is selected by replacing <X> in the function name by C, D, F,
Ior L, to obtain a result in const charx (i.e. string), double, float, int, or long format, respectively.

If possible, the attribute value is converted to the type you request. If conversion is not possible, an
error will result.

Synopsis:
<X>type astGet<X>(AstObject *this, const char *attrib)
Parameters:
this
Pointer to the Object.

attrib

Pointer to a null-terminated string containing the name of the attribute whose
value is required.

Applicability:
Object
These functions apply to all Objects.

Returned Value:

astGet<X>()
The attribute value, in the data type corresponding to <X> (or, in the case of astGetC,
a pointer to a constant null-terminated character string containing this value).

Examples:

printf(" = %d\n" , astGetI(z, " RefCount"));

Prints the RefCount attribute value for Object " z" as an int.

title = astGetC(axis, " [Titlel');

Obtains a pointer to a null-terminated character string containing the Title
attribute of Object " axis"

Notes:

e Attribute names are not case sensitive and may be surrounded by white space.

e An appropriate " null" value will be returned if this function is invoked with
the AST error status set, or if it should fail for any reason. This null value
is zero for numeric values and NULL for pointer values.

e The pointer returned by astGetC is guaranteed to remain valid and the string to
which it points will not be over-written for a total of 50 successive invocations
of this function. After this, the memory containing the string may be re-used,
so a copy of the string should be made if it is needed for longer than this.

297 astGetActivelnit SUN/211.30 —AST Function Descriptions

astGetActiveUnit
Determines how the Unit attribute will be used

Description:
This function returns the current value of the ActiveUnit flag for a See the description of
the[astSetActiveUnit| function for a description of the ActiveUnit flag.

Synopsis:
int astGetActiveUnit(AstFrame xthis)
Parameters:
this
Pointer to the Frame.

Returned Value:

astGetActiveUnit
The current value of the ActiveUnit flag.

Notes:

e A zero value will be returned if this function is invoked with the AST error status
set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 298 astGetCell

astGetCell
Identify the next cell in a normalised Moc

Description:
This function returns the order and " npix" value for the cell at a specified index in the nor-

malised [Mod} See the MOC recommendation for more information about " npix" values and MOC
normalisation.

Synopsis:
void astGetCell(AstMoc xthis, int icell, int *order, int64_t xnpix)
Parameters:
this
Pointer to the Moc to be modified.

icell

The index of the cell for which information is required. The first cell has index

zero. An error will be reported if the supplied value is greater than or equal
to the value of the attribute.
order
Returned holding the HEALPix order of the cell at the requested index.
npix
Returned holding the " npix" value of the cell at the requested index.

299 astGetColumnData SUN/211.30 —AST Function Descriptions

astGetColumnData
Retrieve all the data values stored in a column

Description:
This function copies all data values from a named column into a supplied buffer

Synopsis:

void astGetColumnData(AstFitsTable xthis, const char *column, float fnull, double
dnull, size_t mxsize, void xcoldata, int *nelem)

Parameters:
this
Pointer to the [FitsTablel
column
The character string holding the name of the column. Trailing spaces are ignored.
fnull

The value to return in " coldata" for any cells for which no value has been stored
in the FitsTable. Ignored if the column’ s data type is not AST__FLOATTYPE. Supplying
AST__NANF will cause a single precision IEEE NaN value to be used.

dnull
The value to return in " coldata" for any cells for which no value has been stored
in the FitsTable. Ignored if the column’ s data type is not AST__DOUBLETYPE. Supplying
AST__NAN will cause a double precision IEEE NaN value to be used.

mxsize
The size of the " coldata" array, in bytes. The amount of memory needed to hold
the data from a column may be determined using [astColumnSize] If the supplied
array is too small to hold all the column data, trailing column values will be
omitted from the returned array, but no error will be reported.

coldata
A pointer to an area of memory in which to return the data values currently stored
in the column. The values are stored in row order. If the column holds non-scalar
values, the elements of each value are stored in " Fortran" order. No data type
conversion is performed - the data type of each returned value is the data type
associated with the column when the column was added to the table. If the column
holds strings, the returned strings will be null terminated. Any excess room
at the end of the array will be left unchanged.

nelem

The number of elements returned in the " coldata" array. This is the product
of the number of rows returned and the number of elements in each column value.

Notes:

e The " fnull" and " dnull" parameters specify the value to be returned for any
empty cells within columns holding floating point values. For columns holding
integer values, the value returned for empty cells is the value returned by the
astColumNull function. For columns holding string values, the ASCII NULL character
is returned for empty cells.

SUN/211.30 —AST Function Descriptions 300 astGetFits<X>

astGetFits <X>
Get a named keyword value from a FitsChan

Description:
This is a family of functions which gets a value for a named keyword, or the value of the current
card, from a using one of several different data types. The data type of the returned value
is selected by replacing <X> in the function name by one of the following strings representing the
recognised FITS data types:

e CF - Complex floating point values.
e CI - Complex integer values.
e F - Floating point values.
e I - Integer values.
e L - Logical (i.e. boolean) values.
e S - String values.
e CN- A " CONTINUE" value, these are treated like string values, but are encoded without an
equals sign.
The data type of the " value" parameter
depends on <X> as follows:

e CF-"double " (a pointer to a 2 element array to hold the real and imaginary parts of the
complex value).

e CI-"int *" (a pointer to a 2 element array to hold the real and imaginary parts of the complex

value).
e F-"double " .
o I-"intx".

o L-"intx".

e 5-"char**" (a pointer to a static " char" array is returned at the location given by the " value"
parameter, Note, the stored string may change on subsequent invocations of astGetFitsS so a
permanent copy should be taken of the string if necessary).

e CN - Like" S" .

Synopsis:
int astGetFits<X>(AstFitsChan xthis, const char *name, <X>type *value)

Parameters:

this
Pointer to the FitsChan.

name
Pointer to a null-terminated character string containing the FITS keyword name.
This may be a complete FITS header card, in which case the keyword to use is extracted
from it. No more than 80 characters are read from this string. If NULL is supplied,
the value of the current card is returned.

301 astGetFits<X> SUN/211.30 —AST Function Descriptions

value
A pointer to a buffer to receive the keyword value. The data type depends on
<X> as described above. The conents of the buffer on entry are left unchanged
if the keyword is not found.

Returned Value:

astGetFits<X><X>()
A value of zero is returned if the keyword was not found in the FitsChan (no error
is reported). Otherwise, a value of one is returned.

Notes:

e If a name is supplied, the card following the current card is checked first. If
this is not the required card, then the rest of the FitsChan is searched, starting
with the first card added to the FitsChan. Therefore cards should be accessed
in the order they are stored in the FitsChan (if possible) as this will minimise
the time spent searching for cards.

e If the requested card is found, it becomes the current card, otherwise the current
card is left pointing at the " end-of-file"

e If the stored keyword value is not of the requested type, it is converted into
the requested type.

e If the keyword is found in the FitsChan, but has no associated value, an error
is reported. If necessary, the function can be used to determine
if the keyword has a defined value in the FitsChan prior to calling this function.

e An error will be reported if the keyword name does not conform to FITS requirements.
e Zero

e .FALSE. is returned as the function value if an error has already occurred, or
if this function should fail for any reason.

e The FITS standard says that string keyword values should be padded with trailing
spaces if they are shorter than 8 characters. For this reason, trailing spaces
are removed from the string returned by astGetFitsS if the original string (including
any trailing spaces) contains 8 or fewer characters. Trailing spaces are not
removed from longer strings.

SUN/211.30 —AST Function Descriptions 302 astGetFrame

astGetFrame
Obtain a pointer to a specified Frame in a FrameSet

Description:
This function returns a pointer to a specified [Frame|in a [FrameSet,

Synopsis:
AstFrame *astGetFrame(AstFrameSet xthis, int iframe)
Parameters:
this
Pointer to the FrameSet.

iframe
The index of the required Frame within the FrameSet. This value should lie in
the range from 1 to the number of Frames in the FrameSet (as given by its
attribute).

Returned Value:

astGetFrame()
A pointer to the requested Frame.

Notes:

e A value of AST__BASE or AST__CURRENT may be given for the " iframe" parameter
to specify the base Frame or the current Frame respectively.

e This function increments the [RefCount| attribute of the selected Frame by one.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

303 astGetGrfContext SUN/211.30 —AST Function Descriptions

astGetGrfContext
Return the KeyMap that describes a Plot’ s graphics context

Description:
This function returns a reference to a that will be passed to any drawing functions
registered using This KeyMap can be used by an application to pass information to the
drawing functions about the context in which they are being called. The contents of the KeyMap
are never accessed byt the class itself.

Synopsis:
AstKeyMap *astGetGrfContext(AstPlot *this)
Parameters:
this
Pointer to the Plot.

Returned Value:

astGetGrfContext()
A pointer to the graphics context KeyMap. The returned pointer should be annulled
when it is no longer needed.

SUN/211.30 —AST Function Descriptions 304 astGetMapping

astGetMapping
Obtain a Mapping that converts between two Frames in a FrameSet

Description:
This function returns a pointer to a[Mapping| that will convert coordinates between the coordinate

systems represented by two Frames in a

Synopsis:
AstMapping *astGetMapping(AstFrameSet *this, int iframel, int iframe2)

Parameters:
this
Pointer to the FrameSet.
iframel
The index of the first [Frame] in the FrameSet. This Frame describes the coordinate
system for the " input" end of the Mapping.

iframe2
The index of the second Frame in the FrameSet. This Frame describes the coordinate
system for the " output" end of the Mapping.

Returned Value:

astGetMapping()
Pointer to a Mapping whose forward transformation converts coordinates from the first
coordinate system to the second one, and whose inverse transformation converts coordinates
in the opposite direction.

Notes:

e The returned Mapping will include the clipping effect of any Regions which occur
on the path between the two supplied Frames (this includes the two supplied Frames
themselves) .

e The values given for the " iframel" and " iframe2" parameters should lie in the
range from 1 to the number of Frames in the FrameSet (as given by its attribute) .
A value of AST__BASE or AST__CURRENT may also be given to identify the FrameSet’

s base Frame or current Frame respectively. It is permissible for both these
parameters to have the same value, in which case a unit Mapping is returned.

e It should always be possible to generate the Mapping requested, but this does
necessarily guarantee that it will be able to perform the required coordinate
conversion. If necessary, the [[ranlForward| and [TranlInverse| attributes of the returned
Mapping should be inspected to determine if the required transformation is available.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

305 astGetMocData SUN/211.30 —AST Function Descriptions

astGetMocData
Get the FITS binary table data describing a Moc

Description:
This function retrieves the data values that form the FITS binary table representation of the MOC
and stores them in a supplied array. Such a table contains a single scalar-valued column in which
each row holds a signed integer identifier for a single HEALPix cell, following the scheme described
in the MOC recommendation. Depending on the order of the these integers may be 4 bytes or
8 bytes.

The number of rows in the table and the required integer data type are available through the
MocType|and [MocLength|attributes of the Moc class.

The FITS headers to store in the FITS binary table can be obtained using function jastGetMocHeader|

Synopsis:
void astGetMocData(AstMoc xthis, size_t mxsize, void *data)

Parameters:
this
Pointer to the Moc to be modified.
mxsize
The length of the supplied array in bytes. An error will be reported if this

value is smaller than the number required to describe the Moc (the product of
the MocType and MocLength attributes).

data
Pointer to the area of memory in which to return the signed integer cell identifiers.
This area is assumed to contain at least " mxsize" bytes.

SUN/211.30 —AST Function Descriptions 306 astGetMocHeader

astGetMocHeader
Get the FITS binary table headers describing a Moc

Description:
This function returns a holding the headers that should be stored in a FITS binary table
extension describing the supplied[Mod The data values for the extension can be obtained using
method lastGetMocDatal

Synopsis:
AstFitsCHan *astGetMocHeader(AstMoc *this)

Parameters:

this
Pointer to the Moc to be modified.

307 astGetMocString SUN/211.30 —AST Function Descriptions

astGetMocString
Get the JSON or string-encoded representation of a Moc

Description:
This function stores the JSON or string-encoded representation of the supplied [Modin the supplied
string buffer.

Synopsis:

void astGetMocString(AstMoc *this, int json, size_t mxsize, char *string, size_t #*size,
int *status)

Parameters:
this
Pointer to the Moc.
json
If non-zero, the Moc is encoded using JSON serialisation. Otherwise it is encoded
using string-serialisation.
mxsize

The length of the supplied string buffer in bytes. An error will be reported
if this value is smaller than the number required to describe the Moc. However,
if zero is supplied, the buffer will be ignored - no string will be returned but
the required size of the buffer will still be returned in ’ size’
string
Pointer to the area of memory in which to return the JSON or string-encoded representation
of the Moc. This area is assumed to contain at least ’ mxsize’ bytes. Only used
if ’ mxsize’ is greater than zero. Note, the string is not null-terminated.
size
Returned holding the number of bytes needed to store the complete JSON or string-encoded
representation of the Moc.

SUN/211.30 —AST Function Descriptions 308 astGetRefPos

astGetRefPos
Return the reference position in a specified celestial coordinate
system

Description:
This function returns the reference position (specified by attributes[RefRA]and [RefDed) converted
to the celestial coordinate system represented by a supplied The celestial longitude and

latitude values are returned in radians.

Synopsis:
void astGetRefPos(AstSpecFrame xthis, AstSkyFrame *frm, double xlon, double xlat)

Parameters:
this
Pointer to the [SpecFrame|.
frm
Pointer to the SkyFrame which defines the required celestial coordinate system.

If NULL is supplied, then the longitude and latitude values are returned as FKb5
J2000 RA and Dec values.

lon
A pointer to a double in which to store the longitude of the reference point, in
the coordinate system represented by the supplied SkyFrame (radians).

lat A pointer to a double in which to store the latitude of the reference point, in
the coordinate system represented by the supplied SkyFrame (radians).

Notes:

e Values of AST__BAD will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

309 astGetRegionBounds

SUN/211.30 —AST Function Descriptions

astGetRegionBounds
Returns the bounding box of Region

Description:

This function returns the upper and lower limits of a box which just encompasses the supplied
The limits are returned as axis values within the [Frame|represented by the Region. The
value of the attribute is ignored (i.e. it is assumed that the Region has not been negated).

Synopsis:

void astGetRegionBounds(AstRegion #this, double *1lbnd, double *ubnd)

Parameters:
this
Pointer to the Region.
Ibnd
Pointer to an array in which to
It should have at least as many

an axis has no lower limit, the
value.

ubnd
Pointer to an array in which to
It should have at least as many
an axis has no upper limit, the
value.

Notes:

return the lower axis bounds covered by the Region.
elements as there are axes in the Region. If
returned value will be the largest possible negative

return the upper axis bounds covered by the Region.
elements as there are axes in the Region. If
returned value will be the largest possible positive

e The value of the Negated attribute is ignored (i.e. it is assumed that the Region

has not been negated).

e If an axis has no extent on an axis then the lower limit will be returned larger
than the upper limit. Note, this is different to an axis which has a constant

value (in which case both lower
value) .

and upper limit will be returned set to the constant

e If the bounds on an axis cannot be determined, AST__BAD is returned for both upper

and lower bounds

SUN/211.30 —AST Function Descriptions 310 astGetRegionDisc

astGetRegionDisc
Returns the centre and radius of a disc containing a 2D Region

Description:
This function returns the centre and radius of a disc that just encloses the supplied 2-dimensional
The centre is returned as a pair of axis values within the represented by the Region.

The value of the attribute is ignored (i.e. it is assumed that the Region has not been
negated).
Synopsis:
void astGetRegionDisc(AstRegion xthis, double centre[2], double *radius)
Parameters:
this
Pointer to the Region.

centre

Pointer to a two-element array in which to return the axis values at the centre
of the bounding disc.

radius
Pointer to a variable in which to return the radius of the bounding disc, as a
geodesic distance within the Frame represented by the Region. It will be returned
holding AST__BAD If the Region is unbounded.

Notes:

e An error is reported if the Region is not 2-dimensional.

e The value of the Negated attribute is ignored (i.e. it is assumed that the Region
has not been negated).

e If the Region is unbounded, the radius will be returned set to AST__BAD and the
supplied centre axis values will be returned unchanged.

311 astGetRegionFrame SUN/211.30 —AST Function Descriptions

astGetRegionFrame
Obtain a pointer to the encapsulated Frame within a Region

Description:
. "F}tig function returns a pointer to the represented by a
Synopsis:
AstFrame *astGetRegionFrame(AstRegion *this)
Parameters:
this

Pointer to the Region.
Returned Value:

astGetRegionFrame()
A pointer to a deep copy of the Frame represented by the Region. Using this pointer
to modify the Frame will have no effect on the Region. To modify the Region, use the
Region pointer directly.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 312 astGetRegionFrameSet

astGetRegionFrameSet
Obtain a pointer to the encapsulated FrameSet within a Region

Description:

This function returns a pointer to the encapsulated by a The base is the

Frame in which the box was originally defined, and the current Frame is the Frame into which the
Region is currently mapped (i.e. it will be the same as the Frame returned by [astGetRegionFrame).

Synopsis:
AstFrame *astGetRegionFrameSet(AstRegion xthis)
Parameters:
this
Pointer to the Region.

Returned Value:

astGetRegionFrameSet()
A pointer to a deep copy of the FrameSet represented by the Region. Using this pointer
to modify the FrameSet will have no effect on the Region.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

313 astGetRegionMesh SUN/211.30 —AST Function Descriptions

astGetRegionMesh
Return a mesh of points covering the surface or volume of a Region

Description:
This function returns the axis values at a mesh of points either covering the surface (i.e. boundary)
of the supplied or filling the interior (i.e. volume) of the Region. The number of points in

the mesh is determined by the attribute.

Synopsis:
void astGetRegionMesh(AstRegion #*this, int surface, int maxpoint, int maxcoord, int
s*npoint, double *points)

Parameters:
this
Pointer to the Region.
surface

If non-zero, the returned points will cover the surface or the Region. Otherwise,
they will fill the interior of the Region.

maxpoint
If zero, the number of points in the mesh is returned in " *npoint" , but no axis
values are returned and all other parameters are ignored. If not zero, the supplied
value should be the length of the second dimension of the " points" array. An
error is reported if the number of points in the mesh exceeds this number.

maxcoord
The length of the first dimension of the " points" array. An error is reported
if the number of axes in the supplied Region exceeds this number.

npoint
A pointer to an integer in which to return the number of points in the returned
mesh.
points
The address of the first element in a 2-dimensional array of shape " [maxcoord] [maxpoint]"

, in which to return the coordinate values at the mesh positions. These are stored
such that the value of coordinate number " coord" for point number " point" is
found in element " points[coord] [point]"

Notes:

e An error is reported if the Region is unbounded.

e If the coordinate system represented by the Region has been changed since it was
first created, the returned axis values refer to the new (changed) coordinate
system, rather than the original coordinate system. Note however that if the
transformation from original to new coordinate system is non-linear, the shape
within the new coordinate system may be distorted, and so may not match that implied

by the name of the Region subclass (Circle], [Box|, etc).

e If the Region defines an area within a that traverses zero longitude,
the returned positions will be normalised to avoid jumps of 2.PI radians in longitude
(i.e. it will include longitude values less than zero or greater than 2.PI).

SUN/211.30 —AST Function Descriptions 314 astGetRegionPoints

astGetRegionPoints
Returns the positions that define the given Region

Description:
This function returns the axis values at the points that define the supplied The particular
meaning of these points will depend on the type of class supplied, as listed below under "
Applicability:" .

Synopsis:
void astGetRegionPoints(AstRegion *this, int maxpoint, int maxcoord, int #npoint,
double *points)

Parameters:

this
Pointer to the Region.

maxpoint
If zero, the number of points needed to define the Region is returned in " *npoint"
, but no axis values are returned and all other parameters are ignored. If not
zero, the supplied value should be the length of the second dimension of the "
points" array. An error is reported if the number of points needed to define
the Region exceeds this number.

maxcoord
The length of the first dimension of the " points" array. An error is reported
if the number of axes in the supplied Region exceeds this number.
npoint
A pointer to an integer in which to return the number of points defining the Region.
points
The address of the first element in a 2-dimensional array of shape [maxcoord] [maxpoint]"
, in which to return the coordinate values at the positions that define the Region.
These are stored such that the value of coordinate number " coord" for point number
" point" is found in element " points[coord] [point]"

Applicability:

Region
A1l Regions have this attribute.

The first returned position is the Box centre, and the second is a Box cormer.

:

The first returned position is the Circle centre, and the second is a point on the
circumference.

Returns a value of zero for " *npoint" and leaves the supplied array contents unchanged.
To find the points defining a CmpRegion, use this method on the component Regions, which

can be accessed by invoking on the CmpRegion.

The first returned position is the Ellipse centre. The second is the end of one of
the axes of the ellipse. The third is some other point on the circumference of the
ellipse, distinct from the second point.

315 astGetRegionPoints SUN/211.30 —AST Function Descriptions

The first point corresponds to the lower bounds position, and the second point corresponds
to the upper bounds position. These are reversed to indicate an extcluded interval
rather than an included interval. See the Interval constructor for more information.

NullRegion

Returns a value of zero for " *npoint" and leaves the supplied array contents unchanged.

[Pointlist

The positions returned are those that were supplied when the PointList was constructed.

The positions returned are the vertex positions that were supplied when the Polygon
was constructed.

[Prisml|

Returns a value of zero for " xnpoint" and leaves the supplied array contents unchanged.
To find the points defining a Prism, use this method on the component Regions, which
can be accessed by invoking astDecompose on the CmpRegion.

Notes:

e If the coordinate system represented by the Region has been changed since it was
first created, the returned axis values refer to the new (changed) coordinate
system, rather than the original coordinate system. Note however that if the
transformation from original to new coordinate system is non-linear, the shape
within the new coordinate system may be distorted, and so may not match that implied
by the name of the Region subclass (Circle, Box, etc).

SUN/211.30 —AST Function Descriptions 316 astGetStcCoord

astGetStcCoord
Return information about an AstroCoords element stored in an Stc

Description:

When any sub-class of [Stdis created, the constructor function allows one or more AstroCoords
elements to be stored within the Stc. This function allows any one of these AstroCoords elements
to be retrieved. The format of the returned information is the same as that used to pass the original
information to the Stc constructor. That is, the information is returned in a structure
containing elements with one or more of the keys given by symbolic constants AST__ STCNAME,
AST__STCVALUE, AST__STCERROR, AST__STCRES, AST__STCSIZE and AST__ STCPIXSZ.

If the coordinate system represented by the Stc has been changed since it was created (for instance,
by changing its attribute), then the sizes and positions in the returned KeyMap will reflect
the change in coordinate system.

Synopsis:
AstKeyMap *astGetStcCoord(AstStc *this, int icoord)
Parameters:
this
Pointer to the Stc.

icoord
The index of the AstroCoords element required. The first has index one. The
number of AstroCoords elements in the Stc can be found using function astGetStcNcoord.

Returned Value:

astGetStcCoord()
A pointer to a new KeyMap containing the required information.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

317 astGetStcNCoord SUN/211.30 —AST Function Descriptions

astGetStcNCoord
Return the number of AstroCoords elements stored in an Stc

Description:
This function returns the number of AstroCoords elements stored in an[Std

Synopsis:
int astGetStcNCoord(AstStc *this)
Parameters:

this
Pointer to the Stc.

Returned Value:

astGetStcNCoord()

The number of AstroCoords elements stored in the Stc.

Notes:

e Zero will be returned if this function is invoked with the AST error status set,
or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 318 astGetStcRegion

astGetStcRegion
Obtain a copy of the encapsulated Region within a Stc

Description:
This function returns a pointer to a deep copy of the supplied when the [Stdwas created.

Synopsis:
AstRegion *astGetStcRegion(AstStc *this)

Parameters:

this
Pointer to the Stc.

Returned Value:

astGetStcRegion()
A pointer to a deep copy of the Region encapsulated within the supplied Stc.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

319 astGetTableHeader SUN/211.30 —AST Function Descriptions

astGetTableHeader
Get the FITS headers from a FitsTable

Description:
This function returns a pointer to a holding copies of the FITS headers associated with a
Synopsis:
AstFitsChan *astGetTableHeader(AstFitsTable *this)
Parameters:
this
Pointer to the FitsTable.

Returned Value:

astGetTableHeader()
A pointer to a deep copy of the FitsChan stored within the FitsTable.

