
Nano-particle Transition Matrix code

Release Notes

Report for M8.03

G. La Mura, G. Mulas

June 2024

Contents

Scope of the document . 2

1 Aim of the project 3

1.1 Introduction . 3

1.2 Project break-down . 5

1.3 Project status . 5

2 Release description 7

2.1 Parallel implementation . 7

2.2 New release features . 8

2.3 Code performance . 9

3 Instructions for testing 12

3.1 Set up operations . 12

3.1.1 Building the code . 12

3.2 Execution of the sphere case 14

3.3 Execution of the cluster case 15

3.4 Testing with docker/singularity 17

3.4.1 Docker . 18

3.4.2 Singularity . 18

3.5 Comparing results . 19

1

Scope of the document

This document is provided along with the M8 release of the NP-TM code

suite as a quick report on the status of the project. The aim of this docu-

ment is to give an overview of the project goals, to provide a quick guide to

navigate the progress achieved with respect to milestones and to give a set

of fundamental instructions to perform tests of the code functionality. More

detailed documentation, explaining the structure of the code and the role of

its main components (data structures, functions and variables) is given in

the form of doxygen-handled inline documentation.

This document is organized in chapters:

- Chapter 1 presents the general scope of the project and a description of its

milestones;

- Chapter 2 provides a description of the current code release and discusses

how the project guidelines were implemented;

- Chapter 3 finally gives instructions on how to test the code release in its

current form.

The contents of this document update the information included in the

Release Notes of M7.00, also included in the distribution. The introductory

discussion presented in Chapter 1 is similar to the one given in the previous

release. The contents of Chapters 2 and 3 assume that the reader is aware

of the discussion presented in the release notes of M7.00.

2

Chapter 1

Aim of the project

1.1 Introduction

This project aims at implementing High Performance Computing (HPC)

strategies to accelerate the execution of the Nano-Particle Transition Matrix

code, developed by Borghese et al. (2007), to solve the scattering and absorp-

tion of radiation by particles with arbitrary geometry and optical properties.

The goal is to migrate the original code, written in FORTRAN 66, to a mod-

ern programming language, able to access new hardware technologies, thus

substantially reducing the amount of time required for calculations through

the use of parallel code execution handled by multi-core computing units.

The problem of radiation absorption and scattering has a large variety of

applications, ranging from Astrophysics of the interstellar medium (ISM) and

(exo)planetary atmospheres, all the way to material investigation through op-

tical techniques and nano-particle handling by means of optical tweezers. In

spite of the large impact of such problems on both scientific and technological

applications, the theoretical framework of radiation/matter interactions has

mostly been treated under the assumption of simplifying conditions, such as

single radiation fields interacting with spherical particles.

Dealing with more realistic cases is only possible through numerical cal-

culations. These can be broadly distinguished in the Discrete Dipole Approx-

imation (DDA) based approach (Draine & Flatau 1994), which subdivides a

general material particle in a properly chosen combination of dipoles, thereby

3

solving their interaction with the radiation field, and the Transition Matrix

(TM) solutions (Borghese et al. 2007) which, on the contrary, take advantage

from the expansion of the radiation fields in multi-polar spherical harmonics

to create a set of boundary conditions that connect the properties of the

incident and of the scattered radiation at the surface of the interacting par-

ticle layers. In the latter case, the particle is approximated as a collection of

spherical sub-particles that act as a mathematical operator connecting the

properties of the incident and scattered field.

The TM method has the main advantage of creating a unique link be-

tween the incident and the scattered radiation fields, offering a solution that

is valid for any combination of incident and scattered directions and at vari-

ous distance scales, from within the particle itself, all the way up to remote

regions. While the TM itself is computed numerically, it then provides an

analytical expression of incident and scattered fields for any arbitrary inci-

dent wave, enabling (relatively) easy arbitrary averages over combinations of

relative orientations of incident fields and complex scattering particles. In

particular, it is easy to account for different partial alignment conditions,

with no need to repeat the calculation of the TM.

