diff --git a/knoten/bundle.py b/knoten/bundle.py index 967f3a6f5685d465563b3ad6ddaef3b99238eeef..15c4ed9ab89151e006a45ab567910eb0ed1de900 100644 --- a/knoten/bundle.py +++ b/knoten/bundle.py @@ -66,6 +66,9 @@ def closest_approach(points, direction): ------- : array The (x, y, z) point that is closest to all of the lines + : ndarray + The (x, y, z) covariance matrix that describes the uncertaintly of the + point """ num_lines = points.shape[0] design_mat = np.zeros((num_lines * 3, 3)) @@ -75,8 +78,10 @@ def closest_approach(points, direction): line = direction[i] / np.linalg.norm(direction[i]) design_mat[3*i:3*i+3] = np.identity(3) - np.outer(line, line) rhs[3*i:3*i+3] = np.dot(point,line) * line + point - closest_point = np.linalg.lstsq(design_mat, rhs, rcond=None)[0] - return closest_point + N_inv = np.linalg.inv(design_mat.T.dot(design_mat)) + closest_point = N_inv.dot(design_mat.T).dot(rhs) + + return closest_point, N_inv def compute_apriori_ground_points(network, sensors): """ @@ -105,9 +110,15 @@ def compute_apriori_ground_points(network, sensors): locus = sensors[row["serialnumber"]].imageToRemoteImagingLocus(measure) positions.append([locus.point.x, locus.point.y, locus.point.z]) look_vecs.append([locus.direction.x, locus.direction.y, locus.direction.z]) - ground_pt = closest_approach(np.array(positions), np.array(look_vecs)) + ground_pt, covar_mat = closest_approach(np.array(positions), np.array(look_vecs)) + covar_vec = [covar_mat[0,0], covar_mat[0,1], covar_mat[0,2], + covar_mat[1,1], covar_mat[1,2], covar_mat[2,2]] network.loc[network.id == point_id, ["aprioriX", "aprioriY", "aprioriZ"]] = ground_pt network.loc[network.id == point_id, ["adjustedX", "adjustedY", "adjustedZ"]] = ground_pt + network.loc[network.id == point_id, ["adjustedX", "adjustedY", "adjustedZ"]] = ground_pt + # We have to do a separate loop to assign a list to a single cell + for measure_id, row in group.iterrows(): + network.at[measure_id, 'aprioriCovar'] = covar_vec return network class CsmParameter: diff --git a/tests/test_bundle.py b/tests/test_bundle.py index 7f8c02cb9b2b83559b2fa9b86b6caee4203fb96f..b1265d38784ff8a46b3a9b8e2150061290586bd4 100644 --- a/tests/test_bundle.py +++ b/tests/test_bundle.py @@ -4,6 +4,7 @@ import pytest import numpy as np import pandas as pd from knoten import bundle +from collections import OrderedDict from csmapi import csmapi @pytest.fixture @@ -13,6 +14,7 @@ def control_network(): 'serialnumber': ['a', 'b', 'c', 'd', 'b', 'a', 'b', 'c', 'd'], 'line': np.arange(9), 'sample': np.arange(9)[::-1], + 'aprioriCovar': [[], [], [], [], [], [], [], [], []], 'aprioriX': np.zeros(9), 'aprioriX': np.zeros(9), 'aprioriY': np.zeros(9), @@ -37,43 +39,49 @@ def sensors(): def test_closest_approach_intersect(): points = np.array([[-1, 1, 2], [0, 2, 2], [0, 1, 3]]) directions = np.array([[1, 0, 0], [0, 2, 0], [0, 0, -1]]) - res = bundle.closest_approach(points, directions) + res, covar = bundle.closest_approach(points, directions) np.testing.assert_allclose(res, [0, 1, 2]) def test_closest_approach_no_intersect(): points = np.array([[-1, 1, 2], [0.5, 1-np.sqrt(3)/2.0, 2], [0.5, 1+np.sqrt(3)/2.0, 4]]) directions = np.array([[0, 1, 0], [np.sqrt(3)/2.0, 0.5, 0], [0, 0, 1]]) - res = bundle.closest_approach(points, directions) + res, covar = bundle.closest_approach(points, directions) np.testing.assert_allclose(res, [0, 1, 2], atol=1e-12) def test_compute_ground_points(control_network, sensors): expected_bob = np.array([1.0, 7.0, 0.0]) + bob_covar = np.array([[1.0, 0.1, 0.2], [0.1, 1.5, 0.15], [0.2, 0.15, 3.0]]) expected_sally = np.array([6.5, 