
June 24th, July 5th, IRA Bologna

INAF HPC course 2024
hands-on session

Jacobi solver
OpenMP implementation

1

June 24th, July 5th, IRA Bologna

Core algorithm analysis
The Jacobi algorithm with a serial code has:
● time complexity of the order O(I · N2), where I is the number of iterations to achieve

convergence (which is a function of the tolerance, usually ~10-5) and N is the grid size;
● memory complexity of the order O(N2).

So we expect:
● long times to process matrix of big size and/or great amount of iterations (cache misses

rate severely impacts on performance when the matrix size exceeds cache size);

● size of the matrix is limited by the platform (i.e. size of the memory available on the node). On
modern platforms, this may be a minor issue.

2

June 24th, July 5th, IRA Bologna

OpenMP implementation

We remind that the main loop of the Jacobi
iterator takes the form:

#define TOL 1.e-5
while (err > TOL)
{

for (int j=0; j<Dimension ; j++)
for (int i=0 ; i<Dimension ; i++)

{...}
 err = DIFF(...);
} /* while loop */

3

How to parallelize?

The while loop cannot be parallelized
using explicitly the
#pragma omp parallel for
OpenMP directive, because the iterations
of the while loop are not specified.

June 24th, July 5th, IRA Bologna

OpenMP implementation
int i, j;

while (err > TOL)

{

 #pragma omp parallel default(none) shared(...) private(...) \

 num_threads(NThreads) ...

 {

 #pragma omp for schedule(...) ...

for (j=0; j<Dimension ; j++) {

for (i=0 ; i<Dimension ; i++) {

 {...}

} /* loop over i */

} /* loop over j */

 } /* omp parallel */

} /* while loop */ 4

How to parallelize with OpenMP?

● the outer for loop can be easily parallelized;
● using the clause schedule(static) the

loop over the j index is parallelized across
the threads with chunk size equal to
Dimension/NThreads;

● NThreads is the number of OpenMP threads
working within the parallel region, specified
through the clause
num_threads(integer-expression);

● number of threads and schedule type can be
set at runtime using OMP_NUM_THREADS
and OMP_SCHEDULE environmental
variables.

June 24th, July 5th, IRA Bologna

OpenMP implementation

5

● the loops are (i) perfectly nested, i.e. there is no intervening code between the loops, (ii)
they form a rectangular iteration space and the bounds of each loop are invariant over all
the loops, (iii) the instructions of the innermost associated loop do not contain any break
statement nor continue statement. This allows code improvements;

● the parallel section is created and destroyed (fork-join model) for every iteration. This
might lead to a performance penalty;

● with the introduction of the cancellation constructs in OpenMP 4.0, an elegant way to
terminate the execution of a parallel construct is available. This feature is useful for
specific parallel methods with dynamic behavior, such as, for instance, the while
worksharing loop;

● a more sophisticated way to support unstructured parallelism, such as unbound loops and
recursive functions, is offered by the tasking execution model, first introduced in OpenMP
3.0, and refined in later versions.