Conversely, DDA calculations need to be entirely solved for any combi-

nation of incident and scattered radiation fields and they require a different

description of the particle, depending on the dimension scale they apply to.

As a consequence, the TM method is largely preferable for the investigation

of all types of integrated effects, thus naturally covering also the dynamic

and thermal effects of the radiation-particle interaction.

While TM based solutions are ideal to solve the scattering problem in all

circumstances where multiple scales and directions need to be accounted for,

the calculation of the Transition Matrix for realistic particles is a computa-

tionally demanding task. This project takes on the challenge of porting the

original algorithms to modern hardware, in order to substantially reduce the

computational times and allow users to model more complicated and realistic

particle structures, and/or large populations of different particles, in shorter

execution times.

4

1.2 Project break-down

We can broadly divide the project in three main stages, namely corresponding

to:

1. code porting to C++ (completed in M7)

2. implementation of parallel algorithms (addressed in this release)

3. deployment of general radiation/particle interaction solver

These three stages are associated with an equal number of Key Performance

Indicators (KPI) which consist in code releases with enhanced computational

abilities. The current project stage provides a first parallel implementation

of the calculation, built on the basis of the C++ ported algorithms, taking

advantage of the profiling analysis carried out in the previous release to

reduce the execution time of the most intensive calculation steps.

1.3 Project status

We refer to the current release of the project as NP TMcode-M8.03, since it

includes updates on the documentation and the license of the code implemen-

tation that addresses the targets of the project Milestone 8 (namely, a first

parallel implementation of the solution of the cluster problem and an anal-

ysis of the performance improvement with respect to the original code). The

code is distributed through a public gitLab repository, under GNU General

Public License Version 3. The current implementation provides the following

new features with respect to NP TMcode-M7.0:

• the possibility to compile the code as either a serial or a parallel software

application

• the option to link against optimized linear algebra external libraries

(to speed up calculations) or to use legacy algorithm, in case optimized

libraries are not available

• the possibility to offload the matrix inversion calculation to GPUs, if

available

5

• the control of code execution by means of environment variables

• a multi-threaded / multi-node parallel implementation designed to scale

on large computational facilities.

The first three features give users the chance to build the code both on per-

sonal workstations and on shared computing systems with different hardware

characteristics. The last two features, instead, are intended to give users a

certain degree of control on the complexity of the calculation and on the

amount of required resources at runtime, enhancing the user’s ability to ex-

ecute calculations in shared computing environments.

6

Chapter 2

Release description

2.1 Parallel implementation

NP TMcode-M8.03 is the second official release of the Nano-particle Tran-

sition Matrix Project code,1 funded under the project CN-HPC, Big Data

and Quantum Computing CN 00000013, Spoke 3 ”Astrophysics and Cosmos

Observations” (CUP C53C22000350006). The aim of this release is to eval-

uate the performance improvement achieved over the original FORTRAN 66

code, through the porting of its algorithms to C++ and their subsequent

implementation in parallel architectures.

The profiling analysis carried out during the completion of M7 has led to

the identification of two promising parallelization strategies:

1. The simultaneous solution of the problem at different wavelengths.

2. The re-implementation of standard linear algebraic tasks (such as ma-

trix and vector operations) within optimized parallel libraries.

Due to the problem dependence on radiation wavelength, the calculation

of scattering in different wavelengths is nearly independent, except for a few

configuration steps, and it can be carried out as an embarrassingly parallel

multi-thread or multi-process task. NP TMcode-M8.03 implements this fea-

ture using a combination of OpenMP thread management and MPI process

1The first official release and its documentation is available at https://www.ict.inaf.

it/gitlab/giacomo.mulas/np_tmcode/-/releases/NP_TMcode-M7.00.

7

https://www.ict.inaf.it/gitlab/giacomo.mulas/np_tmcode/-/releases/NP_TMcode-M7.00
https://www.ict.inaf.it/gitlab/giacomo.mulas/np_tmcode/-/releases/NP_TMcode-M7.00

handling that can be optionally activated, by means of proper compilation

flags, and subsequently affected through the use of environment variables

and execution configurations.

