{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "from functools import singledispatch\n", "import warnings\n", "\n", "import pandas as pd\n", "import numpy as np\n", "\n", "sys.path.insert(0, \"/home/tthatcher/Desktop/Projects/Plio/plio\")\n", "\n", "from plio.examples import get_path\n", "from plio.io.io_bae import read_gpf, read_ipf" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Reads a .atf file and outputs all of the \n", "# .ipf, .gpf, .sup, .prj, and path to locate the \n", "# .apf file (should be the same as all others) \n", "def read_atf(atf_file):\n", " with open(atf_file) as f:\n", "\n", " files = []\n", " ipf = []\n", " sup = []\n", " files_dict = []\n", " \n", " # Grabs every PRJ, GPF, SUP, and IPF image from the ATF file\n", " for line in f:\n", " if line[-4:-1] == 'prj' or line[-4:-1] == 'gpf' or line[-4:-1] == 'sup' or line[-4:-1] == 'ipf' or line[-4:-1] == 'atf':\n", " files.append(line)\n", " \n", " files = np.array(files)\n", " \n", " # Creates appropriate arrays for certain files in the right format\n", " for file in files:\n", " file = file.strip()\n", " file = file.split(' ')\n", "\n", " # Grabs all the IPF files\n", " if file[1].endswith('.ipf'):\n", " ipf.append(file[1])\n", "\n", " # Grabs all the SUP files\n", " if file[1].endswith('.sup'):\n", " sup.append(file[1])\n", "\n", " files_dict.append(file)\n", "\n", " # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n", " files_dict = (dict(files_dict))\n", " \n", " # Sets the value of IMAGE_IPF to all IPF images\n", " files_dict['IMAGE_IPF'] = ipf\n", " \n", " # Sets the value of IMAGE_SUP to all SUP images\n", " files_dict['IMAGE_SUP'] = sup\n", " \n", " # Sets the value of PATH to the path of the ATF file\n", " files_dict['PATH'] = os.path.dirname(os.path.abspath(atf_file))\n", " \n", " return files_dict" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "atf_dict = read_atf(get_path('CTX_Athabasca_Middle_step0.atf'))\n", "\n", "gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);\n", "ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]\n", "\n", "gpf_df = read_gpf(gpf_file)\n", "ipf_df = read_ipf(ipf_list)\n", "\n", "point_diff = ipf_df.index.difference(gpf_df.index)\n", "\n", "\n", "\n", "if len(point_diff) != 0:\n", " warnings.warn(\"The following points found in ipf files missing from gpf file: \\n\\n{}. \\\n", " \\n\\nContinuing, but these points will be missing from the control network\".format(list(point_diff)))\n", "\n", "new_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import math\n", "import pyproj\n", "\n", "image_dict = {'P01_001540_1889_XI_08N204W' : 'P01_001540_1889_XI_08N204W.lev1.cub',\n", " 'P01_001606_1897_XI_09N203W' : 'P01_001606_1897_XI_09N203W.lev1.cub',\n", " 'P02_001804_1889_XI_08N204W' : 'P02_001804_1889_XI_08N204W.lev1.cub',\n", " 'P03_002226_1895_XI_09N203W' : 'P03_002226_1895_XI_09N203W.lev1.cub',\n", " 'P03_002371_1888_XI_08N204W' : 'P03_002371_1888_XI_08N204W.lev1.cub',\n", " 'P19_008344_1894_XN_09N203W' : 'P19_008344_1894_XN_09N203W.lev1.cub',\n", " 'P20_008845_1894_XN_09N203W' : 'P20_008845_1894_XN_09N203W.lev1.cub'}\n", "\n", "# converts columns l. and s. to isis\n", "def line_sample_size(record):\n", " with open(atf_dict['PATH'] + '/' + record['ipf_file'] + '.sup') as f:\n", " for i, line in enumerate(f):\n", " if i == 2:\n", " img_index = line.split('\\\\')\n", " img_index = img_index[-1].strip()\n", " img_index = img_index.split('.')