From 86234de03553e86be2e4a3a66dfacad5a45e322b Mon Sep 17 00:00:00 2001 From: Giovanni La Mura <giovanni.lamura@inaf.it> Date: Mon, 8 Jan 2024 12:23:49 +0100 Subject: [PATCH] Add documentation of SPH subroutines --- src/include/sph_subs.h | 262 ++++++++++++++++++++++++----------------- src/include/tra_subs.h | 26 +++- 2 files changed, 180 insertions(+), 108 deletions(-) diff --git a/src/include/sph_subs.h b/src/include/sph_subs.h index 9c56995d..accc3ea0 100644 --- a/src/include/sph_subs.h +++ b/src/include/sph_subs.h @@ -2,13 +2,13 @@ * * \brief C++ porting of SPH functions and subroutines. * - * Remember that FORTRAN passes arguments by reference, so, every time we use - * a subroutine call, we need to add a referencing layer to the C++ variable. - * All the functions defined below need to be properly documented and ported - * to C++. - * - * Currently, only basic documenting information about functions and parameter - * types are given, to avoid doxygen warning messages. + * This library includes a collection of function that are used to solve the + * scattering problem in the case of a single sphere. Some of these functions + * are also generalized to the case of clusters of spheres. In most cases, the + * results of calculations do not fall back to fundamental data types. They are + * rather multi-component structures. In order to manage access to such variety + * of return values, most functions are declared as `void` and they operate on + * output arguments passed by reference. */ #ifndef INCLUDE_COMMONS_H_ @@ -22,8 +22,8 @@ /*! \brief Conjugate of a double precision complex number * - * \param z: `std::complex\<double\>` The input complex number. - * \return result: `std::complex\<double\>` The conjugate of the input number. + * \param z: `complex<double>` The input complex number. + * \return result: `complex<double>` The conjugate of the input number. */ std::complex<double> dconjg(std::complex<double> z) { double zreal = z.real(); @@ -31,13 +31,16 @@ std::complex<double> dconjg(std::complex<double> z) { return std::complex<double>(zreal, -zimag); } -/*! \brief C++ porting of CG1 +/*! \brief Clebsch-Gordan coefficients. + * + * This function comutes the Clebsch-Gordan coefficients for the irreducible spherical + * tensors. See Sec. 1.6.3 and Table 1.1 in Borghese, Denti & Saija (2007). * * \param lmpml: `int` * \param mu: `int` * \param l: `int` * \param m: `int` - * \return result: `double` + * \return result: `double` Clebsh-Gordan coefficient. */ double cg1(int lmpml, int mu, int l, int m) { double result = 0.0; @@ -101,7 +104,7 @@ double cg1(int lmpml, int mu, int l, int m) { * This function computes the product between the geometrical asymmetry parameter and * the scattering cross-section. See Sec. 3.2.1 of Borghese, Denti & Saija (2007). * - * \param zpv: `double ****` + * \param zpv: `double ****` Geometrical asymmetry parameter coefficients matrix. * \param li: `int` Maximum field expansion order. * \param nsph: `int` Number of spheres. * \param c1: `C1 *` Pointer to a `C1` data structure. @@ -158,15 +161,19 @@ void aps(double ****zpv, int li, int nsph, C1 *c1, double sqk, double *gaps) { } } -/*! \brief C++ porting of DIEL +/*! \brief Comute the continuous variation of the refractive index and of its radial derivative. + * + * This function implements the continuous variation of the refractive index and of its radial + * derivative through the materials that constitute the sphere and its surrounding medium. See + * Sec. 5.2 in Borghese, Denti & Saija (2007). * * \param npntmo: `int` * \param ns: `int` * \param i: `int` * \param ic: `int` * \param vk: `double` - * \param c1: `C1 *` - * \param c2: `C2 *` + * \param c1: `C1 *` Pointer to `C1` data structure. + * \param c2: `C2 *` Pointer to `C2` data structure. */ void diel(int npntmo, int ns, int i, int ic, double vk, C1 *c1, C2 *c2) { const double dif = c1->rc[i - 1][ns] - c1->rc[i - 1][ns - 1]; @@ -187,7 +194,10 @@ void diel(int npntmo, int ns, int i, int ic, double vk, C1 *c1, C2 *c2) { } } -/*! \brief C++ porting of ENVJ +/*! \brief Bessel function calculation control parameters. + * + * This function determines the control parameters required to calculate the Bessel + * functions up to the desired precision. * * \param n: `int` * \param x: `double` @@ -205,11 +215,14 @@ double envj(int n, double x) { return result; } -/*! \brief C++ porting of MSTA1 +/*! \brief Starting point for Bessel function magnitude. * - * \param x: `double` - * \param mp: `int` - * \return result: `int` + * This function determines the starting point for backward recurrence such that + * the magnitude of all \f$J\f$ and \$j\f$ functions is of the order of \f$10^{-mp}\f$. + * + * \param x: `double` Absolute value of the argumetn to \f$J\f$ or \$j\f$. + * \param mp: `int` Requested order of magnitude. + * \return result: `int` The necessary starting point. */ int msta1(double x, int mp) { int result = 0; @@ -236,12 +249,15 @@ int msta1(double x, int mp) { return result; } -/*! \brief C++ porting of MSTA2 +/*! \brief Starting point for Bessel function precision. * - * \param x: `double` - * \param n: `int` - * \param mp: `int` - * \return result: `int` + * This function determines the starting point for backward recurrence such that + * all \f$J\f$ and \$j\f$ functions have `mp` significant digits. + * + * \param x: `double` Absolute value of the argumetn to \f$J\f$ or \$j\f$. + * \param n: `int` Order of the function. + * \param mp: `int` Requested number of significant digits. + * \return result: `int` The necessary starting point. */ int msta2(double x, int n, int mp) { int result = 0; @@ -276,14 +292,16 @@ int msta2(double x, int n, int mp) { return result; } -/*! \brief C++ porting of CBF +/*! \brief Complex Bessel Function. * - * This is the Complex Bessel Function. + * This function computes the complex spherical Bessel funtions \f$j\f$. It uses the + * auxiliary functions `msta1()` and `msta2()` to determine the starting point for + * backward recurrence. This is the `CSPHJ` implementation of the `specfun` library. * - * \param n: `int` - * \param z: `complex\<double\>` - * \param nm: `int &` - * \param csj: Vector of complex. + * \param n: `int` Order of the function. + * \param z: `complex<double>` Argumento of the function. + * \param nm: `int &` Highest computed order. + * \param csj: Vector of complex. The desired function \f$j\f$. */ void cbf(int n, std::complex<double> z, int &nm, std::complex<double> csj[]) { /* @@ -401,7 +419,11 @@ void mmulc(std::complex<double> *vint, double **cmullr, double **cmul) { cmul[3][3] = s21 - s34; } -/*! \brief C++ porting of ORUNVE +/*! \brief Compute the amplitude of the orthogonal unit vector. + * + * This function computes the amplitude of the orthogonal unit vector for a geometry + * based either on the scattering plane or on the meridional plane. It is used by `upvsp()` + * and `upvmp()`. See Sec. 2.7 in Borghese, Denti & Saija (2007). * * \param u1: `double *` * \param u2: `double *` @@ -427,15 +449,18 @@ void orunve( double *u1, double *u2, double *u3, int iorth, double torth) { u3[2] = u1[0] * u2[1] - u1[1] * u2[0]; } -/*! \brief C++ porting of PWMA +/*! \brief Compute incident and scattered field amplitudes. + * + * This function computes the amplitudes of the incident and scattered field on the + * basis of the multi-polar expansion. See Sec. 4.1.1 in Borghese, Denti and Saija (2007). * * \param up: `double *` * \param un: `double *` - * \param ylm: Vector of complex - * \param inpol: `int` + * \param ylm: Vector of complex. Field polar spherical harmonics. + * \param inpol: `int` Incident field polarization type (0 - linear; 1 - circular). * \param lw: `int` * \param isq: `int` - * \param c1: `C1 *` + * \param c1: `C1 *` Pointer to a `C1` data structure. */ void pwma( double *up, double *un, std::complex<double> *ylm, int inpol, int lw, @@ -587,14 +612,16 @@ void rabas( } } -/*! \brief C++ porting of RBF +/*! \brief Real Bessel Function. * - * This is the Real Bessel Function. + * This function computes the real spherical Bessel funtions \f$j\f$. It uses the + * auxiliary functions `msta1()` and `msta2()` to determine the starting point for + * backward recurrence. This is the `SPHJ` implementation of the `specfun` library. * - * \param n: `int` - * \param x: `double` - * \param nm: `int &` - * \param sj: `double[]` + * \param n: `int` Order of the function. + * \param x: `double` Argument of the function. + * \param nm: `int &` Highest computed order. + * \param sj: `double[]` The desired function \f$j\f$. */ void rbf(int n, double x, int &nm, double sj[]) { /* @@ -652,17 +679,20 @@ void rbf(int n, double x, int &nm, double sj[]) { } } -/*! \brief C++ porting of RKC +/*! \brief Soft layer radial function and derivative. + * + * This function determines the radial function and its derivative for a soft layer + * in a radially non homogeneous sphere. See Sec. 5.1 in Borghese, Denti & Saija (2007). * * \param npntmo: `int` * \param step: `double` - * \param dcc: `complex\<double\>` + * \param dcc: `complex<double>` * \param x: `double &` * \param lpo: `int` - * \param y1: `complex\<double\> &` - * \param y2: `complex\<double\> &` - * \param dy1: `complex\<double\> &` - * \param dy2: `complex\<double\> &` + * \param y1: `complex<double> &` + * \param y2: `complex<double> &` + * \param dy1: `complex<double> &` + * \param dy2: `complex<double> &` */ void rkc( int npntmo, double step, std::complex<double> dcc, double &x, int lpo, @@ -702,17 +732,20 @@ void rkc( } } -/*! \brief C++ porting of RKT +/*! \brief Transition layer radial function and derivative. + * + * This function determines the radial function and its derivative for a transition layer + * in a radially non homogeneous sphere. See Sec. 5.1 in Borghese, Denti & Saija (2007). * * \param npntmo: `int` * \param step: `double` * \param x: `double &` * \param lpo: `int` - * \param y1: `complex\<double\> &` - * \param y2: `complex\<double\> &` - * \param dy1: `complex\<double\> &` - * \param dy2: `complex\<double\> &` - * \param c2: `C2 *` + * \param y1: `complex<double> &` + * \param y2: `complex<double> &` + * \param dy1: `complex<double> &` + * \param dy2: `complex<double> &` + * \param c2: `C2 *` Pointer to a `C2` data structure. */ void rkt( int npntmo, double step, double &x, int lpo, std::complex<double> &y1, @@ -763,14 +796,15 @@ void rkt( } } -/*! \brief C++ porting of RNF +/*! \brief Spherical Bessel functions. * - * This is a real spherical Bessel function. + * This function computes the spherical Bessel functions \f$y\$. It adopts the `SPHJY` + * implementation of the `specfun` library. * - * \param n: `int` - * \param x: `double` - * \param nm: `int &` - * \param sy: `double[]` + * \param n: `int` Order of the function (from 0 up). + * \param x: `double` Argumento of the function (\f$x > 0\f$). + * \param nm: `int &` Highest computed order. + * \param sy: `double[]` The desired function \f$y\f$. */ void rnf(int n, double x, int &nm, double sy[]) { /* @@ -936,14 +970,17 @@ void sscr2(int nsph, int lm, double vk, double exri, C1 *c1) { } } -/*! \brief C++ porting of SPHAR +/*! \brief Spherical harmonics for given direction. + * + * This function computes the field spherical harmonics for a given direction. See Sec. + * 1.5.2 in Borghese, Denti & Saija (2007). * - * \param cosrth: `double` - * \param sinrth: `double` - * \param cosrph: `double` - * \param sinrph: `double` - * \param ll: `int` - * \param ylm: Vector of complex. + * \param cosrth: `double` Cosine of direction's elevation. + * \param sinrth: `double` Sine of direction's elevation. + * \param cosrph: `double` Cosine of direction's azimuth. + * \param sinrph: `double` Sine of direction's azimuth. + * \param ll: `int` L value expansion order. + * \param ylm: Vector of complex. The requested spherical harmonics. */ void sphar( double cosrth, double sinrth, double cosrph, double sinrph, @@ -1113,7 +1150,11 @@ void upvmp( } } -/*! \brief C++ porting of UPVSP +/*! \brief Compute the unitary vector perpendicular to incident and scattering plane. + * + * This function computes the unitary vector perpendicular to the incident and scattering + * plane in a geometry based on the scattering plane. It uses `orunve()`. See Sec. 2.7 in + * Borghese, Denti & Saija (2007). * * \param u: `double *` * \param upmp: `double *` @@ -1128,7 +1169,7 @@ void upvmp( * \param duk: `double *` * \param isq: `int &` * \param ibf: `int &` - * \param scand: `double &` + * \param scand: `double &` Scattering angle in degrees. * \param cfmp: `double &` * \param sfmp: `double &` * \param cfsp: `double &` @@ -1202,22 +1243,26 @@ void upvsp( sfsp = uns[0] * upsmp[0] + uns[1] * upsmp[1] + uns[2] * upsmp[2]; } -/*! \brief C++ porting of WMAMP +/*! \brief Compute meridional plane-referred geometrical asymmetry parameter coefficients. + * + * This function computes the coeffcients that define the geometrical symmetry parameter + * as defined with respect to the meridional plane. It makes use of `sphar()` and `pwma()`. + * See Sec. 3.2.1 in Borghese, Denti & Saija (2007). * * \param iis: `int` - * \param cost: `double` - * \param sint: `double` - * \param cosp: `double` - * \param sinp: `double` - * \param inpol: `int` - * \param lm: `int` + * \param cost: `double` Cosine of the elevation angle. + * \param sint: `double` Sine of the elevation angle. + * \param cosp: `double` Cosine of the azimuth angle. + * \param sinp: `double` Sine of the azimuth angle. + * \param inpol: `int` Incident field polarization type (0 - linear; 1 - circular). + * \param lm: `int` Maximum field expansion orde. * \param idot: `int` - * \param nsph: `int` + * \param nsph: `int` Number of spheres. * \param arg: `double *` * \param u: `double *` * \param up: `double *` * \param un: `double *` - * \param c1: `C1 *` + * \param c1: `C1 *` Pointer to a `C1` data structure. */ void wmamp( int iis, double cost, double sint, double cosp, double sinp, int inpol, @@ -1243,21 +1288,24 @@ void wmamp( } } sphar(cost, sint, cosp, sinp, lm, ylm); - //printf("DEBUG: in WMAMP and calling PWMA with lm = %d and iis = %d\n", lm, iis); pwma(up, un, ylm, inpol, lm, iis, c1); delete[] ylm; } -/*! \brief C++ porting of WMASP +/*! \brief Compute the scattering plane-referred geometrical asymmetry parameter coefficients. * - * \param cost: `double` - * \param sint: `double` - * \param cosp: `double` - * \param sinp: `double` - * \param costs: `double` - * \param sints: `double` - * \param cosps: `double` - * \param sinps: `double` + * This function computes the coefficients that define the geometrical asymmetry parameter based + * on the L-value with respect to the scattering plane. It uses `sphar()` and `pwma()`. See Sec. + * 3.2.1 in Borghese, Denti and Saija (2007). + * + * \param cost: `double` Cosine of elevation angle. + * \param sint: `double` Sine of elevation angle. + * \param cosp: `double` Cosine of azimuth angle. + * \param sinp: `double` Sine of azimuth angle. + * \param costs: `double` Cosine of scattering elevation