{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "from functools import singledispatch\n", "import warnings\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import math\n", "import pyproj\n", "\n", "\n", "# Path to local plio if wanted\n", "sys.path.insert(0, \"/path/to/plio\")\n", "\n", "from plio.examples import get_path\n", "from plio.io.io_bae import read_gpf, read_ipf\n", "import plio.io.io_controlnetwork as cn\n", "import plio.io.isis_serial_number as sn" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Reads a .atf file and outputs all of the \n", "# .ipf, .gpf, .sup, .prj, and path to locate the \n", "# .apf file (should be the same as all others) \n", "def read_atf(atf_file):\n", " with open(atf_file) as f:\n", "\n", " files = []\n", " ipf = []\n", " sup = []\n", " files_dict = []\n", " \n", " # Grabs every PRJ, GPF, SUP, and IPF image from the ATF file\n", " for line in f:\n", " if line[-4:-1] == 'prj' or line[-4:-1] == 'gpf' or line[-4:-1] == 'sup' or line[-4:-1] == 'ipf' or line[-4:-1] == 'atf':\n", " files.append(line)\n", " \n", " files = np.array(files)\n", " \n", " # Creates appropriate arrays for certain files in the right format\n", " for file in files:\n", " file = file.strip()\n", " file = file.split(' ')\n", "\n", " # Grabs all the IPF files\n", " if file[1].endswith('.ipf'):\n", " ipf.append(file[1])\n", "\n", " # Grabs all the SUP files\n", " if file[1].endswith('.sup'):\n", " sup.append(file[1])\n", "\n", " files_dict.append(file)\n", "\n", " # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n", " files_dict = (dict(files_dict))\n", " \n", " # Sets the value of IMAGE_IPF to all IPF images\n", " files_dict['IMAGE_IPF'] = ipf\n", " \n", " # Sets the value of IMAGE_SUP to all SUP images\n", " files_dict['IMAGE_SUP'] = sup\n", " \n", " # Sets the value of PATH to the path of the ATF file\n", " files_dict['PATH'] = os.path.dirname(os.path.abspath(atf_file))\n", " \n", " return files_dict\n", "\n", "# converts columns l. and s. to isis\n", "def line_sample_size(record, path):\n", " with open(os.path.join(path, record['ipf_file'] + '.sup')) as f:\n", " for i, line in enumerate(f):\n", " if i == 2:\n", " img_index = line.split('\\\\')\n", " img_index = img_index[-1].strip()\n", " img_index = img_index.split('.')[0]\n", " \n", " if i == 3:\n", " line_size = line.split(' ')\n", " line_size = line_size[-1].strip()\n", " assert int(line_size) > 0, \"Line number {} from {} is a negative number: Invalid Data\".format(line_size, record['ipf_file'])\n", " \n", " if i == 4:\n", " sample_size = line.split(' ')\n", " sample_size = sample_size[-1].strip()\n", " assert int(sample_size) > 0, \"Sample number {} from {} is a negative number: Invalid Data\".format(sample_size, record['ipf_file'])\n", " break\n", " \n", " \n", " line_size = int(line_size)/2.0 + record['l.'] + 1\n", " sample_size = int(sample_size)/2.0 + record['s.'] + 1\n", " return sample_size, line_size, img_index\n", " \n", "# converts known to ISIS keywords\n", "def known(record):\n", " if record['known'] == 0:\n", " return 'Free'\n", " \n", " elif record['known'] == 1 or record['known'] == 2 or record['known'] == 3:\n", " return 'Constrained'\n", " \n", "# converts +/- 180 system to 0 - 360 system\n", "def to_360(num):\n", " return num % 360\n", "\n", "# ocentric to ographic latitudes\n", "def oc2og(dlat, dMajorRadius, dMinorRadius):\n", " try: \n", " dlat = math.radians(dlat)\n", " dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat)))\n", " dlat = math.degrees(dlat)\n", " except:\n", " print (\"Error in oc2og conversion\")\n", " return dlat\n", "\n", "# ographic to ocentric latitudes\n", "def og2oc(dlat, dMajorRadius, dMinorRadius):\n", " try:\n", " dlat = math.radians(dlat)\n", " dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2)))\n", " dlat = math.degrees(dlat)\n", " except:\n", " print (\"Error in og2oc conversion\")\n", " return dlat\n", "\n", "# gets eRadius and pRadius from a .prj file\n", "def get_axis(file):\n", " with open(file) as f:\n", " from collections import