[0]\n", " img_index = image_dict[img_index]\n", " \n", " if i == 3:\n", " line_size = line.split(' ')\n", " line_size = line_size[-1].strip()\n", " assert int(line_size) > 0, \"Line number {} from {} is a negative number: Invalid Data\".format(line_size, record['ipf_file'])\n", " \n", " if i == 4:\n", " sample_size = line.split(' ')\n", " sample_size = sample_size[-1].strip()\n", " assert int(sample_size) > 0, \"Sample number {} from {} is a negative number: Invalid Data\".format(sample_size, record['ipf_file'])\n", " break\n", " \n", " \n", " line_size = int(line_size)/2.0 + record['l.'] + 1\n", " sample_size = int(sample_size)/2.0 + record['s.'] + 1\n", " return sample_size, line_size, img_index\n", " \n", "# converts known to ISIS keywords\n", "def known(record):\n", " if record['known'] == 0:\n", " return 'Free'\n", " \n", " elif record['known'] == 1 or record['known'] == 2 or record['known'] == 3:\n", " return 'Constrained'\n", " \n", "# converts +/- 180 system to 0 - 360 system\n", "def to_360(num):\n", " return num % 360\n", "\n", "# ocentric to ographic latitudes\n", "def oc2og(dlat, dMajorRadius, dMinorRadius):\n", " try: \n", " dlat = math.radians(dlat)\n", " dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat)))\n", " dlat = math.degrees(dlat)\n", " except:\n", " print (\"Error in oc2og conversion\")\n", " return dlat\n", "\n", "# ographic to ocentric latitudes\n", "def og2oc(dlat, dMajorRadius, dMinorRadius):\n", " try:\n", " dlat = math.radians(dlat)\n", " dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2)))\n", " dlat = math.degrees(dlat)\n", " except:\n", " print (\"Error in og2oc conversion\")\n", " return dlat\n", "\n", "# gets eRadius and pRadius from a .prj file\n", "def get_axis(file):\n", " with open(atf_dict['PATH'] + '/' + file) as f:\n", " from collections import defaultdict\n", "\n", " files = defaultdict(list)\n", " \n", " for line in f:\n", " \n", " ext = line.strip().split(' ')\n", " files[ext[0]].append(ext[-1])\n", " \n", " eRadius = float(files['A_EARTH'][0])\n", " pRadius = eRadius * (1 - float(files['E_EARTH'][0]))\n", " \n", " return eRadius, pRadius\n", " \n", "# function to convert lat_Y_North to ISIS_lat\n", "def lat_ISIS_coord(record, semi_major, semi_minor):\n", " ocentric_coord = og2oc(record['lat_Y_North'], semi_major, semi_minor)\n", " coord_360 = to_360(ocentric_coord)\n", " return coord_360\n", "\n", "# function to convert long_X_East to ISIS_lon\n", "def lon_ISIS_coord(record, semi_major, semi_minor):\n", " ocentric_coord = og2oc(record['long_X_East'], semi_major, semi_minor)\n", " coord_360 = to_360(ocentric_coord)\n", " return coord_360\n", "\n", "def body_fix(record, semi_major, semi_minor):\n", " ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n", " lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n", " lon, lat, height = pyproj.transform(lla, ecef, record['long_X_East'], record['lat_Y_North'], record['ht'])\n", " return lon, lat, height\n", "\n", "# applys transformations to columns\n", "def socet2isis(prj_file):\n", " eRadius, pRadius = get_axis(prj_file)\n", " new_df['s.'], new_df['l.'], new_df['image_index'] = (zip(*new_df.apply(line_sample_size, axis=1)))\n", " new_df['known'] = new_df.apply(known, axis=1)\n", " new_df['lat_Y_North'] = new_df.apply(lat_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n", " new_df['long_X_East'] = new_df.apply(lon_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n", " new_df['long_X_East'], new_df['lat_Y_North'], new_df['ht'] = zip(*new_df.apply(body_fix, semi_major = eRadius, semi_minor = pRadius, axis = 1))\n", "socet2isis('CTX_Athabasca_Middle.prj')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "new_df['image_index']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "column_remap = {'l.': 'x', 's.': 'y',\n", "'res_l': 'LineResidual', 'res_s': 'SampleResidual', 'known': 