{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "from functools import singledispatch\n",
    "import warnings\n",
    "\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import math\n",
    "import pyproj\n",
    "\n",
    "from plio.examples import get_path\n",
    "from plio.io.io_bae import read_gpf, read_ipf\n",
    "from collections import defaultdict\n",
    "import plio.io.io_controlnetwork as cn\n",
    "import plio.io.isis_serial_number as sn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Reads a .atf file and outputs all of the \n",
    "# .ipf, .gpf, .sup, .prj, and path to locate the \n",
    "# .apf file (should be the same as all others) \n",
    "def read_atf(atf_file):\n",
    "    with open(atf_file) as f:\n",
    "        \n",
    "        # Extensions of files we want\n",
    "        files_ext = ['.prj', '.sup', '.ipf', '.gpf']\n",
    "        files_dict = []\n",
    "        files = defaultdict(list)\n",
    "\n",
    "        for line in f:\n",
    "            ext = os.path.splitext(line)[-1].strip()\n",
    "            \n",
    "            # Check is needed for split as all do not have a space\n",
    "            if ext in files_ext:\n",
    "                \n",
    "                # If it is the .prj file, it strips the directory away and grabs file name\n",
    "                if ext == '.prj':\n",
    "                    files[ext].append(line.strip().split(' ')[1].split('\\\\')[-1])\n",
    "                \n",
    "                # If the ext is in the list of files we care about, it addes to the dict\n",
    "                files[ext].append(line.strip().split(' ')[-1])\n",
    "            \n",
    "            else:\n",
    "                \n",
    "                # Adds to the dict even if not in files we care about\n",
    "                files[ext.strip()].append(line)\n",
    "        \n",
    "        # Gets the base filepath\n",
    "        files['basepath'] = os.path.dirname(os.path.abspath(atf_file))\n",
    "        \n",
    "        # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n",
    "        files_dict = (dict(files_dict))\n",
    "        \n",
    "        # Sets the value of IMAGE_IPF to all IPF images\n",
    "        files_dict['IMAGE_IPF'] = files['.ipf']\n",
    "        \n",
    "        # Sets the value of IMAGE_SUP to all SUP images\n",
    "        files_dict['IMAGE_SUP'] = files['.sup']\n",
    "        \n",
    "        # Sets value for GPF file\n",
    "        files_dict['GP_FILE'] = files['.gpf'][0]\n",
    "        \n",
    "        # Sets value for PRJ file\n",
    "        files_dict['PROJECT'] = files['.prj'][0]\n",
    "        \n",
    "        # Sets the value of PATH to the path of the ATF file\n",
    "        files_dict['PATH'] = files['basepath']\n",
    "        \n",
    "        return files_dict\n",
    "\n",
    "# converts columns l. and s. to isis\n",
    "# no transform applied\n",
    "def line_sample_size(record, path):\n",
    "    with open(os.path.join(path, record['ipf_file'] + '.sup')) as f:\n",
    "        for i, line in enumerate(f):\n",
    "            if i == 2:\n",
    "                img_index = line.split('\\\\')\n",
    "                img_index = img_index[-1].strip()\n",
    "                img_index = img_index.split('.')[0]\n",
    "                \n",
    "            if i == 3:\n",
    "                line_size = line.split(' ')\n",
    "                line_size = line_size[-1].strip()\n",
    "                assert int(line_size) > 0, \"Line number {} from {} is a negative number: Invalid Data\".format(line_size, record['ipf_file'])\n",
    "                \n",
    "            if i == 4:\n",
    "                sample_size = line.split(' ')\n",
    "                sample_size = sample_size[-1].strip()\n",
    "                assert int(sample_size) > 0, \"Sample number {} from {} is a negative number: Invalid Data\".format(sample_size, record['ipf_file'])\n",
    "                break\n",
    "                \n",
    "        \n",
    "        line_size = int(line_size)/2.0 + record['l.'] + 1\n",
    "        sample_size = int(sample_size)/2.0 + record['s.'] + 1\n",
    "        return sample_size, line_size, img_index\n",
    "    \n",
    "# converts known to ISIS keywords\n",
    "# transform\n",
    "def known(record):\n",
