#!/usr/bin/env python import os import sys import argparse import warnings import pvl import math import pyproj import numpy as np import pandas as pd from plio.io.io_bae import read_atf, read_gpf, read_ipf import plio.io.io_controlnetwork as cn import plio.io.isis_serial_number as sn from plio.utils.utils import find_in_dict, split_all_ext def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('at_file', help='Path to the .atf file for a project.') parser.add_argument('cub_list', help='Path to a list file containing paths to the associated\ Isis cubes.') parser.add_argument('target_name', help='Name of the target body used in the control net') parser.add_argument('--outpath', help='Directory for the control network to be output to.') return parser.parse_args() def line_sample_size(record, path): """ Converts columns l. and s. to sample size, line size, and generates an image index Parameters ---------- record : object Pandas series object path : str Path to the associated sup files for a socet project Returns ------- : list A list of sample_size, line_size, and img_index """ with open(os.path.join(path, record['ipf_file'] + '.sup')) as f: for i, line in enumerate(f): if i == 2: img_index = line.split('\\') img_index = img_index[-1].strip() img_index = img_index.split('.')[0] if i == 3: line_size = line.split(' ') line_size = line_size[-1].strip() assert int(line_size) > 0, "Line number {} from {} is a negative number: Invalid Data".format(line_size, record['ipf_file']) if i == 4: sample_size = line.split(' ') sample_size = sample_size[-1].strip() assert int(sample_size) > 0, "Sample number {} from {} is a negative number: Invalid Data".format(sample_size, record['ipf_file']) break line_size = int(line_size)/2.0 + record['l.'] + 1 sample_size = int(sample_size)/2.0 + record['s.'] + 1 return sample_size, line_size, img_index def get_axis(file): """ Gets eRadius and pRadius from a .prj file Parameters ---------- file : str file with path to a given socet project file Returns ------- : list A list of the eRadius and pRadius of the project file """ with open(file) as f: from collections import defaultdict files = defaultdict(list) for line in f: ext = line.strip().split(' ') files[ext[0]].append(ext[-1]) eRadius = float(files['A_EARTH'][0]) pRadius = eRadius * math.sqrt(1 - (float(files['E_EARTH'][0]) ** 2)) return eRadius, pRadius def reproject(record, semi_major, semi_minor, source_proj, dest_proj, **kwargs): """ Thin wrapper around PyProj's Transform() function to transform 1 or more three-dimensional point from one coordinate system to another. If converting between Cartesian body-centered body-fixed (BCBF) coordinates and Longitude/Latitude/Altitude coordinates, the values input for semi-major and semi-minor axes determine whether latitudes are planetographic or planetocentric and determine the shape of the datum for altitudes. If semi_major == semi_minor, then latitudes are interpreted/created as planetocentric and altitudes are interpreted/created as referenced to a spherical datum. If semi_major != semi_minor, then latitudes are interpreted/created as planetographic and altitudes are interpreted/created as referenced to an ellipsoidal datum. Parameters ---------- record : object Pandas series object semi_major : float Radius from the center of the body to the equater semi_minor : float Radius from the pole to the center of mass source_proj : str Pyproj string that defines a projection space ie. 'geocent' dest_proj : str Pyproj string that defines a project space ie. 'latlon' Returns ------- : list Transformed coordinates as y, x, z """ source_pyproj = pyproj.Proj(proj = source_proj, a = semi_major, b = semi_minor) dest_pyproj = pyproj.Proj(proj = dest_proj, a = semi_major, b = semi_minor) y, x, z = pyproj.transform(source_pyproj, dest_pyproj, record[0], record[1], record[2], **kwargs) return y, x, z # TODO: Does isis cnet need a convariance matrix for sigmas? Even with a static matrix of 1,1,1,1 def compute_sigma_covariance_matrix(lat, lon, rad, latsigma, lonsigma, radsigma, semimajor_axis): """ Given geospatial coordinates, desired accuracy sigmas, and an equitorial radius, compute a 2x3 sigma covariange matrix. Parameters ---------- lat : float A point's latitude in degrees lon : float A point's longitude in degrees rad : float The radius (z-value) of the point in meters latsigma : float The desired latitude accuracy in meters (Default 10.0) lonsigma : float The desired longitude accuracy in meters (Default 10.0) radsigma : float The desired radius accuracy in meters (Defualt: 15.0) semimajor_axis : float The semi-major or equitorial radius in meters (Default: 1737400.0 - Moon) Returns ------- rectcov : ndarray (2,3) covariance matrix """ lat = math.radians(lat) lon = math.radians(lon) # SetSphericalSigmasDistance scaled_lat_sigma = latsigma / semimajor_axis # This