angle. + * \param sints: `double` Sine of scattering elevation angle. + * \param cosps: `double` Cosine of scattering azimuth angle. + * \param sinps: `double` Sine of scattering azimuth angle. * \param u: `double *` * \param up: `double *` * \param un: `double *` @@ -1266,13 +1314,13 @@ void wmamp( * \param uns: `double *` * \param isq: `int` * \param ibf: `int` - * \param inpol: `int` - * \param lm: `int` + * \param inpol: `int` Incident field polarization (0 - linear; 1 -circular). + * \param lm: `int` Maximum field expansion order. * \param idot: `int` - * \param nsph: `int` + * \param nsph: `int` Number opf spheres. * \param argi: `double *` * \param args: `double *` - * \param c1: `C1 *` + * \param c1: `C1 *` Pointer to a `C1` data structure. */ void wmasp( double cost, double sint, double cosp, double sinp, double costs, double sints, @@ -1306,34 +1354,38 @@ void wmasp( } } sphar(cost, sint, cosp, sinp, lm, ylm); - //printf("DEBUG: in WMASP and calling PWMA with isq = %d\n", isq); pwma(up, un, ylm, inpol, lm, isq, c1); if (ibf >= 0) { sphar(costs, sints, cosps, sinps, lm, ylm); - //printf("DEBUG: in WMASP and calling PWMA with isq = 2 and ibf = %d\n", ibf); pwma(ups, uns, ylm, inpol, lm, 2, c1); } delete[] ylm; } -/*! \brief C++ porting of DME +/*! \brief Compute Mie scattering coefficients. + * + * This function determines the L-dependent Mie scattering coefficients \f$a_l\f$ and \f$b_l\f$ + * for the cases of homogeneous spheres, radially non-homogeneous spheres and, in case of sphere + * with dielectric function, sustaining longitudinal waves. See Sec. 5.1 in Borghese, Denti + * & Saija (2007). * - * \param li: `int` + * \param li: `int` Maximum field expansion order. * \param i: `int` * \param npnt: `int` * \param npntts: `int` - * \param vk: `double` - * \param exdc: `double` - * \param exri: `double` - * \param c1: `C1 *` - * \param c2: `C2 *` - * \param jer: `int &` - * \param lcalc: `int &` - * \param arg: `complex<double> &`. + * \param vk: `double` Wave number in scale units. + * \param exdc: `double` External medium dielectric constant. + * \param exri: `double` External medium refractive index. + * \param c1: `C1 *` Pointer to a `C1` data structure. + * \param c2: `C2 *` Pointer to a `C2` data structure. + * \param jer: `int &` Reference to integer error code variable. + * \param lcalc: `int &` Reference to integer variable recording the maximum expansion order accounted for. + * \param arg: `complex<double> &` */ void dme( int li, int i, int npnt, int npntts, double vk, double exdc, double exri, - C1 *c1, C2 *c2, int &jer, int &lcalc, std::complex<double> &arg) { + C1 *c1, C2 *c2, int &jer, int &lcalc, std::complex<double> &arg +) { const int lipo = li + 1; const int lipt = li + 2; double *rfj = new double[lipt]; diff --git a/src/include/tra_subs.h b/src/include/tra_subs.h index 5eb99136..803670c1 100644 --- a/src/include/tra_subs.h +++ b/src/include/tra_subs.h @@ -6,13 +6,33 @@ #define INCLUDE_TRA_SUBS_H_ #endif -//Structures for TRAPPING (that will probably move to Commons) +// Structures for TRAPPING (that will probably move to Commons) +/*! \brief CIL data structure. + * + * A structure containing field expansion order configuration. + */ struct CIL { - int le, nlem, nlemt, mxmpo, mxim; + //! Maximum L expansion of the electric field. + int le; + //! le * (le + 1). + int nlem; + //! 2 * nlem. + int nlemt; + //! Maximum field expansion order + 1. + int mxmpo; + //! 2 * mxmpo - 1. + int mxim; }; +/*! \brief CCR data structure. + * + * A structure containing geometrical asymmetry parameter normalization coefficients. + */ struct CCR { - double cof, cimu; + //! First coefficient. + double cof; + //! Second coefficient. + double cimu; }; //End of TRAPPING structures -- GitLab