    "    if record['known'] == 0:\n",
    "        return 'Free'\n",
    "    \n",
    "    elif record['known'] == 1 or record['known'] == 2 or record['known'] == 3:\n",
    "        return 'Constrained'\n",
    "    \n",
    "# converts +/- 180 system to 0 - 360 system\n",
    "def to_360(num):\n",
    "    return num % 360\n",
    "\n",
    "# ocentric to ographic latitudes\n",
    "# transform but unsure how to handle\n",
    "def oc2og(dlat, dMajorRadius, dMinorRadius):\n",
    "    try:    \n",
    "        dlat = math.radians(dlat)\n",
    "        dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat)))\n",
    "        dlat = math.degrees(dlat)\n",
    "    except:\n",
    "        print (\"Error in oc2og conversion\")\n",
    "    return dlat\n",
    "\n",
    "# ographic to ocentric latitudes\n",
    "# transform but unsure how to handle\n",
    "def og2oc(dlat, dMajorRadius, dMinorRadius):\n",
    "    try:\n",
    "        dlat = math.radians(dlat)\n",
    "        dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2)))\n",
    "        dlat = math.degrees(dlat)\n",
    "    except:\n",
    "        print (\"Error in og2oc conversion\")\n",
    "    return dlat\n",
    "\n",
    "# gets eRadius and pRadius from a .prj file\n",
    "def get_axis(file):\n",
    "    with open(file) as f:\n",
    "        from collections import defaultdict\n",
    "\n",
    "        files = defaultdict(list)\n",
    "        \n",
    "        for line in f:\n",
    "            \n",
    "            ext = line.strip().split(' ')\n",
    "            files[ext[0]].append(ext[-1])\n",
    "            \n",
    "        eRadius = float(files['A_EARTH'][0])\n",
    "        pRadius = eRadius * (1 - float(files['E_EARTH'][0]))\n",
    "        \n",
    "        return eRadius, pRadius\n",
    "    \n",
    "# function to convert lat_Y_North to ISIS_lat\n",
    "def lat_ISIS_coord(record, semi_major, semi_minor):\n",
    "    ocentric_coord = og2oc(record['lat_Y_North'], semi_major, semi_minor)\n",
    "    coord_360 = to_360(ocentric_coord)\n",
    "    return coord_360\n",
    "\n",
    "# function to convert long_X_East to ISIS_lon\n",
    "def lon_ISIS_coord(record, semi_major, semi_minor):\n",
    "    ocentric_coord = og2oc(record['long_X_East'], semi_major, semi_minor)\n",
    "    coord_360 = to_360(ocentric_coord)\n",
    "    return coord_360\n",
    "\n",
    "def body_fix(record, semi_major, semi_minor, inverse=False):\n",
    "    \"\"\"\n",
    "    Parameters\n",
    "    ----------\n",
    "    record : ndarray\n",
    "             (n,3) where columns are x, y, height or lon, lat, alt\n",
    "    \"\"\"\n",
    "    \n",
    "    ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n",
    "    lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n",
    "    \n",
    "    if inverse:\n",
    "        lon, lat, height = pyproj.transform(ecef, lla, record[0], record[1], record[2])\n",
    "        return lon, lat, height\n",
    "    else:\n",
    "        y, x, z = pyproj.transform(lla, ecef, record[0], record[1], record[2])\n",
    "        return y, x, z\n",
    "\n",
    "def ignore_toggle(record):\n",
    "    if record['stat'] == 0:\n",
    "        return True\n",
    "    else:\n",
    "        return False\n",
    "\n",
    "# TODO: Does isis cnet need a convariance matrix for sigmas? Even with a static matrix of 1,1,1,1 \n",
    "def compute_sigma_covariance_matrix(lat, lon, rad, latsigma, lonsigma, radsigma, semimajor_axis):\n",
    "    \n",
    "    \"\"\"\n",
    "    Given geospatial coordinates, desired accuracy sigmas, and an equitorial radius, compute a 2x3\n",
    "    sigma covariange matrix.\n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    lat : float\n",
    "          A point's latitude in degrees\n",
    "          \n",
    "    lon : float\n",
    "          A point's longitude in degrees\n",
    "          \n",
    "    rad : float\n",
    "          The radius (z-value) of the point in meters\n",
    "          \n",
    "    latsigma : float\n",
    "               The desired latitude accuracy in meters (Default 10.0)\n",
    "               \n",
    "    lonsigma : float\n",
    "               The desired longitude accuracy in meters (Default 10.0)\n",
    "               \n",
    "    radsigma : float\n",
