The lidar_image_align application coregisters LIDAR and image data to form a consistent map. Specifically, it
takes a set of Lunar Orbiter Laser Altimeter (LOLA) readings from the Lunar Reconaissance Orbiter (LRO) and an
Apollo metric camera image as input. It then aligns the two data sources to form a consistent map, and outputs a
transformation from the original imagine coordinates to the adjusted image coordinates.

1 Files:

e lidar_image_align.cc, The main method, parses command line arguments and calls high level functions.

o LidarlmageAlign.cc and LidarImageAlign.h, Gauss-Newton algorithm to align tracks to images. Also imple-
ments currently unused brute force search, and computes homographies between pairs of images, or two sets of
LOLA track coordinates.

e TracksGCP.cc and TracksGCP.h implementtaion of functions to update and save ground control points.

2 How to install:

1. Install Prerequisites - Install GDAL 1.9, OpenCV 2.4.9, ISIS 3.1, Eigen 3, Boost 1.5

2. Build -1Inthe lidar2image_processing/tests directory, run “cmake ..” followed by “make” to
create the tests/lidar2image executable.

3 How to run

The command “1idar_image_align -1 lola_tracks.csv —-i image.cub” will align the LOLA tracks
inthe CSV file lola_tracks.csv tothe image file image . cub. The transformation matrix and the ground control
point files will be output in results directory under filename_transf.txt and filename_trackIndex_shotIndex_gcp.txt
where filename is the stem of the image filename (filename with no path and no extension). The following options may
be passed to 1lidar_image_align at runtime.

e -1, -lidarFile filename : a CSV file containing the LOLA shots to process or a file containing a list
of LOLA CSV shots to process, separated by linebreaks

e —i, —inputCubFile filename : acub image to align tracks to

e —r, -results directory name : optional parameter for the directory name where results are saved
e —-s, -settings filename : optional parameter containing the settings filename

e —-t, -test mode : optional parameter to run in test mode

e —h, -help: display a help message

lidar_image_align.sh is an script example to run data available in lidar2image_processing/tests/data directory.

4 The Algorithm

Many different spacecraft have succesfully returned various types of extraplanetary data to Earth, including imagery
and elevation data. However, due to small uncertainties in space craft position, these different data sources have errors
in alignment which makes forming a consistent multi-source map a challenging problem. Finding transformations
from one data set to another to form a consistent map is the coregistration problem.

The problem of coregistering different sources of imagery data has been succesfully adressed with bundle adjust-
ment. However, the problem of coregistering different classes of data, in particular aligning LIDAR measurements
with images, has not been well-studied. This coregistration problem is particularly challenging because the types of
data are fundamentally different. Furthermore, the available LIDAR data is much sparser than the image data.



The 1idar2img program coregisters images from the Apollo 15 metric camera to data from the recently deployed
Lunar Reconaissance Orbiter’s Lunar Orbiter Laser Altimeter (LOLA). To do so, we first convert the LOLA data to
a synthetic image by inputting measured surface normals, and estimated sun and spacecraft positions into a lunar
reflectance model. Then, we find a planar homography which aligns the synthetic image to the actual image using
the Gauss-Newton algorithm. However, the Gauss-Newton algorithm is susceptible to local minima, and a naive
application will fail. Instead, we first apply Gauss-Newton to lower-resolution images which smooth over local minima.
Then, we refine the transformation on successively higher-resolution layers of the image pyramid.

We first present and discuss the data sources in detail. Next, we introduce the Gauss-Newton algorithm as applied
to the LIDAR to image coregistration problem, and its use in conjunction with the image pyramid. Finally, we present
selected results demonstrating the effectiveness of the coregistration process.

4.1 Problem Statement

We are provided imagery from Apollo 15 and LIDAR scans from the Lunar Reconnaisance Orbiter (LRO). Our goal is
to merge these two data sources to form one consistent map. Coregistering these two data sources is challenging due
to significant uncertainties in both satellites’ positions.

The images of the Moon we use were taken from the Apollo Lunar Mapping Camera, also known as the Apollo
metric camera, onboard the lunar command module of Apollo 15.

Figure 1: Two LOLA shots, part of a track. Each shot provides five distance measurements in a cross pattern. Shots
are 56 m apart, and each laser beam reflects off a five meter diameter spot.