For what concerns the linear algebraic tasks, NP TMcode-M8.03 offers the

possibility to switch among the internal legacy algorithms and external opti-

mized libraries, such as the Linear Algebra Package (LAPACK). Linking with

LAPACK is possible in different flavours, using either serial implementations,

like e.g. LAPACKe, or parallel oriented ones, such as OpenBLAS and Intel MKL.

More details on how to configure and use the code to access these possibilities

are given in Chapter 3 of this document.

2.2 New release features

Compared with the previous release, NP TMcode-M8.03 has some fundamen-

tal improvements. These mostly concern the code management of resources

at runtime and they do not require large changes in the way the user is

expected to work with the code. Many of the newly implemented features

are optional, meaning that the code can still be compiled and executed in

the old-fashioned serial implementation by systems that do not have parallel

compilation and execution capabilities. To activate the new features, users

are required to go through a more advanced compilation step, defining a set

of compiler flags, and then to configure the code execution using system en-

vironment variables. The three main features that the current release adds

over the previous one are:

1. Parallel simultaneous execution of the calculation at different wave-

lengths.

2. Optional offload of matrix inversion to GPU devices.

3. Implementation of virtual output management to write results com-

puted simultaneously.

Except for requiring more details in the compilations and the execution

command lines, these features work behind the stage, but their effect is clearly

8

Figure 2.1: Comparison of the benchmark calculation execution times for

different code implementations. The left panel shows the total execution

time, while the right panel illustrates a breakdown of the main resolu-

tion steps (matrix calculation, matrix inversion and direction loop). The

legacy FORTRAN 66 implementation is compared with three configurations

of NP TMcode-M8.03: single process with LAPACK, 5 simultaneous processes

with LAPACK, and 5 simultaneous processes with MAGMA-driven GPU offload

of matrix inversion.

visible in terms of performance analysis. In order to illustrate the perfor-

mance gain, a set of new test cases has been added to the cluster calculation

examples and a discussion of their execution, with different configurations

on the same hardware, is presented in the following section.

2.3 Code performance

The code performance for Milestone 8 has been evaluated through a new

benchmark test case (named case 3 in the test data suite provided for the

cluster code). This benchmark case simulates the scattering of radiation

by a particle composed of one gold sphere, with radius of 0.20µm, and three

smaller spheres of plastic material, having radii of 0.02µm, 0.03µm, and

0.05µm, respectively. In order to test the widest range of possible code func-

tionalities, the result of the scattering is evaluated for a total of 401 radiation

field wavelengths, ranging from λ = 400 nm to 800 nm, and evaluating the

integrated interaction cross-sections, together with 25 differential ones, cor-

9

Table 2.1: Execution times of the breakdown steps and total calculation times

of the configurations illustrated in Fig. 2.1. Note that the total execution

times are subject to different types of overheads, such as GPU initialization

and finalization stages for the MAGMA execution, or output concatenation for

the multi-process configurations, resulting in total times that are larger than

the sum of the single breakdown times.

CONFIG. CALC. TIME INV. TIME DIR. LOOP TOTAL

LEGACY 5.75 s 1450.01 s 680.33 s 2136.09 s

MPI1-LAPACK 46.92 s 115.32 s 758.62 s 921.13 s

MPI5-LAPACK 24.1 s 56.82 s 332.61 s 444.80 s

MPI5-MAGMA 9.38 s 23.06 s 151.72 s 457.42 s

responding to an equal number of required scattering angles.2

The performance of the code has been evaluated by running the calcu-

lation of the benchmark case on an ASUS Zenbook laptop computer, with

32Gb of RAM, CPU 13th Gen Intel(R) CoreTM i9-13900H x 20, featuring a

NVIDIA GeForce RTX 4060 Laptop GPU with 8Gb of dedicated memory.

The results of the benchmark test are illustrated in Fig. 2.1 and reported in

detail in Table 2.1.