1.5, 0.0]) + sally_covar = np.array([[2.0, 1.1, 0.6], [1.1, 1.0, 0.45], [0.6, 0.45, 3.2]]) - with mock.patch('knoten.bundle.closest_approach', side_effect=[expected_bob, expected_sally]) as mock_closest: + with mock.patch('knoten.bundle.closest_approach', side_effect=[(expected_bob, bob_covar), (expected_sally, sally_covar)]) as mock_closest: out_df = bundle.compute_apriori_ground_points(control_network, sensors) mock_closest.assert_called() - np.testing.assert_array_equal( - out_df[out_df.id == "bob"][["aprioriX", "aprioriY", "aprioriZ"]].values, - np.repeat(expected_bob[:, None], 3, axis=1).T) - np.testing.assert_array_equal( - out_df[out_df.id == "bob"][["adjustedX", "adjustedY", "adjustedZ"]].values, - np.repeat(expected_bob[:, None], 3, axis=1).T) - np.testing.assert_array_equal( - out_df[out_df.id == "tim"][["aprioriX", "aprioriY", "aprioriZ"]].values, - np.zeros((2, 3))) - np.testing.assert_array_equal( - out_df[out_df.id == "tim"][["adjustedX", "adjustedY", "adjustedZ"]].values, - np.zeros((2, 3))) - np.testing.assert_array_equal( - out_df[out_df.id == "sally"][["aprioriX", "aprioriY", "aprioriZ"]].values, - np.repeat(expected_sally[:, None], 4, axis=1).T) - np.testing.assert_array_equal( - out_df[out_df.id == "sally"][["adjustedX", "adjustedY", "adjustedZ"]].values, - np.repeat(expected_sally[:, None], 4, axis=1).T) + for _, row in out_df[out_df.id == "bob"].iterrows(): + np.testing.assert_array_equal(row[["aprioriX", "aprioriY", "aprioriZ"]].values, + expected_bob) + np.testing.assert_array_equal(row[["adjustedX", "adjustedY", "adjustedZ"]].values, + expected_bob) + np.testing.assert_array_equal(list(row["aprioriCovar"]), + [bob_covar[0,0], bob_covar[0,1], bob_covar[0,2], + bob_covar[1,1], bob_covar[1,2], bob_covar[2,2]]) + for _, row in out_df[out_df.id == "tim"].iterrows(): + np.testing.assert_array_equal(row[["aprioriX", "aprioriY", "aprioriZ"]].values, + np.zeros(3)) + np.testing.assert_array_equal(row[["adjustedX", "adjustedY", "adjustedZ"]].values, + np.zeros(3)) + assert not list(row["aprioriCovar"]) + for _, row in out_df[out_df.id == "sally"].iterrows(): + np.testing.assert_array_equal(row[["aprioriX", "aprioriY", "aprioriZ"]].values, + expected_sally) + np.testing.assert_array_equal(row[["adjustedX", "adjustedY", "adjustedZ"]].values, + expected_sally) + np.testing.assert_array_equal(list(row["aprioriCovar"]), + [sally_covar[0,0], sally_covar[0,1], sally_covar[0,2], + sally_covar[1,1], sally_covar[1,2], sally_covar[2,2]]) def test_get_sensor_parameter(): mock_sensor = mock.MagicMock(spec=csmapi.RasterGM) @@ -117,9 +125,17 @@ def test_compute_jacobian(control_network, sensors): parameters = {sn: [mock.MagicMock()]*2 for sn in sensors} sensor_partials = [(i+1) * np.ones((2, 2)) for i in range(9)] ground_partials = [-(i+1) * np.ones((2, 3)) for i in range(9)] + coefficient_columns = OrderedDict() + coefficient_columns['a'] = (0, 2) + coefficient_columns['b'] = (2, 4) + coefficient_columns['c'] = (4, 6) + coefficient_columns['d'] = (6, 8) + coefficient_columns['bob'] = (8, 11) + coefficient_columns['tim'] = (11, 14) + coefficient_columns['sally'] = (14, 17) with mock.patch('knoten.bundle.compute_sensor_partials', side_effect=sensor_partials) as sensor_par_mock, \ mock.patch('knoten.bundle.compute_ground_partials', side_effect=ground_partials) as ground_par_mock: - J, coefficient_columns = bundle.compute_jacobian(control_network, sensors, parameters) + J = bundle.compute_jacobian(control_network, sensors, parameters, coefficient_columns) expected_J = [ [1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0],