
 Introduction to Parallel
Programming with MPI

Lecture #2: Point to Point Communications

Andrea Mignone1

1Dipartimento	di	Fisica	-	Turin	University,	Torino	(TO),	Italy	

Data Communication

§  So far, each process has performed an independent task.

§  Data communication between different processes is, however, a key point for
employing MPI.

§  In MPI, we distinguish between two main classes of communication:

•  Point to point (P2P): one process sends a message to another one. This is
the simplest form of message passing (like email exchange). There’re two
different P2P communications:

•  Synchronous (or also blocking) such as MPI_Send() and MPI_Recv();

•  Asynchronous (non-blocking), such as MPI_Isend() and MPI_Irecv().

•  Collective: composed of several point-to-point operations, e.g., one-to-all or
all-to-one such as MPI_Broadcast(),	MPI_Reduce(),	MPI_Barrier() and
others.

Point to Point Communications

§  Blocking (Synchrounous) calls:

•  Message arrives at the same time as it
is sent;

•  Sender has to wait if receiver is not
ready

•  Sender gets confirmation of receipt

•  Analogy: fax-machine

§ Non-Blocking (Asynchrounous) calls:

•  Message arrives whenever receiver is
ready;

•  Sender does not have to wait;

•  Sender only knows that message has
left;

•  analogy: postal mail

Blocking Point to Point Communication

§  The most basic forms of P2P communication are called blocking: the
process that sends a message will be waiting until the process that receives
has finished receiving all the information.

§  This is the easiest form of communications but not necessarily the fastest
one.

§  Communication occurs between two processors in the same communicator.

§  The source process sends a message with a certain length and data type to
the destination process. Perhaps, a good place to start is the MPI_Send()	
function:

int	MPI_Send(void	*buf,		
													int	count,		
													MPI_Datatype	datatype,		
													int	dest,		
													int	tag,		
													MPI_Comm	comm)	

MPI_Send()

§  *buf: pointer to a memory buffer (e.g. an array) containing the data that you
wish to send from the current process to another;

§  count: the number of elements in the buffer;

§  datatype: the kind of data that we are sending (e.g. char, float, double, and
so forth). MPI has predefined data-types that must correspond precisely to
the data stored in the buffer (see next slide);

§  dest: the rank of the destination process;

§  tag: an integer that identifies the "type" of communication (this is an
informal value: think of it as an email subject; allows the receiver to
understand what type of data is being received);

§  comm: the communicator on which to send the data to.

int	MPI_Send(void	*buf,	int	count,	MPI_Datatype	datatype,		
													int	dest,		int	tag,			MPI_Comm	comm)	

MPI DataTypes

§ MPI datatypes can be defined as:

•  predefined: corresponds to a data type inherited from the language, e.g.

•  A contiguous array of MPI datatypes;

•  An indexed array of blocks of datatypes;

•  An arbitrary structure of datatypes;

§ MPI provides functions to construct custom datatypes.

MPI Datatype C correspondence

MPI_CHAR	 char	

MPI_INT	 int	

MPI_FLOAT	 float	

MPI_DOUBLE	 double	

MPI_LONG	 long	

MPI_Send() and MPI_Ssend()

§  Both MPI_Send() and MPI_Ssend() are blocking calls. There’s a small
difference between the two:

•  With a regular MPI_Send(), the implementation will return to the
application when the buffer is available for reuse: this could be before the
receiving process has actually posted the receive: for instance, it could be
when a small message has been copied into an internal buffer and the
application buffer is no longer needed. However, for large messages that
may not be buffered internally, the call may not return until enough of the
message has been sent to the remote process that the buffer is no longer
needed.

•  MPI_Ssend(), on the other hand, will always wait until the receive has been
posted on the receiving end. Even if the message is small and can be
buffered internally, it will still wait until the message has started to be
received on the other side.

Receiving Data with MPI_Recv()	

§  Receiving data is very similar to sending them.

§  The corresponding basic function used for blocking P2P communication is

§  The arguments to MPI_Recv() match those used by MPI_Send()

•  *buf: the receiving buffer

•  count: the number of elements in the buffer;

•  datatype: the kind of data that we are receiving;

•  source: the rank of the sending process;

•  tag: should match the source tag;

•  comm: the communicator used;

§  One additional argument is present, MPI_Status: this is a structure that
containing information on the message you just received.

int	MPI_Recv(void	*buf,	int	count,	MPI_Datatype	datatype,		
													int	source,		int	tag,	MPI_Comm	comm,	MPI_Status	*status)	

Example #1: odd_even.c	

§  Let’s write a program where process #0 creates a table of even numbers (e.g.
0,2,4,6,8) while process #1 creates a table of odd numbers (1,3,5,7,9).

§ Now we want these processes to exchange the information using MPI_Send()
and MPI_Recv():

§  This program involves only 2 processor and should be executed with

§ We will consider 3 different versions of this program.

Proc #0

send_buf	=	[0,2,4,6,8]	
recv_buf			

Proc #1

		recv_buf	
		send_buf=[1,3,5,7,9]	

>	mpirun	–np	2	./my_program											#	run	on	with	2	processors	

Example #1: odd_even.c	

§  The beginning part of the program will be the same for all versions.

§  Here we initialize the MPI environment and create buffers containing either
even or odd (integer) numbers, arranged in arrays:

§ Note that rank	=	0 for process #0 while rank	=	1 for process #1.

#include	<mpi.h>	
#include	<stdio.h>	
#define	NELEMENTS	5	
	
int	main(int	argc,	char	**	argv)	
{	
		int	i,	rank;	
		int	send_buf[NELEMENTS],	recv_buf[NELEMENTS];	
		MPI_Request	req;	
			
		MPI_Init(&argc,	&argv);	//	Initialize	the	MPI	execution	environment	
		MPI_Comm_rank(MPI_COMM_WORLD,	&rank);	
	
		/*	--	Create	buffers	of	odd	or	even	number	--	*/	
			
		for	(i	=	0;	i	<	NELEMENTS;	i++)	send_buf[i]	=	2*i	+	rank;	

odd_even.c:	version 1

§  In the first version we will arrange the calls in the following way:

§  Here MPI_STATUS_IGNORE tells that the status fields are not to be filled in.

§  This version of the code has, however, a problem: may run into a deadlock or
race condition:

•  MPI_Send() (or MPI_Ssend()): does not return until buffer is emptied so
the process will be blocked until then;

•  MPI_Recv() does not return until buffer is full: process will be blocked until
then.

		if	(rank	==	0){	
				MPI_Ssend(send_buf,	NELEMENTS,	MPI_INT,	1,	0,	MPI_COMM_WORLD);	
				MPI_Recv	(recv_buf,	NELEMENTS,	MPI_INT,	1,	0,	MPI_COMM_WORLD,	MPI_STATUS_IGNORE);	
		}	
	
		if	(rank	==	1){	
				MPI_Ssend(send_buf,	NELEMENTS,	MPI_INT,	0,	0,	MPI_COMM_WORLD);	
				MPI_Recv	(recv_buf,	NELEMENTS,	MPI_INT,	0,	0,	MPI_COMM_WORLD,	MPI_STATUS_IGNORE);	
		}	

Deadlocks: Attention!

§  A blocking send will complete when receive is done on the destination
process. In our case:

§  In practice neither MPI_Recv() is never reached since MPI_Ssend() calls
cannot complete in this way.

§  A possible remedy is to reverse the order of one of the send/receive pairs:

MPI_Ssend()	

MPI_Ssend()	

Proc #0

Proc #1
MPI_Recv()	

MPI_Recv()	

time

MPI_Ssend()	

MPI_Ssend()	

Proc #0

Proc #1
MPI_Recv()	

MPI_Recv()	

time

?

?

valentina

odd_even.c:version 2 (with MPI_Sendrecv())	

§  A second possibility is to use MPI_Sendrecv() which is a combination of
both send and receive process:

int	MPI_Sendrecv(void*	send_buf,	int	send_count,	MPI_Datatype	send_type,	int	dst,	int	send_tag,	
																	void*	recv_buf,	int	recv_count,	MPI_Datatype	recv_type,	int	src,	int	recv_tag,	
																	MPI_Comm	comm,	MPI_Status*	status);	

•  send_buf: buffer to send.
•  send_count: number of elements to send.
•  send_type: type of one send buffer element.
•  dst: The rank of the recipient MPI process.
•  send_tag: tag to assign to the send message.
•  recv_buf: buffer in which receive the message.
•  recv_count: number of elements to receive.
•  recv_type: type of one receive buffer element.
•  src: rank of the sender MPI process.
•  recv_tag: tag to require from the message.
•  comm: the communicator in which the send receive takes place.
•  status: the variable in which store the reception status returned.

odd_even.c:	version 2

§  Using MPI_Sendrecv(), we can replace the previous lines with

§  Here process #0 is sending to and receiving from the same process #1 (and
viceversa).

§ Note that these are still blocking calls.

	int	dst	=	1	-	rank;	
	MPI_Sendrecv(send_buf,	NELEMENTS,	MPI_INT,	dst,	0,	
														recv_buf,	NELEMENTS,	MPI_INT,	dst,	0,	MPI_COMM_WORLD,	
														MPI_STATUS_IGNORE);	

Asynchronous (non-blocking) Communications

§ Non-blocking operations return immediately and allow the calling program to
continue;

§  Computations can proceed while communication can take place in the
background;

§  One must of course wait for the communication to complete before you need
the new data.

§  The code becomes slightly more complex.

§  The prototype functions to be used in this case are MPI_Isend() and
MPI_Irecv():

§  MPI_Irecv() shares the same prototype.

§ Notice the new argument, MPI_Request.

int	MPI_Isend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dst,					
														int	tag,	MPI_Communicator	comm,	MPI_Request	*request)	

Asynchronous (non-blocking) Communications

§  MPI_Isend() is preparing a request but it does not actually transfer any
data.

§  The request is going to be executed when both processes are ready to
synchronize.

§  The new argument - MPI_Request - is a handle on a non-blocking operation,
used by MPI_Wait() or MPI_Test() (or similar) to know when the non-
blocking operation handled completes.

§  All non-blocking operations must have a matching wait operation (some system
resources can only be freed after the operation has completed).

§  A non-blocking operation that is immediately followed by a wait is equivalent
to a blocking operation.

§  MPI_Wait() will force the process to go in blocking mode until the request is
fulfilled.

§  MPI_Test(): checks if the request can be completed. If it can, the request is
automatically completed and the data transferred.

Non-Blocking Calls: An example

§  Let’s consider two processes, waiting and testing on only one request:

if	(rank	==	0)	{	
	
		MPI_Isend(...)	
	
		//	do	dome	work	here		
		while	(has_work)	{	
				do_work();	
	
				//	We	only	test	if	the	request	is	not	already	fulfilled	
				if	(!request_complete)	
							MPI_Test(&request,	&request_complete,	&status);	
		}	
	
		//	No	more	work,	wait	for	the	request	to	be	complete	if	it's	not	the	case	
		if	(!request_complete)	MPI_Wait(&request,	&status);	
	
}	else	{	
	
		MPI_Irecv(...);	
	
		//	Here	we	just	wait	for	the	message	to	come	
		MPI_Wait(&request,	&status);	
	
}	

odd_even.c:	version 3

§  Let’s devise a 3rd version of odd_even.c using asynchronous communication;

§  Using MPI_Isend() and MPI_Recv() we can replace the previous lines with

§ Note that the order is now irrelevant since completion is done at the
MPI_Wait() signal.

		int	dst	=	1	-	rank;	
		MPI_Isend(send_buf,	NELEMENTS,	MPI_INT,	dst,	0,	MPI_COMM_WORLD,	&req);	
		MPI_Irecv(recv_buf,	NELEMENTS,	MPI_INT,	dst,	0,	MPI_COMM_WORLD,	&req);	
	
		MPI_Wait	(&req,	MPI_STATUS_IGNORE);	

Example #2: Sending Messages in a Ring

§  In this exercise we will allow communications between more than two
processes.

§  In a ring, each process “talks” to its neighbors on the left and on the right in
a circular topology:

§ We now wish write a program that makes cyclic permutations of colors.

Proc #0
(Red)	

Proc #1
(Blue)	

Proc #2
(green)	

Proc #3
(black)	

Example #2: Shuffling Colors

§  For each processor, define a unique string defining the process color.

§  Perform n cyclic permutations by transferring the color’s name to the
process to the right:

§  Let proc #0 print its color at each iteration n. The output should look like

Proc #0
(red)	

Proc #1
(blue)	

Proc #2
(green)	

Proc #3
(black)	

Proc #0
(black)	

Proc #1
(red)	

Proc #2
(blue)	

Proc #3
(green)	

n	=	0	

n	=	1	

Proc #0
(green)	

Proc #1
(black)	

Proc #2
(red)	

Proc #3
(blue)	n	=	2	

Proc	#0,	My	color	is	black		[n=1]	
Proc	#0,	My	color	is	green		[n=2]	
Proc	#0,	My	color	is	blue			[n=3]	
Proc	#0,	My	color	is	red				[n=4]	
...	

Example #2: Shuffling Colors

§ Write three versions of the program using

1. MPI_Send() and MPI_Recv();

2. MPI_Sendrecv();

3. MPI_Isend() and MPI_Irecv();

