From 86234de03553e86be2e4a3a66dfacad5a45e322b Mon Sep 17 00:00:00 2001
From: Giovanni La Mura <giovanni.lamura@inaf.it>
Date: Mon, 8 Jan 2024 12:23:49 +0100
Subject: [PATCH] Add documentation of SPH subroutines

---
 src/include/sph_subs.h | 262 ++++++++++++++++++++++++-----------------
 src/include/tra_subs.h |  26 +++-
 2 files changed, 180 insertions(+), 108 deletions(-)

diff --git a/src/include/sph_subs.h b/src/include/sph_subs.h
index 9c56995d..accc3ea0 100644
--- a/src/include/sph_subs.h
+++ b/src/include/sph_subs.h
@@ -2,13 +2,13 @@
  *
  * \brief C++ porting of SPH functions and subroutines.
  *
- * Remember that FORTRAN passes arguments by reference, so, every time we use
- * a subroutine call, we need to add a referencing layer to the C++ variable.
- * All the functions defined below need to be properly documented and ported
- * to C++.
- *
- * Currently, only basic documenting information about functions and parameter
- * types are given, to avoid doxygen warning messages.
+ * This library includes a collection of function that are used to solve the
+ * scattering problem in the case of a single sphere. Some of these functions
+ * are also generalized to the case of clusters of spheres. In most cases, the
+ * results of calculations do not fall back to fundamental data types. They are
+ * rather multi-component structures. In order to manage access to such variety
+ * of return values, most functions are declared as `void` and they operate on
+ * output arguments passed by reference.
  */
 
 #ifndef INCLUDE_COMMONS_H_
@@ -22,8 +22,8 @@
 
 /*! \brief Conjugate of a double precision complex number
  *
- * \param z: `std::complex\<double\>` The input complex number.
- * \return result: `std::complex\<double\>` The conjugate of the input number.
+ * \param z: `complex<double>` The input complex number.
+ * \return result: `complex<double>` The conjugate of the input number.
  */
 std::complex<double> dconjg(std::complex<double> z) {
   double zreal = z.real();
@@ -31,13 +31,16 @@ std::complex<double> dconjg(std::complex<double> z) {
   return std::complex<double>(zreal, -zimag);
 }
 
-/*! \brief C++ porting of CG1
+/*! \brief Clebsch-Gordan coefficients.
+ *
+ * This function comutes the Clebsch-Gordan coefficients for the irreducible spherical
+ * tensors. See Sec. 1.6.3 and Table 1.1 in Borghese, Denti & Saija (2007).
  *
  * \param lmpml: `int`
  * \param mu: `int`
  * \param l: `int`
  * \param m: `int`
- * \return result: `double`
+ * \return result: `double` Clebsh-Gordan coefficient.
  */
 double cg1(int lmpml, int mu, int l, int m) {
   double result = 0.0;
@@ -101,7 +104,7 @@ double cg1(int lmpml, int mu, int l, int m) {
  * This function computes the product between the geometrical asymmetry parameter and
  * the scattering cross-section. See Sec. 3.2.1 of Borghese, Denti & Saija (2007).
  *
- * \param zpv: `double ****`
+ * \param zpv: `double ****` Geometrical asymmetry parameter coefficients matrix.
  * \param li: `int` Maximum field expansion order.
  * \param nsph: `int` Number of spheres.
  * \param c1: `C1 *` Pointer to a `C1` data structure.
@@ -158,15 +161,19 @@ void aps(double ****zpv, int li, int nsph, C1 *c1, double sqk, double *gaps) {
   }
 }
 
-/*! \brief C++ porting of DIEL
+/*! \brief Comute the continuous variation of the refractive index and of its radial derivative.
+ *
+ * This function implements the continuous variation of the refractive index and of its radial
+ * derivative through the materials that constitute the sphere and its surrounding medium. See
+ * Sec. 5.2 in Borghese, Denti & Saija (2007).
  *
  * \param npntmo: `int`
  * \param ns: `int`
  * \param i: `int`
  * \param ic: `int`
  * \param vk: `double`
- * \param c1: `C1 *`
- * \param c2: `C2 *`
+ * \param c1: `C1 *` Pointer to `C1` data structure.
+ * \param c2: `C2 *` Pointer to `C2` data structure.
  */
 void diel(int npntmo, int ns, int i, int ic, double vk, C1 *c1, C2 *c2) {
   const double dif = c1->rc[i - 1][ns] - c1->rc[i - 1][ns - 1];
@@ -187,7 +194,10 @@ void diel(int npntmo, int ns, int i, int ic, double vk, C1 *c1, C2 *c2) {
   }
 }
 