The laser data is acquired from the Lunar Orbiter Laser Altimeter (LOLA), an instrument of the Lunar Reconais-
sance Orbiter (LRO). The LOLA splits a laser into five parts to take five distance measurements to the lunar surface,
arranged in a cross shape. Each set of five measurements is called a shot. Each of the five laser beams illuminates a 5
m diamter spot on the moon’s surface (Figure 1).

The LRO flies above the surface of the moon in a polar orbit, taking LOLA shots directly beneath it as it moves.
Successive shots are approximately 56 m apart, and each sequence of shots from the same orbit forms a track. Figure
2(a) shows the elevation profile of a crater as measured by two LOLA tracks.

4.2 Aligning LIDAR to Images

The data has two main sources of error: uncertainty in the position of the Apollo spacecraft’s position, and uncertainty
in the position of the LRO when the LOLA shots were taken. As Apollo 15 launched in 1971, 38 years before the
LRO, the Apollo images are subject to much larger position errors.

Uncertainty in Apollo 15°s position affects the image’s pose relative to all of the tracks, while error in the LRO’s
position occurs on a per-track basis. We account for each of these error sources separately, both using the Guass-
Newton method. However, before we can align the two data sources, we form a synthesized image from the LOLA
tracks that can be easily compared to the Apollo image.

Forming Synthesized Images
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Figure 2: Two LOLA tracks that pass through the crater Hadley C and Rima Hadley are shown. (a) shows the LOLA
tracks’ elevation profiles. (b) shows the tracks’ estimated reflectance (the synthetic image) against an Apollo 15 image
with the original alignment. (c) shows the synthetic image and the Apollo 15 image after coregistration. The LOLA
tracks are delineated by two bright lines, and the synthetic image is shown as the color between the lines.

To align the LOLA tracks to the Apollo images, we estimate the lunar reflectance r for each LOLA shot to form a
synthesized image. The reflectance is a function of the angle of incidence of light, which depends on the angle to the
sun and the surface normal. The surface normal is computed by adding the normals from each available triangle in the
LOLA shot (see Figure 1) and normalizing the result. Some triangles’ normals may not be available since LOLA does
not always succesfully return five surface readings.

Given the surface normal and the vector from the surface to the sun, we compute the expected reflectance with the
photometric equation presented in by McEwen. These estimated shot reflectances form a synthetic image, which we
expect to match the actual images taken during the Apollo mission.



The actual surface luminence seen in an image is given by the product of the reflectance and a constant factor, ar.
The value of a depends on two factors: the parameters of the camera that took the image, and the properties of the
reflecting surface. The refletance properties of the lunar surface vary, particularly between the flat, low-lying maria and
the highlands. However, they are locally consistent.

Given a set of tracks, an image, and a transformation from track coordinates to image coordinates, we estimate the
scaling factor a.. Let p be the list of all LOLA shots’ transformed image coordinates, where p? and p! are the = and y
coordinates of LOLA shot ¢ transformed by a matrix M, let r be a list of all LOLA shots’ estimated reflectances, and
let I be an image. Then we compute the scaling factor as the value which makes the average value of the actual image
equal the average value of the synthetic image, « = (3. I(p?,p})) / (3. LT). So avis a function of M.

The Gauss Newton Algorithm

Let L be a list of LOLA shots, where L¥ and LY denote the initial image coordinates and L! denotes the estimated
reflectance. Our goal is to find
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where 7;(M) is the error for a single LOLA shot’s synthetic image given the transformation matrix M, the 3 x 3
homography that minimizes the error between the synthetic and the observed images.
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The true error in the satellites’ positions cannot be accounted for with a planar homography, since the surface of the
moon and the LRO’s motion are both non-planar. However, we have found that planar homographies are an effective
approximation across limited areas.

Minimizing this objective function is a non-linear least squares problem. A common tool for solving such prob-
lems is the Gauss-Newton algorithm, a variant of Newton’s method which doesn’t require the computation of second
derivatives.

In each step of the algorithm, we find a change A to the parameters /3 (the entries of M written as a vector) such
that the error decreases, where 8;11 = 5 + A.
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We solve this system of linear equations for A with an application of singular value decomposition.
Then, we continue taking steps with new A until the error doesn’t decrease. The full Gauss-Newton algorithm is
shown in Algorithm 4.2.
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Search Over the Image Pyramid

The Gauss-Newton algorithm, like Newton’s method, is highly susceptible to local minima. In our problem, the
LOLA tracks begin highly misaligned, and a naive application of Gauss-Newton will converge to nearby local minima
rather than the global minima.

