diff --git a/notebooks/Socet2ISIS.ipynb b/notebooks/Socet2ISIS.ipynb
index f9ff8e2dd784c0c36eca6a96d8133d847e531657..a0e578889f8f89a93fed0d8d1f25978b9cc08d4c 100644
--- a/notebooks/Socet2ISIS.ipynb
+++ b/notebooks/Socet2ISIS.ipynb
@@ -16,10 +16,9 @@
     "import math\n",
     "import pyproj\n",
     "\n",
-    "# sys.path.insert(0, \"/home/tthatcher/Desktop/Projects/Plio/plio\")\n",
-    "\n",
     "from plio.examples import get_path\n",
     "from plio.io.io_bae import read_gpf, read_ipf\n",
+    "from collections import defaultdict\n",
     "import plio.io.io_controlnetwork as cn\n",
     "import plio.io.isis_serial_number as sn"
    ]
@@ -35,45 +34,50 @@
     "# .apf file (should be the same as all others) \n",
     "def read_atf(atf_file):\n",
     "    with open(atf_file) as f:\n",
-    "\n",
-    "        files = []\n",
-    "        ipf = []\n",
-    "        sup = []\n",
-    "        files_dict = []\n",
     "        \n",
-    "        # Grabs every PRJ, GPF, SUP, and IPF image from the ATF file\n",
+    "        # Extensions of files we want\n",
+    "        files_ext = ['.prj', '.sup', '.ipf', '.gpf']\n",
+    "        files_dict = []\n",
+    "        files = defaultdict(list)\n",
+    "\n",
     "        for line in f:\n",
-    "            if line[-4:-1] == 'prj' or line[-4:-1] == 'gpf' or line[-4:-1] == 'sup' or line[-4:-1] == 'ipf' or line[-4:-1] == 'atf':\n",
-    "                files.append(line)\n",
+    "            ext = os.path.splitext(line)[-1].strip()\n",
+    "            \n",
+    "            # Check is needed for split as all do not have a space\n",
+    "            if ext in files_ext:\n",
+    "                \n",
+    "                # If it is the .prj file, it strips the directory away and grabs file name\n",
+    "                if ext == '.prj':\n",
+    "                    files[ext].append(line.strip().split(' ')[1].split('\\\\')[-1])\n",
+    "                \n",
+    "                # If the ext is in the list of files we care about, it addes to the dict\n",
+    "                files[ext].append(line.strip().split(' ')[-1])\n",
+    "            \n",
+    "            else:\n",
+    "                \n",
+    "                # Adds to the dict even if not in files we care about\n",
+    "                files[ext.strip()].append(line)\n",
     "        \n",
-    "        files = np.array(files)\n",
+    "        # Gets the base filepath\n",
+    "        files['basepath'] = os.path.dirname(os.path.abspath(atf_file))\n",
     "        \n",
-    "        # Creates appropriate arrays for certain files in the right format\n",
-    "        for file in files:\n",
-    "            file = file.strip()\n",
-    "            file = file.split(' ')\n",
-    "\n",
-    "            # Grabs all the IPF files\n",
-    "            if file[1].endswith('.ipf'):\n",
-    "                ipf.append(file[1])\n",
-    "\n",
-    "            # Grabs all the SUP files\n",
-    "            if file[1].endswith('.sup'):\n",
-    "                sup.append(file[1])\n",
-    "\n",
-    "            files_dict.append(file)\n",
-    "\n",
     "        # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n",
     "        files_dict = (dict(files_dict))\n",
     "        \n",
     "        # Sets the value of IMAGE_IPF to all IPF images\n",
-    "        files_dict['IMAGE_IPF'] = ipf\n",
+    "        files_dict['IMAGE_IPF'] = files['.ipf']\n",
     "        \n",
     "        # Sets the value of IMAGE_SUP to all SUP images\n",
-    "        files_dict['IMAGE_SUP'] = sup\n",
+    "        files_dict['IMAGE_SUP'] = files['.sup']\n",
+    "        \n",
+    "        # Sets value for GPF file\n",
+    "        files_dict['GP_FILE'] = files['.gpf'][0]\n",
+    "        \n",
+    "        # Sets value for PRJ file\n",
+    "        files_dict['PROJECT'] = files['.prj'][0]\n",
     "        \n",
     "        # Sets the value of PATH to the path of the ATF file\n",
-    "        files_dict['PATH'] = os.path.dirname(os.path.abspath(atf_file))\n",
+    "        files_dict['PATH'] = files['basepath']\n",
     "        \n",
     "        return files_dict\n",
     "\n",
@@ -163,25 +167,126 @@
