To run this module you need access to hotwheels PM, integrate, and IO components. ```python import numpy as np, os, matplotlib as plt from hotwheels_core import * from hotwheels_pm import * from hotwheels_integrate import * from hotwheels_io import * # if G=43007.1, masses are in 1e10Msun/h, and radii are in ckpc/h, then this # constant converts from Gyr to internal units. Not much to comment about it gyr_to_cu = 3.086e+16 / (1e9 * 3600 * 24 * 365) #call MPI_Init() mpi = hwc.MPI().init() #configure my malloc with 2GB mym = MyMalloc(alloc_bytes=int(2e9)) #configure the default particle SoA with 1e5 particles p = SoA(maxpart=int(1e5), mem=mym) #add the particle soa to the multi-type particle SoAs soas = SoAs(p, mem=mym) # configure the timestep class to go from 0 to 1 Gyr # note: G=43007.1 in units of length=kpc, velocity=km/s, mass = 1e10Msun ts = integrate.FixedTimeStep(soas, G=43007.1, t_from=0., t_to=1. * gyr_to_cu, MPI=mpi) ic = NFWIC(rs=100., rho0=1e-6, rs_factor=10.) #init the build of a NFW profile with R<10rs, (note that mass is in units of 1e10Msun) # init a refined PM grids with 7 stacked PLACEHIRESREGION at smaller and smaller scales # note that PM needs the time-step integrator class TS to attach its DriftTable and kick callbacks pm = SuperHiResPM(soas=soas, mem=mym, TS=ts, MPI=mpi, pmgrid=128, grids=8, dt_displacement_factor=0.25) #configure to compile all modules in the current folder build = make.Build('./', mpi, pm, ts, mym, *soas.values()) #configure generate SoA headers headers = OnTheFly(build.build_name, *build.components, generate_user_c=True) if mpi.rank == 0: #master rank compile and build headers headers.write() build.compile() with (utils.Panic(Build=build) as panic, #attach panic handler to C calls utils.Timer(Build=build) as timer, #attach timer handler to C calls build.enter(debug=mpi.rank == 0), #parse the compiled object files mpi.enter(pm), #attach MPI init info to PM module mym.enter(*build.components), #actually allocates the 2GB of ram p, #allocate the particle data stracture in the MyMalloc area ic.enter(p, mpi.ranks, p.get_maxpart()), #sample the NFW in the particle SoA `p` fields pm, #call pm_init() the PM regions ts #compute DriftTables if necessary ): pm.compute_accelerations() #first acc computation while ts.time < ts.time_end: #main run.c loop ts.find_timesteps() #integrator will find timesteps #integrator will call halfstep kick, including PM registered drift and kick callbacks ts.do_first_halfstep_kick() ts.drift() #integretor will drift pm.compute_accelerations() #accelerations #integrator will call halfstep kick, including PM registered drift and kick callbacks ts.do_second_halfstep_kick() if mpi.rank == 0 and steps % 10 == 0: #sometimes, master rank will do a plot f, ax = plt.subplots(1) ax.hist2d(p['pos'][:, 0], p['pos'][:, 1], bins=128) ax.set_aspect('equal') pat = os.path.join(os.getenv('HW_BUILD', '.'), 'snap%d_rank%d.png' % (steps, mpi.rank)) f.savefig(pat, bbox_inches='tight', dpi=200) plt.close(f) print('simualtion finished')