is specific to each lon. scaled_lon_sigma = lonsigma * math.cos(lat) / semimajor_axis # SetSphericalSigmas cov = np.eye(3,3) cov[0,0] = math.radians(scaled_lat_sigma) ** 2 cov[1,1] = math.radians(scaled_lon_sigma) ** 2 cov[2,2] = radsigma ** 2 # Approximate the Jacobian j = np.zeros((3,3)) cosphi = math.cos(lat) sinphi = math.sin(lat) cos_lmbda = math.cos(lon) sin_lmbda = math.sin(lon) rcosphi = rad * cosphi rsinphi = rad * sinphi j[0,0] = -rsinphi * cos_lmbda j[0,1] = -rcosphi * sin_lmbda j[0,2] = cosphi * cos_lmbda j[1,0] = -rsinphi * sin_lmbda j[1,1] = rcosphi * cos_lmbda j[1,2] = cosphi * sin_lmbda j[2,0] = rcosphi j[2,1] = 0. j[2,2] = sinphi mat = j.dot(cov) mat = mat.dot(j.T) rectcov = np.zeros((2,3)) rectcov[0,0] = mat[0,0] rectcov[0,1] = mat[0,1] rectcov[0,2] = mat[0,2] rectcov[1,0] = mat[1,1] rectcov[1,1] = mat[1,2] rectcov[1,2] = mat[2,2] return rectcov def compute_cov_matrix(record, semimajor_axis): cov_matrix = compute_sigma_covariance_matrix(record['lat_Y_North'], record['long_X_East'], record['ht'], record['sig0'], record['sig1'], record['sig2'], semimajor_axis) return cov_matrix.ravel().tolist() def stat_toggle(record): if record['stat'] == 0: return True else: return False def known(record): """ Converts the known field from a socet dataframe into the isis point_type column Parameters ---------- record : object Pandas series object Returns ------- : str String representation of a known field """ lookup = {0: 'Free', 1: 'Constrained', 2: 'Constrained', 3: 'Constrained'} return lookup[record['known']] def apply_socet_transformations(atf_dict, df): """ Takes a atf dictionary and a socet dataframe and applies the necessary transformations to convert that dataframe into a isis compatible dataframe Parameters ---------- atf_dict : dict Dictionary containing information from an atf file df : object Pandas dataframe object """ prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT']) eRadius, pRadius = get_axis(prj_file) # Convert longitude and latitude from radians to degrees df['long_X_East'] = df['long_X_East'].apply(np.degrees) df['lat_Y_North'] = df['lat_Y_North'].apply(np.degrees) lla = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]]) ecef = reproject(lla, semi_major = eRadius, semi_minor = pRadius, source_proj = 'latlon', dest_proj = 'geocent') df['s.'], df['l.'], df['image_index'] = (zip(*df.apply(line_sample_size, path = atf_dict['PATH'], axis=1))) df['known'] = df.apply(known, axis=1) df['long_X_East'] = ecef[0][0] df['lat_Y_North'] = ecef[1][0] df['ht'] = ecef[2][0] df['aprioriCovar'] = df.apply(compute_cov_matrix, semimajor_axis = eRadius, axis=1) df['stat'] = df.apply(stat_toggle, axis=1) def main(args): # Setup the at_file, path to cubes, and control network out path at_file = args.at_file with open(args.cub_list, 'r') as f: lines = f.readlines() cub_list = [cub.replace('\n', '') for cub in lines] cnet_out = os.path.split(os.path.splitext(at_file)[0])[1] if( args.outpath ): outpath = args.outpath else: outpath = os.path.split(at_file)[0] # Read in and setup the atf dict of information atf_dict = read_atf(at_file) # Get the gpf and ipf files using atf dict gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']); ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']] # Read in the gpf file and ipf file(s) into seperate dataframes gpf_df = read_gpf(gpf_file) ipf_df = read_ipf(ipf_list) # Check for differences between point ids using each dataframes # point ids as a reference gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id'])) ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id'])) point_diff = ipf_pt_idx.difference(gpf_pt_idx) if len(point_diff) != 0: warnings.warn("The following points found in ipf files missing from gpf file: \n\n{}. \ \n\nContinuing, but these points will be missing from the control network".format(list(point_diff))) # Merge the two dataframes on their point id columns socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id') # Apply the transformations apply_socet_transformations(atf_dict, socet_df) # Define column remap for socet dataframe column_map = {'pt_id': 'id', 'l.': 'y', 's.': 'x', 'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type', 'lat_Y_North': 'aprioriY', 'long_X_East': 'aprioriX', 'ht': 'aprioriZ', 'sig0': 'aprioriLatitudeSigma', 'sig1': 'aprioriLongitudeSigma', 'sig2': 'aprioriRadiusSigma', 'sig_l': 'linesigma', 'sig_s': 'samplesigma'} # Rename the columns using the column remap above socet_df.rename(columns = column_map, inplace=True) # Build a serial dict assuming the cubes will be named as the IPFs are serial_dict = {split_all_ext(os.path.split(i)[-1]): sn.generate_serial_number(i) for i in cub_list} # creates the control network cn.to_isis(os.path.join(outpath, cnet_out + '.net'), socet_df, serial_dict, targetname = args.target_name) if __name__ == '__main__': main(parse_args())