
Introduction to Parallel
Programming with MPI

Lecture #5: Parallel I/O

Andrea Mignone1

1Dipartimento	di	Fisica-	Turin	University,	Torino	(TO),	Italy	

Parallel I/O

§ MPI-IO provides a large number of routines to read and write data from a file
(I/O);

§  Here we will only cover the basics.

§  There are three properties which differentiate data access routines:

•  Positioning: users can either specify explicitly the offset in the file at which
the data access takes place or they can use MPI file pointers;

•  Synchronisation: as for common communication APIs, we can use both
synchronous (blocking) or asynchronous (non-blocking) function calls;

•  Coordination: data accesses can be done through local or collective
operations.

I/O in Parallel Programs

§  Input/Output (I/O) operations in parallel programs can be done in a variety
of different ways.

§  Solutions to managing IO in parallel applications must take into account
different aspects of the application and implementation:

•  potential performance improvements (access latency to disk not neglible);

•  scaling with respect resources/system size;

•  ensure data consistency;

•  avoid communications;

•  strive for usability.

§  Three are, roughly speaking, three different approaches:

•  Master-Slave (or sequential) I/O;

•  Distributed I/O on local files:

•  Fully parallel I/O

Master-Slave Approach

§  In the sequential approach, one processor gathers the data and the does the
writing:

§  Pros: ensure data consistency, parallel machine may support I/O from only
one process

§  Cons: lack of parallelism limit scalability, many communications involved:

P0	 P1	 P2	 P3	

File	

Distributed I/O on Separate Files

§  All the processors read/writes their own files:

§  Pros: scalable, and avoids communications

§  Cons: not very usable since the number of files is determined by the number
of processes. End up having lots of files.

File	0	 File	1	 File	2	 File	3	

P0	 P1	 P2	 P3	

Fully Parallel I/O

§ Multiple processes access data (reading / writing) from the same file

§ MPI performs the output.

§  Pros: High performance, avoid communication, single file provided;

§  Cons: require some extra coding, depending on the data layout.

P0	 P1	 P2	 P3	

File	

MPI I/O Functions

§ MPI provides several functions for I/O.

§  This table summarizes only some of the most commonly used I/O functions
(see the MPI guide for a full reference):

Constructor Purpose
MPI_File_open()	 Opens a file on all processes in the communicator group

MPI_File_close()	 Closes a file on all processes in the communicator group

MPI_File_delete()	 Deletes a file

MPI_File_write()		
MPI_File_write_all()	
MPI_File_write_ordered()	
MPI_File_write_at()	
MPI_File_write_shared()	

Write using individual file pointer;
Collective write using individual file pointer;
Collective write using shared file pointer;
Write using explicit offset.
Write using shared file pointer

MPI_File_read()		
MPI_File_write_all()	
...	

Read using individual file pointer;
Collective read using individual file pointer;
…

MPI_File_seek()	 Updates the individual file pointer

MPI_File_set_view()	 Changes the process's view of the data in the file

Opening Files

§  MPI_File_open() opens the file on all processes in the communicator.

 where
•  comm: communicator

•  filename: name of the input/output file

•  amode: the mode used to open the file. Modes can be combined by bitwse OR
operations (see next slide).

•  info: used to provide additional information to the MPI-IO system. System
dependent, so here we just use MPI_INFO_NULL

•  fh: file pointer.

§  MPI_File_open() is a collective routine: all processes must provide the same
value for amode, and all processes must provide filenames that reference the
same file.

§  Important: only Binary I/O (no ASCII text I/O)

int	MPI_File_open(MPI_Comm	comm,	char	*filename,		
																		int	amode,	MPI_Info	info,	MPI_File	*fh)		

Access Modes

§  Files can be opened using a variety of modes,

§ Modes can be combined together, e.g., MPI_MODE_CREATE	|	MPI_MODE_WRONLY will
create a file and open it for write only.

Mode Purpose
MPI_MODE_RDONLY	 Open in read only mode

MORE_MODE_RDWR	 Open for read/write modes

MPI_MODE_WRONLY	 Open in write only mode

MPI_MODE_CREATE	 Create file if it does not exist

MPI_MODE_EXCL	 Generate error if creating an existing file

MPI_MODE_DELETE_ON_CLOSE	 Delete file when closed (used for temporary files).

MPI_MODE_UNIQUE_OPEN	 File will not be opened elsewhere by the system

MPI_MODE_SEQUENTIAL	 File will not have file pointer moved manually

MPI_MODE_APPEND	 Move file pointer to end of tile when opening.

Shared and Individual File Pointers

§ MPI allows reading / writing of files using two different kind file pointers:

§  Shared file pointer: file pointer is shared among all processes in the
communicator used to open the file. pointer for all processors.
•  Only one processor can “own” shared pointer for writing or reading at a

time.
•  May lead to a performance drops.
•  Functions are collective.
•  Examples: MPI_Write_shared(), MPI_Write_ordered(),	MPI_File_seek_shared()	

and the corresponding MPI_Read_...() functions.

§  Individual file pointer: each process has its own local file pointer for seek, read
and write operations;
•  Collective version (e.g. MPI_File_write(),	MPI_File_read());
•  Non-collective version (e.g. MPI_File_write_all()): generally more efficiency

in HPC.

§  Finally, there’s the concept of file view: maps data from multiple processors
to the file representation on disk.

I/O Using Shared Pointers

§  The function MPI_Write_ordered() provides a collective access using a
shared file pointer.

§  Accesses to the file will be in the order determined by the ranks of the
processes within the group.

§  For each process, the access location in the file is the position at which the
shared file pointer would be after all processes whose ranks within the group
less than that of this process had accessed their data.

§  Shared file pointers require that the same view is used on all processes.
Also, these operations are less efficient because of the need to maintain the
shared pointer.

§  Reading done using the corresponding function MPI_File_read_ordered().

int	MPI_File_write_ordered(MPI_File	fh,	void	*buf,	int	count,		
																											MPI_Datatype	datatype,	MPI_Status	*status)		

I/O Using Individual pointers

§  The same result can be obtained using a combination of MPI_File_seek()
and MPI_File_write().

§  The function MPI_File_seek()	updates the individual file pointer:

 where
•  fh: file handle, offset: file offset (in bytes), whence: update mode:

Ø  MPI_SEEK_SET: the pointer is set to offset

Ø  MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset.

Ø  MPI_SEEK_END: the pointer is set to the end of the file plus offset.

§  The function MPI_File_write() does the writing at the file pointer position:

§  Note that MPI_File_write() is non-collective (the I/O library has to process individual
requests). The collective version (more efficient for large datasets) is

int	MPI_File_seek(MPI_File	mpi_fh,	MPI_Offset	offset,	int	whence)	

int	MPI_File_write(MPI_File	mpi_fh,	void	*buf,	int	count,		
																			MPI_Datatype	datatype,	MPI_Status	*status);	

int	MPI_File_write_all();	

File View

§  A file view defines which portion of a file is “visible” to a process as well as
the type of the data in the file (byte, integer, float, ...).

§  By default, the file is treated as consisting of bytes and process can access
(read or write) any byte in the file.

§  A view consists of:
•  displacement: number of bytes to skip from beginning of file;

•  etype: Basic unit of data access

•  filetype: portion of file visible to process

P0	

P1	

P2	

Proc	#0	view	
disp	=	0	

disp	=	2	

disp	=	4	

Proc	#1	view	

Proc	#2	view	

etype	

Setting the File View: MPI_File_set_view()	

§  The function setting the view is

 where
•  fh: file handle (handle)

•  disp: displacement from the start of the file, in bytes (integer)

•  etype: elementary datatype. It can be either a pre-defined or a derived datatype but
it must have the same value on each process. (handle)

•  filetype: datatype describing each processes view of the file. (handle)

•  datarep: data representation (string)

•  info: info object (handle)

int	MPI_File_set_view(MPI_File	mpi_fh,	MPI_Offset	disp,	MPI_Datatype	etype,	
																						MPI_Datatype	filetype,	char	*datarep,	MPI_Info	info);	

File View: Data representation

§  The data representation (datarep) defines the layout and data access modes
(byte order, type sizes, etc.):

•  native: (default) use the memory layout with no conversion

-  no precision loss or conversion effort

-  not portable

•  internal: layout implementation-dependent

-  portable for the same MPI implementation

•  external32: standard defined by MPI (32-bit big-endian IEEE)

-  portable (architecture and MPI implementation)

-  some conversion overhead and precision loss

-  not always implemented (e.g. Blue Gene/Q)

§  Using or internal and external32, the portability is guaranteed only if using
the correct MPI datatypes (not using MPI_BYTE)

Default File View

§  A default file view for each participating process is defined implicitly with
MPI_File_open():

§  This view has no displacement, the file has no specific structure and all processes
have access to the complete file. In other words:

•  disp	=	0;	
•  etype	=	MPI_BYTE	
•  filetype	=	MPI	BYTE	

Example #1: writing contiguous array

§ Write a program (write_1Darr.c) that writes a double-precision buffer with
NELEM elements all set equal to the process rank.