     "    coord_360 = to_360(ocentric_coord)\n",
     "    return coord_360\n",
     "\n",
-    "def body_fix(record, semi_major, semi_minor):\n",
+    "def body_fix(record, semi_major, semi_minor, inverse=False):\n",
+    "    \"\"\"\n",
+    "    Parameters\n",
+    "    ----------\n",
+    "    record : ndarray\n",
+    "             (n,3) where columns are x, y, height or lon, lat, alt\n",
+    "    \"\"\"\n",
+    "    \n",
     "    ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n",
     "    lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n",
-    "    lon, lat, height = pyproj.transform(lla, ecef, record['long_X_East'], record['lat_Y_North'], record['ht'])\n",
-    "    return lon, lat, height\n",
     "    \n",
+    "    if inverse:\n",
+    "        lon, lat, height = pyproj.transform(ecef, lla, record[0], record[1], record[2])\n",
+    "        return lon, lat, height\n",
+    "    else:\n",
+    "        y, x, z = pyproj.transform(lla, ecef, record[0], record[1], record[2])\n",
+    "        return y, x, z\n",
+    "\n",
+    "def ignore_toggle(record):\n",
+    "    if record['stat'] == 0:\n",
+    "        return True\n",
+    "    else:\n",
+    "        return False\n",
+    "\n",
+    "# TODO: Does isis cnet need a convariance matrix for sigmas? Even with a static matrix of 1,1,1,1 \n",
+    "def compute_sigma_covariance_matrix(lat, lon, rad, latsigma, lonsigma, radsigma, semimajor_axis):\n",
+    "    \n",
+    "    \"\"\"\n",
+    "    Given geospatial coordinates, desired accuracy sigmas, and an equitorial radius, compute a 2x3\n",
+    "    sigma covariange matrix.\n",
+    "    Parameters\n",
+    "    ----------\n",
+    "    lat : float\n",
+    "          A point's latitude in degrees\n",
+    "    lon : float\n",
+    "          A point's longitude in degrees\n",
+    "    rad : float\n",
+    "          The radius (z-value) of the point in meters\n",
+    "    latsigma : float\n",
+    "               The desired latitude accuracy in meters (Default 10.0)\n",
+    "    lonsigma : float\n",
+    "               The desired longitude accuracy in meters (Default 10.0)\n",
+    "    radsigma : float\n",
+    "               The desired radius accuracy in meters (Defualt: 15.0)\n",
+    "    semimajor_axis : float\n",
+    "                     The semi-major or equitorial radius in meters (Default: 1737400.0 - Moon)\n",
+    "    Returns\n",
+    "    -------\n",
+    "    rectcov : ndarray\n",
+    "              (2,3) covariance matrix\n",
+    "    \"\"\"\n",
+    "    \n",
+    "    lat = math.radians(lat)\n",
+    "    lon = math.radians(lon)\n",
+    "    \n",
+    "    # SetSphericalSigmasDistance\n",
+    "    scaled_lat_sigma = latsigma / semimajor_axis\n",
+    "\n",
+    "    # This is specific to each lon.\n",
+    "    scaled_lon_sigma = lonsigma * math.cos(lat) / semimajor_axis\n",
+    "    \n",
+    "    # SetSphericalSigmas\n",
+    "    cov = np.eye(3,3)\n",
+    "    cov[0,0] = scaled_lat_sigma ** 2\n",
+    "    cov[1,1] = scaled_lon_sigma ** 2\n",
+    "    cov[2,2] = radsigma ** 2\n",
+    "    \n",
+    "    # Approximate the Jacobian\n",
+    "    j = np.zeros((3,3))\n",
+    "    cosphi = math.cos(lat)\n",
+    "    sinphi = math.sin(lat)\n",
+    "    coslambda = math.cos(lon)\n",
+    "    sinlambda = math.sin(lon)\n",
+    "    rcosphi = rad * cosphi\n",
+    "    rsinphi = rad * sinphi\n",
+    "    j[0,0] = -rsinphi * coslambda\n",
+    "    j[0,1] = -rcosphi * sinlambda\n",
+    "    j[0,2] = cosphi * coslambda\n",
+    "    j[1,0] = -rsinphi * sinlambda\n",
+    "    j[1,1] = rcosphi * coslambda\n",
+    "    j[1,2] = cosphi * sinlambda\n",
+    "    j[2,0] = rcosphi\n",
+    "    j[2,1] = 0.\n",
+    "    j[2,2] = sinphi\n",
+    "    mat = j.dot(cov)\n",
+    "    mat = mat.dot(j.T)\n",
+    "    rectcov = np.zeros((2,3))\n",
+    "    rectcov[0,0] = mat[0,0]\n",
+    "    rectcov[0,1] = mat[0,1]\n",
+    "    rectcov[0,2] = mat[0,2]\n",
+    "    rectcov[1,0] = mat[1,1]\n",
+    "    rectcov[1,1] = mat[1,2]\n",
+    "    rectcov[1,2] = mat[2,2]\n",
+    "    \n",
+    "    return rectcov\n",
+    "#     return np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])\n",
+    "\n",