As it is illustrated in Fig. 2.1, the calculation time can be broken in three

main stages: a matrix calculation stage, a matrix inversion stage and a loop

on the requested differential scattering cross-sections. The benchmark calcu-

lation shows that, using the same hardware resources, the NP TMcode-M8.03

implementation improves over the performance of the legacy code, though

with different efficiency in the various steps. Forcing a serial execution with a

single MPI process, the main improvement that we observe is the substantial

reduction of the matrix inversion step, obtained by replacing the legacy code

2The output of the benchmark case in the current default format takes 2.7Gb of space

and it is therefore not included in the distribution. To test for consistency of the results

with the legacy FORTRAN 66 implementation, however, we include in the distribution

the output produced for smaller datasets, namely including a a calculation executed on

33 different wavelengths and another executed on 65.

10

algorithm with calls to specialized LAPACK functions. In the other steps, the

FORTRAN 66 implementation is slightly faster than the C++ one, due to

the necessary overheads that C++ needs to work with in order to dynamically

allocate and release the memory resources, in place of using a predetermined

memory stack, defined at compiling time, as in FORTRAN.

A much clearer advantage stems from the exploitation of multi-process

capabilities, thus enabling the simultaneous solution of different wavelengths

at once. In this case, the most convenient parallel strategy appears to be the

execution of simultaneous processes in a MPI implementation. The scaling

that can be achieved is not linear, due to system overheads in performing low

level tasks, such as device initialization and finalization (for GPU offloaded

calculations), or data broadcasting and result concatenation for pure MPI

operations. The use of multi-threaded approaches to perform embarrassingly

parallel operations on the wavelength calculation is under-performing, with

respect to MPI managed calculations, while it has a substantial impact on

operations that require shared memory access, such as matrix inversions. In

this specific case, the excellent multi-threading capabilities of GPU devices

lead to substantial overall improvement among the C++based configurations.

A detailed investigation of the calculation overheads and of the performance

scalability on more powerful hardware implementations will be covered by

the targets of the next development milestone.

11

Chapter 3

Instructions for testing

3.1 Set up operations

Testing NP TMcode-M8.03 can be achieved through two main approaches.

The first is to obtain a local install, building the source code on the user’s

own machine. The second is to use a pre-built image, choosing between

the docker and the singularity implementations. This section deals with

testing the code release on a local machine. Detailed instructions on how to

use pre-built images, instead, are given in § 3.4.1, later on.

The first operation needed to build and execute the code is to replicate

the project release from the gitLab repository. We assume that this step has

been already performed, since the present document is distributed as part

of the release bundle. The following steps, therefore, are just building and

execution.

3.1.1 Building the code

To build the code, the user needs a set of compilers and some libraries. The

recommended set up includes an up to date installation of the GNU Compiler

Collection (gcc), of the GNU make builder, a FORTRAN compiler (again,

the recommended option is to rely on GNU ’s gfortran) and the doxygen

document manager. An optional dependency is a working LATEXdistribution

with recommended package set-up, in order to build the full PDF documenta-

tion. If the aforementioned system requirements are met, building the code

12

just requires to go in the src folder:

~/np_tmcode> cd src

and then invoking make.1 The compilation can include several optional com-

piler flag, which enable different parallel implementation and optimization

features. The list of valid compiler flags is:

FC=FORTRAN COMPILER name of the compiler used to build the

FORTRAN legacy code

CXX=CPP COMPILER name of the compiler used to build the C++

code

USE LAPACK=1 compiler flag to enable LAPACK

USE ILP64=1 compiler flag to enable 64-bit LAPACK indices2

USE MAGMA=1 compiler flag to enable MAGMA handling of GPU offload

USE MKL=1 compiler flag to enable MKL implementation of LAPACK

USE MPI=1 compiler flag to enable MPI parallelism on wavelengths (re-

quires setting CXX=mpicxx)

USE NVTX=1 compiler flag to enable NVIDIA profiling tools (requires

NVIDIA Tools to be available on the system)