§  For NELEM	=	3, and 4 processors the output (binary) file should consist of

§  Explore 3 different strategies:
•  Shared file pointer (MPI_File_write_ordered());

•  Individual file pointer (MPI_File_seek()	+	MPI_File_write());

•  Using the file view (MPI_File_set_view	+	MPI_File_write());

§  To check that the file has been written correctly you can use the od
command:

0	 0	 0	 1	 1	 1	 2	 2	 2	 3	 3	 3	

>	od	–Fv	<file.bin>	
0000000					0.000000000000000e+00				0.000000000000000e+00	
0000020					0.000000000000000e+00				1.000000000000000e+00	
0000040					1.000000000000000e+00				1.000000000000000e+00	
0000060					2.000000000000000e+00				2.000000000000000e+00	
0000100					2.000000000000000e+00				3.000000000000000e+00	
0000120					3.000000000000000e+00				3.000000000000000e+00	
0000140	

Non-Contiguous Data

§  File views are particularly useful when data has to be written non-contiguously to disk.

§  Consider, for instance, the following 2D array distributed column-wise:

§  We create a vector type with count=3,	blocklen=1,	stride=4 and use it to set the file
view:

0.2	 1.2	 2.2	 3.2	

0.1	 1.1	 2.1	 3.1	

0.0	 1.0	 2.0	 3.0	

0.0	 1.0	 2.0	 3.0	 0.1	 1.1	 2.1	 3.1	 0.2	 1.2	 2.2	 3.2	

P0	 P1	 P2	 P3	

file	

for	(i	=	0;	i	<	NELEM;	i++)	buf[i]	=	rank	+	0.1*i;			//	Fill	buffer	
	
MPI_Datatype	vec_type;																																
MPI_Type_vector(NELEM,	1,	size,	MPI_DOUBLE,	&vec_type);	//	Create	vector	type	
MPI_Type_commit(&vec_type);	
	
disp	=	rank*sizeof(double);					
MPI_File_set_view(fh,	disp,	MPI_DOUBLE,	vec_type,	"native",	MPI_INFO_NULL);			//	Set	view	
MPI_File_write(fh,	buf,	NELEM,	MPI_DOUBLE,	MPI_STATUS_IGNORE);																//	Write	
MPI_Type_free(&vec_type);	

Multidimensional Arrays

§  I/O of multi-dimensional arrays should be handled in a way which is
independent of the decomposition.

§  Datafiles should be written according to a usual serial order: row major order
(C) or column major order (Fortran).

§  The subarray datatype may easily handle these situations.

§  However, a Cartesian decomposition is needed for this situation.

A0	 A1	 B0	 B1	

A2	 A3	 B2	 B3	

C0	 C1	 D0	 D1	

C2	 C3	 D2	 D3	

A0	 A1	 B0	 B1	 A2	 A3	 B2	 B3	 C0	 C1	 D0	 D1	 C2	 C3	 D2	 D3	

data	

file	

P0	 P1	

P2	 P2	

Cartesian Decomposition

§  A Cartesian decomposition is a parallelization method whereby different portions
of the domain are assigned to individual processes;

§  In other words, it maps a rank to a coordinate:

§  To create a new communicator with the chosen decomposition we use

 where
•  comm_old: input communicator (handle)
•  ndims: number of dimensions of Cartesian grid (integer)
•  dims: integer array of size ndims specifying the number of procs in each dimension;

•  periods: logical array of size ndims specifying periodicity (true) or not (false) in
each dimension;

•  reorder: ranking may be reordered (true) or not (false)
•  comm_cart: communicator with new Cartesian topology (handle)

rank		
0	

rank		
1	

rank		
2	

rank		
3	

(0,0)	 (0,1)	

(1,0)	 (1,1)	

int	MPI_Cart_create(MPI_Comm	comm_old,	int	ndims,	const	int	dims[],	
																				const	int	periods[],	int	reorder,	MPI_Comm	*	comm_cart)	

A worked example: 2D Domain Decomposition with Distributed I/O

§  We now decompose the domain in 2x2 processors and create the corresponding
Cartesian topology:

§  If the total computation domain has dimensions Nxg and Nyg, each process owns a
sub-portion of nx=Nxg/nprocs[0] and ny=Nyg/nprocs[1] points.

MPI_Comm	MPI_COMM_CART;		//	Declare	new	Cartesian	communicator	
	
int	periods[2]	=	{0,0};			//	No	periodicity	
int	nprocs[0]		=	{2,2};			//	Number	of	processes	in	the	x-	and	y-directions	
//	!	MAKE	SURE	nprocs[0]*nprocs[1]	==	size	
	
MPI_Cart_create(MPI_COMM_WORLD,	NDIM,	nprocs,	periods,	0,	&MPI_COMM_CART);		//	Cart	decomposition	
MPI_Cart_get(MPI_COMM_CART,	NDIM,	nprocs,	periods,	coords);	//	Obtain	coordinates	from	rank	

gsizes[0]	=	NX_GLOB;								//	Global	domain	size	in	the	x-direction	(=	Nxg)	
gsizes[1]	=	NY_GLOB;								//	Global	domain	size	in	the	y-direction	(=	Nyg)	
	
lsizes[0]	=	nx	=	NX_GLOB/nprocs[0];		//	Local	domain	size	in	the	x-direction	(=	nx)	
lsizes[1]	=	ny	=	NY_GLOB/nprocs[1];		//	Local	domain	size	in	the	y-direction	(=	ny)	
	
/*	--	Allocate	memory	and	fill	2D	array	on	local	domain	--	*/	
	
A	=	Allocate_2DdblArray(ny,nx);			//	Allocate	memory	on	local	grid		(i	=	fastest	running	index)	
for	(j	=	0;	j	<	ny;	j++)	for	(i	=	0;	i	<	nx;	i++)	A[j][i]	=	rank;	//	Fill	array	

A worked example: 2D Domain Decomposition with Distributed I/O

§  We can now create the desired subarray type from the previous decomposition:

§  We use MPI_ORDER_FORTRAN because the array is column-oriented.

§  In the example we use Nxg	=	16	and	Nyg	=	8

§  Output can then be done using MPI_File_set_view():

MPI_Datatype	subarr_type;	
	
start[0]	=	coords[0]*lsizes[0];			//	Offsets	of	local	array	into	global	array	
start[1]	=	coords[1]*lsizes[1];			//	Offsets	of	local	array	into	global	array	
	
MPI_Type_create_subarray	(NDIM,	gsizes,	lsizes,	start,	MPI_ORDER_FORTRAN,		
																										MPI_DOUBLE,	&subarr_type);	
MPI_Type_commit	(&subarr_type);	

MPI_File	fh;	
MPI_Status	status;	
	
MPI_File_open(MPI_COMM_CART,	fname,		
														MPI_MODE_CREATE	|	MPI_MODE_WRONLY,	MPI_INFO_NULL,	&fh);	
MPI_File_set_view(fh,	0,	MPI_DOUBLE,	subarr_type,	"native",	MPI_INFO_NULL);	
MPI_File_write_all(fh,	A[0],	nx*ny,	MPI_DOUBLE,	&status);	
MPI_File_close(&fh);	

Visualizing Data with Gnuplot

§  Binary data can be visualized using, e.g., gnuplot.

§  Commands may be entered at the gnuplot prompt,

§  Alternatively, you may create a new file, e.g. “arr2d.gp”, with the instruction
and then load it at the gnuplot prompt:

gnuplot>	reset	
gnuplot>	set	autoscale	xfixmin	
gnuplot>	set	autoscale	xfixmax	
gnuplot>	set	autoscale	yfixmin	
gnuplot>	set	autoscale	yfixmax	
	
gnuplot>	set	pm3d	map	
gnuplot>	set	palette	defined	
gnuplot>	splot	"arr2D.bin"	bin	array=16x8	format='%lf'	with	image		

gnuplot>	load	“arr2d.gp”	