    "               The desired radius accuracy in meters (Defualt: 15.0)\n",
    "               \n",
    "    semimajor_axis : float\n",
    "                     The semi-major or equitorial radius in meters (Default: 1737400.0 - Moon)\n",
    "                     \n",
    "    Returns\n",
    "    -------\n",
    "    rectcov : ndarray\n",
    "              (2,3) covariance matrix\n",
    "    \"\"\"\n",
    "    \n",
    "    lat = math.radians(lat)\n",
    "    lon = math.radians(lon)\n",
    "    \n",
    "    # SetSphericalSigmasDistance\n",
    "    scaled_lat_sigma = latsigma / semimajor_axis\n",
    "\n",
    "    # This is specific to each lon.\n",
    "    scaled_lon_sigma = lonsigma * math.cos(lat) / semimajor_axis\n",
    "    \n",
    "    # SetSphericalSigmas\n",
    "    cov = np.eye(3,3)\n",
    "    cov[0,0] = scaled_lat_sigma ** 2\n",
    "    cov[1,1] = scaled_lon_sigma ** 2\n",
    "    cov[2,2] = radsigma ** 2\n",
    "    \n",
    "    # Approximate the Jacobian\n",
    "    j = np.zeros((3,3))\n",
    "    cosphi = math.cos(lat)\n",
    "    sinphi = math.sin(lat)\n",
    "    coslambda = math.cos(lon)\n",
    "    sinlambda = math.sin(lon)\n",
    "    rcosphi = rad * cosphi\n",
    "    rsinphi = rad * sinphi\n",
    "    j[0,0] = -rsinphi * coslambda\n",
    "    j[0,1] = -rcosphi * sinlambda\n",
    "    j[0,2] = cosphi * coslambda\n",
    "    j[1,0] = -rsinphi * sinlambda\n",
    "    j[1,1] = rcosphi * coslambda\n",
    "    j[1,2] = cosphi * sinlambda\n",
    "    j[2,0] = rcosphi\n",
    "    j[2,1] = 0.\n",
    "    j[2,2] = sinphi\n",
    "    mat = j.dot(cov)\n",
    "    mat = mat.dot(j.T)\n",
    "    rectcov = np.zeros((2,3))\n",
    "    rectcov[0,0] = mat[0,0]\n",
    "    rectcov[0,1] = mat[0,1]\n",
    "    rectcov[0,2] = mat[0,2]\n",
    "    rectcov[1,0] = mat[1,1]\n",
    "    rectcov[1,1] = mat[1,2]\n",
    "    rectcov[1,2] = mat[2,2]\n",
    "    \n",
    "    return np.array(rectcov)\n",
    "#     return np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])\n",
    "\n",
    "\n",
    "def compute_cov_matrix(record, semimajor_axis):\n",
    "    cov_matrix = compute_sigma_covariance_matrix(record['lat_Y_North'], record['long_X_East'], record['ht'], record['sig0'], record['sig1'], record['sig2'], semimajor_axis)\n",
    "    return cov_matrix.ravel().tolist()\n",
    "\n",
    "# applys transformations to columns\n",
    "def apply_two_isis_transformations(atf_dict, df):\n",
    "    prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT'])\n",
    "    \n",
    "    eRadius, pRadius = get_axis(prj_file)\n",
    "    \n",
    "    lla = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]])\n",
    "    \n",
    "    ecef = body_fix(lla, semi_major = eRadius, semi_minor = pRadius, inverse=False)\n",
    "    \n",
    "    df['s.'], df['l.'], df['image_index'] = (zip(*df.apply(line_sample_size, path = atf_dict['PATH'], axis=1)))\n",
    "    df['known'] = df.apply(known, axis=1)\n",
    "    df['long_X_East'] = ecef[0][0]\n",
    "    df['lat_Y_North'] = ecef[1][0]\n",
    "    df['ht'] = ecef[2][0]    \n",
    "    df['aprioriCovar'] = df.apply(compute_cov_matrix, semimajor_axis = eRadius, axis=1)\n",
    "#     df['ignore'] = df.apply(ignore_toggle, axis=1)\n",
    "        \n",
    "def socet2isis(prj_file):\n",
    "    # Read in and setup the atf dict of information\n",
    "    atf_dict = read_atf(prj_file)\n",
    "    \n",
    "    # Get the gpf and ipf files using atf dict\n",
    "    gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);\n",
    "    ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]\n",
    "    \n",
    "    # Read in the gpf file and ipf file(s) into seperate dataframes\n",
    "    gpf_df = read_gpf(gpf_file)\n",
    "    ipf_df = read_ipf(ipf_list)\n",
    "\n",
    "    # Check for differences between point ids using each dataframes\n",
    "    # point ids as a reference\n",
    "    gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id']))\n",
    "    ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id']))\n",
    "\n",
    "    point_diff = ipf_pt_idx.difference(gpf_pt_idx)\n",
    "\n",
    "    if len(point_diff) != 0:\n",
    "        warnings.warn(\"The following points found in ipf files missing from gpf file: \\n\\n{}. \\\n",
    "                      \\n\\nContinuing, but these points will be missing from the control network\".format(list(point_diff)))\n",
    "        \n",
    "    # Merge the two dataframes on their point id columns\n",
    "    socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')\n",
    "    \n",
    "    # Apply the transformations\n",
    "#     apply_two_isis_transformations(atf_dict, socet_df)\n",
    "    \n",
    "    # Define column remap for socet dataframe\n",
    "#     column_map = {'pt_id': 'id', 'l.': 'y', 's.': 'x',\n",
    "#                   'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',\n",
    "#                   'lat_Y_North': 'aprioriY', 'long_X_East': 'aprioriX', 'ht': 'aprioriZ',\n",
    "#                   'sig0': 'aprioriLatitudeSigma', 'sig1': 'aprioriLongitudeSigma', 'sig2': 'aprioriRadiusSigma',\n",
    "#                   'sig_l': 'linesigma', 'sig_s': 'samplesigma'}\n",
    "    \n",
    "    # Rename the columns using the column remap above\n",
    "#     socet_df.rename(columns = column_map, inplace=True)\n",
    "    \n",
    "    # Return the socet dataframe to be converted to a control net\n",
    "    return socet_df\n",
    "\n",
    "# creates a dict of serial numbers with the cub being the key\n",
    "def serial_numbers(images, path, extension):\n",
    "    serial_dict = dict()\n",
    "    \n",
    "    for image in images:\n",
    "        snum = sn.generate_serial_number(os.path.join(path, image + extension))\n",
    "        snum = snum.replace('Mars_Reconnaissance_Orbiter', 'MRO')\n",
    "        serial_dict[image] = snum\n",
    "    return serial_dict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# Setup stuffs for the cub information namely the path and extension\n",
    "path = '/home/acpaquette/repos/plio/test_cubes'\n",
    "targetname = 'Mars'\n",
    "# Extension of your cub files\n",
    "extension = '.8bit.cub'\n",
    "\n",
    "# Path to atf file\n",
    "atf_file = ('/home/acpaquette/repos/plio/plio/examples/SocetSet/Relative.atf')\n",
    "\n",
    "socet_df = socet2isis(atf_file)\n",
    "\n",
    "# images = pd.unique(socet_df['ipf_file'])\n",
    "\n",
    "# serial_dict = serial_numbers(images, path, extension)\n",
    "\n",
    "# creates the control network\n",
    "# cn.to_isis('/home/acpaquette/repos/plio/plio/examples/SocetSet/cn.net', socet_df, serial_dict, targetname = targetname)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 116,
   "metadata": {},
   "outputs": [],
   "source": [
    "return_df = cn.from_isis(\"/home/acpaquette/repos/plio/plio/examples/SocetSet/cn.net\")\n",
    "\n",
    "columns = []\n",
    "column_index = []\n",
    "\n",
    "for i, column in enumerate(list(return_df.columns)):\n",
    "    if column not in columns:\n",
    "        column_index.append(i)\n",
    "        columns.append(column)\n",
    "\n",
    "return_df = return_df.iloc[:, column_index]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 117,
   "metadata": {},
   "outputs": [],
   "source": [
    "column_map = {'pt_id': 'id', 'l.': 'y', 's.': 'x',\n",
    "              'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',\n",
    "              'lat_Y_North': 'aprioriY', 'long_X_East': 'aprioriX', 'ht': 'aprioriZ',\n",
    "              'sig0': 'aprioriLatitudeSigma', 'sig1': 'aprioriLongitudeSigma', 'sig2': 'aprioriRadiusSigma',\n",
    "              'sig_l': 'linesigma', 'sig_s': 'samplesigma'}\n",
    "\n",
    "column_map = {k: v for v, k in column_map.items()}\n",
    "return_df.rename(columns = column_map, inplace=True)\n",
    "return_df.drop(['chooserName', 'datetime', 'referenceIndex', 'jigsawRejected', 'editLock', 'aprioriSurfPointSource', 'aprioriSurfPointSourceFile','aprioriRadiusSource', 'aprioriRadiusSourceFile'] , axis = 1, inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 129,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>lat_Y_North</th>\n",
       "      <th>long_X_East</th>\n",
       "      <th>ht</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>139525.230749</td>\n",
       "      <td>3.390974e+06</td>\n",
       "      <td>4506.496945</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>139525.230749</td>\n",
       "      <td>3.390974e+06</td>\n",
       "      <td>4506.496945</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>139489.278045</td>\n",
       "      <td>3.390969e+06</td>\n",
