INAF HPC course 2024

hands-on session

Jacobi solver
OpenMP implementation

June 24th, July 5th, IRA Bologna



Core algorithm analysis

The Jacobi algorithm with a serial code has:
e tfime complexity of the order O(I - N°), where I is the number of iterations to achieve
convergence (which is a function of the tolerance, usually ~10°) and N is the grid size;
e memory complexity of the order O(N?).

So we expect:

e long times to process matrix of big size and/or great amount of iterations (cache misses
rate severely impacts on performance when the matrix size exceeds cache size);

e size of the matrix is limited by the platform (i.e. size of the memory available on the node). On
modern platforms, this may be a minor issue.

June 24th, July 5th, IRA Bologna

o\ AST,
R3 o

&
iys) 39

X,

b, o
Nojzyn



OpenMP implementation

We remind that the main loop of the Jacobi

iterator takes the form:

#define TOL 1.e-5
while (err > TOL)

{

How to parallelize?

The while loop cannot be parallelized
using explicitly the

for (int j=0; j<Dimension ; j++) #pragma omp parallel for

for (int i=0 ; i<Dimension ; i++)

{...}
err = DIFF(...);

} /* while loop */

OpenMP directive, because the iterations
of the while loop are not specified.

June 24th, July 5th, IRA Bologna



OpenMP implementation How to parallelize with OpenMP?

int 1, j; e the outer for loop can be easily parallelized;
while (err > TOL) e using the clause schedule(static) the
{ loop over the j index is parallelized across
#pragma omp parallel default(none) shared(...) private(...) \ *h?1*"?°93 with chunk size equal to
Dimension/NThreads;
num_threads(NThreads) ... )
e NThreads is the number of OpenMP threads
{ working within the parallel region, specified
#pragma omp for schedule(...) ... through the clause
for (j=0; j<Dimension ; j++) { num_threads(integer-expression);
for (i=0 ; i<Dimension ; i++) { e number of threads and schedule type can be

set at runtime using OMP_NUM_THREADS
and OMP_SCHEDULE environmental
variables.

{...}
} /* loop over i */
} /* loop over j */
} /* omp parallel */ &,

} /* while loop */ :
June 24th, July 5th, IRA Bologna



OpenMP implementation

the loops are (i) perfectly nested, i.e. there is no intervening code between the loops, (ii)
they form a rectangular iteration space and the bounds of each loop are invariant over all
the loops, (iii) the instructions of the innermost associated loop do not contain any break
statement nor continue statement. This allows code improvements;

the parallel section is created and destroyed (fork-join model) for every iteration. This
might lead to a performance penalty;

with the introduction of the cancellation constructs in OpenMP 4.0, an elegant way to
terminate the execution of a parallel construct is available. This feature is useful for
specific parallel methods with dynamic behavior, such as, for instance, the while
worksharing loop;

a more sophisticated way to support unstructured parallelism, such as unbound loops and
recursive functions, is offered by the tasking execution model, first introduced in OpenMP
3.0, and refined in later versions.

June 24th, July 5th, IRA Bologna

A
TR
©
L
-

X,

>
b, o
Nojzyn

&
iys) 39