To prevent this, we first search on downsampled, lower-resolution layers of the image pyramid (see Fig. 3). By
downsampling we find only a coarse alignment, but the lower resolution image allows us to avoid local minima and
coregister the tracks in the presence of large initial errors.

Once a coarse alignment is found, we align the LOLA tracks on progressively higher resolution layers of the
image pyramid using Algorithm 4.2. Note that we must scale the translational component of the transformation matrix
between layers of the image pyramid to account for the changed image coordinate system.

Figure 3: Hadley Rille, as seen in multiple layers of the image pyramid. From left to right, downscaled by factors of 8,
4,2, and 1.
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Computing the Jacobian

Recall that the Gauss-Newton algorithm requires us to compute the Jacobian J; () of the error with respect to the
parameters of the transformation matrix. We skipped over this previously, but now we discuss this in detail.

We aim to find the homography H from track coordinates (x, y) to image coordinates (z’,y’).
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For the Gauss-Newton algorithm, we require the partial derivatives of the image with respect to each entry of the
homography. For the first two rows of H, we compute this by taking a finite difference with three points on the image,
either over a row in the image (for the first row of the homography) or over a column (for the second row). We use the
finite difference with six points.
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Once we find the change in the horizontal direction of the image, we find the change in the entries of H with
induces a change of a single pixel in the image coordinates.
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Then we can approximate the partial derivatives as
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The equations are the same for the second row of H, except we take a finite difference in the vertical direction
instead:
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The third row of H determines the scaling factor, which will multiply both x and y by the same amount. If 2’ > v/,
we find the change in H which brings us to the next pixel in the x direction, if y > x we find the change to bring us to
the next pixel in the y direction. We interpolate between neighboring pixels for non-integral image coordinates.

Letm = % If m < 1, we sample find the divided difference using pixels with an even vertical offset.

1 3 3
Al y) = ——I(z' —3,y— 2@ -2,y —2m) — S0z — 1,y —
(@', y) eol(@ =3y —3m)+ oo I(@" =2,y = 2m) — I(z =1,y —m) +
3 3 1
Zl(x'—kl,y—&—m)—%I(z’+2,y’+2m)+%I(x'—|—3,y—|—3m)



Likewise, if m > 1, we find the divided difference from pixels with a horizontal offset.
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Next, we once again find the changes in H which produce this x or y offset. First, if it is an x offset:
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If it is a y offset (y' > ), the results are the same, except the entries from the first row of H are replaced with
entries from the second row. Furthermore, 2’ becomes y’. Then, once again, we find the derivatives.
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Now we are able to generate the Jacobian J,.(3).

4.3 Selected Results

Next, we show selected results with Gauss-Newton on an image pyramid aligning LOLA tracks to Apollo-15 images.
Figures 4 and 5 show the position of the LOLA tracks on an Apollo image both before and after finding a transforma-
tion. The red lines indicate the tracks, and the color between them indicates the expected luminence of the moon based
on the surface normal, sun position and camera position. The intial error in both cases is large, as seen by the large
mismatch between the color of the LOLA track and the background image.

After Gauss-Newton on the image pyramid is applied, a successful transformation is found. The expected lumi-
nence closely matches the actual luminence.

(a) Before Coregistration (b) After Coregistration

Figure 4: LOLA tracks passing through the western part of Mons Hadley are shown (a) before coregistration, and (b)
after coregistration. Note how after coregistration, the synthetic image matches the actual image much more closely.
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(a) Before Coregistration

(b) After Coregistration

Figure 5: LOLA tracks over Aratus crater (a) before coregistration, and (b) after coregistration. The sides of the crater
form distinctive visual features.

and a slight rotational component.

Although our algorithm allows us to find general planar homographies from the track coordinates to image coordinates,
in practice the transformations that are found are affine transformations. They have a large translational component

4.4 Conclusion

We have presented the algorithm that aligns oribital LIDAR data to image data in the presence of substantial position

errors implemented by the 1idar2img program. The algorithm applies Gauss-Newton on an image pyramid to avoid
local minima. We have demonstrated the algorithm’s success on lunar data, and successfully coregistered LIDAR and
image data of the moon.
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