USE OPENMP=1 compiler flag to enable OpenMP multi-threading

For example, the recommended way to build NP TMcode-M8.03 on a multi-

core 64-bit machine with available GPU, MPI and MAGMA libraries would

be:
1In case the testing system supports multi-core architecture, it is possible to issue make

-j instead of simply make. This will build the various code sections in parallel, reducing

the compilation time.
2The use of the correct type for vector indexing is fundamental when linking with

external libraries. Some LAPACK implementations use 32-bit integer type for indices, while

others use 64-bit. Therefore, when building the code, attention must be paid to use the

correct indexing convention. If the chosen index type does not match the one used by the

available libraries, the compilation may still run, but the code execution will lead to errors

and abrupt termination.

13

~/src> USE_OPENMP=1 USE_MPI=1 USE_LAPACK=1 USE_ILP64=1 \

USE_MAGMA=1 FC=gfortran CXX=mpicxx make -j

The build process will take care of building all of the FORTRAN and

C++ codes, placing the relevant binary files in a directory structure based in

the build folder, located at the same level of the src folder in the np tmcode

directory structure.

If desired, there is the additional option to build the code inline docu-

mentation by issuing:

~/src> make docs

which will generate a folder named doc/build under the the np tmcode di-

rectory, with two additional sub-folders, respectively named html and latex.

The html folder contains a browser formatted version of the inline code doc-

umentation, starting from a file named index.html. The latex folder, on

the other hand, contains the instructions to build a PDF version of the docu-

ments, using LATEX, by issuing the further make command (after the previous

”make docs” step):

~/src> make -C ../doc/build/latex

3.2 Execution of the sphere case

Once the build process has been completed, the code is ready to be run on

the available test cases. The configuration files and the expected FORTRAN

output files are collected in a folder named test data under np tmcode. To

run the FORTRAN code on the case of the single sphere, move to the sphere

binary folder:

~/src> cd ../build/sphere

then run the FORTRAN configuration program:

~/sphere> ./edfb_sph

14

The edfb sph program looks for the problem configuration data in a file

named DEDFB3 and located in the test data/sphere folder, then it writes

a formatted output file named OEDFB and a binary configuration file named

TEDF in the current working directory. After checking for the existence of

these files, the calculation of the scattering process, according to the FOR-

TRAN implementation, can be executed by issuing:

~/sphere> ./sph

The sph program gets its input from a file named DSPH in the test data folder.

Its execution provides essential feedback on the status of the calculation and

writes the results in a binary file named TPPOAN and a text file named OSPH.

The calculation executed in FORTRAN can be replicated in C++ simply

by invoking:

~/sphere> ./np_sphere

The np sphere program adopts the default behaviour of looking for the same

input data as the FORTRAN code and writing the same type of output files,

but appending a c prefix to its output. Optionally, it can be run as:

~/sphere> ./np_sphere PATH_TO_DEDFB PATH_TO_DSPH OUTPUT_FOLDER

to let it get input and write output other than the default behaviour.

After the execution of the FORTRAN and the C++ versions, the final

outcome can be compared by checking the contents of the OSPH and the

c OSPH files (see § 3.5 for suggestions on how to compare files).

3.3 Execution of the cluster case

Execution of the cluster calculation is very similar to the sphere case. The

first step is to move to the cluster folder:

~/sphere> cd ../cluster

then run the FORTRAN configuration program:

3Explanations on the structure of the input data file are given in the README.md file

stored in the test data folder.

15

~/cluster> ./edfb_clu

followed by the FORTRAN calculation:

~/cluster> ./clu

This command sequence will read the default cluster development case, which

is a quick calculation of the scattering problem for 2 scales on a cluster made

up by 4 spheres. As a result, the two binary files TEDF and TPPOAN will be

written to the current working directory, together with the text file OCLU

containing the results of the calculation.