+    "\n",
+    "def compute_cov_matrix(record, semimajor_axis):\n",
+    "    cov_matrix = compute_sigma_covariance_matrix(record['lat_Y_North'], record['long_X_East'], record['ht'], record['sig0'], record['sig1'], record['sig2'], semimajor_axis)\n",
+    "    return cov_matrix.ravel().tolist()\n",
     "\n",
     "# applys transformations to columns\n",
     "def apply_transformations(atf_dict, df):\n",
-    "    prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT'].split('\\\\')[-1])\n",
+    "    prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT'])\n",
     "    \n",
     "    eRadius, pRadius = get_axis(prj_file)\n",
     "    \n",
+    "    lla = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]])\n",
+    "    \n",
+    "    ecef = body_fix(lla, semi_major = eRadius, semi_minor = pRadius, inverse=False)\n",
+    "    \n",
     "    df['s.'], df['l.'], df['image_index'] = (zip(*df.apply(line_sample_size, path = atf_dict['PATH'], axis=1)))\n",
     "    df['known'] = df.apply(known, axis=1)\n",
-    "    df['lat_Y_North'] = df.apply(lat_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n",
-    "    df['long_X_East'] = df.apply(lon_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n",
-    "    df['long_X_East'], df['lat_Y_North'], df['ht'] = zip(*df.apply(body_fix, semi_major = eRadius, semi_minor = pRadius, axis = 1))\n",
-    "    \n",
+    "    df['long_X_East'] = ecef[0][0]\n",
+    "    df['lat_Y_North'] = ecef[1][0]\n",
+    "    df['ht'] = ecef[2][0]    \n",
+    "    df['aprioriCovar'] = df.apply(compute_cov_matrix, semimajor_axis = eRadius, axis=1)\n",
+    "    df['ignore'] = df.apply(ignore_toggle, axis=1)\n",
+    "        \n",
     "def socet2isis(prj_file):\n",
     "    # Read in and setup the atf dict of information\n",
     "    atf_dict = read_atf(prj_file)\n",
@@ -213,9 +318,10 @@
     "    \n",
     "    # Define column remap for socet dataframe\n",
     "    column_remap = {'l.': 'y', 's.': 'x',\n",
-    "                    'res_l': 'LineResidual', 'res_s': 'SampleResidual', 'known': 'Type',\n",
+    "                    'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',\n",
     "                    'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ',\n",
-    "                    'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma'}\n",
+    "                    'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma',\n",
+    "                    'sig_l': 'linesigma', 'sig_s': 'samplesigma'}\n",
     "    \n",
     "    # Rename the columns using the column remap above\n",
     "    socet_df.rename(columns = column_remap, inplace=True)\n",
@@ -224,44 +330,42 @@
     "    return socet_df\n",
     "\n",
     "# creates a dict of serial numbers with the cub being the key\n",
-    "def serial_numbers(image_dict, path):\n",
+    "def serial_numbers(images, path, extension):\n",
     "    serial_dict = dict()\n",
-    "\n",
-    "    for key in image_dict:\n",
-    "        snum = sn.generate_serial_number(os.path.join(path, image_dict[key]))\n",
+    "    \n",
+    "    for image in images:\n",
+    "        snum = sn.generate_serial_number(os.path.join(path, image + extension))\n",
     "        snum = snum.replace('Mars_Reconnaissance_Orbiter', 'MRO')\n",
-    "        serial_dict[key] = snum\n",
-    "    return serial_dict"
+    "        serial_dict[image] = snum\n",
+    "    return serial_dict\n",
+    "\n"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
    "metadata": {
-    "scrolled": false
+    "scrolled": true
    },
    "outputs": [],
    "source": [
     "# Setup stuffs for the cub information namely the path and extension\n",
-    "path = '/Volumes/Blueman/'\n",
-    "atf_file = get_path('CTX_Athabasca_Middle_step0.atf')\n",
+    "path = '/path/where/cub/files/are/'\n",
+    "\n",
+    "# Extension of your cub files\n",
+    "extension = '.something.cub'\n",
     "\n",
-    "image_dict = {'P01_001540_1889_XI_08N204W' : 'P01_001540_1889_XI_08N204W.lev1.cub',\n",
-    "              'P01_001606_1897_XI_09N203W' : 'P01_001606_1897_XI_09N203W.lev1.cub',\n",
-    "              'P02_001804_1889_XI_08N204W' : 'P02_001804_1889_XI_08N204W.lev1.cub',\n",
-    "              'P03_002226_1895_XI_09N203W' : 'P03_002226_1895_XI_09N203W.lev1.cub',\n",
-    "              'P03_002371_1888_XI_08N204W' : 'P03_002371_1888_XI_08N204W.lev1.cub',\n",
-    "              'P19_008344_1894_XN_09N203W' : 'P19_008344_1894_XN_09N203W.lev1.cub',\n",
-    "              'P20_008845_1894_XN_09N203W' : 'P20_008845_1894_XN_09N203W.lev1.cub'}\n",
+    "# Path to atf file\n",
+    "atf_file = ('/path/to/atf/file')\n",
     "\n",
     "socet_df = socet2isis(atf_file)\n",
     "\n",
     "images = pd.unique(socet_df['ipf_file'])\n",
     "\n",
-    "serial_dict = serial_numbers(image_dict, path)\n",
+    "serial_dict = serial_numbers(images, path, extension)\n",
     "\n",
     "# creates the control network\n",
-    "cn.to_isis('/Volumes/Blueman/banana.net', socet_df, serial_dict)"
+    "cn.to_isis('/path/you/want/the/cnet/to/be/in/cn.net', socet_df, serial_dict)"
    ]
   },
   {
@@ -288,7 +392,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.6.3"
+   "version": "3.6.4"
   }
  },
  "nbformat": 4,
diff --git a/plio/io/io_controlnetwork.py b/plio/io/io_controlnetwork.py
index 87b877a604648018d03daedd4f8695890c28ea40..a52d58097723627958bf7bbc54c847e57c8f60e0 100644
--- a/plio/io/io_controlnetwork.py
+++ b/plio/io/io_controlnetwork.py
@@ -1,6 +1,7 @@
 from time import gmtime, strftime
 
 import pandas as pd
+import numpy as np
 import pvl
 
 from plio.io import ControlNetFileV0002_pb2 as cnf
@@ -189,19 +190,19 @@ class IsisStore(object):
         if version == 2:
             point_attrs = [i for i in cnf._CONTROLPOINTFILEENTRYV0002.fields_by_name if i != 'measures']
             measure_attrs = [i for i in cnf._CONTROLPOINTFILEENTRYV0002_MEASURE.fields_by_name]
-        
+
         cols = point_attrs + measure_attrs
 
         cp = cnf.ControlPointFileEntryV0002()
         self._handle.seek(header_start_byte)
         pbuf_header = cnf.ControlNetFileHeaderV0002()
         pbuf_header.ParseFromString(self._handle.read(header_bytes))
-        
+
         self._handle.seek(point_start_byte)
         cp = cnf.ControlPointFileEntryV0002()
         pts = []
         for s in pbuf_header.pointMessageSizes:
-            cp.ParseFromString(self._handle.read(s))            
+            cp.ParseFromString(self._handle.read(s))
             pt = [getattr(cp, i) for i in point_attrs if i != 'measures']
 
             for measure in cp.measures:
@@ -267,24 +268,24 @@ class IsisStore(object):
                     # As per protobuf docs for assigning to a repeated field.
                     if attr == 'aprioriCovar':
                         arr = g.iloc[0]['aprioriCovar']
-                        point_spec.aprioriCovar.extend(arr.ravel().tolist())
+                        if isinstance(arr, np.ndarray):
+                            arr = arr.ravel().tolist()
+
+                        point_spec.aprioriCovar.extend(arr)
                     else:
                         setattr(point_spec, attr, attrtype(g.iloc[0][attr]))
-            point_spec.type = 2  # Hardcoded to free
+            point_spec.type = 2  # Hardcoded to free this is bad
 
             # The reference index should always be the image with the lowest index
             point_spec.referenceIndex = 0
-
             # A single extend call is cheaper than many add calls to pack points
             measure_iterable = []
-
             for node_id, m in g.iterrows():
                 measure_spec = point_spec.Measure()
                 # For all of the attributes, set if they are an dict accessible attr of the obj.
                 for attr, attrtype in self.measure_attrs:
                     if attr in g.columns:
                         setattr(measure_spec, attr, attrtype(m[attr]))
-
                 measure_spec.serialnumber = serials[m.image_index]
                 measure_spec.sample = m.x
                 measure_spec.line = m.y
@@ -298,7 +299,6 @@ class IsisStore(object):
             point_message = point_spec.SerializeToString()
             point_sizes.append(point_spec.ByteSize())
             point_messages.append(point_message)
-
         return point_messages, point_sizes
 
     def create_buffer_header(self, networkid, targetname,