Notes:

e The returned pointer should be annulled using when it is no longer needed.

e Changing the contents of the returned FitsChan will have no effect on the FitsTable.
To modify the FitsTable, the modified FitsChan must be stored in the FitsTable

using [astPutTableHeader].

SUN/211.30 —AST Function Descriptions 320 astGetTables

astGetTables
Retrieve any FitsTables currently in a FitsChan

Description:
If the supplied currently contains any tables, then this function returns a pointer to a
Each entry in the KeyMap is a pointer to a[FitsTable|holding the data for a FITS binary
table. The key used to access each entry is the FITS extension name in which the table should be
stored.

Tables can be present in a FitsChan as a result either of using the [astPutTable| (or jastPutTables)
method to store existing tables in the FitsChan, or of using theastWritelmethod to write a[FrameSet]
to the FitsChan. For the later case, if the FitsChan " [TabOK]" attribute is positive and the FrameSet
requires a look-up table to describe one or more axes, then the " -TAB" algorithm code described in
FITS-WCS paper 11l is used and the table values are stored in the FitsChan in the form of a FitsTable
object (see the documentation for the " TabOK" attribute).

Synopsis:
AstKeyMap *astGetTables(AstFitsChan *this)
Parameters:
this
Pointer to the FitsChan.

Returned Value:

astGetTables()
A pointer to a deep copy of the KeyMap holding the tables currently in the FitsChan,
or NULL if the FitsChan does not contain any tables. The returned pointer should be

annulled using when no longer needed.
Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

321 astGetUnc SUN/211.30 —AST Function Descriptions

astGetUnc
Obtain uncertainty information from a Region

Description:

This function returns a ch represents the uncertainty associated with positions within

the supplied Region. See [astSetUnc|for more information about Region uncertainties and their use.

Synopsis:
AstRegion *astGetUnc(AstRegion *this, int def)
Parameters:
this
Pointer to the Region.
def
Controls what is returned if no uncertainty information has been associated explicitly
with the supplied Region. If a non-zero value is supplied, then the default uncertainty
Region used internally within AST is returned (see " Applicability" below). If
zero is supplied, then NULL will be returned (without error).
Applicability:

bReg
The default uncertainty for a CmpRegion is taken from one of the two component Regions.
If the first component Region has a non-default uncertainty, then it is used as the
default uncertainty for the parent CmpRegion. Otherwise, if the second component Region
has a non-default uncertainty, then it is used as the default uncertainty for the parent
CmpRegion. If neither of the component Regions has non-default uncertainty, then the
default uncertainty for the CmpRegion is 1.0E-6 of the bounding box of the CmpRegion.

[Prisml

The default uncertainty for a Prism is formed by combining the uncertainties from the
two component Regions. If a component Region does not have a non-default uncertainty,
then its default uncertainty will be used to form the default uncertainty of the parent
Prism.

Region
For other classes of Region, the default uncertainty is 1.0E-6 of the bounding box

of the Region. If the bounding box has zero width on any axis, then the uncertainty
will be 1.0E-6 of the axis value.

Returned Value:
astGetUnc()
A pointer to a Region describing the uncertainty in the supplied Region.

Notes:

e If uncertainty information is associated with a Region, and the coordinate system
described by the Region is subsequently changed (e.g. Dby changing the value of
its attribute, or using the function), then the uncertainty
information returned by this function will be modified so that it refers to the
coordinate system currently described by the supplied Region.

e A null pointer (NULL) will be returned if this function is invoked with
the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 322 astGrfPop

astGrfPop
Restore previously saved graphics functions used by a Plot

Description:
This function restores a snapshot of the graphics functions stored previously by calling
The restored graphics functions become the current graphics functions used by the

The astGrfPush and astGrfPop functions are intended for situations where it is necessary to make
temporary changes to the graphics functions used by the Plot. The current functions should first
be saved by calling astGrfPush. New functions should then be registered using The
required graphics should then be produced. Finally, astGrfPop should be called to restore the
original graphics functions.

Synopsis:
void astGrfPop(AstPlot xthis)

Parameters:
this
Pointer to the Plot.

Notes:

e This function returns without action if there are no snapshots to restore. No
error is reported in this case.

323 astGrfPush SUN/211.30 —AST Function Descriptions

astGrfPush
Save the current graphics functions used by a Plot

Description:

This function takes a snapshot of the graphics functions which are currently registered with the
supplied and saves the snapshot on a first-in-last-out stack within the Plot. The snapshot can
be restored later using function

The astGrfPush and astGrfPop functions are intended for situations where it is necessary to make
temporary changes to the graphics functions used by the Plot. The current functions should first
be saved by calling astGrfPush. New functions should then be registered using The
required graphics should then be produced. Finally, astGrfPop should be called to restore the
original graphics functions.

Synopsis:
void astGrfPush(AstPlot *this)
Parameters:

this
Pointer to the Plot.

SUN/211.30 —AST Function Descriptions 324 astGrfSet

astGrfSet
Register a graphics function for use by a Plot

Description:
This function can be used to select the underlying graphics functions to be used when the supplied
[Plot| produces graphical output. If this function is not called prior to producing graphical output,
then the underlying graphics functions selected at link-time (using the command) will be
used. To use alternative graphics functions, call this function before the graphical output is created,
specifying the graphics functions to be used. This will register the function for future use, but the
function will not actually be used until the attribute is given a non-zero value.

Synopsis:
void astGrfSet(AstPlot *this, const char *name, AstGrfFun fun)

Parameters:

this
Pointer to the Plot.

name
A name indicating the graphics function to be replaced. Various graphics functions
are used by the Plot class, and any combination of them may be supplied by calling
this function once for each function to be replaced. If any of the graphics functions
are not replaced in this way, the corresponding functions in the graphics interface
selected at link-time (using the ast_link command) are used. The allowed names
are:

e Attr - Enquire or set a graphics attribute value
e BBuf - Start a new graphics buffering context
e Cap - Inquire a capability
e EBuf - End the current graphics buffering context
e Flush - Flush all pending graphics to the output device
e Line - Draw a polyline (i.e. a set of connected lines)
e Mark - Draw a set of markers
e Qch - Return the character height in world coordinates
e Scales - Get the axis scales
e Text - Draw a character string
e TxExt - Get the extent of a character string
The string is case insensitive. For details of the interface required for each,
see the sections below.
fun
A Pointer to the function to be used to provide the functionality indicated by

parameter name. The interface for each function is described below, but the function
pointer should be cast to a type of AstGrfFun when calling astGrfSet.

Once a function has been provided, a null pointer can be supplied in a subsequent
call to astGrfSet to reset the function to the corresponding function in the graphics
interface selected at link-time.

Function Interfaces :

325

Attr:

BBuf

Cap:

astGrfSet SUN/211.30 —AST Function Descriptions

A1l the functions listed below (except for " Cap") should return an integer value
of 0 if an error occurs, and 1 otherwise. All x and y values refer to " graphics cordinates"
as defined by the graphbox parameter of the |[astPlot| call which created the Plot.

The first parameter (" grfcon") for each function is an AST pointer that can
be used by the called function to establish the context in which it is being called.
The contents of the KeyMap are determined by the calling application, which should
obtain a pointer to the KeyMap using the [astGetGrfContext| function, and then store
any necessary information in the KeyMap using the methods of the KeyMap class. Note,
the functions listed below should never annul or delete the supplied KeyMap pointer.

The " Attr" function returns the current value of a specified graphics attribute, and
optionally establishes a new value. The supplied value is converted to an integer
value if necessary before use. It requires the following interface:

int Attr(AstObject *grfcon, int attr, double value, double xo0ld_value, int prim)

e grfcon - A KeyMap containing information passed from the calling application.

e attr - An integer value identifying the required attribute. The following symbolic
values are defined in grf.h: GRF__STYLE (Line style), GRF__WIDTH (Line width),
GRF__SIZE (Character and marker size scale factor), GRF__FONT (Character font),
GRF__COLOUR (Colour index).

e value - A new value to store for the attribute. If this is AST__BAD no value
is stored.

e old_value - A pointer to a double in which to return the attribute value. If
this is NULL, no value is returned.

e prim - The sort of graphics primitive to be drawn with the new attribute. Identified
by the following values defined in grf.h: GRF__LINE, GRF__MARK, GRF__TEXT.

The " BBuf" function should start a new graphics buffering context. A matching call
to the function " EBuf" should be used to end the context. The nature of the buffering
is determined by the underlying graphics system.

int BBuf(AstObject xgrfcon)

e grfcon - A KeyMap containing information passed from the calling application.

The " Cap" function is called to determine if the grf module has a given capability,
as indicated by the " cap" argument:

int Cap(AstObject *xgrfcon, int cap, int value)

e grfcon - A KeyMap containing information passed from the calling application.

e cap - The capability being inquired about. This will be one of the following
constants defined in grf.h:

GRF__SCALES: This function should return a non-zero value if the " Scales" function
is implemented, and zero otherwise. The supplied " value" argument should be ignored.
GRF__MJUST: This function should return a non-zero value if the " Text" and " TxExt"

functions recognise " M" as a character in the justification string. If the first
character of a justification string is " M" , then the text should be justified with

SUN/211.30 —AST Function Descriptions 326 astGrfSet

the given reference point at the bottom of the bounding box. This is different to
" B" justification, which requests that the reference point be put on the baseline
of the text, since some characters hang down below the baseline. If the " Text" or
" TxExt" function cannot differentiate between " M" and " B" , then this function should
return zero, in which case " M" justification will never be requested by Plot. The
supplied " value" argument should be ignored.

GRF__ESC: This function should return a non-zero value if the " Text" and " TxExt"
functions can recognise and interpret graphics escape sequences within the supplied
string (see attribute . Zero should be returned if escape sequences cannot
be interpreted (in which case the Plot class will interpret them itself if needed).
The supplied " value" argument should be ignored only if escape sequences cannot be

interpreted by " Text" and " TxExt" . Otherwise, " value" indicates whether " Text"
and " TxExt" should interpret escape sequences in subsequent calls. If " value" is
non-zero then escape sequences should be interpreted by " Text" and " TxExt" . Otherwise,

they should be drawn as literal text.

e value - The use of this parameter depends on the value of " cap" as described
above.

e Returned Function Value: The value returned by the function depends on the value
of " cap" as described above. Zero should be returned if the supplied capability
is not recognised.

EBuf:

The " EBuf" function should end the current graphics buffering context. See the description
of " BBuf" above for further details. It requires the following interface:

int EBuf(AstObject *grfcon)

e grfcon - A KeyMap containing information passed from the calling application.

Flush :

The " Flush" function ensures that the display device is up-to-date, by flushing any
pending graphics to the output device. It requires the following interface:

int Flush(AstObject xgrfcon)

e grfcon - A KeyMap containing information passed from the calling application.

Line:

The " Line" function displays lines joining the given positions and requires the following
interface:

int Line(AstObject #grfcon, int n, const float #*x, const float *y)

grfcon - A KeyMap containing information passed from the calling application.
e n - The number of positions to be joined together.
e x - A pointer to an array holding the " n" x values.

e vy - A pointer to an array holding the " n" y values.

Mark :

The " Mark" function displays markers at the given positions. It requires the following
interface:

int Mark(AstObject #grfcon, int n, const float #*x, const float *y, int type)

327 astGrfSet SUN/211.30 —AST Function Descriptions

grfcon - A KeyMap containing information passed from the calling application.
e n - The number of positions to be marked.
e x - A pointer to an array holding the " n" x values.

e y - A pointer to an array holding the " n" y values.

type - An integer which can be used to indicate the type of marker symbol required.

Qch:
The " Qch" function returns the heights of characters drawn vertically and horizontally
in graphics coordinates. It requires the following interface:

int Qch(AstObject *grfcon, float *chv, float *chh)

e grfcon - A KeyMap containing information passed from the calling application.

e chv - A pointer to the float which is to receive the height of characters drawn
with a vertical baseline. This will be an increment in the X axis.

e chh - A pointer to the float which is to receive the height of characters drawn
with a horizontal baseline. This will be an increment in the Y axis.

Scales :

The " Scales" function returns two values (one for each axis) which scale increments
on the corresponding axis into a " normal" coordinate system in which: 1) the axes
have equal scale in terms of (for instance) millimetres per unit distance, 2) X values
increase from left to right, and 3) Y values increase from bottom to top. It requires
the following interface:

int Scales(AstObject xgrfcon, float *alpha, float xbeta)

e grfcon - A KeyMap containing information passed from the calling application.

e alpha - A pointer to the float which is to receive the scale for the X axis (i.e.
Xnorm = alphaxXworld) .

e beta - A pointer to the float which is to receive the scale for the Y axis (i.e.
Ynorm = betaxYworld) .
Text :

The " Text" function displays a character string at a given position using a specified
justification and up-vector. It requires the following interface:

int Text(AstObject *grfcon, const char *text, float x, float y, const char *just,
float upx, float upy)

e grfcon - A KeyMap containing information passed from the calling application.

text - Pointer to a null-terminated character string to be displayed.

e x - The reference x coordinate.

y - The reference y coordinate.

just - A character string which specifies the location within the text string

which is to be placed at the reference position given by x and y. The first character
may be > T’ for " top" , > C’ for " centre" , or > B’ for " bottom" , and specifies
the vertical location of the reference position. Note, " bottom" corresponds

to the base-line of normal text. Some characters (eg " y" , " g" , " p" , etc)
descend below the base-line. The second character may be ’ L’ for " left" , ?’

C’> for " centre" , or > R’ for " right" , and specifies the horizontal location

of the reference position. If the string has less than 2 characters then ’ C’

is used for the missing characters.

SUN/211.30 —AST Function Descriptions 328 astGrfSet

e upx - The x component of the up-vector for the text. If necessary the supplied
value should be negated to ensure that positive values always refer to displacements
from left to right on the screen.

e upy - The y component of the up-vector for the text. If necessary the supplied
value should be negated to ensure that positive values always refer to displacements
from bottom to top on the screen.

TxExt :

The " TxExt" function returns the corners of a box which would enclose the supplied
character string if it were displayed using the Text function described above. The
returned box includes any leading or trailing spaces. It requires the following interface:

int TxExt(AstObject *grfcon, const char xtext, float x, float y, const char *just,
float upx, float upy, float *xb, float *yb)

e grfcon - A KeyMap containing information passed from the calling application.
e text - Pointer to a null-terminated character string to be displayed.

e x - The reference x coordinate.

e v - The reference y coordinate.

e just - A character string which specifies the location within the text string
which is to be placed at the reference position given by x and y. See " Text"
above.

e upx - The x component of the up-vector for the text. See " Text" above.
e upy - The y component of the up-vector for the text. See " Text" above.

e xb - An array of 4 elements in which to return the x coordinate of each corner
of the bounding box.

e yb - An array of 4 elements in which to return the y coordinate of each corner
of the bounding box.

329 astGrid SUN/211.30 —AST Function Descriptions

astGrid
Draw a set of labelled coordinate axes

Description:
This function draws a complete annotated set of coordinate axes for a [Plof] with (optionally) a
coordinate grid superimposed. Details of the axes and grid can be controlled by setting values for
the various attributes defined by the Plot class (q.v.).

Synopsis:

void astGrid(AstPlot *this)

Parameters:

this

Notes:

Pointer to the Plot.

If the supplied Plot is a [PIot3D|, the axes will be annotated using three 2-dimensional
Plots, one for each 2D plane in the 3D current coordinate system. The plots will

be " pasted" onto 3 faces of the cuboid graphics volume specified when the Plot3D

was constructed. The faces to be used can be controlled by the " [RootCormer]
attribute.

An error results if either the current [Framel or the base Frame of the Plot is
not 2-dimensional or (for a Plot3D) 3-dimensional.

An error also results if the transformation between the base and current Frames
of the Plot is not defined in either direction (i.e. the Plot’ s |[TranForward

or [Tranlnverse| attribute is zero).

SUN/211.30 —AST Function Descriptions 330 astGridLine

astGridLine
Draw a grid line (or axis) for a Plot

Description:

This function draws a curve in the physical coordinate system of a[Plot|by varying only one of the
coordinates along the length of the curve. It is intended for drawing coordinate axes, coordinate
grids, and tick marks on axes (but note that these are also available via the more comprehensive
function).

The curve is transformed into graphical coordinate space for plotting, so that a straight line in
physical coordinates may result in a curved line being drawn if the[Mapping]involved is non-linear.
Any discontinuities in the Mapping between physical and graphical coordinates are catered for, as

is any clipping established using[astClip}
Synopsis:
void astGridLine(AstPlot xthis, int axis, const double start[], double length)

Parameters:

this
Pointer to the Plot.

axis
The index of the Plot axis whose physical coordinate value is to be varied along
the length of the curve (all other coordinates will remain fixed). This value
should lie in the range from 1 to the number of Plot axes attribute).

start
An array, with one element for each axis of the Plot, giving the physical coordinates
of the start of the curve.

length
The length of curve to be drawn, given as an increment along the selected physical
axis. This may be positive or negative.

Notes:

e No curve is drawn if the " start" array contains any coordinates with the value
AST__BAD, nor if " length" has this value.

e An error results if the base [Framel of the Plot is not 2-dimensional.

e An error also results if the transformation between the current and base Frames
of the Plot is not defined (i.e. the Plot’ s attribute is zero).

331 astGrismMap SUN/211.30 —AST Function Descriptions

astGrismMap
Create a GrismMap

Description:
This function creates a new and optionally initialises its attributes.

A GrismMap is a specialised form of[Mapping|which transforms 1-dimensional coordinates using
the spectral dispersion equation described in FITS-WCS paper III " Representation of spectral
coordinates in FITS" . This describes the dispersion produced by gratings, prisms and grisms.

When initially created, the forward transformation of a GrismMap transforms input " grism
parameter" values into output wavelength values. The " grism parameter" is a dimensionless
value which is linearly related to position on the detector. It is defined in FITS-WCS paper III as
" the offset on the detector from the point of intersection of the camera axis, measured in units
of the effective local length" . The units in which wavelength values are expected or returned
is determined by the values supplied for the [GrismWaveR)] [GrismNRP| and [Grism attribute:
whatever units are used for these attributes will also be used for the wavelength values.

Synopsis:
AstGrismMap *astGrismMap(const char *options, ...)

Parameters:
options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new GrismMap. The syntax

used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astGrismMap()

A pointer to the new GrismMap.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 332 astHasAttribute

astHasAttribute
Test if an Object has a named attribute

Description:
This function returns a boolean result (0 or 1) to indicate whether the supplied has an
attribute with the supplied name.

Synopsis:
int astHasAttribute(AstObject *this, const char *attrib)
Parameters:

this
Pointer to the first Object.

attrib
Pointer to a string holding the name of the attribute to be tested.

Applicability:

Object
This function applies to all Objects.

Returned Value:

astHasAttribute()
One if the Object has the named attribute, otherwise zero.

Notes:

e A value of zero will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

333 astHasColumn SUN/211.30 —AST Function Descriptions

astHasColumn
Returns a flag indicating if a column is present in a Table

Description:
This function returns a flag indicating if a named column exists in a for instance, by having

been added to to the Table using [astAddColumn]
Synopsis:
int astHasColumn(AstTable *this, const char *column)
Parameters:
this
Pointer to the Table.

column
The character string holding the upper case name of the column. Trailing spaces
are ignored.

Notes:

e A value of zero is returned for if an error occurs.

SUN/211.30 —AST Function Descriptions 334 astHasParameter

astHasParameter
Returns a flag indicating if a named global parameter is present in a
Table

Description:
This function returns a flag indicating if a named parameter exists in a for instance, by
having been added to to the Table usingastAddParameter]

Synopsis:
int astHasParameter(AstTable xthis, const char xparameter)
Parameters:

this
Pointer to the Table.

parameter
The character string holding the upper case name of the parameter. Trailing spaces
are ignored.

Notes:

e A value of zero is returned for if an error occurs.

335 astImport SUN/211.30 —AST Function Descriptions

astImport
Import an Object pointer to the current context

Description:
This function imports an pointer that was created in a higher or lower level context, into
the current AST context. This means that the pointer will be annulled when the current context is

ended (with[astEnd).
Synopsis:
void astImport(AstObject xthis)
Parameters:
this
Object pointer to be imported.
Applicability:

Object
This function applies to all Objects.

SUN/211.30 —AST Function Descriptions 336 astIntersect

astIntersect
Find the point of intersection between two geodesic curves

Description:
This function finds the coordinate values at the point of intersection between two geodesic curves.
Each curve is specified by two points on the curve. It can only be used with 2-dimensional Frames.

For example, in a basic it will find the point of intersection between two straight lines. But
for a it will find an intersection of two great circles.

Synopsis:
void astIntersect(AstFrame #*this, const double al[2], const double a2[2], const double

b1[2], const double b2[2], double cross[2])

Parameters:
this
Pointer to the Frame.

al An array of double, with one element for each Frame axis attribute). This
should contain the coordinates of the first point on the first geodesic curve.

a2 An array of double, with one element for each Frame axis (Naxes attribute). This
should contain the coordinates of a second point on the first geodesic curve. It
should not be co-incident with the first point.

bl An array of double, with one element for each Frame axis (Naxes attribute). This
should contain the coordinates of the first point on the second geodesic curve.

b2 An array of double, with one element for each Frame axis (Naxes attribute). This
should contain the coordinates of a second point on the second geodesic curve.
It should not be co-incident with the first point.

Cross
An array of double, with one element for each Frame axis in which the coordinates
of the required intersection will be returned.

Notes:

e For SkyFrames each curve will be a great circle, and in general each pair of curves
will intersect at two diametrically opposite points on the sky. The returned
position is the one which is closest to point " al"

e This function will return " bad" coordinate values (AST__BAD) if any of the input
coordinates has this value, or if the two points defining either geodesic are
co-incident, or if the two curves do not intersect.

e The geodesic curve used by this function is the path of shortest distance between
two points, as defined by the function.

e An error will be reported if the Frame is not 2-dimensional.

337 astInterval SUN/211.30 —AST Function Descriptions

astInterval
Create a Interval

Description:
This function creates a new and optionally initialises its attributes.

A Interval is a[Region| which represents upper and/or lower limits on one or more axes of a
For a point to be within the region represented by the Interval, the point must satisfy all the
restrictions placed on all the axes. The point is outside the region if it fails to satisfy any one of the
restrictions. Each axis may have either an upper limit, a lower limit, both or neither. If both limits
are supplied but are in reverse order (so that the lower limit is greater than the upper limit), then
the interval is an excluded interval, rather than an included interval.

At least one axis limit must be supplied.

Note, The Interval class makes no allowances for cyclic nature of some coordinate systems (such as
coordinates). A [Boxshould usually be used in these cases since this requires the user to
think about suitable upper and lower limits,

Synopsis:
AstInterval kastInterval(AstFrame xframe, const double lbnd[], const double ubnd[],
AstRegion #*unc, const char *options, ...)

Parameters:
frame

A pointer to the Frame in which the region is defined. A deep copy is taken of
the supplied Frame. This means that any subsequent changes made to the Frame
using the supplied pointer will have no effect the Region.

Ibnd
An array of double, with one element for each Frame axis attribute) containing
the lower limits on each axis. Set a value to AST__BAD to indicate that the axis
has no lower limit.

ubnd
An array of double, with one element for each Frame axis (Naxes attribute) containing
the upper limits on each axis. Set a value to AST__BAD to indicate that the axis
has no upper limit.

unc
An optional pointer to an existing Region which specifies the uncertainties associated
with the boundary of the Interval being created. The uncertainty in any point
on the boundary of the Interval is found by shifting the supplied " uncertainty"
Region so that it is centred at the boundary point being considered. The area
covered by the shifted uncertainty Region then represents the uncertainty in the
boundary position. The uncertainty is assumed to be the same for all points.
If supplied, the uncertainty Region must be of a class for which all instances
are centro-symetric (e.g. Box, [Circle], Ellipse], etc.) or be a containing
centro-symetric component Regions. A deep copy of the supplied Region will be
taken, so subsequent changes to the uncertainty Region using the supplied pointer
will have no effect on the created Interval. Alternatively, a NULL pointer
may be supplied, in which case a default uncertainty is used equivalent to a box
1.0E-6 of the size of the Interval being created.

