Introduction to Parallel
Programming with MPI

Lecture #5: Parallel /0

Andrea Mignone!

'Dipartimento di Fisica- Turin University, Torino (TO), Italy

Parallel 1/0

" MPI-10 provides a large number of routines to read and write data from a file
(1/0);

" Here we will only cover the basics.

" There are three properties which differentiate data access routines:

Positioning: users can either specify explicitly the offset in the file at which
the data access takes place or they can use MPI file pointers;

Synchronisation: as for common communication APIs, we can use both
synchronous (blocking) or asynchronous (non-blocking) function calls;

Coordination: data accesses can be done through local or collective
operations.

/0 in Parallel Programs

" Input/Output (I/0) operations in parallel programs can be done in a variety
of different ways.

" Solutions to managing |O in parallel applications must take into account
different aspects of the application and implementation:

potential performance improvements (access latency to disk not neglible);
scaling with respect resources/system size;

ensure data consistency;

avoid communications;

strive for usability.

" Three are, roughly speaking, three different approaches:
Master-Slave (or sequential) 1/0;
Distributed |/0 on local files:
Fully parallel |70

Master-Slave Approach

" |n the sequential approach, one processor gathers the data and the does the
writing:

File

" Pros: ensure data consistency, parallel machine may support [/0 from only
one process

" Cons: lack of parallelism limit scalability, many communications involved:

Distributed [/0 on Separate Files

= All the processors read/writes their own files:

Jiil

" Pros: scalable, and avoids communications

" Cons: not very usable since the number of files is determined by the number
of processes. End up having lots of files.

Fully Parallel 1/0

" Multiple processes access data (reading / writing) from the same file

File

" MPI performs the output.
" Pros: High performance, avoid communication, single file provided;

" Cons: require some extra coding, depending on the data layout.

MPI |/O Functions

" MPI provides several functions for |/0.

" This table summarizes only some of the most commonly used |/0 functions
(see the MPI guide for a full reference):

MPI_File_open() Opens a file on all processes in the communicator group
MPI_File close() Closes a file on all processes in the communicator group
MPI_File delete() Deletes a file

MPI_File write() Write using individual file pointer;

MPI_File write_all() Collective write using individual file pointer;

MPI File write_ordered() Collective write using shared file pointer;

MPI File write at() Write using explicit offset.

MPI_File write_shared() Write using shared file pointer

MPI_File_read() Read using individual file pointer;

MPI_File write_all() Collective read using individual file pointer;

MPI_File_ seek() Updates the individual file pointer

MPI File set view() Changes the process's view of the data in the file

Opening Files

" MPI _File open() opens the file on all processes in the communicator.

int MPI_File open(MPI_Comm comm, char *filename,
int amode, MPI Info info, MPI_File *fh)

where
comm: communicator
filename: name of the input/output file

amode: the mode used to open the file. Modes can be combined by bitwse OR
operations (see next slide).

info: used to provide additional information to the MPI-10 system. System
dependent, so here we just use MPI_INFO_NULL

th: file pointer.

" MPI_File open() is a collective routine: all processes must provide the same
value for amode, and all processes must provide filenames that reference the
same file.

Access Modes

" Files can be opened using a variety of modes,

Mode Purpose

MPI_MODE_RDONLY Open in read only mode

MORE_MODE_RDWR Open for read/write modes

MPI_MODE_WRONLY Open in write only mode

MPI_MODE_CREATE Create file if it does not exist

MPI_MODE_EXCL Generate error if creating an existing file
MPI_MODE_DELETE_ON_CLOSE Delete file when closed (used for temporary files).
MPI_MODE_UNIQUE_OPEN File will not be opened elsewhere by the system
MPI_MODE_SEQUENTIAL File will not have file pointer moved manually
MPI_MODE_APPEND Move file pointer to end of tile when opening.

Shared and Individual File Pointers

= MPI allows reading / writing of files using two different kind file pointers:

= Shared file pointer: file pointer is shared among all processes in the
communicator used to open the file. pointer for all processors.

Only one processor can “own” shared pointer for writing or reading at a
time.

May lead to a performance drops.
Functions are collective.

Examples: MPI_Write shared(), MPI_Write_ordered(), MPI_File seek_shared()
and the corresponding MPI_Read_...() functions.

" Individual file pointer: each process has its own local file pointer for seek, read
and write operations;

Collective version (e.g. MPI_File_write(), MPI_File read());

Non-collective version (e.g. MPI_File_write_all()): generally more efficiency
in HPC.

" Finally, there’s the concept of file view: maps data from multiple processors
to the file representation on disk.

/0O Using Shared Pointers

" The function MPI_Write ordered() provides a collective access using a
shared file pointer.

= Accesses to the file will be in the order determined by the ranks of the
processes within the group.