In a similar way, the C++ calculation that replicates this process can be

executed. If the code was built without parallel optimization compiler flags,

the command line to run the test will be just:

~/cluster> ./np_cluster

In case the code has been built with the USE OPENMP=1 flag, the recommended

execution is:

~/cluster> OMP_NUM_THREADS=1 ./np_cluster

while a build using both OpenMP and MPI would be tested with:

~/cluster> OMP_NUM_THREADS=1 mpirun -n 1 ./np_cluster

np cluster will look for the same configuration files used by edfb clu and

clu, namely the DEDFB and DCLU files stored in test data/cluster, and

write c -prefixed output files. The results can be compared by looking in the

OCLU and c OCLU files (see § 3.5).

To further test the code, the test data/cluster contains further testing

cases, some of which include the FORTRAN 66 pre-computed outputs, in

text files named OCLU. The C++ implementation of the code can directly

handle these cases, by running:

~/cluster> ./np_cluster PATH_TO_DEDFB_XX PATH_TO_DCLU_XX \

OUTPUT_PATH

for a serial implementation, or

16

~/cluster> OMP_NUM_THREADS=1,X mpirun -n Y ./np_cluster \

PATH_TO_DEDFB_XX PATH_TO_DCLU_XX OUTPUT_PATH

where X and Y represent, respectively, the number of OpenMP threads and

MPI processes that are intended for use at runtime.4

3.4 Testing with docker/singularity

Since NPTMcode is currently under development, the most straightforward

way to obtain an executable version of the code is to download the latest

release of the source code and build the program binaries locally. While

the process should be fairly straightforward for any Linux based architecture

offering the necessary requirements, building on other systems or finding the

proper implementation of pre-requisites may not be equally easy. For this

reason, the code is also distributed in the form of pre-assembled container

images, running under the docker and the singularity systems.5 Refer to

the installation instructions on the docker and singularity web sites to obtain

and install one of these, if needed. The free versions are perfectly adequate

for testing NP TMcode-M8.03. The instructions to recreate local images are

given in the README.md files in the docker and the singularity sub-folders

of the containers directory. Both images include the standard HDF5 tools,

which can be used to inspect the binary output files in HDF5 format, and

compiled implementations of LAPACK and MAGMA.

4The recommended way to use the current release of the code is to always set the

OMP NUM THREADS environment variable in such a way that the first layer of OpenMP

threading is configured to use 1 thread. In case of use of multiple threads at the first

threading layer, OpenMP will start multiple threads on the wavelength range, which may

result in resource consumption and performance degradation.
5Since the docker and the singularity images are large files, they are not included in

the NPTMcode source distribution, due to space constraints, and they must be downloaded

individually. This is automatically handled by docker, while instructions to work with

singularity are given in § 3.4.2.

17

https://www.docker.com
https://sylabs.io/singularity/

3.4.1 Docker

A publicly accessible docker image can be obtained directly from Docker hub,

under the name of gmulas/np-tmcode-run.

To test the NP TMcode-M8.03 in the docker image, one can start an

interactive shell in the container image instance. This can be achieved either

using the docker graphical user interface or using the command line, such as

e. g.:

~/docker> docker run -it gmulas/np-tmcode-run:M8 /bin/bash

This will start an instance of the docker image, and open an interactive

bourne shell within it. Then, one can go into the installation folder of np-

tmcode inside the container

root@74a5e7e7b79d:~# cd /usr/local/np-tmcode/build

and from there proceed as in Sections 3.2,3.3, and 3.5. Bear in mind that,

unless a persistent docker volume was created (see docker reference docu-

mentation to do this), and mounted, on the docker image instance, whatever

files are created inside the running instance are lost when the instance is

closed, i. e., in the example above, upon exiting the shell. Whatever one

wants to keep should be copied out of the running instance before closing it,

e. g. using docker cp commands.

