In this example we will use create IC that sample a **NFW profile** and evolve it for 1Gyr with gravity computed using several layers of a **refined particle-mesh (PM)**. ![density map and acceleration of a NFW mock profile with 7 stacked PLACEHIGHRESREGION PM components](NFW_PM_fixed_timestep.png) Here is a first benefit of a modular code: since in `hotwheels `PM is a self-contained module, we can instantiate it an arbitrary number of times. So one can stack seven [PLACEHIGHRESREGION](https://wwwmpa.mpa-garching.mpg.de/gadget4/03_simtypes/) on smaller and smaller regions (a sort of refined mesh) on top of a sampled NFW halo and use PM-only to **get accurate force down to a kpc** (see image). Note that to run this module you need access to hotwheels **core, IO, PM,** and **integrate** components. Note that `hotwheels` do not provide parameter or config files. It is up to the user to initalise its sub-library components and connect them. ```python import numpy as np, os, matplotlib as plt from hotwheels_core import * from hotwheels_pm import * from hotwheels_integrate import * from hotwheels_io import * # # Step 1: Configure components # This stage configures components without allocating resources. # Configurations are passed to constructors to compile the underlying C libraries. # mpi = hwc.MPI().init() # Initialize MPI mym = MyMalloc(alloc_bytes=int(2e9)) # Configure memory allocator with 2GB p = SoA(maxpart=int(1e5), mem=mym) # Configure P to hold 1e5 particles soas = SoAs(p, mem=mym) # Add P to a multi-type SoA container # Set up a fixed time-step integrator from 0 to 1 Gyr # Conversion factor for Gyr to internal units gyr_to_cu = 3.086e+16 / (1e9 * 3600 * 24 * 365) ts = integrate.FixedTimeStep( soas, G=43007.1, # Gravitational constant in specific units t_from=0., t_to=1. * gyr_to_cu, MPI=mpi ) # Initialize a NFW profile with scale radius `rs=100` and density `rho0=1e-6` ic = NFWIC(rs=100., rho0=1e-6, rs_factor=10.) # Configure a refined PM grid with 7 stacked high-resolution regions pm = SuperHiResPM( #wrapper to the PM C library soas=soas, mem=mym, TS=ts, #will use it to attach gravkick callback MPI=mpi, pmgrid=128, grids=8, # number of grids to instantiate dt_displacement_factor=0.25 #factor for DtDisplacement ) build = make.Build('./', mpi, pm, ts, mym, *soas.values()) # Compile all modules in the current directory headers = OnTheFly(build.build_name, *build.components, generate_user_c=True) # Generate SoA headers if mpi.rank == 0: # Master rank handles compilation headers.write() build.compile() # # Step 2: Allocate resources # with ( utils.Panic(Build=build) as panic, # Attach panic handler utils.Timer(Build=build) as timer, # Attach timer handler build.enter(debug=mpi.rank == 0), # Parse compiled objects mpi.enter(pm), # Initialize MPI in the PM module mym.enter(*build.components), # Allocate 2GB memory p, # Allocate particle data structure in MyMalloc ic.enter(p, mpi.ranks, p.get_maxpart()), # Sample NFW profile pm, # Initialize PM and compute first accelerations ts # Compute DriftTables if needed ): # # Step 3: Main simulation loop # while ts.time < ts.time_end: ts.find_timesteps() # Determine timesteps ts.do_first_halfstep_kick() # First kick (includes drift/kick callbacks) ts.drift() # Update particle positions pm.compute_accelerations() # Recompute accelerations ts.do_second_halfstep_kick() # Second kick # Occasionally, generate plots on the master rank if mpi.rank == 0 and ts.steps % 10 == 0: fig, ax = plt.subplots(1) ax.hist2d(p['pos'][:, 0], p['pos'][:, 1], bins=128) ax.set_aspect('equal') fig.savefig(f'snap{ts.steps}_rank{mpi.rank}.png', bbox_inches='tight', dpi=200) plt.close(fig) print('Simulation finished')