" For each process, the access location in the file is the position at which the
shared file pointer would be after all processes whose ranks within the group
less than that of this process had accessed their data.

int MPI_File write ordered(MPI_File fh, void *buf, int count,
MPI Datatype datatype, MPI_Status *status)

" Shared file pointers require that the same view is used on all processes.

Also, these operations are less efficient because of the need to maintain the
shared pointer.

" Reading done using the corresponding function MPI_File read ordered().

/0 Using Individual pointers

" The same result can be obtained using a combination of MPI_File_ seek()
and MPI_File write().

" The function MPI_File seek() updates the individual file pointer:

int MPI_File seek(MPI_File mpi_fh, MPI_Offset offset, int whence)

where

th: file handle, offset: file offset (in bytes), whence: update mode:
> MPI_SEEK _SET: the pointer is set to offset

> MPI_SEEK _CUR: the pointer is set to the current pointer position plus offset.
> MPI_SEEK_END: the pointer is set to the end of the file plus offset.

= The function MPI_File write() does the writing at the file pointer position:

int MPI_File write(MPI_File mpi_fh, void *buf, int count,
MPI Datatype datatype, MPI Status *status);

= Note that MPI_File_write() is non-collective (the I/0 library has to process individual
requests). The collective version (more efficient for large datasets) is

int MPI _File write all();

File View

= A file view defines which portion of a file is “visible” to a process as well as

the type of the data in the file (byte, integer, float, ...).

" By default, the file is treated as consisting of bytes and process can access

(read or write) any byte in the file.

" A view consists of:
displacement: number of bytes to skip from beginning of file;
etype: Basic unit of data access
filetype: portion of file visible to process

Il
(O]

disp

Il
N

disp

etype

\

disp = 4

Proc #0 view

- Proc #1 view

Setting the File View: MPI_File set view()

" The function setting the view is

int MPI_File set view(MPI_File mpi_fh, MPI_Offset disp, MPI_Datatype etype,
MPI Datatype filetype, char *datarep, MPI _Info info);

where
th: file handle (handle)
disp: displacement from the start of the file, in bytes (integer)

etype: elementary datatype. It can be either a pre-defined or a derived datatype but
it must have the same value on each process. (handle)

filetype: datatype describing each processes view of the file. (handle)
datarep: data representation (string)
info: info object (handle)

ENNRRENREEANRENNREANRNANRNNNREEE Default file view

1 2 3 4 5 6 7 8 etype=MPI_INT
filetype=MP| INT

1 3 5 7

etype=MPI_INT
filetype=MPI_Type_ vector(4, 1, 2, MPI_INT, &filetype);

File View: Data representation

" The data representation (datarep) defines the layout and data access modes
(byte order, type sizes, etc.):

native: (default) use the memory layout with no conversion

- no precision loss or conversion effort

- not portable

internal: layout implementation-dependent

- portable for the same MPI implementation

external32: standard defined by MPI (32-bit big-endian IEEE)
- portable (architecture and MPI implementation)

- some conversion overhead and precision loss

- not always implemented (e.g. Blue Gene/Q)

" Using or internal and external32, the portability is guaranteed only if using
the correct MP| datatypes (not using MPI_BYTE)

Default File View

= A default file view for each participating process is defined implicitly with
MPI_File_open():

" This view has no displacement, the file has no specific structure and all processes
have access to the complete file. In other words:

disp = ©;
etype = MPI_BYTE
filetype = MPI BYTE

0123456 7 8 9 BIXIIEN I

O e e A e)| eeee view of process 0
O 2 e e | e view of process 1
O 2 e e | e view of process 2

Example #1: writing contiguous array

Write a program (write_1Darr.c) that writes a double-precision buffer with
NELEM elements all set equal to the process rank.

For NELEM = 3, and 4 processors the output (binary) file should consist of

%) %) %) 1 1 1 2 2 2 3 3 3

Explore 3 different strategies:
Shared file pointer (MPI_File write ordered());
Individual file pointer (MPI_File seek() + MPI_File write());
Using the file view (MPI_File set view + MPI_File write());

To check that the file has been written correctly you can use the od
command:

> od -Fv <file.bin>

0000000 0.000000000000000e+00 .000000000000000e+00
0000020 .000000000000000e+00 .000000000000000e+00
0000040 .000000000000000e+00 .000000000000000e+00

0000060 . 0000000000V +00 . 0000000000V +00
0000100 .000000000000000e+00 . 0000000000000V e+00
0000120 . 0000000000000 VLe+00 . 000000000V LVe+00
0000140

Non-Contiguous Data

" File views are particularly useful when data has to be written non-contiguously to disk.