       "      <td>4516.454802</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>139489.278045</td>\n",
       "      <td>3.390969e+06</td>\n",
       "      <td>4516.454802</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>139823.489797</td>\n",
       "      <td>3.390990e+06</td>\n",
       "      <td>4536.274914</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>139823.489797</td>\n",
       "      <td>3.390990e+06</td>\n",
       "      <td>4536.274914</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>139772.738004</td>\n",
       "      <td>3.390936e+06</td>\n",
       "      <td>4518.050219</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>139772.738004</td>\n",
       "      <td>3.390936e+06</td>\n",
       "      <td>4518.050219</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>139575.914815</td>\n",
       "      <td>3.390952e+06</td>\n",
       "      <td>3816.666542</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>139575.914815</td>\n",
       "      <td>3.390952e+06</td>\n",
       "      <td>3816.666542</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>139614.756296</td>\n",
       "      <td>3.390953e+06</td>\n",
       "      <td>3791.232717</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>139614.756296</td>\n",
       "      <td>3.390953e+06</td>\n",
       "      <td>3791.232717</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>139912.041374</td>\n",
       "      <td>3.390914e+06</td>\n",
       "      <td>3875.608660</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>139912.041374</td>\n",
       "      <td>3.390914e+06</td>\n",
       "      <td>3875.608660</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>139909.452033</td>\n",
       "      <td>3.390930e+06</td>\n",
       "      <td>3845.361327</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>139909.452033</td>\n",
       "      <td>3.390930e+06</td>\n",
       "      <td>3845.361327</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>139669.826849</td>\n",
       "      <td>3.391120e+06</td>\n",
       "      <td>3270.672620</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>139669.826849</td>\n",
       "      <td>3.391120e+06</td>\n",
       "      <td>3270.672620</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>139694.517017</td>\n",
       "      <td>3.391205e+06</td>\n",
       "      <td>3289.744506</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>139694.517017</td>\n",
       "      <td>3.391205e+06</td>\n",
       "      <td>3289.744506</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>139968.793338</td>\n",
       "      <td>3.391126e+06</td>\n",
       "      <td>3274.711397</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>139968.793338</td>\n",
       "      <td>3.391126e+06</td>\n",
       "      <td>3274.711397</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>139979.200780</td>\n",
       "      <td>3.391138e+06</td>\n",
       "      <td>3298.297228</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>139979.200780</td>\n",
       "      <td>3.391138e+06</td>\n",
       "      <td>3298.297228</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>139688.031217</td>\n",
       "      <td>3.391041e+06</td>\n",
       "      <td>4253.956077</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>139688.031217</td>\n",
       "      <td>3.391041e+06</td>\n",
       "      <td>4253.956077</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>139686.910823</td>\n",
       "      <td>3.391089e+06</td>\n",
       "      <td>4216.743792</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>139686.910823</td>\n",
       "      <td>3.391089e+06</td>\n",
       "      <td>4216.743792</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>139786.205284</td>\n",
       "      <td>3.390979e+06</td>\n",
       "      <td>3579.127600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>139786.205284</td>\n",
       "      <td>3.390979e+06</td>\n",
       "      <td>3579.127600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>139785.010997</td>\n",
       "      <td>3.391002e+06</td>\n",
       "      <td>3546.549796</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>139785.010997</td>\n",
       "      <td>3.391002e+06</td>\n",
       "      <td>3546.549796</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      lat_Y_North   long_X_East           ht\n",
       "0   139525.230749  3.390974e+06  4506.496945\n",
       "1   139525.230749  3.390974e+06  4506.496945\n",
       "2   139489.278045  3.390969e+06  4516.454802\n",
       "3   139489.278045  3.390969e+06  4516.454802\n",
       "4   139823.489797  3.390990e+06  4536.274914\n",
       "5   139823.489797  3.390990e+06  4536.274914\n",
       "6   139772.738004  3.390936e+06  4518.050219\n",
       "7   139772.738004  3.390936e+06  4518.050219\n",
       "8   139575.914815  3.390952e+06  3816.666542\n",
       "9   139575.914815  3.390952e+06  3816.666542\n",
       "10  139614.756296  3.390953e+06  3791.232717\n",
       "11  139614.756296  3.390953e+06  3791.232717\n",
       "12  139912.041374  3.390914e+06  3875.608660\n",
       "13  139912.041374  3.390914e+06  3875.608660\n",
       "14  139909.452033  3.390930e+06  3845.361327\n",
       "15  139909.452033  3.390930e+06  3845.361327\n",
       "16  139669.826849  3.391120e+06  3270.672620\n",
       "17  139669.826849  3.391120e+06  3270.672620\n",
       "18  139694.517017  3.391205e+06  3289.744506\n",
       "19  139694.517017  3.391205e+06  3289.744506\n",
       "20  139968.793338  3.391126e+06  3274.711397\n",
       "21  139968.793338  3.391126e+06  3274.711397\n",
       "22  139979.200780  3.391138e+06  3298.297228\n",
       "23  139979.200780  3.391138e+06  3298.297228\n",
       "24  139688.031217  3.391041e+06  4253.956077\n",
       "25  139688.031217  3.391041e+06  4253.956077\n",
       "26  139686.910823  3.391089e+06  4216.743792\n",
       "27  139686.910823  3.391089e+06  4216.743792\n",
       "28  139786.205284  3.390979e+06  3579.127600\n",
       "29  139786.205284  3.390979e+06  3579.127600\n",
       "30  139785.010997  3.391002e+06  3546.549796\n",
       "31  139785.010997  3.391002e+06  3546.549796"
      ]
     },
     "execution_count": 129,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "return_df[['lat_Y_North', 'long_X_East', 'ht']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 128,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>lat_Y_North</th>\n",
       "      <th>long_X_East</th>\n",
       "      <th>ht</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.095708</td>\n",
       "      <td>2.356167</td>\n",
       "      <td>-2342.889214</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.095708</td>\n",
       "      <td>2.356167</td>\n",
       "      <td>-2342.889214</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.095920</td>\n",
       "      <td>2.355564</td>\n",
       "      <td>-2349.638414</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0.095920</td>\n",
       "      <td>2.355564</td>\n",
       "      <td>-2349.638414</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.096339</td>\n",
       "      <td>2.361186</td>\n",
       "      <td>-2314.316425</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>0.096339</td>\n",
       "      <td>2.361186</td>\n",
       "      <td>-2314.316425</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>0.095954</td>\n",
       "      <td>2.360368</td>\n",
       "      <td>-2370.502882</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>0.095954</td>\n",
       "      <td>2.360368</td>\n",
       "      <td>-2370.502882</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>0.081058</td>\n",
       "      <td>2.357037</td>\n",
       "      <td>-2363.989968</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>0.081058</td>\n",
       "      <td>2.357037</td>\n",
       "      <td>-2363.989968</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>0.080518</td>\n",
       "      <td>2.357691</td>\n",
       "      <td>-2360.922571</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>0.080518</td>\n",
       "      <td>2.357691</td>\n",
       "      <td>-2360.922571</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>0.082311</td>\n",
       "      <td>2.362733</td>\n",
       "      <td>-2388.123298</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>0.082311</td>\n",
       "      <td>2.362733</td>\n",
       "      <td>-2388.123298</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>0.081668</td>\n",
       "      <td>2.362678</td>\n",
       "      <td>-2371.973499</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>0.081668</td>\n",