The uncertainty Region has two uses: 1) when the [astOverlap| function compares
two Regions for equality the uncertainty Region is used to determine the tolerance

SUN/211.30 —AST Function Descriptions 338 astInterval

on the comparison, and 2) when a Region is mapped into a different coordinate
system and subsequently simplified (using [astSimplify]), the uncertainties are
used to determine if the transformed boundary can be accurately represented by
a specific shape of Region.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Interval. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astInterval()
A pointer to the new Interval.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

339 astIntraMap SUN/211.30 —AST Function Descriptions

astIntraMap
Create an IntraMap

Description:
This function creates a new and optionally initialises its attributes.
An IntraMap is a specialised form of Mapping|which encapsulates a privately-defined coordinate
transformation function (e.g. written in C) so that it may be used like any other AST Mapping.
This allows you to create Mappings that perform any conceivable coordinate transformation.
However, an IntraMap is intended for use within a single program or a private suite of software,
where all programs have access to the same coordinate transformation functions (i.e. can be linked
against them). IntraMaps should not normally be stored in datasets which may be exported
for processing by other software, since that software will not have the necessary transformation
functions available, resulting in an error.

You must register any coordinate transformation functions to be used using [astIntraReg|before
creating an IntraMap.

Synopsis:

AstIntraMap *astIntraMap(const char *name, int nin, int nout, const char xoptions,

)

Parameters:

name
Pointer to a null-terminated string containing the name of the transformation
function to use (which should previously have been registered using astIntraReg).
This name is case sensitive. All white space will be removed before use.

nin
The number of input coordinates. This must be compatible with the number of input
coordinates accepted by the transformation function (as specified when this function
was registered using astIntraReg).

nout
The number of output coordinates. This must be compatible with the number of
output coordinates produced by the transformation function (as specified when
this function was registered using astIntraReg).

options

Pointer to a null-terminated string containing an optional comma-separated list

of attribute assignments to be used for initialising the new IntraMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astIntraMap()
A pointer to the new IntraMap.

Notes:

SUN/211.30 —AST Function Descriptions 340 astIntraMap

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

341 astIntraReg SUN/211.30 —AST Function Descriptions

astIntraReg
Register a transformation function for use by an IntraMap

Description:
This function registers a privately-defined coordinate transformation function written in C so
that it may be used to create an[IntraMap| An IntraMap is a specialised form of Mapping|which
encapsulates the C function so that it may be used like any other AST Mapping. This allows you to
create Mappings that perform any conceivable coordinate transformation.
Registration of relevant transformation functions is required before using the con-
structor function to create an IntraMap or reading an external representation of an IntraMap from

a[Channell
Synopsis:

astIntraReg(const char xname, int nin, int nout, void (% tran)(AstMapping *, int,
int, const double *[], int, int, double *[]), unsigned int flags, const char xpurpose,
const char kxauthor, const char *contact)

Parameters:

name
Pointer to a null-terminated string containing a unique name to be associated
with the transformation function in order to identify it. This name is case sensitive.
A1l white space will be removed before use.

nin
The number of input coordinates accepted by the transformation function (i.e. the
number of dimensions of the space in which the input points reside). A value

of AST__ANY may be given if the function is able to accommodate a variable number
of input coordinates.

nout
The number of output coordinates produced by the transformation function (i.e.
the number of dimensions of the space in which the output points reside). A value
of AST__ANY may be given if the function is able to produce a variable number
of output coordinates.
tran
Pointer to the transformation function to be registered. This function should
perform whatever coordinate transformations are required and should have an interface
like (q.v.).
flags
This value may be used to supply a set of flags which describe the transformation
function and which may affect the behaviour of any IntraMap which uses it. Often,
a value of zero will be given here, but you may also supply the bitwise OR of
a set of flags as described in the " Transformation Flags" section (below).
purpose
Pointer to a null-terminated string containing a short (one line) textual comment
to describe the purpose of the transformation function.
author

Pointer to a null-terminated string containing the name of the author of the transformation
function.

SUN/211.30 —AST Function Descriptions 342 astIntraReg

Notes:

contact

Pointer to a null-terminated string containing contact details for the author

of the transformation function (e.g. an e-mail or WWW address). If any IntraMap
which uses this transformation function is exported as part of a dataset to an
external user who does not have access to the function, then these contact details
should allow them to obtain the necessary code.

Beware that an external representation of an IntraMap (created by writing it to

a Channel) will not include the coordinate transformation function which it uses,

so will only refer to the function by its name (as assigned using astIntraReg).
Consequently, the external representation cannot be utilised by another program
unless that program has also registered the same transformation function with

the same name using an identical invocation of astIntraReg. If no such registration
has been performed, then attempting to read the external representation will result
in an error.

You may use astIntraReg to register a transformation function with the same name

more than once, but only if the arguments supplied are identical on each occasion

(i.e there is no way of changing things once a function has been successfully registered
under a given name, and attempting to do so will result in an error). This feature
simply allows registration to be performed independently, but consistently, at

several places within your program, without having to check whether it has already

been done.

If an error occurs in the transformation function, this may be indicated by setting
the AST error status to an error value (using before it returns.

This will immediately terminate the current AST operation. The error value AST__ITFER
is available for this purpose, but other values may also be used (e.g. if you

wish to distinguish different types of error).

Transformation Flags :

The following flags are defined in the ‘‘ast.h’ ’ header file and allow you to provide
further information about the nature of the transformation function. Having selected
the set of flags which apply, you should supply the bitwise OR of their values as the
‘““flags’ ’ argument to astIntraReg.

e AST__NOFWD: If this flag is set, it indicates that the transformation function

does not implement a forward coordinate transformation. In this case, any IntraMap
which uses it will have a [[ranForwardl attribute value of zero and the transformation
function itself will not be invoked with its ‘‘forward’ ’ argument set to a non-zero
value. By default, it is assumed that a forward transformation is provided.

AST__NOINV: If this flag is set, it indicates that the transformation function

does not implement an inverse coordinate transformation. In this case, any IntraMap
which uses it will have a [TranInversel attribute value of zero and the transformation
function itself will not be invoked with its ‘‘forward’ ’ argument set to zero.

By default, it is assumed that an inverse transformation is provided.

AST__SIMPFI: You may set this flag if applying the transformation function’ s
forward coordinate transformation, followed immediately by the matching inverse
transformation, should always restore the original set of coordinates. It indicates
that AST may replace such a sequence of operations by an identity Mapping (a

if it is encountered while simplifying a compound Mapping (e.g. using [astSimplify].
It is not necessary that both transformations have actually been implemented.

343 astIntraReg SUN/211.30 —AST Function Descriptions

e AST__SIMPIF: You may set this flag if applying the transformation function’ s
inverse coordinate transformation, followed immediately by the matching forward
transformation, should always restore the original set of coordinates. It indicates
that AST may replace such a sequence of operations by an identity Mapping (a UnitMap)
if it is encountered while simplifying a compound Mapping (e.g. using astSimplify).
It is not necessary that both transformations have actually been implemented.

SUN/211.30 —AST Function Descriptions 344 astInvert

astInvert
Invert a Mapping

Description:
This function inverts a by reversing the boolean sense of its attribute. If this
attribute is zero (the default), the Mapping will transform coordinates in the way specified when
it was created. If it is non-zero, the input and output coordinates will be inter-changed so that
the direction of the Mapping is reversed. This will cause it to display the inverse of its original
behaviour.

Synopsis:
void astInvert(AstMapping xthis)

Parameters:
this
Pointer to the Mapping.

345 astIsA<Class> SUN/211.30 —AST Function Descriptions

astIsA <Class>
Test membership of a class by an Object

Description:
This is a family of functions which test whether an is a member of the class called <,
or of any class derived from it.
Synopsis:
int astIsA<Class>(const Ast<Class> x*this)
Parameters:
this
Pointer to the Object.
Applicability:
Object
These functions apply to all Objects.

Returned Value:

astIsA<Class>()
One if the Object belongs to the class called <Class> (or to a class derived from
it), otherwise zero.

Examples:
member = astIsAFrame(obj);

Tests whether Object " obj" is a member of the class, or of any class
derived from a Frame.

Notes:

e Every AST class provides a function (astIsA<Class>) of this form, where <Class>
should be replaced by the class name.

e This function attempts to execute even if the AST error status is set on entry,
although no further error report will be made if it subsequently fails under these
circumstances.

e A value of zero will be returned if this function should fail for any reason. In
particular, it will fail if the pointer supplied does not identify an Object of
any sort.

SUN/211.30 —AST Function Descriptions 346 astKeyMap

astKeyMap
Create a KeyMap

Description:

This function creates a new empty [KeyMap|and optionally initialises its attributes. Entries can then
be added to the KeyMap using the lastMapPut0<X>|and [astMapPut1 <X>|functions.

The KeyMap class is used to store a set of values with associated keys which identify the values.
The keys are strings. These may be case sensitive or insensitive as selected by the [KeyCase|attribute,
and trailing spaces are ignored. The value associated with a key can be integer (signed 4 and 2
byte, or unsigned 1 byte), floating point (single or double precision), void pointer, character string
or AST pointer. Each value can be a scalar or a one-dimensional vector. A KeyMap is
conceptually similar to a[Mapping|in that a KeyMap transforms an input into an output - the input
is the key, and the output is the value associated with the key. However, this is only a conceptual
similarity, and it should be noted that the KeyMap class inherits from the Object class rather than
the Mapping class. The methods of the Mapping class cannot be used with a KeyMap.

Synopsis:
AstKeyMap *astKeyMap(const char xoptiomns, ...)
Parameters:
options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new KeyMap. The syntax

used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astKeyMap()
A pointer to the new KeyMap.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

347 astLinearApprox SUN/211.30 —AST Function Descriptions

astLinearApprox
Obtain a linear approximation to a Mapping, if appropriate

Description:
This function tests the forward coordinate transformation implemented by a over a
given range of input coordinates. If the transformation is found to be linear to a specified level
of accuracy, then an array of fit coefficients is returned. These may be used to implement a linear
approximation to the Mapping’ s forward transformation within the specified range of output
coordinates. If the transformation is not sufficiently linear, no coefficients are returned.

Synopsis:

int astLinearApprox(AstMapping *this, const double *lbnd, const double *ubnd, double
tol, double *xfit)

Parameters:

this
Pointer to the Mapping.

Ibnd
Pointer to an array of doubles containing the lower bounds of a box defined within
the input coordinate system of the Mapping. The number of elements in this array
should equal the value of the Mapping’ s attribute. This box should specify
the region over which linearity is required.

ubnd
Pointer to an array of doubles containing the upper bounds of the box specifying
the region over which linearity is required.

tol The maximum permitted deviation from linearity, expressed as a positive Cartesian
displacement in the output coordinate space of the Mapping. If a linear fit to
the forward transformation of the Mapping deviates from the true transformation
by more than this amount at any point which is tested, then no fit coefficients
will be returned.

fit Pointer to an array of doubles in which to return the co-efficients of the linear
approximation to the specified transformation. This array should have at least
" (Nin 4+ 1) % [Nout]' , elements. The first Nout elements hold the constant offsets
for the transformation outputs. The remaining elements hold the gradients. So
if the Mapping has 2 inputs and 3 outputs the linear approximation to the forward
transformation is:
X_out = fit[0] + fit[3]1*X_in + fit[4]xY_in
Y_out = fit[1] + fit[6]+X_in + fit[6]*Y_in
Z_out = fit[2] + fit[7]+X_in + fit[8]xY_in

Returned Value:

astLinearApprox()
If the forward transformation is sufficiently linear, a non-zero value is returned.
Otherwise zero is returned and the fit co-efficients are set to AST__BAD.

Notes:

e This function fits the Mapping’ s forward transformation. To fit the inverse
transformation, the Mapping should be inverted using before invoking
this function.

SUN/211.30 —AST Function Descriptions 348 astLinearApprox

e If a Mapping output is found to have a bad value (AST__BAD) at one or more of
the test points used in the linearity test, then all the values in the returned
fit that correspond to that output are set to AST__BAD. However, this does not
affect the linearity tests on the other Mapping outputs - if they are all found
to be linear then usable coefficients will be returned for them in the fit, and
the function will return a non-zero value. Consequently, it may be necessary
to check that the values in the returned fit are not AST__BAD before using them.
If all Mapping outputs generate bad values, then zero is returned as the function
value.

e A value of zero will be returned if this function is invoked with the global error
status set, or if it should fail for any reason.

e If all tested positions within the supplied box generate bad output positiomns,
then the returned function value will be zero. However, the returned coefficients
will represent a unit transformation, except that the constant term for each output
will be set to AST__BAD.

349 astLock SUN/211.30 —AST Function Descriptions

astLock
Lock an Object for exclusive use by the calling thread

Description:
The thread-safe public interface to AST is designed so that an error is reported if any thread
attempts to use an that it has not previously locked for its own exclusive use using this
function. When an Object is created, it is initially locked by the thread that creates it, so newly
created objects do not need to be explicitly locked. However, if an Object pointer is passed to
another thread, the original thread must first unlock it (usingastUnlock) and the new thread must
then lock it (using astLock) before the new thread can use the Object.

The " wait" parameter determines what happens if the supplied Object is curently locked by
another thread when this function is invoked.

Synopsis:
void astLock(AstObject xthis, int wait)
Parameters:
this
Pointer to the Object to be locked.
wait
If the Object is curently locked by another thread then this function will either
report an error or block. If a non-zero value is supplied for " wait" , the calling

thread waits until the object is available for it to use. Otherwise, an error
is reported and the function returns immediately without locking the Object.

Applicability:
Object

This function applies to all Objects.
Notes:

e The function is exceptional in that it can be used on pointers for Objects
that are not currently locked by the calling thread. All other AST functions
will report an error.

e The Locked object will belong to the current AST context.

e This function returns without action if the Object is already locked by the calling
thread.

e If simultaneous use of the same object is required by two or more threads,
should be used to to produce a deep copy of the Object for each thread. Each
copy should then be unlocked by the parent thread (i.e. the thread that created
the copy), and then locked by the child thread (i.e. the thread that wants to
use the copy).

e This function is only available in the C interface.

e This function returns without action if the AST library has been built without
POSIX thread support (i.e. the " -with-pthreads" option was not specified when
running the " configure" script).

SUN/211.30 —AST Function Descriptions 350 astLutMap

astLutMap
Create a LutMap

Description:
This function creates a new and optionally initialises its attributes.

A LutMap is a specialised form of Mapping|which transforms 1-dimensional coordinates by using
linear interpolation in a lookup table. Each input coordinate value is first scaled to give the index
of an entry in the table by subtracting a starting value (the input coordinate corresponding to the
first table entry) and dividing by an increment (the difference in input coordinate value between
adjacent table entries).

The resulting index will usually contain a fractional part, so the output coordinate value is then
generated by interpolating linearly between the appropriate entries in the table. If the index lies
outside the range of the table, linear extrapolation is used based on the two nearest entries (i.e. the
two entries at the start or end of the table, as appropriate).

If the lookup table entries increase or decrease monotonically, then the inverse transformation may
also be performed.

Synopsis:
AstLutMap *astLutMap(int nlut, const double lut[], double start, double inc, const
char *options, ...)

Parameters:
nlut

The number of entries in the lookup table. This value must be at least 2.
lut An array containing the " nlut" lookup table entries.

start

The input coordinate value which corresponds to the centre of the first lookup
table entry.

inc
The lookup table spacing (the increment in input coordinate value between successive
lookup table entries). This value may be positive or negative, but must not be
zero.

options

Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new LutMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astLutMap()
A pointer to the new LutMap.

Notes:

351 astLutMap SUN/211.30 —AST Function Descriptions

e If the entries in the lookup table either increase or decrease monotonically, then

the new LutMap’ s attribute will have a value of one, indicating that
the inverse transformation can be performed. Otherwise, it will have a value

of zero, so that any attempt to use the inverse transformation will result in
an error.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :
The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited

status variable: " int xstatus"

SUN/211.30 —AST Function Descriptions 352 astMapBox

astMapBox
Find a bounding box for a Mapping

Description:
This function allows you to find the " bounding box" which just encloses another box after it has
been transformed by a (using either its forward or inverse transformation). A typical use
might be to calculate the size of an image after being transformed by a Mapping.

The function works on one dimension at a time. When supplied with the lower and upper bounds
of a rectangular region (box) of input coordinate space, it finds the lowest and highest values
taken by a nominated output coordinate within that region. Optionally, it also returns the input
coordinates where these bounding values are attained. It should be used repeatedly to obtain the
extent of the bounding box in more than one dimension.

Synopsis:

void astMapBox(AstMapping *this, const double lbnd_in[], const double ubnd_in[], int
forward, int coord_out, double *1lbnd_out, double *ubnd_out, double x1[], double xul]

)3
Parameters:

this
Pointer to the Mapping.

Ibnd_in
Pointer to an array of double, with one element for each Mapping input coordinate.
This should contain the lower bound of the input box in each input dimension.

ubnd_in
Pointer to an array of double, with one element for each Mapping input coordinate.
This should contain the upper bound of the input box in each input dimension.
Note that it is permissible for the upper bound to be less than the corresponding
lower bound, as the values will simply be swapped before use.

forward
If this value is non-zero, then the Mapping’ s forward transformation will be
used to transform the input box. Otherwise, its inverse transformation will be
used.
(If the inverse transformation is selected, then references to " input" and " output"”
coordinates in this description should be transposed. For example, the size of
the " 1lbnd_in" and " ubnd_in" arrays should match the number of output coordinates,
as given by the Mapping’ s |[Nout| attribute. Similarly, the " coord_out" parameter,
below, should nominate one of the Mapping’ s input coordinates.)

coord_out
The index of the output coordinate for which the lower and upper bounds are required.
This value should be at least one, and no larger than the number of Mapping output
coordinates.

Ibnd_out
Pointer to a double in which to return the lowest value taken by the nominated
output coordinate within the specified region of input coordinate space.

ubnd_out

Pointer to a double in which to return the highest value taken by the nominated
output coordinate within the specified region of input coordinate space.

353

Notes:

x1

xXu

astMapBox SUN/211.30 —AST Function Descriptions

An optional pointer to an array of double, with one element for each Mapping input
coordinate. If given, this array will be filled with the coordinates of an input

point (although not necessarily a unique one) for which the nominated output coordinate
attains the lower bound value returned in " x1lbnd_out"

If these coordinates are not required, a NULL pointer may be supplied.

An optional pointer to an array of double, with one element for each Mapping input
coordinate. If given, this array will be filled with the coordinates of an input

point (although not necessarily a unique one) for which the nominated output coordinate
attains the upper bound value returned in " xubnd_out"

If these coordinates are not required, a NULL pointer may be supplied.

Any input points which are transformed by the Mapping to give output coordinates
containing the value AST__BAD are regarded as invalid and are ignored. They will
make no contribution to determining the output bounds, even although the nominated
output coordinate might still have a valid value at such points.

An error will occur if the required output bounds cannot be found. Typically,
this might happen if all the input points which the function considers turn out
to be invalid (see above). The number of points considered before generating
such an error is quite large, so this is unlikely to occur by accident unless
valid points are restricted to a very small subset of the input coordinate space.

The values returned via " lbnd_out" , " ubnd_out" , " x1" and " xu" will be set
to the value AST__BAD if this function should fail for any reason. Their initial
values on entry will not be altered if the function is invoked with the AST error
status set.

SUN/211.30 —AST Function Descriptions 354

astMapCopy

astMapCopy
Copy all entries from one KeyMap into another

Description:
This function copies all entries from one into another.
Synopsis:
void astMapCopy(AstKeyMap *this, AstKeyMap *that)
Parameters:
this
Pointer to the destination KeyMap.

that
Pointer to the source KeyMap.

Notes:

e Entries from the source KeyMap will replace any existing entries in the destination

KeyMap that have the same key.

e The one exception to the above rule is that if a source entry contains a scalar

KeyMap entry, and the destination contains a scalar KeyMap entry with the same

key, then the source KeyMap entry will be copied into the destination KeyMap entry

using this function, rather than simply replacing the destination KeyMap entry.

e If the destination entry has a non-zero value for its attribute, then

an error will be reported if the source KeyMap contains any keys that do not already

exist within the destination KeyMap.

355 astMapCopyEntry SUN/211.30 —AST Function Descriptions

astMapCopyEntry
Copy a single entry from one KeyMap into another

Description:
This function copies a single entry from one into another.

Synopsis:

void astMapCopyEntry(AstKeyMap *this, const char xkey, AstKeyMap *that, int merge
)

Parameters:

this
Pointer to the destination KeyMap.

key
The character string identifying the value to be copied. Trailing spaces are
ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

that
Pointer to the source KeyMap.

merge
Indicates what to do if the named entry holds a KeyMap and a KeyMap entry with
the same key already exists in the destination KeyMap. If zero, the existing

destination KeyMap will be deleted and replaced by a copy of the source KeyMap.
If non-zero, all entries in the source KeyMap will be copied into the existing

destination KeyMap using function [astMapCopy].
Notes:

e This fuction returns without action if the named entry does not exist in the source
KeyMap.

e Entries from the source KeyMap will replace any existing entries in the destination
KeyMap that have the same key.

e If the destination entry has a non-zero value for its attribute, then
an error will be reported if the source KeyMap contains any keys that do not already
exist within the destination KeyMap.

SUN/211.30 —AST Function Descriptions 356 astMapDefined

astMapDefined
Check if a KeyMap contains a defined value for a key

Description:
This function checks to see if a contains a defined value for a given key. If the key is
present in the KeyMap but has an undefined value it returns zero (unlike which

would return non-zero).
Synopsis:
int astMapDefined(AstKeyMap xthis, const char xkey);
Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the value to be retrieved. Trailing spaces are

ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

Returned Value:

astMapDefined()
A non-zero value is returned if the requested key name is present in the KeyMap and
has a defined value.

357 astMapGet0<X> SUN/211.30 —AST Function Descriptions

astMapGet0<X>
Get a scalar value from a KeyMap

Description:
This is a set of functions for retrieving a scalar value from a You should replace <X>
in the generic function name astMapGet0<X> by an appropriate 1-character type code (see the "
Data Type Codes" section below for the code appropriate to each supported data type). The stored
value is converted to the data type indiced by <X> before being returned (an error is reported if it
is not possible to convert the stored value to the requested data type).

Synopsis:
int astMapGetO<X>(AstKeyMap *this, const char xkey, <X>type *value);

Parameters:

this
Pointer to the KeyMap.

key
The character string identifying the value to be retrieved. Trailing spaces are
ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

value
A pointer to a buffer in which to return the requested value. If the requested
key is not found, or if it is found but has an undefined value (see [astMapPutl),
then the contents of the buffer on entry to this function will be unchanged on
exit. For pointer types (" A" and " C"), the buffer should be a suitable pointer,
and the address of this pointer should be supplied as the " value" parameter.

Returned Value:

astMapGet0<X>()
A non-zero value is returned if the requested key name was found, and does not have
an undefined value (see astMapPutU). Zero is returned otherwise.

Notes:

e No error is reported if the requested key cannot be found in the given KeyMap,
but a zero value will be returned as the function value. The supplied buffer
will be returned unchanged.

e If the stored value is a vector value, then the first value in the vector will
be returned.

e A string pointer returned by astMapGetOC is guaranteed to remain valid and the
string to which it points will not be over-written for a total of 50 successive
invocations of this function. After this, the memory containing the string may
be re-used, so a copy of the string should be made if it is needed for longer
than this. The calling code should never attempt to free the returned pointer

(for instance, using [astFree).

e If the returned value is an AST pointer, the Object’ s reference count
is incremented by this call. Any subsequent changes made to the Object using
the returned pointer will be reflected in any any other active pointers for the
Object. The returned pointer should be annulled using when it is no
longer needed.

SUN/211.30 —AST Function Descriptions 358 astMapGet0<X>

Data Type Codes :

To select the appropriate function, you should replace <X> in the generic function
name astMapGetO<X> with a l-character data type code, so as to match the data type
<X>type of the data you are processing, as follows:

T

w n v = Q X H O

: float
: double

int

int64_t

" const" pointer to null terminated character string
Pointer to AstObject

Generic "

void *" pointer
short int

Unsigned byte (i.e. word)

For example, astMapGetOD would be used to get a " double" value, while astMapGetOI
would be used to get an " int" , etc.

359 astMapGet1<X> SUN/211.30 —AST Function Descriptions

astMapGetl<X>
Get a vector value from a KeyMap

Description:

This is a set of functions for retrieving a vector value from a[KeyMap| You should replace <X>
in the generic function name astMapGetl <X> by an appropriate 1-character type code (see the "
Data Type Codes" section below for the code appropriate to each supported data type). The stored
value is converted to the data type indiced by <X> before being returned (an error is reported if
it is not possible to convert the stored value to the requested data type). Note, the astMapGet1C
function has an extra parameter " 1" which specifies the maximum length of each string to be
stored in the " value" buffer (see the " astMapGet1C" section below).