3.4.2 Singularity

To test the NP TMcode-M8.03 in the singularity image, one can make use

of the feature of singularity that automatically mounts the user’s home di-

rectory in the container image, and directly run the programs in the im-

age. The image can be downloaded from the singularity image distribution

site, which contains an implementation built on NPTMcode-M8.03. Before at-

tempting execution, the image file np-tmcode-run.sifmust be placed in the

containers/singularity folder of the np tmcode project. The command

line to run the image would then be:

~/singularity> singularity exec \

18

https://hub.docker.com/
https://www.ict.inaf.it/gitlab/giacomo.mulas/np-tmcode-singularity/-/releases/np-tmcode-singularity-run-M8.03
https://www.ict.inaf.it/gitlab/giacomo.mulas/np-tmcode-singularity/-/releases/np-tmcode-singularity-run-M8.03

COMPLETE_PATH/np-tmcode-run.sif /bin/bash

where COMPLETE PATH above is supposed to be the complete path to the sin-

gularity image file. This would open a shell within the image. One can

therefore proceed as in Sections 3.2, 3.3, and 3.5, just running the executable

files via the singularity image file, instead of directly from the host machine.

The only caveat is that the FORTRAN binaries expect to read their in-

put data from a test data folder located two levels above the singularity

execution directory.

3.5 Comparing results

The comparison of results for a realistic case is, in general, not straight-

forward. In comparing the output of FORTRAN 66 and C++-based cal-

culations, several effects may introduce artifacts that result in more or less

significant differences. The output of the code, indeed, includes both unfor-

matted binary files as well as formatted text files. Due to the facts that only

the code is able to read its proprietary binary format and that the formatted

output is a following step, it makes perfect sense to compare the results saved

in formatted files, since they are derived from the binary ones.

However, comparison of formatted text files can still be a hard task, due

to the large amount of information included in each file and to the possibility

of observing numeric noise. This noise arises on values that are negligible

with respect to the typical orders of magnitude probed by a given level of

approximation. A similar effect may also be observed when executing the

same code on different hardware architectures. In order to make the task

of comparing the output of the sphere and cluster calculations between

the FORTRAN and the C++ versions easier, NP TMcode-M8.03 includes an

executable python3 script named pycompare.py. The scope of this script

is to parse the formatted output files produced by the FORTRAN and the

C++ implementations, to check for the consistency of the file structures and

to verify the coincidence of significant numeric values. This script is located

in a folder named src/scripts and it can be invoked from there with the

following syntax:

19

~/scripts> ./pycompare.py --ffile=PATH_TO_FORTRAN_RESULT \

--cfile=PATH_TO_C++_RESULT

where the files to be passed as input are those named OSPH and OCLU by

the FORTRAN code and c OSPH and c OCLU by the C++ code. The script

checks in the result files and it returns a result flag of 0 (OS definition of

success), in case of consistent results, or some non-zero integer number (OS

indication of failure) otherwise. The script also writes a summary of its diag-

nostics to the standard output, including the number of inconsistencies that

were considered noisy values, warning values (i.e. values with a substantial

difference but within a given tolerance threshold) and error values (i.e. val-

ues disagreeing by an above-threshold significant difference). If needed, the

user may produce a detailed html log of the comparison by invoking:

~/scripts> ./pycompare.py --ffile=PATH_TO_FORTRAN_RESULT \

--cfile=PATH_TO_C++_RESULT \

--html[=HTML_LOG_NAME]

where the part in square brackets is an optional name of the log file (which,

if not specified, defaults to pycompare.html). Invoking the script without

arguments or with the --help option will result in the script printing a

detailed help screen on terminal and then exit with success code.

20

Bibliography

Borghese, F., Denti, P., & Saija, R. 2007, Scattering fromModel Nonspherical

Particles (Berlin: Springer)

Draine, B. T. & Flatau, P. J. 1994, J. Opt. Soc. Am. A, 11, 1491

21

	Scope of the document
	Aim of the project
	Introduction
	Project break-down
	Project status

	Release description
	Parallel implementation
	New release features
	Code performance

	Instructions for testing
	Set up operations
	Building the code

	Execution of the sphere case
	Execution of the cluster case
	Testing with docker/singularity
	Docker
	Singularity

	Comparing results