defaultdict\n", "\n", " files = defaultdict(list)\n", " \n", " for line in f:\n", " \n", " ext = line.strip().split(' ')\n", " files[ext[0]].append(ext[-1])\n", " \n", " eRadius = float(files['A_EARTH'][0])\n", " pRadius = eRadius * (1 - float(files['E_EARTH'][0]))\n", " \n", " return eRadius, pRadius\n", " \n", "# function to convert lat_Y_North to ISIS_lat\n", "def lat_ISIS_coord(record, semi_major, semi_minor):\n", " ocentric_coord = og2oc(record['lat_Y_North'], semi_major, semi_minor)\n", " coord_360 = to_360(ocentric_coord)\n", " return coord_360\n", "\n", "# function to convert long_X_East to ISIS_lon\n", "def lon_ISIS_coord(record, semi_major, semi_minor):\n", " ocentric_coord = og2oc(record['long_X_East'], semi_major, semi_minor)\n", " coord_360 = to_360(ocentric_coord)\n", " return coord_360\n", "\n", "def body_fix(record, semi_major, semi_minor, inverse=False):\n", " \"\"\"\n", " Parameters\n", " ----------\n", " record : ndarray\n", " (n,3) where columns are x, y, height or lon, lat, alt\n", " \"\"\"\n", " \n", " ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n", " lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n", " \n", " if inverse:\n", " lon, lat, height = pyproj.transform(ecef, lla, record[0], record[1], record[2])\n", " return lon, lat, height\n", " else:\n", " y, x, z = pyproj.transform(lla, ecef, record[0], record[1], record[2])\n", " return y, x, z\n", "\n", "def ignore_toggle(record):\n", " if record['stat'] == 0:\n", " return True\n", " else:\n", " return False\n", "\n", "# TODO: Does isis cnet need a convariance matrix for sigmas? Even with a static matrix of 1,1,1,1 \n", "def compute_sigma_covariance_matrix(lat, lon, rad, latsigma, lonsigma, radsigma, semimajor_axis):\n", " \n", " \"\"\"\n", " Given geospatial coordinates, desired accuracy sigmas, and an equitorial radius, compute a 2x3\n", " sigma covariange matrix.\n", " Parameters\n", " ----------\n", " lat : float\n", " A point's latitude in degrees\n", " lon : float\n", " A point's longitude in degrees\n", " rad : float\n", " The radius (z-value) of the point in meters\n", " latsigma : float\n", " The desired latitude accuracy in meters (Default 10.0)\n", " lonsigma : float\n", " The desired longitude accuracy in meters (Default 10.0)\n", " radsigma : float\n", " The desired radius accuracy in meters (Defualt: 15.0)\n", " semimajor_axis : float\n", " The semi-major or equitorial radius in meters (Default: 1737400.0 - Moon)\n", " Returns\n", " -------\n", " rectcov : ndarray\n", " (2,3) covariance matrix\n", " \"\"\"\n", " \n", " lat = math.radians(lat)\n", " lon = math.radians(lon)\n", " \n", " # SetSphericalSigmasDistance\n", " scaled_lat_sigma = latsigma / semimajor_axis\n", "\n", " # This is specific to each lon.\n", " scaled_lon_sigma = lonsigma * math.cos(lat) / semimajor_axis\n", " \n", " # SetSphericalSigmas\n", " cov = np.eye(3,3)\n", " cov[0,0] = scaled_lat_sigma ** 2\n", " cov[1,1] = scaled_lon_sigma ** 2\n", " cov[2,2] = radsigma ** 2\n", " \n", " # Approximate the Jacobian\n", " j = np.zeros((3,3))\n", " cosphi = math.cos(lat)\n", " sinphi = math.sin(lat)\n", " coslambda = math.cos(lon)\n", " sinlambda = math.sin(lon)\n", " rcosphi = rad * cosphi\n", " rsinphi = rad * sinphi\n", " j[0,0] = -rsinphi * coslambda\n", " j[0,1] = -rcosphi * sinlambda\n", " j[0,2] = cosphi * coslambda\n", " j[1,0] = -rsinphi * sinlambda\n", " j[1,1] = rcosphi * coslambda\n", " j[1,2] = cosphi * sinlambda\n", " j[2,0] = rcosphi\n", " j[2,1] = 0.