'Type',\n", "'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ',\n", "'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma'}\n", "\n", "new_df.rename(columns=column_remap, inplace=True)\n", "\n", "new_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import plio.io.io_controlnetwork as cn\n", "import plio.io.isis_serial_number as sn\n", "\n", "# creates a dict of serial numbers with the cub being the key\n", "def serial_numbers():\n", " serial_dict = {}\n", " image_dict = {'P01_001540_1889_XI_08N204W' : 'P01_001540_1889_XI_08N204W.lev1.cub',\n", " 'P01_001606_1897_XI_09N203W' : 'P01_001606_1897_XI_09N203W.lev1.cub',\n", " 'P02_001804_1889_XI_08N204W' : 'P02_001804_1889_XI_08N204W.lev1.cub',\n", " 'P03_002226_1895_XI_09N203W' : 'P03_002226_1895_XI_09N203W.lev1.cub',\n", " 'P03_002371_1888_XI_08N204W' : 'P03_002371_1888_XI_08N204W.lev1.cub',\n", " 'P19_008344_1894_XN_09N203W' : 'P19_008344_1894_XN_09N203W.lev1.cub',\n", " 'P20_008845_1894_XN_09N203W' : 'P20_008845_1894_XN_09N203W.lev1.cub'}\n", " \n", " for key in image_dict:\n", " serial_dict[image_dict[key]] = sn.generate_serial_number('/home/tthatcher/Desktop/Projects/Plio/' + image_dict[key])\n", " return serial_dict\n", "\n", "# serial number dictionary\n", "serial_dict = serial_numbers()\n", "\n", "print(serial_dict)\n", "\n", "# creates the control network\n", "cnet = cn.to_isis('/home/tthatcher/Desktop/Projects/Plio/cn.csv', new_df, serial_dict)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@singledispatch\n", "def read_ipf(arg):\n", " return str(arg)\n", "# new_df['known'] = new_df.apply(known, axis=1)\n", "\n", "@read_ipf.register(str)\n", "def read_ipf_str(input_data):\n", " \"\"\"AttributeError: 'Series' object has no attribute 'image_index'\n", "\n", " Read a socet ipf file into a pandas data frame\n", "\n", " Parameters\n", " ----------\n", " input_data : str\n", " path to the an input data file\n", "\n", " Returns\n", " -------\n", " df : pd.DataFrame\n", " containing the ipf data with appropriate column names and indices\n", " \"\"\"\n", "\n", " # Check that the number of rows is matching the expected number\n", " with open(input_data, 'r') as f:\n", " for i, l in enumerate(f):\n", " if i == 1:/home/tthatcher/Desktop/Projects/Plio/plio\n", " cnt = int(l)\n", " elif i == 2:\n", " col = l\n", " break\n", " \n", " columns = np.genfromtxt(input_data, skip_header=2, dtype='unicode',\n", " max_rows = 1, delimiter = ',')\n", "\n", " # TODO: Add unicode conversion\n", " d = [line.split() for line in open(input_data, 'r')]\n", " d = np.hstack(np.array(d[3:]))\n", " \n", " d = d.reshape(-1, 12)\n", " \n", " df = pd.DataFrame(d, columns=columns)\n", " file = os.path.split(os.path.splitext(input_data)[0])[1]\n", " df['ipf_file'] = pd.Series(np.full((len(df['pt_id'])), file), index = df.index)\n", "\n", " assert int(cnt) == len(df), 'Dataframe length {} does not match point length {}.'.format(int(cnt), len(df))\n", " \n", " # Soft conversion of numeric types to numerics, allows str in first col for point_id\n", " df = df.apply(pd.to_numeric, errors='ignore')\n", "\n", " return df\n", "\n", "@read_ipf.register(list)\n", "def read_ipf_list(input_data_list):\n", " \"\"\"\n", " Read a socet ipf file into a pandas data frame\n", "\n", " Parameters\n", " ----------\n", " input_data_list : list\n", " list of paths to the a set of input data files\n", "\n", " Returns\n", " -------\n", " df : pd.DataFrame\n", " containing the ipf data with appropriate column names and indices\n", " \"\"\"\n", " frames = []\n", "\n", " for input_file in input_data_list:\n", " frames.append(read_ipf(input_file))\n", "\n", " df = pd.concat(frames)\n", "\n", " return df" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }