import os import warnings import numpy as np from plio.examples import get_path from plio.io.io_bae import read_atf, read_gpf, read_ipf from plio.spatial.transformations import * import plio.io.io_controlnetwork as cn import pandas as pd # TODO: Change script to potentially handle configuration files # Setup the at_file and path to cubes cub_path = '/Volumes/Blueman/' at_file = get_path('CTX_Athabasca_Middle_step0.atf') # Define ipf mapping to cubs image_dict = {'P01_001540_1889_XI_08N204W' : 'P01_001540_1889_XI_08N204W.lev1.cub', 'P01_001606_1897_XI_09N203W' : 'P01_001606_1897_XI_09N203W.lev1.cub', 'P02_001804_1889_XI_08N204W' : 'P02_001804_1889_XI_08N204W.lev1.cub', 'P03_002226_1895_XI_09N203W' : 'P03_002226_1895_XI_09N203W.lev1.cub', 'P03_002371_1888_XI_08N204W' : 'P03_002371_1888_XI_08N204W.lev1.cub', 'P19_008344_1894_XN_09N203W' : 'P19_008344_1894_XN_09N203W.lev1.cub', 'P20_008845_1894_XN_09N203W' : 'P20_008845_1894_XN_09N203W.lev1.cub'} ## # End Config ## # Read in and setup the atf dict of information atf_dict = read_atf(at_file) # Get the gpf and ipf files using atf dict gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']); ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']] # Read in the gpf file and ipf file(s) into seperate dataframes gpf_df = read_gpf(gpf_file) ipf_df = read_ipf(ipf_list) # Check for differences between point ids using each dataframes # point ids as a reference gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id'])) ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id'])) point_diff = ipf_pt_idx.difference(gpf_pt_idx) if len(point_diff) != 0: warnings.warn("The following points found in ipf files missing from gpf file: \n\n{}. \ \n\nContinuing, but these points will be missing from the control network".format(list(point_diff))) # Merge the two dataframes on their point id columns socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id') # Apply the transformations apply_transformations(atf_dict, socet_df) # Define column remap for socet dataframe column_remap = {'l.': 'y', 's.': 'x', 'res_l': 'LineResidual', 'res_s': 'SampleResidual', 'known': 'Type', 'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ', 'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma'} # Rename the columns using the column remap above socet_df.rename(columns = column_remap, inplace=True) images = pd.unique(socet_df['ipf_file']) serial_dict = serial_numbers(image_dict, cub_path) # creates the control network cn.to_isis('/Volumes/Blueman/test.net', socet_df, serial_dict)