\n", " j[2,2] = sinphi\n", " mat = j.dot(cov)\n", " mat = mat.dot(j.T)\n", " rectcov = np.zeros((2,3))\n", " rectcov[0,0] = mat[0,0]\n", " rectcov[0,1] = mat[0,1]\n", " rectcov[0,2] = mat[0,2]\n", " rectcov[1,0] = mat[1,1]\n", " rectcov[1,1] = mat[1,2]\n", " rectcov[1,2] = mat[2,2]\n", " \n", " return rectcov\n", "# return np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])\n", "\n", "\n", "def compute_cov_matrix(record, semimajor_axis):\n", " cov_matrix = compute_sigma_covariance_matrix(record['lat_Y_North'], record['long_X_East'], record['ht'], record['sig0'], record['sig1'], record['sig2'], semimajor_axis)\n", " return cov_matrix.ravel().tolist()\n", "\n", "# applys transformations to columns\n", "def apply_transformations(atf_dict, df):\n", " prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT'].split('\\\\')[-1])\n", " \n", " eRadius, pRadius = get_axis(prj_file)\n", " \n", " lla = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]])\n", " \n", " ecef = body_fix(lla, semi_major = eRadius, semi_minor = pRadius, inverse=False)\n", " \n", " df['s.'], df['l.'], df['image_index'] = (zip(*df.apply(line_sample_size, path = atf_dict['PATH'], axis=1)))\n", " df['known'] = df.apply(known, axis=1)\n", " df['long_X_East'] = ecef[0][0]\n", " df['lat_Y_North'] = ecef[1][0]\n", " df['ht'] = ecef[2][0] \n", " df['aprioriCovar'] = df.apply(compute_cov_matrix, semimajor_axis = eRadius, axis=1)\n", " df['ignore'] = df.apply(ignore_toggle, axis=1)\n", " \n", "def socet2isis(prj_file):\n", " # Read in and setup the atf dict of information\n", " atf_dict = read_atf(prj_file)\n", " \n", " # Get the gpf and ipf files using atf dict\n", " gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);\n", " ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]\n", " \n", " # Read in the gpf file and ipf file(s) into seperate dataframes\n", " gpf_df = read_gpf(gpf_file)\n", " ipf_df = read_ipf(ipf_list)\n", "\n", " # Check for differences between point ids using each dataframes\n", " # point ids as a reference\n", " gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id']))\n", " ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id']))\n", "\n", " point_diff = ipf_pt_idx.difference(gpf_pt_idx)\n", "\n", " if len(point_diff) != 0:\n", " warnings.warn(\"The following points found in ipf files missing from gpf file: \\n\\n{}. \\\n", " \\n\\nContinuing, but these points will be missing from the control network\".format(list(point_diff)))\n", " \n", " # Merge the two dataframes on their point id columns\n", " socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')\n", " \n", " # Apply the transformations\n", " apply_transformations(atf_dict, socet_df)\n", " \n", " # Define column remap for socet dataframe\n", " column_remap = {'l.': 'y', 's.': 'x',\n", " 'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',\n", " 'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ',\n", " 'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma',\n", " 'sig_l': 'linesigma', 'sig_s': 'samplesigma'}\n", " \n", " # Rename the columns using the column remap above\n", " socet_df.rename(columns = column_remap, inplace=True)\n", " \n", " # Return the socet dataframe to be converted to a control net\n", " return socet_df\n", "\n", "# creates a dict of serial numbers with the cub being the key\n", "def serial_numbers(images, path, extension):\n", " serial_dict = dict()\n", " \n", " for image in images:\n", " snum = sn.generate_serial_number(os.path.join(path, image + extension))\n", " snum = snum.replace('Mars_Reconnaissance_Orbiter', 'MRO')\n", " serial_dict[image] = snum\n", " return serial_dict\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "# path = '/home/tthatcher/Desktop/Projects/plio_imgs/quest_imgs/'\n", "# extension = '.lev1.cub'\n", "# atf_file = ('/home/tthatcher/Desktop/Projects/plio_imgs/quest_imgs/CTX_Athabasca_Middle_step0.atf')\n", "\n", "# Setup stuffs for the cub information namely the path and extension\n", "path = '/path/where/cub/files/are/'\n", "\n", "# Extension of your cub files\n", "extension = '.8bit.cub'\n", "\n", "# Path to atf file\n", "atf_file = ('/path/to/atf/file')\n", "\n", "socet_df = socet2isis(atf_file)\n", "\n", "images = pd.unique(socet_df['ipf_file'])\n", "\n", "serial_dict = serial_numbers(images, path, extension)\n", "\n", "# creates the control network\n", "cn.to_isis('/path/you/want/the/cnet/to/be/in/cn.net', socet_df, serial_dict)\n", "\n", "# cn.to_isis('/home/tthatcher/Desktop/Projects/plio_imgs/quest_imgs/cn.net', socet_df, serial_dict)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }