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Overview

Partial differential equations play an important role in many
branches of science and engineering. The Poisson problem is a
partial differential equation (PDE) that is widely applied in many
applications.

We use this problem as a means for describing the features of
MPI, OpenMP, CUDA, OpenACC that can be used in solving PDEs.
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The Poisson problem

The Poisson problem in Two space dimensions x and y takes the form:

Viu = {-)2 —I— = f(«,y), in the interior

u(z,y) = g(w,y), on the boundary

An approximate solution can be found using a square mesh (also called a grid)
consisting of points (xi, yi), given by

;= —7,1=0,..,n+1 Yi= =7, 7=0,..,n+1

with n+2 points along each edge of the mesh.
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Jacobi’s iterative method

The approximate solution u is found only at the points

( xi, yi ). Using the mesh we get the discretized equation,

o 2 . .
Ui-1,5 F Wiji1 + Uij-1 + Uirrj — dui; = h*f(3, )

where h = 1 / (n+1).

Our aim is to solve the latest equation everywhere on the

mesh.
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Approximation for 2-D Poisson problem,
with n = 5. The boundaries of the domain
are shown in gray.

NS
<, >
iys) 39



Xr’o ‘o000
Jacobi’s iterative method 00000
00000

One approach is to rewrite the previous equation as, oo L i+l
_ 9 00 ) [ I )
wij = 0.25(ui 1+ Uijr tuij1 + Ui —h i) o e e e'e @
iterate by choosing values for all mesh points u(ij) and 0000000

then replacing them by using
Approximation for 2-D Poisson
problem, with n = 5. The boundaries

k+1 c
_{._ = 0.25('11;?_1,‘7- + 'U/i-cj+1 + u’?,j—-]. + U?I:C_Jr_l’j — hzfq,,J) of the domain are shown in gray.

u’i,j )

This convergent method is known as Jacobi iteration.
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Core algorithm of the Jacobi iteration

#define N 5
double u[N + 2][N + 2], unew[N + 2][N + 2];
for (int i=1 ; i<=N ; i++)
for (int j=1 ; j<=N ; j++)
unew[i,j] = 0.25 * (u[i-1][j] + ul[i][j+1] +
u[i103-11 + u[i+1][3] -

h*h*f[i][7]);
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Approximation for 2-D Poisson
problem, with n = 5. The boundaries

of the domain are shown in gray.
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Algorithm Implementation: serial code

Here's a sketch on how your code should be correctly written:

e set grid indices (input parameter of the program);
allocate memory for 2D arrays;
e initialize solution array with boundaries conditions (u[il[j] = O in the interior
points);
e start iterating (until convergence is reached);
O assigh boundary conditions;
© update 2D solution;
o compute residual;

e write solution to disk.
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Problem details (serial code proposed as start point)

Find the steady-state temperature distribution of ( u(f'j’ O) =1- y[ ]
the rectangular plate O<x< 1, O<vy=<1,subject u(i, N + 1) [ ] * y[z]
to the following Dirichlet boundary conditions (x,y | w(N +1,7) =1 — z[j]
arrays are the I.C.); L (0, 7) — [J]
compute the residuals through (at every iteration)

€ — ZU h2||uk+1

quit iteration loop when € < 107° ;
using a grid 128 x 128 the convergence is achieved
in= /316 iterations.
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