#include #include #include #include #include #include #include #include #include #include using namespace inaf::oasbo::ConnectionProtocols; UDPProtocol::UDPProtocol() { this->host = std::string("127.0.0.1:9003"); std::string port { }; split_ip_port(host, ip, port); this->port = std::stoi(port); this->srv_sock = -1; this->cli_sock = -1; memset(&cliaddr, 0, sizeof(cliaddr)); memset(&srvaddr, 0, sizeof(srvaddr)); // Filling server information srvaddr.sin_family = AF_INET; // IPv4 srvaddr.sin_addr.s_addr = inet_addr(ip.c_str()); srvaddr.sin_port = htons(this->port); } UDPProtocol::UDPProtocol(std::string ip, int port) { this->host = std::string(ip).append(":").append(std::to_string(port)); this->ip = ip; this->port = port; this->srv_sock = -1; this->cli_sock = -1; memset(&cliaddr, 0, sizeof(cliaddr)); memset(&srvaddr, 0, sizeof(srvaddr)); // Filling server information srvaddr.sin_family = AF_INET; // IPv4 srvaddr.sin_addr.s_addr = inet_addr(ip.c_str()); srvaddr.sin_port = htons(this->port); } UDPProtocol::~UDPProtocol() { closeConnectionToClient(); closeConnectionToServer(); } int UDPProtocol::sendToServer(PacketLib::BasePacket &pack) { int val = ::sendto(cli_sock, pack.getBinaryPointer(), pack.getHeaderSize() + pack.getPayloadSize() + pack.getTailSize(), MSG_CONFIRM, (struct sockaddr*) &srvaddr, sizeof(srvaddr)); return val; } int UDPProtocol::receiveAtLeastHeaderSizeBytes(uint8_t *buff, int headerSize, int packetSize) { int bytercv = 0; socklen_t len = sizeof(cliaddr); while (bytercv < headerSize) { int rcv = recvfrom(srv_sock, &buff[bytercv], packetSize+1, // +1 to recognized if there are more bytes than expected MSG_WAITFORONE, (struct sockaddr*) &cliaddr, &len); bytercv += rcv; if (rcv < 0) { // error in receiving, reset the buffer and try again std::memset(buff, 0 , bytercv+1); bytercv = 0; continue; } } return bytercv; } int UDPProtocol::receiveFromClient(PacketLib::BasePacket &pack) { bool headerFlag = false; int headerSize = pack.getHeaderSize(); int packSize = pack.getPacketStructureByteSize(); int tailSize = pack.getTailSize(); uint payloadSize = 0; uint totPacketSize = 0; ssize_t to_be_received = 0; uint8_t *buff = new uint8_t[(packSize+headerSize)*headerSize]; // to avoid overflow int tot_byte_rcv = 0; while(true){ // blocking call, the function returns only when a well formed packet has been received while(!headerFlag){ // until the header has not received tot_byte_rcv = receiveAtLeastHeaderSizeBytes(buff,headerSize, packSize); // receive at least headerSize byte, maximum packSize for each udp rcv. std::vector vec; std::copy(buff, buff + headerSize, std::back_inserter(vec)); if(!pack.isRecognizedHeader(vec)){ // reset buffer and try again std::memset(buff,0,tot_byte_rcv); continue; } headerFlag = true; pack.copyToBinaryPointer(buff, headerSize); //copy the header into packet to be able to read it. payloadSize = pack.getPayloadSize(); totPacketSize = headerSize + payloadSize + tailSize; to_be_received = totPacketSize - tot_byte_rcv; // Calculate how much is still left to read } if (to_be_received == 0){ // whole packet has been received. pack.copyToBinaryPointer(&buff[headerSize],tot_byte_rcv-headerSize, headerSize); // copy the buffer into packet except already copied header delete buff; return tot_byte_rcv; } if (to_be_received < 0) { // error,received more bytes then expected. std::memset(buff,0,tot_byte_rcv); pack.copyToBinaryPointer(buff, headerSize); headerFlag = false; continue; } uint8_t *tmp_buff = new uint8_t[packSize+headerSize]; // maximum receivable in receiveAtLeastHeaderSizeBytes int rcv = receiveAtLeastHeaderSizeBytes(tmp_buff, headerSize, packSize); std::vector vec; std::copy(tmp_buff, tmp_buff + headerSize, std::back_inserter(vec)); if(!pack.isRecognizedHeader(vec)){ //another header received, save it and discard previous data. std::memset(buff,0,tot_byte_rcv); std::memcpy(buff, tmp_buff, rcv); headerFlag = true; pack.copyToBinaryPointer(buff, headerSize); payloadSize = pack.getPayloadSize(); totPacketSize = headerSize + payloadSize + tailSize; to_be_received = totPacketSize - rcv; tot_byte_rcv=rcv; } else{ // append to current buff tot_byte_rcv+=rcv; std::memcpy(&buff[tot_byte_rcv-rcv], tmp_buff, rcv); to_be_received-=rcv; } delete tmp_buff; } } int UDPProtocol::connectToClient() { int sockfd; // Creating socket file descriptor if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { perror("socket creation failed"); return -1; } // Set timeout to the socket struct timeval tv; tv.tv_sec = std::numeric_limits::max(); tv.tv_usec = 0; setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, (const char*) &tv, sizeof tv); // Bind the socket with the server address if (bind(sockfd, (const struct sockaddr*) &srvaddr, sizeof(srvaddr)) < 0) { perror("bind failed"); return -1; } this->srv_sock = sockfd; return sockfd; } int UDPProtocol::connectToServer() { int sockfd = 0; // Creating socket file descriptor if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { perror("socket creation failed"); exit(EXIT_FAILURE); } printf("Connection made\n"); this->cli_sock = sockfd; return sockfd; } int UDPProtocol::closeConnectionToClient() { if (srv_sock != -1) { ::close(srv_sock); srv_sock = -1; } return 1; } int UDPProtocol::closeConnectionToServer() { if (cli_sock != -1) { ::close(cli_sock); cli_sock = -1; } return 1; } bool UDPProtocol::isConnectedToClient() const { return srv_sock != -1; } bool UDPProtocol::isConnectedToServer() const { return cli_sock != -1; } void UDPProtocol::resetPacket(PacketLib::BasePacket &pack, int bytes) { uint8_t *buff = new uint8_t[bytes]; std::memset(buff, 0, bytes); int toBeReset = std::min(static_cast(pack.getPacketStructureByteSize()), bytes); pack.copyToBinaryPointer(buff, toBeReset); delete buff; } void UDPProtocol::split_ip_port(const std::string &ip_port, std::string &ip_address, std::string &port) { // Regex pattern to match IP address and port in the format "xxx.xxx.xxx.xxx:xxxx" std::regex pattern("^(\\d{1,3}\\.){3}\\d{1,3}:(\\d{1,5})$"); // Check if the input string matches the expected format if (!std::regex_match(ip_port, pattern)) { std::cerr << "Error: invalid IP address and port format: " << ip_port << std::endl; exit(EXIT_FAILURE); } // Split the input string into IP address and port int colon_pos = ip_port.find(":"); ip_address = ip_port.substr(0, colon_pos); port = ip_port.substr(colon_pos + 1); }