Synopsis:

int astMapGetl1<X>(AstKeyMap *this, const char xkey, int mxval, int *nval, <X>type
xvalue) int astMapGeti1C(AstKeyMap *this, const char xkey, int 1, int mxval, int *nval,
const char *value)

Parameters:

this
Pointer to the KeyMap.

key
The character string identifying the value to be retrieved. Trailing spaces are
ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

mxval
The number of elements in the " value" array.

nval
The address of an integer in which to put the number of elements stored in the
" value" array. Any unused elements of the array are left unchanged. Zero is
returned if the required KeyMap entry has an undefined value.

value
A pointer to an array in which to return the requested values. If the requested

key is not found, or if it is found but has an undefined value (see [astMapPutl),
then the contents of the buffer on entry to this function will be unchanged on
exit.

Returned Value:

astMapGet1<X>()
A non-zero value is returned if the requested key name was found, and does not have
an undefined value (see astMapPutU). Zero is returned otherwise.

Notes:

e No error is reported if the requested key cannot be found in the given KeyMap,
but a zero value will be returned as the function value. The supplied array will
be returned unchanged.

e If the stored value is a scalar value, then the value will be returned in the
first element of the supplied array, and " nval" will be returned set to 1.

SUN/211.30 —AST Function Descriptions 360 astMapGet1<X>

astMapGet1C:

The " value" buffer supplied to the astMapGetlC function should be a pointer to a character
array with " mxvalxl" elements, where " 1" is the maximum length of a string to be
returned. The value of " 1" should be supplied as an extra parameter following " key"

when invoking astMapGetlC, and should include space for a terminating null character.

Data Type Codes :

To select the appropriate function, you should replace <X> in the generic function
name astMapGetl<X> with a l-character data type code, so as to match the data type
<X>type of the data you are processing, as follows:

e D: double

e F: float

e I: int

e K: int64_t

e C: " const" pointer to null terminated character string
e A: Pointer to AstObject

e P: Generic " void %" pointer

e S: short int

e B: Unsigned byte (i.e. char)

For example, astMapGetlD would be used to get " double" values, while astMapGetlI would
be used to get " int" values, etc. For D or I, the supplied " value" parameter should

be a pointer to an array of doubles or ints, with " mxval" elements. For C, the supplied
" value" parameter should be a pointer to a character string with " mxval*l" elements.
For A, the supplied " value" parameter should be a pointer to an array of AstObject
pointers.

361 astMapGetC SUN/211.30 —AST Function Descriptions

astMapGetC
Get a scalar or vector value from a KeyMap as a single string

Description:
This function gets a named value from a[KeyMapl|as a single string. For scalar values it is equivalent
to astMapGetOC. If the value is a vector, the returned string is a comma-separated list of the vector
elements, enclosed in parentheses.

Synopsis:
int astMapGetC(AstKeyMap *this, const char xkey, const char xxvalue);

Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the value to be retrieved. Trailing spaces are

ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

value
Address at which to return a pointer to the required string value. If the requested
key is not found, or if it is found but has an undefined value (see |[astMapPutl) ,
then the contents of the supplied pointer are unchanged on exit.

Returned Value:

astMapGetC()
A non-zero value is returned if the requested key name was found, and does not have
an undefined value (see astMapPutU). Zero is returned otherwise.

Notes:

e No error is reported if the requested key cannot be found in the given KeyMap,
but a zero value will be returned as the function value. The supplied buffer
will be returned unchanged.

e The string pointer returned by astMapGetC is guaranteed to remain valid and the
string to which it points will not be over-written for a total of 50 successive
invocations of this function. After this, the memory containing the string may
be re-used, so a copy of the string should be made if it is needed for longer
than this. The calling code should never attempt to free the returned pointer

(for instance, using [astFree).

SUN/211.30 —AST Function Descriptions 362 astMapGetElem < X>

astMapGetElem <X>
Get a single element of a vector value from a KeyMap

Description:
This is a set of functions for retrieving a single element of a vector value from a[KeyMap] You should
replace <X> in the generic function name astMapGetElem<X> by an appropriate 1-character
type code (see the " Data Type Codes" section below for the code appropriate to each supported
data type). The stored value is converted to the data type indiced by <X> before being returned
(an error is reported if it is not possible to convert the stored value to the requested data type).
Note, the astMapGetElemC function has an extra parameter " 1" which specifies the maximum
length of the string to be stored in the " value" buffer (see the " astMapGetElemC" section below).

Synopsis:

int astMapGetElem<X>(AstKeyMap *this, const char xkey, int elem, <X>type #*value
) int astMapGetElemC(AstKeyMap *this, const char xkey, int 1, int elem, char xvalue

)
Parameters:

this
Pointer to the KeyMap.

key
The character string identifying the value to be retrieved. Trailing spaces are
ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

elem
The index of the required vector element, starting at zero. An error will be
reported if the value is outside the range of the vector.

value

A pointer to a buffer in which to return the requested value. If the requested
key is not found, or if it is found but has an undefined value (see |astMapPutlU),
then the contents of the buffer on entry to this function will be unchanged on
exit.

Returned Value:

astMapGetElem <X>()
A non-zero value is returned if the requested key name was found, and does not have
an undefined value (see astMapPutU). Zero is returned otherwise.

Notes:
e No error is reported if the requested key cannot be found in the given KeyMap,
or if it has an undefined value, but a zero value will be returned as the function
value.
astMapGetElemC :

The " value" buffer supplied to the astMapGetElemC function should be a pointer to

a character array with " 1" elements, where " 1" is the maximum length of the string

to be returned. The value of " 1" should be supplied as an extra parameter following
" key" when invoking astMapGetElemC, and should include space for a terminating null

character.

363 astMapGetElem <X >

Data Type Codes :

To select the appropriate function, you should replace <X> in the generic function
name astMapGetElem<X> with a 1-character data type code, so as to match the data type

<X>type of the data you are processing, as follows:

For example, astMapGetElemD would be used to get a " double" value, while astMapGetElemI
For D or I, the supplied " value" parameter
For C, the supplied " value" parameter should
For A, the supplied " value"

would be used to get an " int" value, etc.
should be a pointer to a double or int.
be a pointer to a character string with " 1" elements.

o

w n v = Q X H T

: double
: float

int

int64_t

" const" pointer to null terminated character string
Pointer to AstObject

Generic "

void *" pointer
short int

Unsigned byte (i.e. char)

parameter should be a pointer to an AstObject pointer.

SUN/211.30 —AST Function Descriptions

SUN/211.30 —AST Function Descriptions 364 astMapHasKey

astMapHasKey
Check if an entry with a given key exists in a KeyMap

Description:
This function returns a flag indicating if the [KeyMap|contains an entry with the given key.

Synopsis:
int astMapHasKey(AstKeyMap *this, const char xkey)

Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the KeyMap entry. Trailing spaces are ignored.
The supplied string is converted to upper case before use if the attribute

is currently set to zero.
Returned Value:

astMapHasKey()
Non-zero if the key was found, and zero otherwise.

Notes:

e A non-zero function value is returned if the key exists but has an undefined value
(that is, the returned value does not depend on whether the entry has a defined

value or not). See also |astMapDefined|, which returns zero in such a case.

e A function value of zero will be returned if an error has already occurred, or
if this function should fail for any reason.

365 astMapKey SUN/211.30 —AST Function Descriptions

astMapKey
Get the key at a given index within the KeyMap

Description:
This function returns a string holding the key for the entry with the given index within the [KeyMap}
This function is intended primarily as a means of iterating round all the elements in a KeyMap. For
this purpose, the number of entries in the KeyMap should first be found using[astMapSize|and this
function should then be called in a loop, with the index value going from zero to one less than the
size of the KeyMap. The index associated with a given entry is determined by the attribute.

Synopsis:
const char *astMapKey(AstKeyMap *this, int index)
Parameters:
this
Pointer to the KeyMap.
index
The index into the KeyMap. The first entry has index zero, and the last has index
" size-1" , where " size" is the value returned by the astMapSize function.

Returned Value:

astMapKey()
A pointer to a null-terminated string containing the key.

Notes:

e The returned pointer is guaranteed to remain valid and the string to which it
points will not be over-written for a total of 50 successive invocations of this
function. After this, the memory containing the string may be re-used, so a copy
of the string should be made if it is needed for longer than this.

e A NULL pointer will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 366 astMapLenC

astMapLenC
Get the number of characters in a character entry in a KeyMap

Description:
This function returns the minimum length that a character variable must have in order to be able
to store a specified entry in the supplied [KeyMap] If the named entry is a vector entry, then the
returned value is the length of the longest element of the vector value.

Synopsis:
int astMapLenC(AstKeyMap *this, const char xkey)

Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the KeyMap entry. Trailing spaces are ignored.

The supplied string is converted to upper case before use if the attribute
is currently set to zero.

Returned Value:

astMapLenC()
The length (i.e. number of characters) of the longest formatted value associated with
the named entry. This does not include the trailing null character.

Notes:

e A function value of zero will be returned without error if the named entry cannot
be formatted as a character string.

e A function value of zero will be returned if an error has already occurred, or
if this function should fail for any reason.

367 astMapLength SUN/211.30 —AST Function Descriptions

astMapLength
Get the vector length of an entry in a KeyMap

Description:
This function returns the vector length of a named entry in a (that is, how many values
are associated with the entry).

Synopsis:
int astMapLength(AstKeyMap #*this, const char xkey)
Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the KeyMap entry. Trailing spaces are ignored.
The supplied string is converted to upper case before use if the attribute

is currently set to zero.
Returned Value:

astMapLength()
The length of the entry. One for a scalar, greater than one for a vector. A value
of zero is returned if the KeyMap does not contain the named entry.

Notes:

e A function value of zero will be returned if an error has already occurred, or
if this function should fail for any reason.

SUN/211.30 —AST Function Descriptions 368 astMapPut0<X>

astMapPut0<X>
Add a scalar value to a KeyMap

Description:
This is a set of functions for adding scalar values to a You should use a function which
matches the data type of the data you wish to add to the KeyMap by replacing <X> in the generic
function name astMapPut0<X> by an appropriate 1-character type code (see the " Data Type
Codes" section below for the code appropriate to each supported data type).

Synopsis:
void astMapPutO<X>(AstKeyMap *this, const char xkey, <X>type value, const char xcomment
)3
Parameters:
this
Pointer to the KeyMap in which to store the supplied value.
key
A character string to be stored with the value, which can later be used to identify
the value. Trailing spaces are ignored. The supplied string is converted to
upper case before use if the attribute is currently set to zero.
value
The value to be stored. The data type of this value should match the 1l-character
type code appended to the function name (e.g. if you are using astMapPutOA, the
type of this value should be " pointer to AstObject").
comment
A pointer to a null-terminated comment string to be stored with the value. A NULL
pointer may be supplied, in which case no comment is stored.
Notes:

e If the supplied key is already in use in the KeyMap, the new value will replace
the old value.

e If the stored value is an AST pointer, the Object’ s reference count is
incremented by this call. Any subsequent changes made to the Object using the
returned pointer will be reflected in any any other active pointers for the Object,
including any obtained later using astMapgetOA. The reference count for the Object
will be decremented when the KeyMap is destroyed, or the entry is removed or over-written
with a different pointer.

Data Type Codes :

To select the appropriate function, you should replace <X> in the generic function
name astMapPutO<X> with a l-character data type code, so as to match the data type
<X>type of the data you are processing, as follows:

e D: double

e F: float
e I: int

K: int64_t

369 astMapPut0<X> SUN/211.30 —AST Function Descriptions

W n U o= Q

" const" pointer to null terminated character string
Pointer to AstObject

Generic " void *" pointer

short int

unsigned byte (i.e. unsigned char)

For example, astMapPutOD would be used to store a " double" value, while astMapPutOI
would be used to store an " int" , etc.

Note that KeyMaps containing generic " void *" pointers cannot be written out using

[astShow| or [astWrite|. An error will be reported if this is attempted.

SUN/211.30 —AST Function Descriptions 370 astMapPut1<X>

astMapPutl <X>
Add a vector value to a KeyMap

Description:
This is a set of functions for adding vector values to a You should use a function which
matches the data type of the data you wish to add to the KeyMap by replacing <X> in the generic
function name astMapPutl <X> by an appropriate 1-character type code (see the " Data Type
Codes" section below for the code appropriate to each supported data type).

Synopsis:

void astMapPutl<X>(AstKeyMap #*this, const char *key, int size, const <X>type value[],
const char *comment);

Parameters:

this
Pointer to the KeyMap in which to store the supplied values.

key
A character string to be stored with the values, which can later be used to identify
the values. Trailing spaces are ignored. The supplied string is converted to
upper case before use if the attribute is currently set to zero.

size
The number of elements in the supplied array of values.

value
The array of values to be stored. The data type of this value should match the

1-character type code appended to the function name (e.g. if you are using astMapPutlA,
the type of this value should be " array of pointers to AstObject").

comment
A pointer to a null-terminated comment string to be stored with the values. A
NULL pointer may be supplied, in which case no comment is stored.

Notes:
e If the supplied key is already in use in the KeyMap, the new values will replace
the old values.
Data Type Codes :

To select the appropriate function, you should replace <X> in the generic function
name astMapPutl<X> with a l-character data type code, so as to match the data type
<X>type of the data you are processing, as follows:

e D: double

e F: float

e I: int

e K: int64_t

e C: " const" pointer to null terminated character string
e A: Pointer to AstObject

e P: Generic " void %" pointer

371 astMapPut1<X> SUN/211.30 —AST Function Descriptions

e S: short int
e B: Unsigned byte (i.e. char)
For example, astMapPutlD would be used to store " double" values, while astMapPutll

would be used to store " int" , etc.
Note that KeyMaps containing generic " void " pointers cannot be written out using
An error will be reported if this is attempted.

[astShow| or [astWrite|.

SUN/211.30 —AST Function Descriptions 372 astMapPutElem<X>

astMapPutElem <X>
Put a value into an element of a vector value in a KeyMap

Description:
This is a set of functions for storing a value in a single element of a vector value in a
You should replace <X> in the generic function name astMapPutElem<X> by an appropriate
1-character type code (see the " Data Type Codes" section below for the code appropriate to each
supported data type). The supplied value is converted from the data type indicated by <X> to
the data type of the KeyMap entry before being stored (an error is reported if it is not possible to
convert the value to the required data type).

Synopsis:
void astMapPutElem<X>(AstKeyMap *this, const char xkey, int elem, <X>type value
)
Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the value to be retrieved. Trailing spaces are
ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.
elem
The index of the vector element to modify, starting at zero.
value
The value to store.
Applicability:
KeyMap

If the " elem" index is outside the range of the vector, the length of the vector will
be increased by one element and the supplied value will be stored at the end of the
vector in the new element.

If the " elem" index is outside the range of the vector, an error will be reported.
The number of elements in each cell of a column is specified when the column is created

using [ESEAIACE]
Notes:

e If the entry originally holds a scalar value, it will be treated like a vector
entry of length 1.

e If the specified key cannot be found in the given KeyMap, or is found but has
an undefined value, a new vector entry with the given name, and data type implied
by <X>, is created and the supplied value is stored in its first entry.

Data Type Codes :

To select the appropriate function, you should replace <X> in the generic function
name astMapPutElem<X> with a 1-character data type code, so as to match the data type
<X>type of the data you are processing, as follows:

373 astMapPutElem <X> SUN/211.30 —AST Function Descriptions

o n v = Q X H T g

: double

float

int

int64_t

" const" pointer to null terminated character string
Pointer to AstObject

Generic " void *" pointer

short int

Unsigned byte (i.e. char)

For example, astMapPutElemD would be used to put a " double" value, while astMapPutElemI

would be used to put an

" int" value, etc. For D or I, the supplied " value" parameter

should be a double or int. For C, the supplied " value" parameter should be a pointer
to a character string. For A, the supplied " value" parameter should be an AstObject
pointer.

SUN/211.30 —AST Function Descriptions 374 astMapPutU

astMapPutU
Add an entry to a KeyMap with an undefined value

Description:

This function adds a new entry to a but no value is stored with the entry. The entry
therefore has a special data type represented by symbolic constant AST__UNDEFTYPE.

An example use is to add entries with undefined values to a KeyMap prior to locking them with

the attribute. Such entries can act as placeholders for values that can be added to the
KeyMap later.

Synopsis:
void astMapPutU(AstKeyMap *this, const char xkey, const char xcomment);
Parameters:
this
Pointer to the KeyMap in which to store the supplied value.
key
A character string to be stored with the value, which can later be used to identify

the value. Trailing spaces are ignored. The supplied string is converted to
upper case before use if the attribute is currently set to zero.

comment
A pointer to a null-terminated comment string to be stored with the value. A NULL
pointer may be supplied, in which case no comment is stored.

Notes:

e If the supplied key is already in use in the KeyMap, the value associated with
the key will be removed.

375 astMapRegion SUN/211.30 —AST Function Descriptions

astMapRegion
Transform a Region into a new Frame using a given Mapping

Description:
This function returns a pointer to a new [Region| which corresponds to supplied Region described
by some other specified coordinate system. A [Mapping]is supplied which transforms positions
between the old and new coordinate systems. The new Region may not be of the same class as the
original region.

Synopsis:
AstRegion *astMapRegion(AstRegion *this, AstMapping *map, AstFrame xframe)

Parameters:

this
Pointer to the Region.

map
Pointer to a Mapping which transforms positions from the coordinate system represented
by the supplied Region to the coordinate system specified by " frame" . The supplied
Mapping should define both forward and inverse transformations, and these transformations
should form a genuine inverse pair. That is, transforming a position using the
forward transformation and then using the inverse transformation should produce

the original input position. Some Mapping classes (such as |[PermMap|, MathMap|, [SphMap)
can result in Mappings for which this is not true.

frame
Pointer to a describing the coordinate system in which the new Region is
required.

Returned Value:

astMapRegion()
A pointer to a new Region. This Region will represent the area within the coordinate
system specified by " frame" which corresponds to the supplied Region.

Notes:

e The uncertainty associated with the supplied Region is modified using the supplied
Mapping.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 376 astMapRemove

astMapRemove
Removed a named entry from a KeyMap

Description:
This function removes a named entry from a It returns without action if the KeyMap
does not contain the specified key.

Synopsis:
void astMapRemove(AstKeyMap *this, const char xkey)
Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the value to be retrieved. Trailing spaces are

ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

377 astMapRename SUN/211.30 —AST Function Descriptions

astMapRename
Rename an existing KeyMap entry

Description:
This function associated a new key with an existing entry in a It returns without action if
the oldkey does not exist in the KeyMap.

Synopsis:
void astMapRename(AstKeyMap *this, const char xoldkey, const char *newkey)

Parameters:
this
Pointer to the KeyMap.
oldkey
The character string identifying the entry to be renamed. Trailing spaces are

ignored. The supplied string is converted to upper case before use if the
attribute is currently set to zero.

newkey
The new character string to associated with the renamed entry. Trailing spaces
are ignored. The supplied string is converted to upper case before use if the
KeyCase attribute is currently set to zero.

SUN/211.30 —AST Function Descriptions 378 astMapSize

astMapSize
Get the number of entries in a KeyMap

Description:
This function returns the number of entries in a

Synopsis:
int astMapSize(AstKeyMap *this)
Parameters:

this
Pointer to the KeyMap.

Returned Value:

astMapSize()

The number of entries in the KeyMap.

Notes:

e A function value of zero will be returned if an error has already occurred, or
if this function should fail for any reason.

379 astMapSplit SUN/211.30 —AST Function Descriptions

astMapSplit
Split a Mapping up into parallel component Mappings

Description:

This function creates a new which connects specified inputs within a supplied Mapping
to the corresponding outputs of the supplied Mapping. This is only possible if the specified inputs
correspond to some subset of the Mapping outputs. That is, there must exist a subset of the
Mapping outputs for which each output depends only on the selected Mapping inputs, and not on
any of the inputs which have not been selected. Also, any output which is not in this subset must
not depend on any of the selected inputs. If these conditions are not met by the supplied Mapping,
then a NULL Mapping pointer is returned.

Synopsis:

void astMapSplit(AstMapping *this, int nin, const int *in, int *out, AstMapping **map

)

Parameters:
this
Pointer to the Mapping to be split.
nin
The number of inputs to pick from " this"
in Pointer to an array holding the indices within the supplied Mapping of the inputs
which are to be picked from the Mapping. This array should have " nin" elements.

If " [Nin]' is the number of inputs of the supplied Mapping, then each element should
have a value in the range 1 to Nin.

out
Pointer to an array in which to return the indices of the outputs of the supplied
Mapping which are fed by the picked inputs. A value of one is used to refer to
the first Mapping output. The supplied array should have a length at least equal
to the number of outputs in the supplied Mapping. The number of values stored
in the array on exit will equal the number of outputs in the returned Mapping.
The i’ th element in the returned array holds the index within the supplied Mapping
which corresponds to the i’ th output of the returned Mapping.

map
Address of a location at which to return a pointer to the returned Mapping. This
Mapping will have " nin" inputs (the number of outputs may be different to " nin"
). NULL is returned if the supplied Mapping has no subset of outputs which depend
only on the selected inputs. The returned Mapping is a deep copy of the required
parts of the supplied Mapping.

Notes:

e If this function is invoked with the global error status set, or if it should
fail for any reason, then a NULL value will be returned for the " map" pointer.

SUN/211.30 —AST Function Descriptions 380 astMapType

astMapType
Get the data type of an entry in a KeyMap

Description:
This function returns a value indicating the data type of a named entry in a This is the
data type which was used when the entry was added to the KeyMap.

Synopsis:
int astMapType(AstKeyMap *this, const char xkey)
Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the KeyMap entry. Trailing spaces are ignored.
The supplied string is converted to upper case before use if the attribute

is currently set to zero.
Returned Value:

astMapType()
One of AST__INTTYPE (for integer), AST__SINTTYPE (for short int), AST__KINTTYPE (for
int64_t), AST__BYTETYPE (for unsigned bytes

e i.e. unsigned chars) AST__DOUBLETYPE (for double precision floating point), AST__FLOATTYPE
(for single precision floating point), AST__STRINGTYPE (for character string),
AST__OBJECTTYPE (for AST pointer), AST__POINTERTYPE (for arbitrary C pointer)
or AST__UNDEFTYPE (for undefined values created by [astMapPutU). AST__BADTYPE is
returned if the supplied key is not found in the KeyMap.

Notes:

e A function value of AST__BADTYPE will be returned if an error has already occurred,
or if this function should fail for any reason.

381 astMark SUN/211.30 —AST Function Descriptions

astMark
Draw a set of markers for a Plot

Description:
This function draws a set of markers (symbols) at positions specified in the physical coordinate

system of a The positions are transformed into graphical coordinates to determine where the
markers should appear within the plotting area.

Synopsis:

void astMark(AstPlot *this, int nmark, int ncoord, int indim, const double *in, int
type)
Parameters:

this
Pointer to the Plot.

nmark
The number of markers to draw. This may be zero, in which case nothing will be
drawn.

ncoord
The number of coordinates being supplied for each mark (i.e. the number of axes
in the current of the Plot, as given by its attribute).

indim
The number of elements along the second dimension of the " in" array (which contains
the marker coordinates). This value is required so that the coordinate values

can be correctly located if they do not entirely fill this array. The value given
should not be less than " nmark"

in The address of the first element of a 2-dimensional array of shape " [ncoord] [indim]"
giving the physical coordinates of the points where markers are to be drawn. These
should be stored such that the value of coordinate number " coord" for input mark
number " mark" is found in element " in[coord] [mark]"

type
A value specifying the type (e.g. shape) of marker to be drawn. The set of values

which may be used (and the shapes that will result) is determined by the underlying
graphics system.

Notes:

e Markers are not drawn at positions which have any coordinate equal to the value
AST__BAD (or where the transformation into graphical coordinates yields coordinates
containing the value AST__BAD).

e If any marker position is clipped (see [astClip), then the entire marker is not
drawn.

e An error results if the base Frame of the Plot is not 2-dimensional.

e An error also results if the transformation between the current and base Frames
of the Plot is not defined (i.e. the Plot’ s attribute is zero).

SUN/211.30 —AST Function Descriptions 382 astMask<X>

astMask <X>
Mask a region of a data grid

Description:
This is a set of functions for masking out regions within gridded data (e.g. an image). The functions
modifies a given data grid by assigning a specified value to all samples which are inside (or outside
if " inside" is zero) the specified [Region]
You should use a masking function which matches the numerical type of the data you are processing
by replacing <X> in the generic function name astMask<X> by an appropriate 1- or 2-character
type code. For example, if you are masking data with type " float" , you should use the function
astMaskF (see the " Data Type Codes" section below for the codes appropriate to other numerical
types).

Synopsis:
int astMask<X>(AstRegion *this, AstMapping #*map, int inside, int ndim, const int
lbnd[], const int ubnd[], <Xtype> in[], <Xtype> val)

Parameters:
this
Pointer to a Region.
map
Pointer to a [Mapping. The forward transformation should map positions in the
coordinate system of the supplied Region into pixel coordinates as defined by
the " 1bnd" and " ubnd" parameters. A NULL pointer can be supplied if the coordinate
system of the supplied Region corresponds to pixel coordinates. This is equivalent
to supplying a [UnitMap|.
The number of inputs for this Mapping (as given by its attribute) should match
the number of axes in the supplied Region (as given by the attribute of
the Region). The number of outputs for the Mapping (as given by its attribute)
should match the number of grid dimensions given by the value of " ndim" below.
inside
A boolean value which indicates which pixel are to be masked. If a non-zero value
is supplied, then all grid pixels with centres inside the supplied Region are
assigned the value given by " val" , and all other pixels are left unchanged. If
zero is supplied, then all grid pixels with centres not inside the supplied Region
are assigned the value given by " val" , and all other pixels are left unchanged.
Note, the [Negated| attribute of the Region is used to determine which pixel are
inside the Region and which are outside. So the inside of a Region which has
not been negated is the same as the outside of the corresponding negated Region.
For types of Region such as which have zero volume, pixel centres will
rarely fall exactly within the Region. For this reason, the inclusion criterion
is changed for zero-volume Regions so that pixels are included (or excluded) if
any part of the Region passes through the pixel. For a PointList, this means
that pixels are included (or excluded) if they contain at least one of the points
listed in the PointList.
ndim
The number of dimensions in the input grid. This should be at least one.
Ibnd
Pointer to an array of integers, with " ndim" elements, containing the coordinates
of the centre of the first pixel in the input grid along each dimension.

383 astMask<X> SUN/211.30 —AST Function Descriptions

ubnd

in

val

Pointer to an array of integers, with " ndim" elements, containing the coordinates
of the centre of the last pixel in the input grid along each dimension.

Note that " 1lbnd" and " ubnd" together define the shape and size of the input

grid, its extent along a particular (j’ th) dimension being ubnd[j]l-1bnd[j]+1
(assuming the index " j" to be zero-based). They also define the input grid’ s
coordinate system, each pixel having unit extent along each dimension with integral
coordinate values at its centre.

Pointer to an array, with one element for each pixel in the input grid, containing
the data to be masked. The numerical type of this array should match the 1- or
2-character type code appended to the function name (e.g. if you are using astMaskF,
the type of each array element should be " float").

The storage order of data within this array should be such that the index of the
first grid dimension varies most rapidly and that of the final dimension least
rapidly (i.e. Fortran array indexing is used).

On exit, the samples specified by " inside" are set to the value of " val" . All
other samples are left unchanged.

This argument should have the same type as the elements of the " in" array. It
specifies the value used to flag the masked data (see " inside").

Returned Value:

astMask<X>()
The number of pixels to which a value of " badval" has been assigned.

Notes:
e A value of zero will be returned if this function is invoked with the global error
status set, or if it should fail for any reason.
e An error will be reported if the overlap of the Region and the array cannot be
determined.
Data Type Codes :

To select the appropriate masking function, you should replace <X> in the generic
function name astMask<X> with a 1- or 2-character data type code, so as to match the
numerical type <Xtype> of the data you are processing, as follows:

D: double
F: float
L: long int

UL: unsigned long int

I: int

UI: unsigned int

S: short int

US: unsigned short int

B: byte (signed char)

UB: unsigned byte (unsigned char)

For example, astMaskD would be used to process " double" data, while astMaskS would

be used to process

" short int" data, etc.

SUN/211.30 —AST Function Descriptions 384 astMask<X>

Handling of Huge Pixel Arrays :

If the input grid is so large that an integer pixel index, (or a count of pixels) could
exceed the largest value that can be represented by a 4-byte integer, then the alternative
" 8-byte" interface for this function should be used. This alternative interface uses

8 byte integer arguments (instead of 4-byte) to hold pixel indices and pixel counts.
Specifically, the arguments " 1lbnd" and " ubnd" are changed from type " int" to type

" int64_t" (defined in header file stdint.h). The function return type is similarly
changed to type int64_t. The function name is changed by inserting the digit " 8"

before the trailing data type code. Thus, astMask<X> becomes astMask8<X>.

385 astMatchAxes SUN/211.30 —AST Function Descriptions

astMatchAxes
Find any corresponding axes in two Frames

Description:
This function looks for corresponding axes within two supplied Frames. An array of integers is
returned that contains an element for each axis in the second supplied An element in this
array will be set to zero if the associated axis within the second Frame has no corresponding axis
within the first Frame. Otherwise, it will be set to the index (a non-zero positive integer) of the
corresponding axis within the first supplied Frame.

Synopsis:
void astMatchAxes(AstFrame *frml, AstFrame *xfrm2, int *axes)
Parameters:
frm1
Pointer to the first Frame.
frm2

Pointer to the second Frame.

axes
Pointer to an integer array in which to return the indices of the axes (within
the first Frame) that correspond to each axis within the second Frame. indices
start at 1. A value of zero will be stored in the returned array for each axis
in the second Frame that has no corresponding axis in the first Frame.
The number of elements in this array must be greater than or equal to the number
of axes in the second Frame.

Applicability:
Frame

This function applies to all Frames.

Notes:

e Corresponding axes are identified by the fact that a can be found between
them using [astFindFrame| or [astConvert| Thus, " corresponding axes" are not necessarily
identical. For instance, axes in two Frames will match even if they
describe different celestial coordinate systems

SUN/211.30 —AST Function Descriptions 386 astMathMap

astMathMap
Create a MathMap

Description:
This function creates a new [MathMap|and optionally initialises its attributes.

A MathMap is a[Mapping|which allows you to specify a set of forward and/or inverse transforma-
tion functions using arithmetic operations and mathematical functions similar to those available
in C. The MathMap interprets these functions at run-time, whenever its forward or inverse trans-
formation is required. Because the functions are not compiled in the normal sense (unlike an
[ntraMap)), they may be used to describe coordinate transformations in a transportable manner. A
MathMap therefore provides a flexible way of defining new types of Mapping whose descriptions
may be stored as part of a dataset and interpreted by other programs.

Synopsis:
AstMathMap *astMathMap(int nin, int nout, int nfwd, const char *fwd[], int ninv, const
char *inv[], const char *optioms, ...)
Parameters:
nin
Number of input variables for the MathMap. This determines the value of its
attribute.
nout

Number of output variables for the MathMap. This determines the value of its
[Noutl attribute.

nfwd
The number of forward transformation functions being supplied. This must be at
least equal to " nout" , but may be increased to accommodate any additional expressions

which define intermediate variables for the forward transformation (see the "
Calculating Intermediate Values" section below).

fwd
An array (with " nfwd" elements) of pointers to null terminated strings which
contain the expressions defining the forward transformation. The syntax of these
expressions is described below.

ninv
The number of inverse transformation functions being supplied. This must be at
least equal to " nin" , but may be increased to accommodate any additional expressions
which define intermediate variables for the inverse transformation (see the "
Calculating Intermediate Values" section below).

inv
An array (with " ninv" elements) of pointers to null terminated strings which
contain the expressions defining the inverse transformation. The syntax of these
expressions is described below.

options

Pointer to a null-terminated string containing an optional comma-separated list

of attribute assignments to be used for initialising the new MathMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way. If no initialisation

is required, a zero-length string may be supplied.

387 astMathMap SUN/211.30 —AST Function Descriptions

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astMathMap()
A pointer to the new MathMap.

Notes:

e The sequence of numbers produced by the random number functions available within
a MathMap is normally unpredictable and different for each MathMap. However, this
behaviour may be controlled by means of the MathMap’ s attribute.

e Normally, compound Mappings (CmpMaps) which involve MathMaps will not be subject

to simplification (e.g. wusing [astSimplify) because AST cannot know how different
MathMaps will interact. However, in the special case where a MathMap occurs in

series with its own inverse, then simplification may be possible. Whether simplification

does, in fact, occur under these circumstances is controlled by the MathMap’ s

SimpFl| and [SImpIF| attributes.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Defining Transformation Functions :

A MathMap’ s transformation functions are supplied as a set of expressions in an array
of character strings. Normally you would supply the same number of expressions for
the forward transformation, via the " fwd" parameter, as there are output variables
(given by the MathMap’ s Nout attribute). For instance, if Nout is 2 you might use:

r=sqrt(x *x +y *xy)"
e " theta = atan2(y, x)"

which defines a transformation from Cartesian to polar coordinates. Here, the variables
that appear on the left of each expression (" r" and " theta") provide names for the
output variables and those that appear on the right (" x" and " y") are references

to input variables.

To complement this, you must also supply expressions for the inverse transformation
via the " inv" parameter. In this case, the number of expressions given would normally
match the number of MathMap input coordinates (given by the Nin attribute). If Nin

is 2, you might use:

e " x =1 % cos(theta)"

e " y=r % sin(theta)"

which expresses the transformation from polar to Cartesian coordinates. Note that
here the input variables (" x" and " y") are named on the left of each expression,
and the output variables (" r" and " theta") are referenced on the right.

Normally, you cannot refer to a variable on the right of an expression unless it is
named on the left of an expression in the complementary set of functions. Therefore
both sets of functions (forward and inverse) must be formulated using the same consistent
set of variable names. This means that if you wish to leave one of the transformations
undefined, you must supply dummy expressions which simply name each of the output (or
input) variables. For example, you might use:

SUN/211.30 —AST Function Descriptions 388 astMathMap

Y n yll

for the inverse transformation above, which serves to name the input variables but
without defining an inverse transformation.

Calculating Intermediate Values :

It is sometimes useful to calculate intermediate values and then to use these in the
final expressions for the output (or input) variables. This may be done by supplying
additional expressions for the forward (or inverse) transformation functions. For
instance, the following array of five expressions describes 2-dimensional pin-cushion
distortion:

e " r = sqrt(xin * xin + yin * yin)"

e "rout =r x (1 4+ 0.1 xr x1r)"
e " theta = atan2(yin, xin)"
e " xout = rout * cos(theta)"

e " yout = rout * sin(theta)"

Here, we first calculate three intermediate results (" r" , " rout" and " theta")

and then use these to calculate the final results (" xout" and " yout"). The MathMap
knows that only the final two results constitute values for the output variables because
its Nout attribute is set to 2. You may define as many intermediate variables in this
way as you choose. Having defined a variable, you may then refer to it on the right

of any subsequent expressions.

Note that when defining the inverse transformation you may only refer to the output
variables " xout" and " yout" . The intermediate variables " r" , " rout" and " theta"
(above) are private to the forward transformation and may not be referenced by the
inverse transformation. The inverse transformation may, however, define its own private
intermediate variables.

Expression Syntax :

The expressions given for the forward and inverse transformations closely follow the

syntax of the C programming language (with some extensions for compatibility with Fortran).
They may contain references to variables and literal constants, together with arithmetic,
boolean, relational and bitwise operators, and function invocations. A set of symbolic
constants is also available. Each of these is described in detail below. Parentheses

may be used to over-ride the normal order of evaluation. There is no built-in limit

to the length of expressions and they are insensitive to case or the presence of additional
white space.

Variables :

Variable names must begin with an alphabetic character and may contain only alphabetic
characters, digits, and the underscore character " _" There is no built-in limit
to the length of variable names.

Literal Constants :

Literal constants, such as " O" , " 1" , " 0.007" or " 2.505e-16" may appear in expressiomns,
with the decimal point and exponent being optional (a " D" may also be used as an exponent
character for compatibility with Fortran). A unary minus " -" may be used as a prefix.

Arithmetic Precision :

A1l arithmetic is floating point, performed in double precision.

389 astMathMap SUN/211.30 —AST Function Descriptions

Propagation of Missing Data :

Unless indicated otherwise, if any argument of a function or operator has the value
AST__BAD (indicating missing data), then the result of that function or operation is
also AST__BAD, so that such values are propagated automatically through all operations
performed by MathMap transformations. The special value AST__BAD can be represented
in expressions by the symbolic constant " <bad>"

A <bad> result (i.e. equal to AST__BAD) is also produced in response to any numerical
error (such as division by zero or numerical overflow), or if an invalid argument value
is provided to a function or operator.

Arithmetic Operators :

The following arithmetic operators are available:

e x1 + x2: Sum of " x1" and " x2"

e x1 - x2: Difference of " x1" and " x2"

e x1 % x2: Product of " x1" and " x1"

e x1 / x2: Ratio of " x1" and " x2"

o x1 x% x2: " x1" raised to the power of " x2"

e + x: Unary plus, has no effect on its argument.

e - x: Unary minus, negates its argument.

Boolean Operators :

Boolean values are represented using zero to indicate false and non-zero to indicate

true. In addition, the value AST__BAD is taken to mean " unknown" . The values returned
by boolean operators may therefore be 0, 1 or AST__BAD. Where appropriate, " tri-state"
logic is implemented. For example, " a||b" may evaluate to 1 if " a" is non-zero, even

if " b" has the value AST__BAD. This is because the result of the operation would not

be affected by the value of " b" , so long as " a" is non-zero.

The following boolean operators are available:

o x1 && x2: Boolean AND between " x1" and " x2" , returning 1 if both " x1" and
" x2" are non-zero, and O otherwise. This operator implements tri-state logic.
(The synonym " .and." is also provided for compatibility with Fortran.)

e x1 || x2: Boolean OR between " x1" and " x2" , returning 1 if either " x1" or
" x2" are non-zero, and O otherwise. This operator implements tri-state logic.

(The synonym " .or." is also provided for compatibility with Fortran.)

e x1 °~ x2: Boolean exclusive OR (XOR) between " x1" and " x2" , returning 1 if
exactly one of " x1" and " x2" is non-zero, and O otherwise. Tri-state logic
is not used with this operator. (The synonyms " .neqv." and " .xor." are also

provided for compatibility with Fortran, although the second of these is not standard.)

e x1 .eqv. x2: This is provided only for compatibility with Fortran and tests
whether the boolean states of " x1" and " x2" (i.e. true/false) are equal. It
is the negative of the exclusive OR (XOR) function. Tri-state logic is not used
with this operator.

e ! x: Boolean unary NOT operation, returning 1 if " x" is zero, and O otherwise.
(The synonym " .not." is also provided for compatibility with Fortran.)

Relational Operators :

Relational operators return the boolean result (0 or 1) of comparing the values of
two floating point values for equality or inequality. The value AST__BAD may also
be returned if either argument is <bad>.

The following relational operators are available:

SUN/211.30 —AST Function Descriptions 390 astMathMap

e x1 == x2: Tests whether " x1" equals " x1" . (The synonym " .eq." is also provided
for compatibility with Fortran.)

e x1 != x2: Tests whether " x1" is unequal to " x2" . (The synonym .ne." is
also provided for compatibility with Fortran.)

e x1 > x2: Tests whether " x1" is greater than " x2" . (The synonym " .gt." is
also provided for compatibility with Fortran.)

e x1 >= x2: Tests whether " x1" is greater than or equal to " x2" . (The synonym
" .ge." is also provided for compatibility with Fortran.)

e x1 < x2: Tests whether " x1" is less than " x2" . (The synonym " .1lt." is also
provided for compatibility with Fortran.)

e x1 <= x2: Tests whether " x1" is less than or equal to " x2" . (The synonym

" .le." is also provided for compatibility with Fortran.)

Note that relational operators cannot usefully be used to compare values with the <bad>
value (representing missing data), because the result is always <bad>. The isbad()
function should be used instead.

Bitwise Operators :

The bitwise operators provided by C are often useful when operating on raw data (e.g.
from instruments), so they are also provided for use in MathMap expressions. In this
case, however, the values on which they operate are floating point values rather than
pure integers. In order to produce results which match the pure integer case, the
operands are regarded as fixed point binary numbers (i.e. with the binary equivalent
of a decimal point) with negative numbers represented using twos-complement notation.
For integer values, the resulting bit pattern corresponds to that of the equivalent
signed integer (digits to the right of the point being zero). Operations on the bits
representing the fractional part are also possible, however.

The following bitwise operators are available:

e x1 >> x2: Rightward bit shift. The integer value of " x2" is taken (rounding
towards zero) and the bits representing " x1" are then shifted this number of
places to the right (or to the left if the number of places is negative). This
is equivalent to dividing " x1" by the corresponding power of 2.

e x1 << x2: Leftward bit shift. The integer value of " x2" is taken (rounding
towards zero), and the bits representing " x1" are then shifted this number of
places to the left (or to the right if the number of places is negative). This
is equivalent to multiplying " x1" by the corresponding power of 2.

e x1 & x2: Bitwise AND between the bits of " x1" and those of " x2" (equivalent
to a boolean AND applied at each bit position in turn).

e x1 | x2: Bitwise OR between the bits of " x1" and those of " x2" (equivalent to
a boolean OR applied at each bit position in turn).

e x1 ~ x2: Bitwise exclusive OR (XOR) between the bits of " x1" and those of "
x2" (equivalent to a boolean XOR applied at each bit position in turn).

Note that no bit inversion operator (" ~" in C) is provided. This is because inverting
the bits of a twos-complement fixed point binary number is equivalent to simply negating
it. This differs from the pure integer case because bits to the right of the binary
point are also inverted. To invert only those bits to the left of the binary point,

use a bitwise exclusive OR with the value -1 (i.e. " x™-1").

Functions :

The following functions are available:

e abs(x): Absolute value of " x" (sign removal), same as fabs(x).

391 astMathMap SUN/211.30 —AST Function Descriptions

e acos(x): Inverse cosine of " x" , in radianms.

e acosd(x): Inverse cosine of " x" , in degrees.

e acosh(x): Inverse hyperbolic cosine of " x"

e acoth(x): Inverse hyperbolic cotangent of " x"

e acsch(x): Inverse hyperbolic cosecant of " x"

e aint(x): Integer part of " x" (round towards zero), same as int(x).
e asech(x): Inverse hyperbolic secant of " x"

e asin(x): Inverse sine of " x" , in radiams.

e asind(x): Inverse sine of " x" , in degrees.
e asinh(x): Inverse hyperbolic sine of " x"

e atan(x): Inverse tangent of " x" , in radiams.

e atand(x): Inverse tangent of " x" , in degrees.
e atanh(x): Inverse hyperbolic tangent of " x"

e atan2(xl, x2): Inverse tangent of " x1/x2" , in radians.

e atan2d(xl, x2): Inverse tangent of " x1/x2" , in degrees.

e ceil(x): Smallest integer value not less then " x" (round towards plus infinity).
e cos(x): Cosine of " x" in radiams.

e cosd(x): Cosine of " x" in degrees.

e cosh(x): Hyperbolic cosine of " x"

e coth(x): Hyperbolic cotangent of " x"
e csch(x): Hyperbolic cosecant of " x"

e dim(xl, x2): Returns " x1-x2" if " x1" is greater than " x2" , otherwise O.

e exp(x): Exponential function of " x"

e fabs(x): Absolute value of " x" (sign removal), same as abs(x).

e floor(x): Largest integer not greater than " x" (round towards minus infinity).
e fmod(x1l, x2): Remainder when " x1" is divided by " x2" , same as mod(xl, x2).

e gauss(xl, x2): Random sample from a Gaussian distribution with mean " x1" and
standard deviation " x2"

" (round towards zero), same as aint(x).

e int(x): Integer part of " x
e isbad(x): Returns 1 if " x" has the <bad> value (AST__BAD), otherwise O.
e log(x): Natural logarithm of " x"

e loglO(x): Logarithm of " x" to base 10.

e max(x1l, x2, ...): Maximum of two or more values.
e min(x1l, x2, ...): Minimum of two or more values.
e mod(xl, x2): Remainder when " x1" is divided by " x2" , same as fmod(xl, x2).

e nint(x): Nearest integer to " x" (round to nearest).

e poisson(x): Random integer-valued sample from a Poisson distribution with mean
n X"

e pow(xl, x2): x1" raised to the power of " x2"
e gqif(xl, x2, x3): Returns " x2" if " x1" is true, and " x3" otherwise.

e rand(xl, x2): Random sample from a uniform distribution in the range " x1" to
" x2" inclusive.

SUN/211.30 —AST Function Descriptions 392 astMathMap

e sech(x): Hyperbolic secant of " x"
e sign(xl, x2): Absolute value of " x1" with the sign of " x2" (transfer of sign).

" in radians.

e sin(x): Sine of " x
e sinc(x): Sinc function of " x" [= " sin(x)/x"].
e sind(x): Sine of " x" in degrees.

e sinh(x): Hyperbolic sine of " x"

e sqr(x): Square of " x" (= " xxx").
e sqrt(x): Square root of " x"

e tan(x): Tangent of " x" in radians.

e tand(x): Tangent of " x" in degrees.

e tanh(x): Hyperbolic tangent of " x

Symbolic Constants :
The following symbolic constants are available (the enclosing " <>" brackets must
be included):

e <bad>: The " bad" value (AST__BAD) used to flag missing data. Note that you
cannot usefully compare values with this constant because the result is always
<bad>. The isbad() function should be used instead.

e <dig>: Number of decimal digits of precision available in a floating point (double)
value.

e <e>: [Base| of natural logarithms.

e <epsilon>: Smallest positive number such that 1.0+<epsilon> is distinguishable
from unity.

e <mant_dig>: The number of base <radix> digits stored in the mantissa of a floating
point (double) value.

e <max>: Maximum representable floating point (double) value.

e <max_10_exp>: Maximum integer such that 10 raised to that power can be represented
as a floating point (double) value.

e <max_exp>: Maximum integer such that <radix> raised to that power minus 1 can
be represented as a floating point (double) value.

e <min>: Smallest positive number which can be represented as a normalised floating
point (double) value.

e <min_10_exp>: Minimum negative integer such that 10 raised to that power can
be represented as a normalised floating point (double) value.

e <min_exp>: Minimum negative integer such that <radix> raised to that power
minus 1 can be represented as a normalised floating point (double) value.

e <pi>: Ratio of the circumference of a circle to its diameter.

e <radix>: The radix (number base) used to represent the mantissa of floating
point (double) values.

e <rounds>: The mode used for rounding floating point results after addition. Possible

values include: -1 (indeterminate), O (toward zero), 1 (to nearest), 2 (toward
plus infinity) and 3 (toward minus infinity). Other values indicate machine-dependent
behaviour.

Evaluation Precedence and Associativity :

Items appearing in expressions are evaluated in the following order (highest precedence
first):

393 astMathMap SUN/211.30 —AST Function Descriptions

e Constants and variables

e Function arguments and parenthesised expressions
e Function invocations

e Unary + - ! .not.

® Kk

[]
)
N

® .eqv. .neqv. .Xor.

A1l operators associate from left-to-right, except for unary +, unary -, !, .not.
% which associate from right-to-left.

SUN/211.30 —AST Function Descriptions 394 astMatrixMap

astMatrixMap
Create a MatrixMap

Description:
This function creates a new and optionally initialises its attributes.

A MatrixMap is a form of[Mapping|which performs a general linear transformation. Each set of
input coordinates, regarded as a column-vector, are pre-multiplied by a matrix (whose elements
are specified when the MatrixMap is created) to give a new column-vector containing the output
coordinates. If appropriate, the inverse transformation may also be performed.

Synopsis:
AstMatrixMap *astMatrixMap(int nin, int nout, int form, const double matrix[], const
char *options, ...)
Parameters:
nin
The number of input coordinates, which determines the number of columns in the
matrix.
nout

The number of output coordinates, which determines the number of rows in the matrix.

form
An integer which indicates the form in which the matrix elements will be supplied.
A value of zero indicates that a full " nout" x " nin" matrix of values will be
supplied via the " matrix" parameter (below). In this case, the elements should
be given in row order (the elements of the first row, followed by the elements
of the second row, etc.).
A value of 1 indicates that only the diagonal elements of the matrix will be supplied,
and that all others should be zero. In this case, the elements of " matrix" should
contain only the diagonal elements, stored consecutively.
A value of 2 indicates that a " unit" matrix is required, whose diagonal elements
are set to unity (with all other elements zero). In this case, the " matrix"
parameter is ignored and a NULL pointer may be supplied.

matrix
The array of matrix elements to be used, stored according to the value of " form"

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new MatrixMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astMatrixMap()
A pointer to the new MatrixMap.

395 astMatrixMap SUN/211.30 —AST Function Descriptions

Notes:

e In general, a MatrixMap’ s forward transformation will always be available (as
indicated by its attribute), but its inverse transformation
attribute) will only be available if the associated matrix is square and non-singular.

e As an exception to this, the inverse transformation is always available if a unit
or diagonal matrix is specified. In this case, if the matrix is not square, one
or more of the input coordinate values may not be recoverable from a set of output
coordinates. Any coordinates affected in this way will simply be set to the value
zero.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :
The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

SUN/211.30 —AST Function Descriptions 396 astMirrorVariants

astMirrorVariants
Make the current Frame mirror the variant Mappings in another
Frame

Description:

This function indicates that all access to the attribute of the current[Frame|should should
be forwarded to some other nominated Frame in the For instance, if a value is set
subsequently for the Variant attribute of the current Frame, the current Frame will be left unchanged
and the setting is instead applied to the nominated Frame. Likewise, if the value of the Variant
attribute is requested, the value returned is the value stored for the nominated Frame rather than
the current Frame itself.

This provides a mechanism for propagating the effects of variant Mappings around a FrameSet.
If a new Frame is added to a FrameSet by connecting it to an pre-existing Frame that has two or
more variant Mappings, then it may be appropriate to set the new Frame so that it mirrors the
variants Mappings of the pre-existing Frame. If this is done, then it will be possible to select a
specific variant using either the pre-existing Frame or the new Frame.

Synopsis:
void astMirrorVariants(AstFrameSet *this, int iframe)

Parameters:

this
Pointer to the FrameSet.

iframe
The index of the Frame within the FrameSet which is to be mirrored by the current
Frame. This value should lie in the range from 1 to the number of Frames in the
FrameSet (as given by its attribute). If AST__NOFRAME is supplied (or
the current Frame is specified), then any mirroring established by a previous
call to this function is disabled.

Notes:

e Mirrors can be chained. That is, if Frame B is set to be a mirror of Frame A,
and Frame C is set to be a mirror of Frame B, then Frame C will act as a mirror
of Frame A.

e Variant Mappings cannot be added to the current Frame if it is mirroring another

Frame. So calls to the function will cause an error to be reported
if the current Frame is mirroring another Frame.

e A value of AST__BASE may be given for the " iframe" parameter to specify the base
Frame.

e Any variant Mappings explicitly added to the current Frame using astAddVariant
will be ignored if the current Frame is mirroring another Frame.

397

astMoc SUN/211.30 —AST Function Descriptions

astMoc
Create a Moc

Description:

This function creates a new object and optionally initialises its attributes.

The Moc class uses the IVOA MOC (Multi-Order Coverage) recommendation to describe a region
on the sky. The region is made up of an arbitrary collection of cells from the HEALPix sky
tessellation, and thus may represent any area on the sky, subject to the constraint that the edges
of the area correspond to edges of the HEALPix cells. See the MOC recommendation for further
information (http:/ /www.ivoa.net/documents/MOC/).

The Moc class describes an arbitrary collection of cells on the sky, whereas other subclasses of
describe exact geometric shapes in any arbitrary domain. This results in some differences
between Mocs and other types of Region, the main one being that Mocs have no associated
uncertainty.

The MOC recommendation requires that a MOC always describes a sky area using the ICRS
coordinate system. However, the Moc class, like other subclasses of Region, allows its attributes to
be changed so that it represents the equivalent area in any celestial coordinate system that can be

mapped to ICRS. See attribute

In practice, to use this class an empty Moc object (i.e. a Moc describing a null area of the sky)
should first be created using the astMoc constructor. Areas of the sky should then be added into
the empty Moc using one or more of the class methods.

If it is required to write a Moc out to a FITS binary table, the data value and headers to put in the
table can be obtained using methods[astGetMocData|and [astGetMocHeader| The MOC described
by an existing FITS binary table can be added into a Moc object using theastAddMocData|method.
Note, this class is limited to MOCs for which the number of cells in the normalised MOC can be
represented in a four byte signed integer.

Synopsis:

AstMoc *astMoc(const char xoptions, ...)

Parameters:

maxorder

options

Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Moc. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional parameters may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astMoc()

A pointer to the new Moc.

Notes:

SUN/211.30 —AST Function Descriptions 398 astMoc

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int x*status"

399 astMocChan SUN/211.30 —AST Function Descriptions

astMocChan
Create a MocChan

Description:
This function creates a new and optionally initialises its attributes.
A MocChan is a specialised form of [Channel| which supports the reading and writing of AST[Mod
objects as text, using the conventions of the JSON and string encodings described in the IVOA’ s
MOC recommendation, version 1.1. Writing a Moc to a MocChan (using [astWrite) will, if the Moc
is suitable, generate a textual description of that Moc, and reading from a MocChan will create a
new Moc from its textual description. See the Moc class for further information.

Normally, when you use a MocChan, you should provide " source" and " sink" functions which
connect it to an external data store by reading and writing the resulting text. These functions
should perform any conversions needed between external character encodings and the internal
ASCII encoding. If no such functions are supplied, a Channel will read from standard input and
write to standard output.

Alternatively, a MocChan can be told to read or write from specific text files using the and
attributes, in which case no sink or source function need be supplied.

Synopsis:

AstMocChan *astMocChan(const char *(* source)(void), void (% sink) (const char
), const char xoptions, ...)

Parameters:

source
Pointer to a source function that takes no arguments and returns a pointer to
a null-terminated string. If no value has been set for the SourceFile attribute,
this function will be used by the MocChan to obtain lines of input text. On each
invocation, it should return a pointer to the next input line read from some external
data store, and a NULL pointer when there are no more lines to read.

If " source" is NULL and no value has been set for the SourceFile attribute, the
MocChan will read from standard input instead.

sink
Pointer to a sink function that takes a pointer to a null-terminated string as
an argument and returns void. If no value has been set for the SinkFile attribute,
this function will be used by the MocChan to deliver lines of output text. On
each invocation, it should deliver the contents of the string supplied to some
external data store.

If " sink" is NULL, and no value has been set for the SinkFile attribute, the
MocChan will write to standard output instead.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new MocChan. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

SUN/211.30 —AST Function Descriptions 400 astMocChan

Returned Value:

astMocChan()
A pointer to the new MocChan.

Notes:

e If the external data source or sink uses a character encoding other than ASCII,
the supplied source and sink functions should translate between the external character

encoding and the internal ASCII encoding used by AST.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

401 astNegate SUN/211.30 —AST Function Descriptions

astNegate
Negate the area represented by a Region

Description:
This function negates the area represented by a That is, points which were previously
inside the region will then be outside, and points which were outside will be inside. This is
acomplished by toggling the state of the attribute for the supplied region.
Synopsis:
void astNegate(AstRegion #this)
Parameters:
this
Pointer to the Region.

SUN/211.30 —AST Function Descriptions 402 astNorm

astNorm
Normalise a set of Frame coordinates representing one point

Description:
This function normalises a set of [Frame|coordinate values which might be unsuitable for display
(e.g. may lie outside the expected range) into a set of acceptable values suitable for display.

Synopsis:
void astNorm(AstFrame #*this, double valuel[])

Parameters:
this
Pointer to the Frame.
value
An array of double, with one element for each Frame axis attribute). Initially,
this should contain a set of coordinate values representing a point in the space
which the Frame describes. If these values lie outside the expected range for

the Frame, they will be replaced with more acceptable (normalised) values. Otherwise,
they will be returned unchanged.

Notes:

e For some classes of Frame, whose coordinate values are not constrained, this function
will never modify the values supplied. However, for Frames whose axes represent
cyclic quantities (such as angles or positions on the sky), coordinates will typically
be wrapped into an appropriate standard range, such as zero to 2x*pi.

e The class is a which can be used to normalise a set of points

using the astNorm function of a specified Frame.

e It is intended to be possible to put any set of coordinates into a form suitable
for display by using this function to normalise them, followed by appropriate

formatting (using [astFormat) .

403 astNormMap SUN/211.30 —AST Function Descriptions

astNormMap
Create a NormMap

Description:
This function creates a new and optionally initialises its attributes.

A NormMap is a[Mapping|which normalises coordinate values using the function of the
supplied The number of inputs and outputs of a NormMap are both equal to the number
of axes in the supplied Frame.

The forward and inverse transformation of a NormMap are both defined but are identical (that
is, they do not form a real inverse pair in that the inverse transformation does not undo the
normalisation, instead it reapplies it). However, the function will replace neighbouring
pairs of forward and inverse NormMaps by a single (so long as the Frames encapsulated
by the two NormMaps are equal - i.e. have the same class and the same attribute values). This
meants, for instance, that if a contains a NormMap, the CmpMap will still cancel with its
own inverse.

Synopsis:
AstNormMap *astNormMap(AstFrame sframe, const char xoptions, ...)
Parameters:
frame
A pointer to the Frame which is to be used to normalise the supplied axis values.
options

Pointer to a null-terminated string containing an optional comma-separated list

of attribute assignments to be used for initialising the new NormMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astNormMap()
A pointer to the new NormMap.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

SUN/211.30 —AST Function Descriptions 404 astNormPoints

astNormPoints
Normalise a collection of points

Description:
This function normalises the axis values representing a collection of points within a The
normalisation can be done in two ways - 1) to put the axis values into the range expected for
display to human readers or 2) to put the axis values into which ever range avoids discontinuities
within the collection of positions. Using method 1) is the same as using functionastNorm|on each
point in the collection. Using method 2) is useful when handling collections of points that may
span some discontinuity in the coordinate system.

Synopsis:

void astNormPoints(AstFrame *this, int npoint, int ncoord_in, int indim, const double
*in, int contig, int ncoord_out, int outdim, double *out)

Parameters:

this
Pointer to the Frame.

npoint
The number of points to be normalised.

ncoord_in
The number of coordinates being supplied for each input point. This should be
the same as the number of axes in the Frame.

indim
The number of elements along the second dimension of the " in" array (which contains
the input coordinates). This value is required so that the coordinate values

can be correctly located if they do not entirely fill this array. The value given
should not be less than " npoint"

in The address of the first element in a 2-dimensional array of shape " [ncoord_in] [indim]"

, containing the coordinates of the input (unnormalised) points. These should
be stored such that the value of coordinate number " coord" for input point number
" point" is found in element " in[coord] [point]"

contig
Indicates the way in which the normalised axis values are to be calculated. A
non-zero value causes the values to be normalised in such a way as to reduce the
effects of any discontinuities in the coordinate system. For instance, points
in a [SkyFrame| that span longitude zero will be normalized into a longitude range
of -pi to +pi (otherwise they will be normalized into a range of O to 2.pi). A
zero value causes each point to be normalised independently using astNorm.

ncoord_out
The number of coordinates being supplied for each output point. This should be
the same as the number of axes in the Frame.

outdim
The number of elements along the second dimension of the " out" array (which will
contain the output coordinates). This value is required so that the coordinate
values can be correctly located if they will not entirely fill this array. The
value given should not be less than " npoint"

405 astNormPoints SUN/211.30 —AST Function Descriptions

out
The address of the first element in a 2-dimensional array of shape " [ncoord_out] [outdim]"
, into which the coordinates of the output (normalised) points will be written.
These will be stored such that the value of coordinate number " coord" for output
point number " point" will be found in element " out[coord] [point]"

Notes:

e For some classes of Frame, whose coordinate values are not constrained, this function
will never modify the values supplied. However, for Frames whose axes represent
cyclic quantities (such as angles or positions on the sky), coordinates will typically
be wrapped into an appropriate standard range, such as zero to 2#pi or -pi to
+pi (depending on the normalisation method used).

Handling of Huge Pixel Arrays :

If the number of points to be normalised exceeds the largest value that can be represented
by a 4-byte integer, then the alternative " 8-byte" interface for this function should

be used. This alternative interface uses 8 byte integer arguments (instead of 4-byte).
Specifically, the arguments " npoint" , " indim" and " outdim" are changed from type

" int" to type " int64_t" (defined in header file stdint.h). The function name is

changed by appending the digit " 8" to the name. Thus, astNormPoints becomes astNormPoints8

SUN/211.30 —AST Function Descriptions 406 astNullRegion

astNullRegion
Create a NullRegion

Description:
This function creates a new and optionally initialises its attributes.

A NullRegion is a with no bounds. If the attribute of a NullRegion is false, the
NullRegion represents a Region containing no points. If the Negated attribute of a NullRegion
is true, the NullRegion represents an infinite Region containing all points within the coordinate
system.

Synopsis:

AstNullRegion >kaLstNullRegion(AstFrame *frame, AstRegion *unc, const char *options,

)

Parameters:

frame
A pointer to the in which the region is defined. A deep copy is taken of
the supplied Frame. This means that any subsequent changes made to the Frame
using the supplied pointer will have no effect the Region.

unc
An optional pointer to an existing Region which specifies the uncertainties associated
with positions in the supplied Frame. The uncertainty in any point in the Frame
is found by shifting the supplied " uncertainty" Region so that it is centred
at the point being considered. The area covered by the shifted uncertainty Region
then represents the uncertainty in the position. The uncertainty is assumed to
be the same for all points.
If supplied, the uncertainty Region must be of a class for which all instances
are centro-symetric (e.g. [Box|, [Circle], [Ellipse|, etc.) or be a containing
centro-symetric component Regions. A deep copy of the supplied Region will be
taken, so subsequent changes to the uncertainty Region using the supplied pointer
will have no effect on the created NullRegion. Alternatively, a NULL pointer
may be supplied, in which case a default uncertainty of zero is used.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new NullRegion. The
syntax used is identical to that for the function and may include " printf"
format specifiers identified by " %" symbols in the normal way.
If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astNullRegion()
A pointer to the new NullRegion.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

407 astOK SUN/211.30 —AST Function Descriptions

astOK
Test whether AST functions have been successful

Description:
This macro returns a boolean value (0 or 1) to indicate if preceding AST functions have completed
successfully (i.e. without setting the AST error status). If the error status is set to an error value, a
value of zero is returned, otherwise the result is one.

Synopsis:
int astOK

Returned Value:

astOK
One if the AST error status is OK, otherwise zero.

Notes:

e If the AST error status is set to an error value (after an error), most AST functions
will not execute and will simply return without action. To clear the error status
and restore normal behaviour, use |[astClearStatus|.

SUN/211.30 —AST Function Descriptions 408 astOffset

astOffset
Calculate an offset along a geodesic curve

Description:
This function finds the[Frame|coordinate values of a point which is offset a specified distance along
the geodesic curve between two other points.
For example, in a basic Frame, this offset will be along the straight line joining two points. For a
more specialised Frame describing a sky coordinate system, however, it would be along the great
circle passing through two sky positions.

Synopsis:
void astOffset(AstFrame xthis, const double pointl[], const double point2[], double
offset, double point3[])

Parameters:
this
Pointer to the Frame.
pointl
An array of double, with one element for each Frame axis attribute). This

should contain the coordinates of the point marking the start of the geodesic
curve.

point2
An array of double, with one element for each Frame axis This should contain the
coordinates of the point marking the end of the geodesic curve.

offset
The required offset from the first point along the geodesic curve. If this is
positive, it will be towards the second point. If it is negative, it will be
in the opposite direction. This offset need not imply a position lying between
the two points given, as the curve will be extrapolated if necessary.

point3
An array of double, with one element for each Frame axis in which the coordinates
of the required point will be returned.

Notes:

e The geodesic curve used by this function is the path of shortest distance between
two points, as defined by the function.

e This function will return " bad" coordinate values (AST__BAD) if any of the input
coordinates has this value.

e " Bad" coordinate values will also be returned if the two points supplied are

coincident (or otherwise fail to uniquely specify a geodesic curve) but the requested

offset is non-zero.

409 astOffset2 SUN/211.30 —AST Function Descriptions

astOffset2
Calculate an offset along a geodesic curve in a 2D Frame

Description:
This function finds the coordinate values of a point which is offset a specified distance
along the geodesic curve at a given angle from a specified starting point. It can only be used with
2-dimensional Frames.
For example, in a basic Frame, this offset will be along the straight line joining two points. For a
more specialised Frame describing a sky coordinate system, however, it would be along the great
circle passing through two sky positions.

Synopsis:

double astOffset2(AstFrame #*this, const double point1[2], double angle, double offset,
double point2[2]);

Parameters:

this
Pointer to the Frame.

pointl
An array of double, with one element for each Frame axis attribute). This
should contain the coordinates of the point marking the start of the geodesic
curve.

angle
The angle (in radians) from the positive direction of the second axis, to the
direction of the required position, as seen from the starting position. Positive
rotation is in the sense of rotation from the positive direction of axis 2 to
the positive direction of axis 1.

offset
The required offset from the first point along the geodesic curve. If this is
positive, it will be in the direction of the given angle. If it is negative, it
will be in the opposite direction.

point2
An array of double, with one element for each Frame axis in which the coordinates
of the required point will be returned.

Returned Value:

astOffset2
The direction of the geodesic curve at the end point. That is, the angle (in radians)
between the positive direction of the second axis and the continuation of the geodesic
curve at the requested end point. Positive rotation is in the sense of rotation from
the positive direction of axis 2 to the positive direction of axis 1.

Notes:

e The geodesic curve used by this function is the path of shortest distance between
two points, as defined by the function.

e An error will be reported if the Frame is not 2-dimensional.

e This function will return " bad" coordinate values (AST__BAD) if any of the input
coordinates has this value.

SUN/211.30 —AST Function Descriptions 410 astOutline< X>

astOutline <X>
Create a new Polygon outling values in a 2D data grid

Description:
This is a set of functions that create a enclosing a single contiguous set of pixels that have
a specified value within a gridded 2-dimensional data array (e.g. an image).
A basic 2-dimensional is used to represent the pixel coordinate system in the returned
Polygon. The[Domain|attribute is set to " PIXEL" , the Title|attribute is set to " Pixel coordinates" ,
and the Unit attribute for each axis is set to " pixel" . All other attributes are left unset. The nature
of the pixel coordinate system is determined by parameter " starpix" .

The " maxerr" and " maxvert" parameters can be used to control how accurately the returned
Polygon represents the required region in the data array. The number of vertices in the returned
Polygon will be the minimum needed to achieve the required accuracy.

You should use a function which matches the numerical type of the data you are processing by
replacing <X> in the generic function name astOutline<X> by an appropriate 1- or 2-character
type code. For example, if you are procesing data with type " float" , you should use the function
astOutlineF (see the " Data Type Codes" section below for the codes appropriate to other numerical
types).

Synopsis:
AstPolygon *astOutline<X>(<Xtype> value, int oper, const <Xtype> arrayl[], const
int 1bnd[2], const int ubnd[2], double maxerr, int maxvert, const int inside[2], int
starpix)

Parameters:

value
A data value that specifies the pixels to be outlined.

oper
Indicates how the " value" parameter is used to select the outlined pixels. It
can have any of the following values:

e AST__LT: outline pixels with value less than " value"
e AST__LE: outline pixels with value less than or equal to " value"

e AST__EQ: outline pixels with value equal to " value"

e AST__NE: outline pixels with value not equal to " value"

e AST__GE: outline pixels with value greater than or equal to " value"

e AST__GT: outline pixels with value greater than " value"

array
Pointer to a 2-dimensional array containing the data to be processed. The numerical
type of this array should match the 1- or 2-character type code appended to the
function name (e.g. if you are using astOutlineF, the type of each array element
should be " float").
The storage order of data within this array should be such that the index of the
first grid dimension varies most rapidly and that of the second dimension least
rapidly (i.e. Fortran array indexing is used).

Ibnd
Pointer to an array of two integers containing the pixel index of the first pixel
in the input grid along each dimension.

411 astOutline<X> SUN/211.30 —AST Function Descriptions

ubnd
Pointer to an array of two integers containing the pixel index of the last pixel
in the input grid along each dimension.
Note that " 1lbnd" and " ubnd" together define the shape and size of the input
pixel grid, its extent along a particular (j’ th) dimension being ubnd[j]-1bnd[jl+1
pixels. For FITS images, the 1lbnd values will be 1 and the ubnd values will be
equal to the NAXISi header values. Other data systems, such as the Starlink NDF
system, allow an arbitrary pixel origin to be used (i.e. 1bnd is not necessarily
1.
These bounds also define the input grid’ s floating point coordinate system, each
pixel having unit extent along each dimension with integral coordinate values
at its centre or upper corner, as selected by parameter " starpix"

maxerr
Together with " maxvert" , this determines how accurately the returned Polygon
represents the required region of the data array. It gives the target discrepancy
between the returned Polygon and the accurate outline in the data array, expressed
as a number of pixels. Insignificant vertices are removed from the accurate outline,
one by one, until the number of vertices remaining in the returned Polygon equals

" maxvert" , or the largest discrepancy between the accurate outline and the returned
Polygon is greater than " maxerr" . If " maxerr" is zero or less, its value is
ignored and the returned Polygon will have the number of vertices specified by
" maxvert"

maxvert
Together with " maxerr" , this determines how accurately the returned Polygon

represents the required region of the data array. It gives the maximum allowed
number of vertices in the returned Polygon. Insignificant vertices are removed
from the accurate outline, one by one, until the number of vertices remaining
in the returned Polygon equals " maxvert" , or the largest discrepancy between
the accurate outline and the returned Polygon is greater than " maxerr" . If
" maxvert" is less than 3, its value is ignored and the number of vertices in
the returned Polygon will be the minimum needed to ensure that the discrepancy
between the accurate outline and the returned Polygon is less than " maxerr"
inside
Pointer to an array of two integers containing the pixel indices of a pixel known
to be inside the required region. This is needed because the supplied data array
may contain several disjoint areas of pixels that satisfy the criterion specified
by " value" and " oper" . In such cases, the area described by the returned Polygon
will be the one that contains the pixel specified by " inside" . If the specified
pixel is outside the bounds given by " lbnd" and " ubnd" , or has a value that
does not meet the criterion specified by " value" and " oper" , then this function
will search for a suitable pixel. The search starts at the central pixel and
proceeds in a spiral manner until a pixel is found that meets the specified crierion.
starpix
A flag indicating the nature of the pixel coordinate system used to describe the
vertex positions in the returned Polygon. If non-zero, the standard Starlink definition
of pixel coordinate is used in which a pixel with integer index I spans a range
of pixel coordinate from (I-1) to I (i.e. pixel corners have integral pixel coordinates).
If zero, the definition of pixel coordinate used by other AST functions such as
astResample, astMask, etc., is used. In this definition, a pixel with integer
index I spans a range of pixel coordinate from (I-0.5) to (I40.5) (i.e. pixel
centres have integral pixel coordinates).

Returned Value:

SUN/211.30 —AST Function Descriptions 412 astOutline< X>

astOutline<X>()
A pointer to the required Polygon.
Notes:
e This function proceeds by first finding a very accurate polygon, and then removing
insignificant vertices from this fine polygon using [astDownsize].
e The returned Polygon is the outer boundary of the contiguous set of pixels that
includes ths specified " inside" point, and satisfy the specified value requirement.
This set of pixels may potentially include " holes" where the pixel values fail
to meet the specified value requirement. Such holes will be ignored by this function.
e NULL will be returned if this function is invoked with the global error status
set, or if it should fail for any reason.
Data Type Codes :

To select the appropriate masking function, you should replace <X> in the generic
function name astOutline<X> with a 1- or 2-character data type code, so as to match
the numerical type <Xtype> of the data you are processing, as follows:

D: double

e F: float
e L: long int
e UL: unsigned long int

e I: int

UI: unsigned int

e S: short int

US: unsigned short int
e B: byte (signed char)
e UB: unsigned byte (unsigned char)

For example, astOutlineD would be used to process " double" data, while astOutlineS
would be used to process " short int" data, etc.

Handling of Huge Pixel Arrays :

If the input grid is so large that an integer pixel index, (or a count of pixels) could
exceed the largest value that can be represented by a 4-byte integer, then the alternative
" 8-byte" interface for this function should be used. This alternative interface uses

8 byte integer arguments (instead of 4-byte) to hold pixel indices and pixel counts.
Specifically, the arguments " lbnd" ubnd" and " inside" are changed from type "

int" to type " int64_t" (defined in header file stdint.h). The function name is changed
by inserting the digit " 8" before the trailing data type code. Thus, astOutline<X>
becomes astOutline8<X>.

413 astOverlap SUN/211.30 —AST Function Descriptions

astOverlap
Test if two regions overlap each other

Description:
This function returns an integer value indicating if the two supplied Regions overlap. The two
Regions are converted to a commnon coordinate system before performing the check. If this
conversion is not possible (for instance because the two Regions represent areas in different
domains), then the check cannot be performed and a zero value is returned to indicate this.
Synopsis:
int astOverlap(AstRegion *this, AstRegion xthat)
Parameters:
this
Pointer to the first [Region]|.

that
Pointer to the second Region.

Returned Value:

astOverlap()

A value indicating if there is any overlap between the two Regions. Possible values
are:

0 - The check could not be performed because the second Region could not be mapped
into the coordinate system of the first Region.

- There is no overlap between the two Regions.

- The first Region is completely inside the second Region.
- The second Region is completely inside the first Region.
There is partial overlap between the two Regions.

- The Regions are identical to within their uncertainties.

o 01w N
1

- The second Region is the exact negation of the first Region to within their uncertainties.

Notes:

e The returned values 5 and 6 do not check the value of the attribute in
the two Regioms.

e A value of zero will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 414 astParameterName

astParameterName
Get the name of the global parameter at a given index within the
Table

Description:
This function returns a string holding the name of the global parameter with the given index within
the
This function is intended primarily as a means of iterating round all the parameters in a Table. For
this purpose, the number of parameters in the Table is given by the attribute of the
Table. This function could then be called in a loop, with the index value going from zero to one less
than Nparameter.
Note, the index associated with a parameter decreases monotonically with the age of the parameter:
the oldest Parameter in the Table will have index one, and the Parameter added most recently to
the Table will have the largest index.

Synopsis:
const char xastParameterName(AstTable *this, int index)
Parameters:
this
Pointer to the Table.

index
The index into the list of parameters. The first parameter has index one, and
the last has index " Nparameter"

Returned Value:

astParameterName()
A pointer to a null-terminated string containing the upper case parameter name.

Notes:

e The returned pointer is guaranteed to remain valid and the string to which it
points will not be over-written for a total of 50 successive invocations of this
function. After this, the memory containing the string may be re-used, so a copy
of the string should be made if it is needed for longer than this.

e A NULL pointer will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.

415 astPcdMap SUN/211.30 —AST Function Descriptions

astPcdMap
Create a PcdMap

Description:
This function creates a new and optionally initialises its attributes.

A PcdMap is a non-linear Mapping| which transforms 2-dimensional positions to correct for the
radial distortion introduced by some cameras and telescopes. This can take the form either of
pincushion or barrel distortion, and is characterized by a single distortion coefficient.

A PcdMap is specified by giving this distortion coefficient and the coordinates of the centre of the
radial distortion. The forward transformation of a PecdMap applies the distortion:

RD=R*(14+C=*R=x*R)

where R is the undistorted radial distance from the distortion centre (specified by attribute PcdCen),
RD is the radial distance from the same centre in the presence of distortion, and C is the distortion

coefficient (given by attribute Disco).

The inverse transformation of a PcdMap removes the distortion produced by the forward trans-
formation. The expression used to derive R from RD is an approximate inverse of the expression
above, obtained from two iterations of the Newton-Raphson method. The mismatch between the
forward and inverse expressions is negligible for astrometric applications (to reach 1 milliarcsec at
the edge of the Anglo-Australian Telescope triplet or a Schmidt field would require field diameters
of 2.4 and 42 degrees respectively).

If a PcdMap is inverted (e.g. using jastInvert) then the roles of the forward and inverse trans-
formations are reversed; the forward transformation will remove the distortion, and the inverse
transformation will apply it.

Synopsis:
AstPcdMap *astPcdMap(double disco, const double pcdcen[2], const char *options,
)
Parameters:
disco
The distortion coefficient. Negative values give barrel distortion, positive
values give pincushion distortion, and zero gives no distortion.
pedcen
A 2-element array containing the coordinates of the centre of the distortion.
options

Pointer to a null-terminated string containing an optional comma-separated list

of attribute assignments to be used for initialising the new PcdMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astPcdMap()
A pointer to the new PcdMap.

SUN/211.30 —AST Function Descriptions 416 astPcdMap

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

417 astPermAxes SUN/211.30 —AST Function Descriptions

astPermAxes
Permute the axis order in a Frame

Description:
This function permutes the order in which a[Frame]’ s axes occur.
Synopsis:
void astPermAxes(AstFrame *this, const int perm[])
Parameters:
this

Pointer to the Frame.

perm
An array with one element for each axis of the Frame attribute). This
should list the axes in their new order, using the original axis numbering (which

starts at 1 for the first axis).

Notes:

e Only genuine permutations of the axis order are permitted, so each axis must be
referenced exactly once in the " perm" array.

e If successive axis permutations are applied to a Frame, then the effects are cumulative.

SUN/211.30 —AST Function Descriptions 418 astPermMap

astPermMap
Create a PermMap

Description:
This function creates a new and optionally initialises its attributes.
A PermMap is a[Mapping|which permutes the order of coordinates, and possibly also changes the
number of coordinates, between its input and output.
In addition to permuting the coordinate order, a PermMap may also assign constant values to

coordinates. This is useful when the number of coordinates is being increased as it allows fixed
values to be assigned to any new ones.

Synopsis:
AstPermMap *astPermMap(int nin, const int inperm[], int nout, const int outperm[],
double constant[], const char *optiomns, ...)

Parameters:
nin

The number of input coordinates.

inperm
An optional array with " nin" elements which, for each input coordinate, should
contain the number of the output coordinate whose value is to be used (note that

this array therefore defines the inverse coordinate transformation). Coordinates
are numbered starting from 1.

For details of additional special values that may be used in this array, see the
description of the " constant" parameter.

If a NULL pointer is supplied instead of an array, each input coordinate will
obtain its value from the corresponding output coordinate (or will be assigned
the value AST__BAD if there is no corresponding output coordinate).

nout
The number of output coordinates.

outperm
An optional array with " nout" elements which, for each output coordinate, should
contain the number of the input coordinate whose value is to be used (note that
this array therefore defines the forward coordinate transformation). Coordinates
are numbered starting from 1.

For details of additional special values that may be used in this array, see the
description of the " constant" parameter.

If a NULL pointer is supplied instead of an array, each output coordinate will
obtain its value from the corresponding input coordinate (or will be assigned
the value AST__BAD if there is no corresponding input coordinate).
constant
An optional array containing values which may be assigned to input and/or output
coordinates instead of deriving them from other coordinate values. If either
of the " inperm" or " outperm" arrays contains a negative value, it is used to
address this " constant" array (such that -1 addresses the first element, -2 addresses

the second element, etc.) and the value obtained is used as the corresponding
coordinate value.

419 astPermMap SUN/211.30 —AST Function Descriptions

Care should be taken to ensure that locations lying outside the extent of this
array are not accidentally addressed. The array is not used if the " inperm"
and " outperm" arrays do not contain negative values.

If a NULL pointer is supplied instead of an array, the behaviour is as if the
array were of infinite length and filled with the value AST__BAD.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new PermMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astPermMap()
A pointer to the new PermMap.

Notes:

e If either of the " inperm" or " outperm" arrays contains a zero value (or a positive
value which does not identify a valid output/input coordinate, as appropriate),
then the value AST__BAD is assigned as the new coordinate value.

e This function does not attempt to ensure that the forward and inverse transformations
performed by the PermMap are self-consistent in any way. You are therefore free
to supply coordinate permutation arrays that achieve whatever effect is desired.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 420 astPickAxes

astPickAxes
Create a new Frame by picking axes from an existing one

Description:

This function creates a new [Frame|whose axes are copied from an existing Frame along with other
Frame attributes, such as its[Titlel Any number (zero or more) of the original Frame’ s axes may be

copied, in any order, and additional axes with default attributes may also be included in the new
Frame.

Optionally, a that converts between the coordinate systems described by the two Frames
will also be returned.

Synopsis:
AstFrame *astPickAxes(AstFrame *xthis, int naxes, const int axes[], AstMapping *xmap
)
Parameters:
this
Pointer to the original Frame.
naxes
The number of axes required in the new Frame.
axes
An array, with " naxes" elements, which lists the axes to be copied. These should
be given in the order required in the new Frame, using the axis numbering in the
original Frame (which starts at 1 for the first axis). Axes may be selected in

any order, but each may only be used once. If additional (default) axes are also
to be included, the corresponding elements of this array should be set to zero.

map

Address of a location in which to return a pointer to a new Mapping. This will

be a (or a as a special case) that describes the axis permutation
that has taken place between the original and new Frames. The Mapping’ s forward

transformation will convert coordinates from the original Frame into the new one,
and vice versa.

If this Mapping is not required, a NULL value may be supplied for this parameter.

Applicability:
Frame

This function applies to all Frames. The class of Frame returned may differ from that
of the original Frame, depending on which axes are selected. For example, if a single
axis is picked from a (which must always have two axes) then the resulting
Frame cannot be a valid SkyFrame, so will revert to the parent class (Frame) instead.
Using this function on a FrameSet is identical to using it on the current Frame in
the FrameSet. The returned Frame will not be a FrameSet.

If this function is used on a Region, an attempt is made to retain the bounds information
on the selected axes. If succesful, the returned Frame will be a Region of some class.
Otherwise, the returned Frame is obtained by calling this function on the Frame represented

421 astPickAxes SUN/211.30 —AST Function Descriptions

by the supplied Region (the returned Frame will then not be a Region). In order to
be succesful, the selected axes in the Region must be independent of the others. For

instance, a can be split in this way but a cannot. Another requirement
for success is that no default axes are added (that is, the " axes" array must not
contain any zero values.

Returned Value:

astPickAxes()
A pointer to the new Frame.

Notes:

e The new Frame will contain a " deep" copy (c.f. of all the data selected
from the original Frame. Modifying any aspect of the new Frame will therefore
not affect the original one.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 422 astPlot

astPlot
Create a Plot

Description:

This function creates a new and optionally initialises its attributes.

A Plot s a specialised form of in which the base[Frame|describes a " graphical" coordinate
system and is associated with a rectangular plotting area in the underlying graphics system. This
plotting area is where graphical output appears. It is defined when the Plot is created.

The current Frame of a Plot describes a " physical" coordinate system, which is the coordinate
system in which plotting operations are specified. The results of each plotting operation are
automatically transformed into graphical coordinates so as to appear in the plotting area (subject
to any clipping which may be in effect).

Because the between physical and graphical coordinates may often be non-linear, or
even discontinuous, most plotting does not result in simple straight lines. The basic plotting
element is therefore not a straight line, but a geodesic curve (see[astCurve). A Plot also provides
facilities for drawing markers or symbols (astMark), text (astText) and grid lines (astGridLine). It is
also possible to draw curvilinear axes with optional coordinate grids Plot
attributes is available to allow precise control over the appearance of graphical output produced
by these functions.

You may select different physical coordinate systems in which to plot (including the native graphical
coordinate system itself) by selecting different Frames as the current Frame of a Plot, using its
attribute. You may also set up clipping (see to limit the extent of any plotting
you perform, and this may be done in any of the coordinate systems associated with the Plot, not
necessarily the one you are plotting in.

Like any FrameSet, a Plot may also be used as a Frame. In this case, it behaves like its current
Frame, which describes the physical coordinate system.

When used as a Mapping, a Plot describes the inter-relation between graphical coordinates (its base
Frame) and physical coordinates (its current Frame). It differs from a normal FrameSet, however,
in that an attempt to transform points which lie in clipped areas of the Plot will result in bad
coordinate values (AST__BAD).

Synopsis:
AstPlot *astPlot(AstFrame *frame, const float graphbox[4], const double basebox[
4], const char *options, ...)

Parameters:
frame

Pointer to a Frame describing the physical coordinate system in which to plot.

A pointer to a FrameSet may also be given, in which case its current Frame will

be used to define the physical coordinate system and its base Frame will be mapped
on to graphical coordinates (see below).

If a null pointer (AST__NULL) is given, a default 2-dimensional Frame will
be used to describe the physical coordinate system. Labels, etc. may then be
attached to this by setting the appropriate Frame attributes (e.g. [Label(axis))
for the Plot.

graphbox

An array giving the position and extent of the plotting area (on the plotting
surface of the underlying graphics system) in which graphical output is to appear.

423 astPlot SUN/211.30 —AST Function Descriptions

This must be specified using graphical coordinates appropriate to the underlying
graphics system.

The first pair of values should give the coordinates of the bottom left corner

of the plotting area and the second pair should give the coordinates of the top
right corner. The coordinate on the horizontal axis should be given first in

each pair. Note that the order in which these points are given is important because
it defines up, down, left and right for subsequent graphical operations.

basebox
An array giving the coordinates of two points in the supplied Frame (or in the
base Frame if a FrameSet was supplied) which correspond to the bottom left and
top right corners of the plotting area, as specified above. This range of coordinates
will be mapped linearly on to the plotting area. The coordinates should be given
in the same order as above.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Plot. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way. If no initialisation
is required, a zero-length string may be supplied.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astPlot()
A pointer to the new Plot.

Notes:

e The base Frame of the returned Plot will be a new Frame which is created by this
function to represent the coordinate system of the underlying graphics system
(graphical coordinates). It is given a Frame index of 1 within the Plot. The
choice of base Frame attribute) should not, in general, be changed once
a Plot has been created (although you could use this as a way of moving the plotting
area around on the plotting surface).

e If a Frame is supplied (via the " frame" pointer), then it becomes the current
Frame of the new Plot and is given a Frame index of 2.

e If a FrameSet is supplied (via the " frame" pointer), then all the Frames within
this FrameSet become part of the new Plot (where their Frame indices are increased
by 1), with the FrameSet’ s current Frame becoming the current Frame of the Plot.

e If a null Object pointer (AST__NULL) is supplied (via the " frame" pointer), then
the returned Plot will contain two Frames, both created by this function. The
base Frame will describe graphics coordinates (as above) and the current Frame
will be a basic Frame with no attributes set (this will therefore give default
values for such things as the Plot and the Label on each axis). Physical
coordinates will be mapped linearly on to graphical coordinates.

e An error will result if the Frame supplied (or the base Frame if a FrameSet was
supplied) is not 2-dimensional.

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 424 astPlot3D

astPlot3D
Create a Plot3D

Description:
This function creates a new [Plot3D|and optionally initialises its attributes.

A Plot3D is a specialised form of [Plof| that provides facilities for producing 3D graphical output.
Synopsis:

AstPlot3D *astPlot3D(AstFrame xframe, const float graphbox[6], const double basebox[
6], const char xoptiomns, ...)

Parameters:

frame
Pointer to a describing the physical coordinate system in which to plot.
A pointer to a [FrameSet| may also be given, in which case its current Frame will
be used to define the physical coordinate system and its base Frame will be mapped
on to graphical coordinates (see below).
If a null pointer (AST__NULL) is given, a default 3-dimensional Frame will
be used to describe the physical coordinate system. Labels, etc. may then be
attached to this by setting the appropriate Frame attributes (e.g. [Label(axis))
for the Plot.

graphbox
An array giving the position and extent of the plotting volume (within the plotting
space of the underlying graphics system) in which graphical output is to appear.
This must be specified using graphical coordinates appropriate to the underlying
graphics system.
The first triple of values should give the coordinates of the bottom left corner
of the plotting volume and the second triple should give the coordinates of the
top right corner. The coordinate on the horizontal axis should be given first
in each pair. Note that the order in which these points are given is important
because it defines up, down, left and right for subsequent graphical operations.

basebox
An array giving the coordinates of two points in the supplied Frame (or in the
base Frame if a FrameSet was supplied) which correspond to the bottom left and
top right corners of the plotting volume, as specified above. This range of coordinates
will be mapped linearly on to the plotting area. The coordinates should be given
in the same order as above.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Plot3D. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way. If no initialisation
is required, a zero-length string may be supplied.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

425 astPlot3D SUN/211.30 —AST Function Descriptions

astPlot3D()
A pointer to the new Plot3D.

Notes:

e The base Frame of the returned Plot3D will be a new Frame which is created by
this function to represent the coordinate system of the underlying graphics system
(graphical coordinates). It is given a Frame index of 1 within the Plot3D. The
choice of base Frame attribute) should not, in general, be changed once
a Plot3D has been created (although you could use this as a way of moving the
plotting area around on the plotting surface).

e If a Frame is supplied (via the " frame" pointer), then it becomes the current
Frame of the new Plot3D and is given a Frame index of 2.

e If a FrameSet is supplied (via the " frame" pointer), then all the Frames within
this FrameSet become part of the new Plot3D (where their Frame indices are increased
by 1), with the FrameSet’ s current Frame becoming the current Frame of the Plot3D.

e At least one of the three axes of the current Frame must be independent of the
other two current Frame axes.

e If a null Object pointer (AST__NULL) is supplied (via the " frame" pointer), then
the returned Plot3D will contain two Frames, both created by this function. The
base Frame will describe graphics coordinates (as above) and the current Frame
will be a basic Frame with no attributes set (this will therefore give default
values for such things as the Plot3D and the Label on each axis). Physical
coordinates will be mapped linearly on to graphical coordinates.

e An error will result if the Frame supplied (or the base Frame if a FrameSet was
supplied) is not 3-dimensional.

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 426 astPointInRegion

astPointInRegion
Tests if a single point is inside a Region

Description:
This function returns a logical value indicating if a supplied point is inside a supplied

Synopsis:
int astPointInRegion(AstRegion *this, const double point[])
Parameters:
this
Pointer to the Region.

point
Pointer to an array holding the axis values of the point to be tested. The number
of values in this array should match the number of axes in the supplied Region.

Returned Value:

astPointInRegion()
Zero if the point is outside the Region, and non-zero otherwise.

Notes:

e If the supplied value is AST__BAD on every axis, then O is always returned.

e If many points need to be tested, then it is usually more efficient to use the
Region as a to transform all the points. This can be done using one of
the Mapping transformation methods (astTran<X>). If a transformed axis value
is AST__BAD then the corresponding input point is outside the Region.

e Zero will be returned if an error occurs.

427 astPointList SUN/211.30 —AST Function Descriptions

astPointList
Create a PointList

Description:
This function creates a new object and optionally initialises its attributes.

A PointList object is a specialised type of which represents a collection of points in a

coordinate [Framel
Synopsis:
AstPointList *astPointList(AstFrame *frame, int npnt, int ncoord, int dim, const double
*points, AstRegion xunc, const char xoptions, ...)
Parameters:
frame

A pointer to the Frame in which the region is defined. A deep copy is taken of
the supplied Frame. This means that any subsequent changes made to the Frame
using the supplied pointer will have no effect the Region.

npnt
The number of points in the Region.

ncoord
The number of coordinates being supplied for each point. This must equal the
number of axes in the supplied Frame, given by its attribute.

dim
The number of elements along the second dimension of the " points" array (which
contains the point coordinates). This value is required so that the coordinate
values can be correctly located if they do not entirely fill this array. The
value given should not be less than " npnt"

points
The address of the first element of a 2-dimensional array of shape " [ncoord] [dim]"
giving the physical coordinates of the points. These should be stored such that
the value of coordinate number " coord" for point number " pnt" is found in element
" in[coord] [pnt]"

unc
An optional pointer to an existing Region which specifies the uncertainties associated
with each point in the PointList being created. The uncertainty at any point
in the PointList is found by shifting the supplied " uncertainty" Region so that
it is centred at the point being considered. The area covered by the shifted
uncertainty Region then represents the uncertainty in the position. The uncertainty
is assumed to be the same for all points.
If supplied, the uncertainty Region must be of a class for which all instances
are centro-symetric (e.g. [Box|, [Circle|, [Ellipse|, etc.) or be a containing
centro-symetric component Regions. A deep copy of the supplied Region will be
taken, so subsequent changes to the uncertainty Region using the supplied pointer
will have no effect on the created Box. Alternatively, a NULL pointer may
be supplied, in which case a default uncertainty is used equivalent to a box 1.0E-6
of the size of the bounding box of the PointList being created.
The uncertainty Region has two uses: 1) when the function compares
two Regions for equality the uncertainty Region is used to determine the tolerance
on the comparison, and 2) when a Region is mapped into a different coordinate

SUN/211.30 —AST Function Descriptions 428 astPointList

system and subsequently simplified (using [astSimplify]), the uncertainties are
used to determine if the transformed boundary can be accurately represented by

a specific shape of Region.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new PointList. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astPointList()
A pointer to the new PointList.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

429

astPolyCoeffs SUN/211.30 —AST Function Descriptions

astPolyCoeffs
Retrieve the coefficient values used by a PolyMap

Description:
This function returns the coefficient values used by either the forward or inverse transformation of
a in the same form that they are supplied to the PolyMap constructor.
Usually, you should call this method first with " nel" set to zero to determine the number of
coefficients used by the PolyMap. This allows you to allocate an array of the correct size to hold all
coefficient data. You should then call this method a second time to get the coefficient data.

Synopsis:
void astPolyCoeffs(AstPolyMap *this, int forward, int nel, double *coeffs, int *ncoeff
)
Parameters:

this
Pointer to the original [Mapping].

forward
If non-zero, the coefficients of the forward PolyMap transformation are returned.
Otherwise the inverse transformation coefficients are returned.

nel
The length of the supplied " coeffs" array. It should be at least " ncoeffx*(
nin + 2)" if " foward" is non-zero, and " ncoeffx(nout + 2)" otherwise, where
" ncoeff" is the number of coefficients to be returned. If a value of zero is
supplied, no coefficient values are returned, but the number of coefficients used
by the transformation is still returned in " ncoeff"

coeffs
An array in which to return the coefficients used by the requested transformation
of the PolyMap. Ignored if " mnel" is zero. The coefficient data is returned
in the form in which it is supplied to the PolyMap constructor. That is, each
group of " 2 + nin" or " 2 + nout" adjacent elements describe a single coefficient
of the forward or inverse transformation. See the PolyMap constructor documentation
for further details.
If the supplied array is too short to hold all the coefficients, trailing coefficients
are excluded. If the supplied array is longer than needed to hold all the coefficients,
trailing elements are filled with zeros.

ncoeff

The number of coefficients used by the requested transformation. A value of zero
is returned if the transformation does not have any defining polynomials. A value
is returned for this argument even if " nel" is zero.

SUN/211.30 —AST Function Descriptions 430 astPolyCurve

astPolyCurve
Draw a series of connected geodesic curves

Description:
This function joins a series of points specified in the physical coordinate system of a[Plotlby drawing
a sequence of geodesic curves. It is equivalent to making repeated use of the[astCurvefunction
(g.v.), except that astPolyCurve will generally be more efficient when drawing many geodesic
curves end-to-end. A typical application of this might be in drawing contour lines.

As with astCurve, full account is taken of the between physical and graphical coordinate
systems. This includes any discontinuities and clipping established using

Synopsis:
void astPolyCurve(AstPlot *this, int npoint, int ncoord, int indim, const double *in
)
Parameters:
this
Pointer to the Plot.
npoint
The number of points between which geodesic curves are to be drawn.
ncoord
The number of coordinates being supplied for each point (i.e. the number of axes
in the current of the Plot, as given by its attribute).
indim
The number of elements along the second dimension of the " in" array (which contains
the input coordinates). This value is required so that the coordinate values
can be correctly located if they do not entirely fill this array. The value given
should not be less than " npoint"
in The address of the first element in a 2-dimensional array of shape " [ncoord] [indim]"

Notes:

giving the physical coordinates of the points which are to be joined in sequence
by geodesic curves. These should be stored such that the value of coordinate
number " coord" for point number " point" is found in element " in[coord] [point]"

No curve is drawn on either side of any point which has any coordinate equal to
the value AST__BAD.

An error results if the base Frame of the Plot is not 2-dimensional.

An error also results if the transformation between the current and base Frames
of the Plot is not defined (i.e. the Plot’ s attribute is zero).

431 astPolyMap SUN/211.30 —AST Function Descriptions

astPolyMap
Create a PolyMap

Description:
This function creates a new and optionally initialises its attributes.

A PolyMap is a form of which performs a general polynomial transformation. Each
output coordinate is a polynomial function of all the input coordinates. The coefficients are
specified separately for each output coordinate. The forward and inverse transformations are
defined independantly by separate sets of coefficients. If no inverse transformation is supplied, the
default behaviour is to use an iterative method to evaluate the inverse based only on the forward

transformation (see attribute [lterInverse).

Synopsis:
AstPolyMap *astPolyMap(int nin, int nout, int ncoeff_f, const double coeff_f[], int
ncoeff_i, const double coeff_i[], const char xoptiomns, ...)

Parameters:
nin

The number of input coordinates.

nout
The number of output coordinates.

ncoeff f
The number of non-zero coefficients necessary to define the forward transformation
of the PolyMap. If zero is supplied, the forward transformation will be undefined.

coeff f
An array containing " ncoeff_f*x(2 + nin)" elements. Each group of " 2 4 nin"
adjacent elements describe a single coefficient of the forward transformation.
Within each such group, the first element is the coefficient value; the next element
is the integer index of the PolyMap output which uses the coefficient within its
defining polynomial (the first output has index 1); the remaining elements of
the group give the integer powers to use with each input coordinate value (powers
must not be negative, and floating point values are rounded to the nearest integer).
If " ncoeff_f" is zero, a NULL pointer may be supplied for " coeff_f"

For instance, if the PolyMap has 3 inputs and 2 outputs, each group consisting

of 5 elements, A groups such as " (1.2, 2.0, 1.0, 3.0, 0.0)" describes a coefficient
with value 1.2 which is used within the definition of output 2. The output value

is incremented by the product of the coefficient value, the value of input coordinate
1 raised to the power 1, and the value of input coordinate 2 raised to the power

3. Input coordinate 3 is not used since its power is specified as zero. As another
example, the group " (-1.0, 1.0, 0.0, 0.0, 0.0)" describes adds a constant value
-1.0 onto output 1 (it is a constant value since the power for every input axis

is given as zero).

Each final output coordinate value is the sum of the " ncoeff_f" terms described

by the " ncoeff_f" groups within the supplied array.

ncoeff i
The number of non-zero coefficients necessary to define the inverse transformation
of the PolyMap. If zero is supplied, the default behaviour is to use an iterative
method to evaluate the inverse based only on the forward transformation (see attribute
IterInverse).

SUN/211.30 —AST Function Descriptions 432 astPolyMap

coeff i
An array containing " ncoeff_i*(2 + nout)" elements. Each group of " 2 + nout"
adjacent elements describe a single coefficient of the inverse transformation,
using the same schame as " coeff_f" , except that " inputs" and " outputs" are

transposed. If " ncoeff_i" is zero, a NULL pointer may be supplied for " coeff_i"

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new PolyMap. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astPolyMap()
A pointer to the new PolyMap.

Notes:

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

433

astPolyTran SUN/211.30 —AST Function Descriptions

astPolyTran
Fit a PolyMap inverse or forward transformation

Description:

This function creates a new [PolyMap|which is a copy of the supplied PolyMap, in which a specified
transformation (forward or inverse) has been replaced by a new polynomial transformation. The
coefficients of the new transformation are estimated by sampling the other transformation and
performing a least squares polynomial fit in the opposite direction to the sampled positions and
values.

This method can only be used on (1-input,1-output) or (2-input,2-output) PolyMaps.

The transformation to create is specified by the " forward" parameter. In what follows " X" refers
to the inputs of the PolyMap, and " Y" to the outputs of the PolyMap. The forward transformation
transforms input values (X) into output values (Y), and the inverse transformation transforms
output values (Y) into input values (X). Within a PolyMap, each transformation is represented
by an independent set of polynomials, P_f or P_i: Y=P_£(X) for the forward transformation and
X=P_i(Y) for the inverse transformation.

The " forward" parameter specifies the transformation to be replaced. If it is non-zero, a new
forward transformation is created by first finding the input values (X) using the inverse transfor-
mation (which must be available) at a regular grid of points (Y) covering a rectangular region of
the PolyMap’ s output space. The coefficients of the required forward polynomial, Y=P_£(X), are
chosen in order to minimise the sum of the squared residuals between the sampled values of Y and
P_£(X).

If " forward" is zero (probably the most likely case), a new inverse transformation is created by
first finding the output values (Y) using the forward transformation (which must be available)
at a regular grid of points (X) covering a rectangular region of the PolyMap’ s input space. The
coefficients of the required inverse polynomial, X=P_i(Y), are chosen in order to minimise the sum
of the squared residuals between the sampled values of X and P_i(Y).

This fitting process is performed repeatedly with increasing polynomial orders (starting with linear)
until the target accuracy is achieved, or a specified maximum order is reached. If the target accuracy
cannot be achieved even with this maximum-order polynomial, the best fitting maximum-order
polynomial is returned so long as its accuracy is better than " maxacc" . If it is not, a NULL pointer
is returned but no error is reported.

Synopsis:

AstPolyMap *astPolyTran(AstPolyMap *this, int forward, double acc, double maxacc,
int maxorder, const double *1bnd, const double #*ubnd)

Parameters:

this
Pointer to the original Mapping].

forward

If non-zero, the forward PolyMap transformation is replaced. Otherwise the inverse

transformation is replaced.

acc
The target accuracy, expressed as a geodesic distance within the PolyMap’ s input
space (if " forward" is zero) or output space (if " forward" is non-zero).
maxacc

The maximum allowed accuracy for an acceptable polynomial, expressed as a geodesic

SUN/211.30 —AST Function Descriptions 434 astPolyTran

distance within the PolyMap’ s input space (if " forward" is zero) or output space
(if " forward" is non-zero).

maxorder
The maximum allowed polynomial order. This is one more than the maximum power
of either input axis. So for instance, a value of 3 refers to a quadratic polynomial.
Note, cross terms with total powers greater than or equal to maxorder are not
inlcuded in the fit. So the maximum number of terms in each of the fitted polynomials
is maxorderx(maxorder+1)/2.

Ibnd
Pointer to an array holding the lower bounds of a rectangular region within the
PolyMap’ s input space (if " forward" is zero) or output space (if " forward"
is non-zero). The new polynomial will be evaluated over this rectangle. The
length of this array should equal the value of the PolyMap’ s or attribute,
depending on " forward"

ubnd
Pointer to an array holding the upper bounds of a rectangular region within the
PolyMap’ s input space (if " forward" is zero) or output space (if " forward"
is non-zero). The new polynomial will be evaluated over this rectangle. The
length of this array should equal the value of the PolyMap’ s Nin or Nout attribute,
depending on " forward"

Applicability:
PolyMap
A1l PolyMaps have this method.

The ChebyMap implementation of this method allows NULL pointers to be supplied for

" 1bnd" and/or " ubnd" , in which case the corresponding bounds supplied when the ChebyMap
was created are used. The returned PolyMap will be a ChebyMap, and the new transformation
will be defined as a weighted sum of Chebyshev functions of the first kind.

Returned Value:

astPolyTran()
A pointer to the new PolyMap. A NULL pointer will be returned if the fit fails to
achieve the accuracy specified by " maxacc" , but no error will be reported.
Notes:

e The attribute is always cleared in the returned PolyMap. This means
that the returned PolyMap will always use the new fit by default, rather than
the iterative inverse, regardless of the setting of IterInverse in the supplied
PolyMap.

e This function can only be used on 1D or 2D PolyMaps which have the same number
of inputs and outputs.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

435 astPolygon SUN/211.30 —AST Function Descriptions

astPolygon
Create a Polygon

Description:
This function creates a new object and optionally initialises its attributes.

The Polygon class implements a polygonal area, defined by a collection of vertices, within a 2-
dimensional[Frame} The vertices are connected together by geodesic curves within the encapsulated
Frame. For instance, if the encapsulated Frame is a simple Frame then the geodesics will be straight
lines, but if the Frame is a then the geodesics will be great circles. Note, the vertices
must be supplied in an order such that the inside of the polygon is to the left of the boundary as
the vertices are traversed. Supplying them in the reverse order will effectively negate the polygon.

Within a SkyFrame, neighbouring vertices are always joined using the shortest path. Thus if an
edge of 180 degrees or more in length is required, it should be split into section each of which
is less than 180 degrees. The closed path joining all the vertices in order will divide the celestial
sphere into two disjoint regions. The inside of the polygon is the region which is circled in an
anti-clockwise manner (when viewed from the inside of the celestial sphere) when moving through
the list of vertices in the order in which they were supplied when the Polygon was created (i.e. the
inside is to the left of the boundary when moving through the vertices in the order supplied).

Synopsis:
AstPolygon *astPolygon(AstFrame xframe, int npnt, int dim, const double xpoints, AstRegion
*unc, const char xoptiomns, ...)

Parameters:
frame

A pointer to the Frame in which the region is defined. It must have exactly 2
axes. A deep copy is taken of the supplied Frame. This means that any subsequent
changes made to the Frame using the supplied pointer will have no effect the [Regiom]
npnt
The number of points in the Region.
dim
The number of elements along the second dimension of the " points" array (which
contains the point coordinates). This value is required so that the coordinate
values can be correctly located if they do not entirely fill this array. The
value given should not be less than " npnt"

points
The address of the first element of a 2-dimensional array of shape " [2] [dim]"
giving the physical coordinates of the vertices. These should be stored such
that the value of coordinate number " coord" for point number " pnt" is found
in element " in[coord] [pnt]"

unc
An optional pointer to an existing Region which specifies the uncertainties associated
with the boundary of the Polygon being created. The uncertainty in any point
on the boundary of the Polygon is found by shifting the supplied " uncertainty"
Region so that it is centred at the boundary point being considered. The area
covered by the shifted uncertainty Region then represents the uncertainty in the
boundary position. The uncertainty is assumed to be the same for all points.

If supplied, the uncertainty Region must be of a class for which all instances
are centro-symetric (e.g. [Box], [Circle, [Ellipse|, etc.) or be a containing

SUN/211.30 —AST Function Descriptions 436 astPolygon

centro-symetric component Regions. A deep copy of the supplied Region will be
taken, so subsequent changes to the uncertainty Region using the supplied pointer
will have no effect on the created Polygon. Alternatively, a NULL pointer
may be supplied, in which case a default uncertainty is used equivalent to a box
1.0E-6 of the size of the Polygon being created.
The uncertainty Region has two uses: 1) when the function compares
two Regions for equality the uncertainty Region is used to determine the tolerance
on the comparison, and 2) when a Region is mapped into a different coordinate
system and subsequently simplified (using [astSimplify]), the uncertainties are
used to determine if the transformed boundary can be accurately represented by
a specific shape of Region.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Polygon. The syntax
used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astPolygon()
A pointer to the new Polygon.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

Status Handling :

The protected interface to this function includes an extra parameter at the end of
the parameter list descirbed above. This parameter is a pointer to the integer inherited
status variable: " int *status"

437 astPrism SUN/211.30 —AST Function Descriptions

astPrism
Create a Prism

Description:
This function creates a new and optionally initialises its attributes.
A Prism is a[Region|which represents an extrusion of an existing Region into one or more orthogonal
dimensions (specified by another Region). If the Region to be extruded has N axes, and the Region
defining the extrusion has M axes, then the resulting Prism will have (M+N) axes. A point is inside
the Prism if the first N axis values correspond to a point inside the Region being extruded, and the
remaining M axis values correspond to a point inside the Region defining the extrusion.
As an example, a cylinder can be represented by extruding an existing[Circle] using an [Interval|
to define the extrusion. Ih this case, the Interval would have a single axis and would specify the
upper and lower limits of the cylinder along its length.

Synopsis:

AstPrism *astPrism(AstRegion *regionl, AstRegion xregion2, const char xoptiomns,

)

Parameters:

regionl
Pointer to the Region to be extruded.

region2
Pointer to the Region defining the extent of the extrusion.

options
Pointer to a null-terminated string containing an optional comma-separated list
of attribute assignments to be used for initialising the new Prism. The syntax

used is identical to that for the function and may include " printf" format
specifiers identified by " %" symbols in the normal way.

If the " options" string contains " %" format specifiers, then an optional list
of additional arguments may follow it in order to supply values to be substituted
for these specifiers. The rules for supplying these are identical to those for
the astSet function (and for the C " printf" function).

Returned Value:

astPrism()
A pointer to the new Prism.

Notes:

e Deep copies are taken of the supplied Regions. This means that any subsequent
changes made to the component Regions using the supplied pointers will have no
effect on the Prism.

e A null pointer (AST__NULL) will be returned if this function is invoked
with the AST error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 438 astPurgeRows

astPurgeRows
Remove all empty rows from a table

Description:
This function removes all empty rows from the renaming the key associated with each table
cell accordingly.
Synopsis:
void astPurgeRows(AstTable *this)
Parameters:
this
Pointer to the Table.

439 astPurgeWCS SUN/211.30 —AST Function Descriptions

astPurgeWCS
Delete all cards in the FitsChan describing WCS information

Description:
This function deletes all cards in a that relate to any of the recognised WCS encodings.
On exit, the current card is the first remaining card in the FitsChan.

Synopsis:
void astPurgeWCS(AstFitsChan #*this)
Parameters:

this
Pointer to the FitsChan.

SUN/211.30 —AST Function Descriptions 440 astPutCards

astPutCards
Store a set of FITS header cards in a FitsChan

Description:
This function stores a set of FITS header cards in a The cards are supplied concatenated
together into a single character string. Any existing cards in the FitsChan are removed before the
new cards are added. The FitsChan is " re-wound" on exit by clearing its attribute. This
means that a subsequent invocation of can be made immediately without the need to
re-wind the FitsChan first.

Synopsis:
void astPutCards(AstFitsChan *this, const char *cards)

Parameters:

this
Pointer to the FitsChan.

cards
Pointer to a null-terminated character string containing the FITS cards to be
stored. Each individual card should occupy 80 characters in this string, and
there should be no delimiters, new lines, etc, between adjacent cards. The final
card may be less than 80 characters long. This is the format produced by the
fits_hdr2str function in the CFITSIO library.

Notes:

e An error will result if the supplied string contains any cards which cannot be
interpreted.

441 astPutChannelData SUN/211.30 —AST Function Descriptions

astPutChannelData
Store arbitrary data to be passed to a source or sink function

Description:
This function stores a supplied arbitrary pointer in the When a source or sink function
is invoked by the Channel, the invoked function can use the [astChannelData|macro to retrieve
the pointer. This provides a thread-safe alternative to passing file descriptors, etc, via global static
variables.

Synopsis:
void astPutChannelData(AstChannel *this, void *data)
Parameters:

this
Pointer to the Channel.

data
A pointer to be made available to the source and sink functions via the astChannelData
macro. May be NULL.

Applicability:

Channel
A1l Channels have this function.

Notes:

e This routine is not available in the Fortran 77 interface to the AST library.

SUN/211.30 —AST Function Descriptions 442 astPutColumnData

astPutColumnData
Store new data values for all rows of a column

Description:
This function copies data values from a supplied buffer into a named column. The first element in
the buffer becomes the first element in the first row of the column. If the buffer does not completely
fill the column, then any trailing rows are filled with null values.

Synopsis:
void astPutColumnData(AstFitsTable *xthis, const char xcolumn, int clen, size_t size,
void *coldata)
Parameters:
this
Pointer to the [FitsTablel
column
The character string holding the name of the column. Trailing spaces are ignored.
clen
If the column holds character strings, then this must be set to the length of
each fixed length string in the supplied array. This is often determined by the
appropriate TFORMn keyword in the binary table header. The supplied value is
ignored if the column does not hold character data.
size
The size of the " coldata" array, in bytes. This should be an integer multiple
of the number of bytes needed to hold the full vector value stored in a single
cell of the column. An error is reported if this is not the case.
coldata

A pointer to an area of memory holding the data to copy into the column. The

values should be stored in row order. If the column holds non-scalar values, the
elements of each value should be stored in " Fortran" order. No data type conversion
is performed.

443 astPutFits SUN/211.30 —AST Function Descriptions

astPutFits
Store a FITS header card in a FitsChan

Description:
This function stores a FITS header card in a The card is either inserted before the current
card (identified by the[Card]attribute), or over-writes the current card, as required.

Synopsis:
void astPutFits(AstFitsChan *this, const char card[80], int overwrite)

Parameters:
this
Pointer to the FitsChan.
card
Pointer to a possibly null-terminated character string containing the FITS card

to be stored. No more than 80 characters will be used from this string (or fewer
if a null occurs earlier).

overwrite
If this value is zero, the new card is inserted in front of the current card in
the FitsChan (as identified by the initial value of the Card attribute). If it
is non-zero, the new card replaces the current card. In either case, the Card
attribute is then incremented by one so that it subsequently identifies the card
following the one stored.

Notes:

e If the Card attribute initially points at the " end-of-file" (i.e. exceeds the
number of cards in the FitsChan), then the new card is appended as the last card
in the FitsChan.

e An error will result if the supplied string cannot be interpreted as a FITS header
card.

SUN/211.30 —AST Function Descriptions 444 astPutTable

astPutTable
Store a single FitsTable in a FitsChan

Description:
This function allows a representation of a single FITS binary table to be stored in a
For instance, this may provide the coordinate look-up tables needed subequently when reading
FITS-WCS headers for axes described using the " -TAB" algorithm. Since, in general, the calling
application may not know which tables will be needed - if any - prior to calling the
astTablesSource function provides an alternative mechanism in which a caller-supplied function is
invoked to store a named table in the FitsChan.

Synopsis:
void astPutTable(AstFitsChan *this, AstFitsTable *table, const char xextnam)
Parameters:

this
Pointer to the FitsChan.
table

Pointer to a [FitsTablel to be added to the FitsChan. If a FitsTable with the associated

extension name already exists in the FitsChan, it is replaced with the new one.

A deep copy of the FitsTable is stored in the FitsChan, so any subsequent changes

made to the FitsTable will have no effect on the behaviour of the FitsChan.

extnam
The name of the FITS extension associated with the table.

Notes:

e Tables stored in the FitsChan may be retrieved using [astGetTables|.
e The method can add multiple FitsTables in a single call.

445 astPutTableHeader SUN/211.30 —AST Function Descriptions

astPutTableHeader
Store new FITS headers in a FitsTable

Description:

This function stores new FITS headers in the supplied Any existing headers are first
deleted.

Synopsis:
void astPutTableHeader(AstFitsTable *this, AstFitsChan xheader)
Parameters:
this
Pointer to the FitsTable.

header

Pointer to a holding the headers for the FitsTable. A deep copy of the
supplied FitsChan is stored in the FitsTable, replacing the current FitsChan in
the Fitstable. Keywords that are fixed either by the properties of the [Table,
or by the FITS standard, are removed from the copy (see " Notes:" below).

Notes:

e The attributes of the supplied FitsChan, together with any source and sink functions
associated with the FitsChan, are copied to the FitsTable.

e Values for the following keywords are generated automatically by the FitsTable

(any values for these keywords in the supplied FitsChan will be ignored): " XTENSION"
, " BITPIX" , " NAXIS" , " NAXIS1" , " NAXIS2" , " PCOUNT" , " GCOUNT" , " TFIELDS"
, " TFORM)d" , " TTYPE}d" , " TNULL%d" , " THEAP" , " TDIMYd"

SUN/211.30 —AST Function Descriptions 446 astPutTables

astPutTables
Store one or more FitsTables in a FitsChan

Description:
This function allows representations of one or more FITS binary tables to be stored in a
For instance, these may provide the coordinate look-up tables needed subequently when reading
FITS-WCS headers for axes described using the " -TAB" algorithm. Since, in general, the calling
application may not know which tables will be needed - if any - prior to calling the
astTablesSource function provides an alternative mechanism in which a caller-supplied function is
invoked to store a named table in the FitsChan.

Synopsis:
void astPutTables(AstFitsChan *this, AstKeyMap *tables)

Parameters:

this
Pointer to the FitsChan.

tables
Pointer to a holding the tables that are to be added to the FitsChan. Each
entry should hold a scalar value which is a pointer to a to be added
to the FitsChan. Any unusable entries are ignored. The key associated with each
entry should be the name of the FITS binary extension from which the table was
read. If a FitsTable with the associated key already exists in the FitsChan, it
is replaced with the new one. A deep copy of each usable FitsTable is stored
in the FitsChan, so any subsequent changes made to the FitsTables will have no
effect on the behaviour of the FitsChan.

Notes:

e Tables stored in the FitsChan may be retrieved using [astGetTables|.
e The tables in the supplied KeyMap are added to any tables already in the FitsChan.

e The |[astPutTable| method provides a simpler means of adding a single table to a
FitsChan.

447 astQuad Approx SUN/211.30 —AST Function Descriptions

astQuadApprox
Obtain a quadratic approximation to a 2D Mapping

Description:
This function returns the co-efficients of a quadratic fit to the supplied Mapping|over the input area
specified by " Ibnd" and " ubnd" . The Mapping must have 2 inputs, but may have any number of
outputs. The i’ th Mapping output is modelled as a quadratic function of the 2 inputs (x,y):

output_i=a_i_ 0+ a_i_Ixx 4+ a_i_2*y + a_i_3*x*y + a_i_4*x*x + a_i_b*yx*y

The " fit" array is returned holding the values of the co-efficients a_0_0, a_0_1, etc.

Synopsis:

int QuadApprox(AstMapping *this, const double 1lbnd[2], const double ubnd[2], int nx,
int ny, double xfit, double *rms)

Parameters:

this

Pointer to the Mapping.

1bnd

Pointer to an array of doubles containing the lower bounds of a box defined within
the input coordinate system of the Mapping. The number of elements in this array
should equal the value of the Mapping’ s attribute. This box should specify
the region over which the fit is to be performed.

ubnd

nx

ny

fit

rms

Pointer to an array of doubles containing the upper bounds of the box specifying
the region over which the fit is to be performed.

The number of points to place along the first Mapping input. The first point
is at " 1bnd[0]" and the last is at " ubnd[0]" . If a value less than three is
supplied a value of three will be used.

The number of points to place along the second Mapping input. The first point
is at " 1bnd[1]" and the last is at " ubnd[1]" . If a value less than three is
supplied a value of three will be used.

Pointer to an array of doubles in which to return the co-efficients of the quadratic
approximation to the specified transformation. This array should have at least

" 6sNout]" , elements. The first 6 elements hold the fit to the first Mapping
output. The next 6 elements hold the fit to the second Mapping output, etc. So

if the Mapping has 2 inputs and 2 outputs the quadratic approximation to the forward
transformation is:

X_out = fit[0] + fit[1]xX_in + fit[2]*Y_in + fit[3]*X_inxY_in + fit[4]*X_inxX_in
+ fit[B1*Y_inxY_in Y_out = fit[6] + fit[7]1*X_in + fit[8]*Y_in 4 fit[9]*X_inxY_in
+ fit[101#X_in*X_in + fit[11]1*Y_inxY_in

Pointer to a double in which to return the RMS residual between the fit and the
Mapping, summed over all Mapping outputs.

Returned Value:

astQuadApprox()
If a quadratic approximation was created, a non-zero value is returned. Otherwise
zero is returned and the fit co-efficients are set to AST__BAD.

SUN/211.30 —AST Function Descriptions 448 astQuadApprox

Notes:

e This function fits the Mapping’ s forward transformation. To fit the inverse
transformation, the Mapping should be inverted using before invoking
this function.

e A value of zero will be returned if this function is invoked with the global error
status set, or if it should fail for any reason.

449 astRate SUN/211.30 —AST Function Descriptions

astRate
Calculate the rate of change of a Mapping output

Description:

This function evaluates the rate of change of a specified output of the supplied Mapping| with
respect to a specified input, at a specified input position.

The result is estimated by interpolating the function using a fourth order polynomial in the
neighbourhood of the specified position. The size of the neighbourhood used is chosen to minimise
the RMS residual per unit length between the interpolating polynomial and the supplied Mapping
function. This method produces good accuracy but can involve evaluating the Mapping 100 or
more times.

Synopsis:
double astRate(AstMapping *this, double *at, int axl, int ax2)
Parameters:
this
Pointer to the Mapping to be applied.

at The address of an array holding the axis values at the position at which the rate
of change is to be evaluated. The number of elements in this array should equal
the number of inputs to the Mapping.

ax1
The index of the Mapping output for which the rate of change is to be found (output
numbering starts at 1 for the first output).

ax2
The index of the Mapping input which is to be varied in order to find the rate
of change (input numbering starts at 1 for the first input).

Returned Value:

astRate()
The rate of change of Mapping output " axl1" with respect to input " ax2" , evaluated
at " at" , or AST__BAD if the value cannot be calculated.

Notes:

e A value of AST__BAD will be returned if this function is invoked with the global
error status set, or if it should fail for any reason.

SUN/211.30 —AST Function Descriptions 450 astRateMap

astRateMap
Create a RateMap

Description:
This function creates a new and optionally initialises its attributes.

A RateMap is a which represents a single element of the Jacobian matrix of another
Mapping. The Mapping for which the Jacobian is required is specified when the new RateMap is
created, and is referred to as the " encapsulated Mapping" below.

The number of inputs to a RateMap is the same as the number of inputs to its encapsulated
Mapping. The number of outputs from a RateMap is always one. This one output