-/*! \brief C++ porting of ENVJ
+/*! \brief Bessel function calculation control parameters.
+ *
+ * This function determines the control parameters required to calculate the Bessel
+ * functions up to the desired precision.
  *
  * \param n: `int`
  * \param x: `double`
@@ -205,11 +215,14 @@ double envj(int n, double x) {
   return result;
 }
 
-/*! \brief C++ porting of MSTA1
+/*! \brief Starting point for Bessel function magnitude.
  *
- * \param x: `double`
- * \param mp: `int`
- * \return result: `int`
+ * This function determines the starting point for backward recurrence such that
+ * the magnitude of all \f$J\f$ and \$j\f$ functions is of the order of \f$10^{-mp}\f$.
+ *
+ * \param x: `double` Absolute value of the argumetn to \f$J\f$ or \$j\f$.
+ * \param mp: `int` Requested order of magnitude.
+ * \return result: `int` The necessary starting point.
  */
 int msta1(double x, int mp) {
   int result = 0;
@@ -236,12 +249,15 @@ int msta1(double x, int mp) {
   return result;
 }
 
-/*! \brief C++ porting of MSTA2
+/*! \brief Starting point for Bessel function precision.
  *
- * \param x: `double`
- * \param n: `int`
- * \param mp: `int`
- * \return result: `int`
+ * This function determines the starting point for backward recurrence such that
+ * all \f$J\f$ and \$j\f$ functions have `mp` significant digits.
+ *
+ * \param x: `double` Absolute value of the argumetn to \f$J\f$ or \$j\f$.
+ * \param n: `int` Order of the function.
+ * \param mp: `int` Requested number of significant digits.
+ * \return result: `int` The necessary starting point.
  */
 int msta2(double x, int n, int mp) {
   int result = 0;
@@ -276,14 +292,16 @@ int msta2(double x, int n, int mp) {
   return result;
 }
 
-/*! \brief C++ porting of CBF
+/*! \brief Complex Bessel Function.
  *
- * This is the Complex Bessel Function.
+ * This function computes the complex spherical Bessel funtions \f$j\f$. It uses the
+ * auxiliary functions `msta1()` and `msta2()` to determine the starting point for
+ * backward recurrence. This is the `CSPHJ` implementation of the `specfun` library.
  *
- * \param n: `int`
- * \param z: `complex\<double\>`
- * \param nm: `int &`
- * \param csj: Vector of complex.
+ * \param n: `int` Order of the function.
+ * \param z: `complex<double>` Argumento of the function.
+ * \param nm: `int &` Highest computed order.
+ * \param csj: Vector of complex. The desired function \f$j\f$.
  */
 void cbf(int n, std::complex<double> z, int &nm, std::complex<double> csj[]) {
   /*
@@ -401,7 +419,11 @@ void mmulc(std::complex<double> *vint, double **cmullr, double **cmul) {
   cmul[3][3] = s21 - s34;
 }
 
-/*! \brief C++ porting of ORUNVE
+/*! \brief Compute the amplitude of the orthogonal unit vector.
+ *
+ * This function computes the amplitude of the orthogonal unit vector for a geometry
+ * based either on the scattering plane or on the meridional plane. It is used by `upvsp()`
+ * and `upvmp()`. See Sec. 2.7 in Borghese, Denti & Saija (2007).
  *
  * \param u1: `double *`
  * \param u2: `double *`
@@ -427,15 +449,18 @@ void orunve( double *u1, double *u2, double *u3, int iorth, double torth) {
   u3[2] = u1[0] * u2[1] - u1[1] * u2[0];
 }
 
-/*! \brief C++ porting of PWMA
+/*! \brief Compute incident and scattered field amplitudes.
+ *
+ * This function computes the amplitudes of the incident and scattered field on the
+ * basis of the multi-polar expansion. See Sec. 4.1.1 in Borghese, Denti and Saija (2007).
  *
  * \param up: `double *`
  * \param un: `double *`
- * \param ylm: Vector of complex
- * \param inpol: `int`
+ * \param ylm: Vector of complex. Field polar spherical harmonics.
+ * \param inpol: `int` Incident field polarization type (0 - linear; 1 - circular).
  * \param lw: `int`
  * \param isq: `int`
- * \param c1: `C1 *`
+ * \param c1: `C1 *` Pointer to a `C1` data structure.
  */
 void pwma(
 	  double *up, double *un, std::complex<double> *ylm, int inpol, int lw,
@@ -587,14 +612,16 @@ void rabas(
   }
 }
 
-/*! \brief C++ porting of RBF
+/*! \brief Real Bessel Function.
  *
- * This is the Real Bessel Function.
+ * This function computes the real spherical Bessel funtions \f$j\f$. It uses the
+ * auxiliary functions `msta1()` and `msta2()` to determine the starting point for
+ * backward recurrence. This is the `SPHJ` implementation of the `specfun` library.
  *
- * \param n: `int`
- * \param x: `double`
- * \param nm: `int &`
- * \param sj: `double[]`
+ * \param n: `int` Order of the function.
+ * \param x: `double` Argument of the function.
+ * \param nm: `int &` Highest computed order.
+ * \param sj: `double[]` The desired function \f$j\f$.
  */
 void rbf(int n, double x, int &nm, double sj[]) {
   /*
@@ -652,17 +679,20 @@ void rbf(int n, double x, int &nm, double sj[]) {
   }
 }
 
-/*! \brief C++ porting of RKC
+/*! \brief Soft layer radial function and derivative.
+ *
+ * This function determines the radial function and its derivative for a soft layer
+ * in a radially non homogeneous sphere. See Sec. 5.1 in Borghese, Denti & Saija (2007).
  *
  * \param npntmo: `int`
  * \param step: `double`
- * \param dcc: `complex\<double\>`
+ * \param dcc: `complex<double>`
  * \param x: `double &`
  * \param lpo: `int`
- * \param y1: `complex\<double\> &`
- * \param y2: `complex\<double\> &`
- * \param dy1: `complex\<double\> &`
- * \param dy2: `complex\<double\> &`
+ * \param y1: `complex<double> &`
+ * \param y2: `complex<double> &`
+ * \param dy1: `complex<double> &`
+ * \param dy2: `complex<double> &`
  */
 void rkc(
 	 int npntmo, double step, std::complex<double> dcc, double &x, int lpo,
@@ -702,17 +732,20 @@ void rkc(
   }
 }
 
-/*! \brief C++ porting of RKT
+/*! \brief Transition layer radial function and derivative.
+ *
+ * This function determines the radial function and its derivative for a transition layer
+ * in a radially non homogeneous sphere. See Sec. 5.1 in Borghese, Denti & Saija (2007).
  *
  * \param npntmo: `int`
  * \param step: `double`
  * \param x: `double &`
  * \param lpo: `int`
- * \param y1: `complex\<double\> &`
- * \param y2: `complex\<double\> &`
- * \param dy1: `complex\<double\> &`
- * \param dy2: `complex\<double\> &`
- * \param c2: `C2 *`
+ * \param y1: `complex<double> &`
+ * \param y2: `complex<double> &`
+ * \param dy1: `complex<double> &`
+ * \param dy2: `complex<double> &`
+ * \param c2: `C2 *` Pointer to a `C2` data structure.
  */
 void rkt(
 	 int npntmo, double step, double &x, int lpo, std::complex<double> &y1,
@@ -763,14 +796,15 @@ void rkt(
   }
 }
 
-/*! \brief C++ porting of RNF
+/*! \brief Spherical Bessel functions.
  *
- * This is a real spherical Bessel function.
+ * This function computes the spherical Bessel functions \f$y\$. It adopts the `SPHJY`
+ * implementation of the `specfun` library.
  *
- * \param n: `int`
- * \param x: `double`
- * \param nm: `int &`
- * \param sy: `double[]`
+ * \param n: `int` Order of the function (from 0 up).
+ * \param x: `double` Argumento of the function (\f$x > 0\f$).
+ * \param nm: `int &` Highest computed order.
+ * \param sy: `double[]` The desired function \f$y\f$.
  */
 void rnf(int n, double x, int &nm, double sy[]) {
   /*
@@ -936,14 +970,17 @@ void sscr2(int nsph, int lm, double vk, double exri, C1 *c1) {
   }
 }
 
-/*! \brief C++ porting of SPHAR
+/*! \brief Spherical harmonics for given direction.
+ *
+ * This function computes the field spherical harmonics for a given direction. See Sec.
+ * 1.5.2 in Borghese, Denti & Saija (2007).
  *
- * \param cosrth: `double`
- * \param sinrth: `double`
- * \param cosrph: `double`
- * \param sinrph: `double`
- * \param ll: `int`
- * \param ylm: Vector of complex.
+ * \param cosrth: `double` Cosine of direction's elevation.
+ * \param sinrth: `double` Sine of direction's elevation.
+ * \param cosrph: `double` Cosine of direction's azimuth.
+ * \param sinrph: `double` Sine of direction's azimuth.
+ * \param ll: `int` L value expansion order.
+ * \param ylm: Vector of complex. The requested spherical harmonics.
  */
 void sphar(
 	   double cosrth, double sinrth, double cosrph, double sinrph,
@@ -1113,7 +1150,11 @@ void upvmp(
   }
 }
 
-/*! \brief C++ porting of UPVSP
+/*! \brief Compute the unitary vector perpendicular to incident and scattering plane.
+ *
+ * This function computes the unitary vector perpendicular to the incident and scattering
+ * plane in a geometry based on the scattering plane. It uses `orunve()`. See Sec. 2.7 in
+ * Borghese, Denti & Saija (2007).
  *
  * \param u: `double *`
  * \param upmp: `double *`
@@ -1128,7 +1169,7 @@ void upvmp(
  * \param duk: `double *`
  * \param isq: `int &`
  * \param ibf: `int &`
- * \param scand: `double &`
+ * \param scand: `double &` Scattering angle in degrees.
  * \param cfmp: `double &`
  * \param sfmp: `double &`
  * \param cfsp: `double &`
@@ -1202,22 +1243,26 @@ void upvsp(
   sfsp = uns[0] * upsmp[0] + uns[1] * upsmp[1] + uns[2] * upsmp[2];
 }
 
-/*! \brief C++ porting of WMAMP
+/*! \brief Compute meridional plane-referred geometrical asymmetry parameter coefficients.
+ *
+ * This function computes the coeffcients that define the geometrical symmetry parameter
+ * as defined with respect to the meridional plane. It makes use of `sphar()` and `pwma()`.
+ * See Sec. 3.2.1 in Borghese, Denti & Saija (2007).
  *
  * \param iis: `int`
- * \param cost: `double`
- * \param sint: `double`
- * \param cosp: `double`
- * \param sinp: `double`
- * \param inpol: `int`
- * \param lm: `int`
+ * \param cost: `double` Cosine of the elevation angle.
+ * \param sint: `double` Sine of the elevation angle.
+ * \param cosp: `double` Cosine of the azimuth angle.
+ * \param sinp: `double` Sine of the azimuth angle.
+ * \param inpol: `int` Incident field polarization type (0 - linear; 1 - circular).
+ * \param lm: `int` Maximum field expansion orde.
  * \param idot: `int`
- * \param nsph: `int`
+ * \param nsph: `int` Number of spheres.
  * \param arg: `double *`
  * \param u: `double *`
  * \param up: `double *`
  * \param un: `double *`
- * \param c1: `C1 *`
+ * \param c1: `C1 *` Pointer to a `C1` data structure.
  */
 void wmamp(
 	   int iis, double cost, double sint, double cosp, double sinp, int inpol,
@@ -1243,21 +1288,24 @@ void wmamp(
     }
   }
   sphar(cost, sint, cosp, sinp, lm, ylm);
-  //printf("DEBUG: in WMAMP and calling PWMA with lm = %d and iis = %d\n", lm, iis);
   pwma(up, un, ylm, inpol, lm, iis, c1);
   delete[] ylm;
 }
 
-/*! \brief C++ porting of WMASP
+/*! \brief Compute the scattering plane-referred geometrical asymmetry parameter coefficients.
  *
- * \param cost: `double`
- * \param sint: `double`
- * \param cosp: `double`
- * \param sinp: `double`
- * \param costs: `double`
- * \param sints: `double`
- * \param cosps: `double`
- * \param sinps: `double`
+ * This function computes the coefficients that define the geometrical asymmetry parameter based
+ * on the L-value with respect to the scattering plane. It uses `sphar()` and `pwma()`. See Sec.
+ * 3.2.1 in Borghese, Denti and Saija (2007).
+ *
+ * \param cost: `double` Cosine of elevation angle.
+ * \param sint: `double` Sine of elevation angle.
+ * \param cosp: `double` Cosine of azimuth angle.
+ * \param sinp: `double` Sine of azimuth angle.
+ * \param costs: `double` Cosine of scattering elevation angle.
+ * \param sints: `double` Sine of scattering elevation angle.
+ * \param cosps: `double` Cosine of scattering azimuth angle.
+ * \param sinps: `double` Sine of scattering azimuth angle.
  * \param u: `double *`
  * \param up: `double *`
  * \param un: `double *`
@@ -1266,13 +1314,13 @@ void wmamp(
  * \param uns: `double *`
  * \param isq: `int`
  * \param ibf: `int`
- * \param inpol: `int`
- * \param lm: `int`
+ * \param inpol: `int` Incident field polarization (0 - linear; 1 -circular).
+ * \param lm: `int` Maximum field expansion order.
  * \param idot: `int`
- * \param nsph: `int`
+ * \param nsph: `int` Number opf spheres.
  * \param argi: `double *`
  * \param args: `double *`
- * \param c1: `C1 *`
+ * \param c1: `C1 *` Pointer to a `C1` data structure.
  */
 void wmasp(
 	   double cost, double sint, double cosp, double sinp, double costs, double sints,
@@ -1306,34 +1354,38 @@ void wmasp(
     }
   }
   sphar(cost, sint, cosp, sinp, lm, ylm);
-  //printf("DEBUG: in WMASP and calling PWMA with isq = %d\n", isq);
   pwma(up, un, ylm, inpol, lm, isq, c1);
   if (ibf >= 0) {
     sphar(costs, sints, cosps, sinps, lm, ylm);
-    //printf("DEBUG: in WMASP and calling PWMA with isq = 2 and ibf = %d\n", ibf);
     pwma(ups, uns, ylm, inpol, lm, 2, c1);
   }
   delete[] ylm;
 }
 
-/*! \brief C++ porting of DME
+/*! \brief Compute Mie scattering coefficients.
+ *
+ * This function determines the L-dependent Mie scattering coefficients \f$a_l\f$ and \f$b_l\f$
+ * for the cases of homogeneous spheres, radially non-homogeneous spheres and, in case of sphere
+ * with dielectric function, sustaining longitudinal waves. See Sec. 5.1 in Borghese, Denti
+ * & Saija (2007).
  *
- * \param li: `int`
+ * \param li: `int` Maximum field expansion order.
  * \param i: `int`
  * \param npnt: `int`
  * \param npntts: `int`
- * \param vk: `double`
- * \param exdc: `double`
- * \param exri: `double`
- * \param c1: `C1 *`
- * \param c2: `C2 *`
- * \param jer: `int &`
- * \param lcalc: `int &`
- * \param arg: `complex<double> &`.
+ * \param vk: `double` Wave number in scale units.
+ * \param exdc: `double` External medium dielectric constant.
+ * \param exri: `double` External medium refractive index.
+ * \param c1: `C1 *` Pointer to a `C1` data structure.
+ * \param c2: `C2 *` Pointer to a `C2` data structure.
+ * \param jer: `int &` Reference to integer error code variable.
+ * \param lcalc: `int &` Reference to integer variable recording the maximum expansion order accounted for.
+ * \param arg: `complex<double> &`
  */
 void dme(
 	 int li, int i, int npnt, int npntts, double vk, double exdc, double exri,
-	 C1 *c1, C2 *c2, int &jer, int &lcalc, std::complex<double> &arg) {
+	 C1 *c1, C2 *c2, int &jer, int &lcalc, std::complex<double> &arg
+) {
   const int lipo = li + 1;
   const int lipt = li + 2;
   double *rfj = new double[lipt];
diff --git a/src/include/tra_subs.h b/src/include/tra_subs.h
index 5eb99136..803670c1 100644
--- a/src/include/tra_subs.h
+++ b/src/include/tra_subs.h
@@ -6,13 +6,33 @@
 #define INCLUDE_TRA_SUBS_H_
 #endif
 
-//Structures for TRAPPING (that will probably move to Commons)
+// Structures for TRAPPING (that will probably move to Commons)
+/*! \brief CIL data structure.
+ *
+ * A structure containing field expansion order configuration.
+ */
 struct CIL {
-  int le, nlem, nlemt, mxmpo, mxim;
+  //! Maximum L expansion of the electric field.
+  int le;
+  //! le * (le + 1).
+  int nlem;
+  //! 2 * nlem.
+  int nlemt;
+  //! Maximum field expansion order + 1.
+  int mxmpo;
+  //! 2 * mxmpo - 1.
+  int mxim;
 };
 
+/*! \brief CCR data structure.
+ *
+ * A structure containing geometrical asymmetry parameter normalization coefficients.
+ */
 struct CCR {
-  double cof, cimu;
+  //! First coefficient.
+  double cof;
+  //! Second coefficient.
+  double cimu;
 };
 //End of TRAPPING structures
 
-- 
GitLab