" Consider, for instance, the following 2D array distributed column-wise:

0.2 1.2 3.2

nEENPREY] e e,

3.0 file

0.1(1.1

&0

" We create a vector type with count=3, blocklen=1, stride=4 and use it to set the file
view:

for (i = @; i < NELEM; i++) buf[i] = rank + ©.1*i; // Fill buffer

MPI _Datatype vec_type;

MPI_Type vector(NELEM, 1, size, MPI DOUBLE, &vec_type); // Create vector type
MPI_Type commit(&vec_type);

disp = rank*sizeof(double);

MPI_File set view(fh, disp, MPI_DOUBLE, vec_type, "native", MPI_INFO_NULL); // Set view
MPI_File write(fh, buf, NELEM, MPI_DOUBLE, MPI_STATUS_IGNORE); // Write
MPI_Type free(&vec_type);

Multidimensional Arrays

" |/0 of multi-dimensional arrays should be handled in a way which is
iIndependent of the decomposition.

= Datafiles should be written according to a usual serial order: row major order
(C) or column major order (Fortran).

P2 P2

" The subarray datatype may easily handle these situations.

" However, a Cartesian decomposition is needed for this situation.

Cartesian Decomposition

" A Cartesian decomposition is a parallelization method whereby different portions
of the domain are assigned to individual processes;

" |n other words, it maps a rank to a coordinate:

_—

rank rank (1,0) | (1,1)
2 3

" To create a new communicator with the chosen decomposition we use

int MPI_Cart _create(MPI_Comm comm old, int ndims, const int dims[],
const int periods[], int reorder, MPI_Comm * comm_cart)

where
comm_old: input communicator (handle)
ndims: number of dimensions of Cartesian grid (integer)
dims: integer array of size ndims specifying the number of procs in each dimension;

periods: logical array of size ndims specifying periodicity (true) or not (false) in
each dimension;

reorder: ranking may be reordered (true) or not (false)
comm_cart: communicator with new Cartesian topology (handle)

A worked example: 2D Domain Decomposition with Distributed 170

We now decompose the domain in 2x2 processors and create the corresponding
Cartesian topology:

MPI_Comm MPI_COMM_CART; // Declare new Cartesian communicator

int periods[2] {0,0}; // No periodicity
int nprocs[@] = {2,2}; // Number of processes in the x- and y-directions
// ! MAKE SURE nprocs[@]*nprocs[1l] == size

MPI Cart_create(MPI_COMM_WORLD, NDIM, nprocs, periods, ©, &IPI COMM _CART); // Cart decomposition
MPI_Cart_get(MPI_COMM_CART, NDIM, nprocs, periods, coords); // Obtain coordinates from rank

If the total computation domain has dimensions Nx, and Ny,, each process owns a
sub-portion of nx=Nx,/nprocs[@] and ny=Ny,/nprocs[1] points.

gsizes[©] = NX_GLOB; // Global domain size in the x-direction (= Nx,)

gsizes[1] = NY_GLOB; // Global domain size in the y-direction (= Ny,)

lsizes[@] = nx = NX_GLOB/nprocs[@]; // Local domain size in the x-direction (= nx)

lsizes[1] = ny = NY_GLOB/nprocs[1]; // Local domain size in the y-direction (= ny)

/* -- Allocate memory and fill 2D array on local domain -- */

A = Allocate_2DdblArray(ny,nx); // Allocate memory on local grid (i = fastest running index)
for (j = 0; j < ny; j++) for (i = ©; i < nx; i++) A[j][i] = rank; // Fill array

A worked example: 2D Domain Decomposition with Distributed 170

We can now create the desired subarray type from the previous decomposition:

MPI Datatype subarr_type;

start[0]
start[1]

coords[@]*1sizes[0@]; // Offsets of local array into global array
coords[1]*1sizes[1]; // Offsets of local array into global array

MPI_Type_create_subarray (NDIM, gsizes, lsizes, start, MPI_ORDER_FORTRAN,
MPI_DOUBLE, &subarr_type);
MPI_Type commit (&subarr_type);

We use MPI_ORDER_FORTRAN because the array is column-oriented.
In the example we use Nx, = 16 and Ny, = 8

Output can then be done using MPI_File set view():

MPI_File fh;
MPI_Status status;

MPI_File open(MPI_COMM_CART, fname,

MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO NULL, &fh);
MPI_File set view(fh, @, MPI_DOUBLE, subarr_type, "native", MPI_INFO_NULL);
MPI _File write_all(fh, A[@], nx*ny, MPI_DOUBLE, &status);
MPI_File_close(&fh);

Visualizing Data with Gnuplot

" Binary data can be visualized using, e.g., gnuplot.

" Commands may be entered at the gnuplot prompt,

gnuplot> reset

gnuplot> set autoscale xfixmin
gnuplot> set autoscale xfixmax
gnuplot> set autoscale yfixmin
gnuplot> set autoscale yfixmax

gnuplot> set pm3d map
gnuplot> set palette defined
gnuplot> splot "arr2D.bin" bin array=16x8 format='%1f' with image

" Alternatively, you may create a new file, e.g. “arr2d.gp”, with the instruction
and then load it at the gnuplot prompt:

gnuplot> load “arr2d.gp”