       "      <td>2.362678</td>\n",
       "      <td>-2371.973499</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>0.069458</td>\n",
       "      <td>2.358505</td>\n",
       "      <td>-2193.309629</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>0.069458</td>\n",
       "      <td>2.358505</td>\n",
       "      <td>-2193.309629</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>0.069861</td>\n",
       "      <td>2.358862</td>\n",
       "      <td>-2106.769773</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>0.069861</td>\n",
       "      <td>2.358862</td>\n",
       "      <td>-2106.769773</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>0.069543</td>\n",
       "      <td>2.363543</td>\n",
       "      <td>-2174.971745</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>0.069543</td>\n",
       "      <td>2.363543</td>\n",
       "      <td>-2174.971745</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>0.070044</td>\n",
       "      <td>2.363710</td>\n",
       "      <td>-2162.103231</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>0.070044</td>\n",
       "      <td>2.363710</td>\n",
       "      <td>-2162.103231</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>0.090342</td>\n",
       "      <td>2.358866</td>\n",
       "      <td>-2269.610862</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>0.090342</td>\n",
       "      <td>2.358866</td>\n",
       "      <td>-2269.610862</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>0.089550</td>\n",
       "      <td>2.358814</td>\n",
       "      <td>-2222.328983</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>0.089550</td>\n",
       "      <td>2.358814</td>\n",
       "      <td>-2222.328983</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>0.076012</td>\n",
       "      <td>2.360565</td>\n",
       "      <td>-2328.281125</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>0.076012</td>\n",
       "      <td>2.360565</td>\n",
       "      <td>-2328.281125</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>0.075320</td>\n",
       "      <td>2.360529</td>\n",
       "      <td>-2305.362047</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>0.075320</td>\n",
       "      <td>2.360529</td>\n",
       "      <td>-2305.362047</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    lat_Y_North  long_X_East           ht\n",
       "0      0.095708     2.356167 -2342.889214\n",
       "1      0.095708     2.356167 -2342.889214\n",
       "2      0.095920     2.355564 -2349.638414\n",
       "3      0.095920     2.355564 -2349.638414\n",
       "4      0.096339     2.361186 -2314.316425\n",
       "5      0.096339     2.361186 -2314.316425\n",
       "6      0.095954     2.360368 -2370.502882\n",
       "7      0.095954     2.360368 -2370.502882\n",
       "8      0.081058     2.357037 -2363.989968\n",
       "9      0.081058     2.357037 -2363.989968\n",
       "10     0.080518     2.357691 -2360.922571\n",
       "11     0.080518     2.357691 -2360.922571\n",
       "12     0.082311     2.362733 -2388.123298\n",
       "13     0.082311     2.362733 -2388.123298\n",
       "14     0.081668     2.362678 -2371.973499\n",
       "15     0.081668     2.362678 -2371.973499\n",
       "16     0.069458     2.358505 -2193.309629\n",
       "17     0.069458     2.358505 -2193.309629\n",
       "18     0.069861     2.358862 -2106.769773\n",
       "19     0.069861     2.358862 -2106.769773\n",
       "20     0.069543     2.363543 -2174.971745\n",
       "21     0.069543     2.363543 -2174.971745\n",
       "22     0.070044     2.363710 -2162.103231\n",
       "23     0.070044     2.363710 -2162.103231\n",
       "24     0.090342     2.358866 -2269.610862\n",
       "25     0.090342     2.358866 -2269.610862\n",
       "26     0.089550     2.358814 -2222.328983\n",
       "27     0.089550     2.358814 -2222.328983\n",
       "28     0.076012     2.360565 -2328.281125\n",
       "29     0.076012     2.360565 -2328.281125\n",
       "30     0.075320     2.360529 -2305.362047\n",
       "31     0.075320     2.360529 -2305.362047"
      ]
     },
     "execution_count": 128,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "socet_df[['lat_Y_North', 'long_X_East', 'ht']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}