From bb07cd3067231716ea8262cbef098d81a1a06117 Mon Sep 17 00:00:00 2001 From: lykos98 <francy273998@gmail.com> Date: Thu, 31 Oct 2024 16:15:24 +0100 Subject: [PATCH] deleted other unnecessary files --- .gitignore | 2 + check.py | 110 ----------------------------------------------------- var.py | 6 --- 3 files changed, 2 insertions(+), 116 deletions(-) delete mode 100644 check.py delete mode 100644 var.py diff --git a/.gitignore b/.gitignore index 7ea75a7..e583d9e 100644 --- a/.gitignore +++ b/.gitignore @@ -4,3 +4,5 @@ leo_sync.sh bb **.ipynb* scalability_results +check.py +var.py diff --git a/check.py b/check.py deleted file mode 100644 index 11072fc..0000000 --- a/check.py +++ /dev/null @@ -1,110 +0,0 @@ -#!/usr/bin/env python -# coding: utf-8 - -import matplotlib.pyplot as plt -import numpy as np -from sklearn.neighbors import NearestNeighbors - -ndims = 5 -k = 500 -p = 10 - -with open("bb/top_nodes.csv","r") as f: - l = f.readlines() - -def parse_lines(l,n_dims): - ll = [line.split(",") for line in l] - level = np.array([ int(line[0]) for line in ll]) - owner = np.array([ int(line[1]) for line in ll]) - split_dim = np.array([ int(line[2]) for line in ll]) - split_val = np.array([ float(line[3]) for line in ll]) - box_lb = np.array([ [float(el) for el in line[4:(4+n_dims)]] for line in ll]) - box_ub = np.array([ [float(el) for el in line[4 + n_dims:]] for line in ll]) - return level, owner, split_dim, split_val, box_lb, box_ub - -def plot_boxes(x,d0,d1,owner, split_dim, split_val, box_lb, box_ub, ratio = 0.7): - from matplotlib.patches import Rectangle - fig, ax = plt.subplots(figsize = (12 * ratio,10 * ratio)) - ax.scatter(x[:,d0],x[:,d1], s = 0.1) - procs = np.where(owner != -1) - for p in procs[0]: - lbx = box_lb[p,d0] - ubx = box_ub[p,d0] - lby = box_lb[p,d1] - uby = box_ub[p,d1] - bw = ubx - lbx - bh = uby - lby - col = (np.random.rand(),np.random.rand(),np.random.rand(),0.5) - ax.add_patch(Rectangle((lbx,lby),bw,bh, facecolor = col, label = owner[p])) - plt.legend(loc = "lower left") - #ax.add_patch(Rectangle((lbx,lby),2,2, facecolor = (np.random.rand(),np.random.rand(),np.random.rand(),0.3))) - -def plot_planes(x,d0,d1,owner, split_dim, split_val, box_lb, box_ub, ratio=0.7): - from matplotlib.patches import Rectangle - fig, ax = plt.subplots(figsize = (12 * ratio,10 * ratio)) - ax.scatter(x[:,d0],x[:,d1], s = 0.1) - procs = np.where(owner == -1)[0] - for p in procs: - if split_dim[p] == d0: - line_bounds = [box_lb[p,d1],box_ub[p,d1]] - line_coord = split_val[p] - #print("vline",split_dim[p],split_dim[p], line_bounds, line_coord) - plt.vlines(line_coord, line_bounds[0], line_bounds[1], color = "y") - elif split_dim[p] == d1: - line_bounds = [box_lb[p,d0],box_ub[p,d0]] - line_coord = split_val[p] - #print("hline",split_dim[p],split_dim[p], line_bounds, line_coord) - plt.hlines(line_coord, line_bounds[0], box_ub[p,d0], color = "y") - plt.show() - - -if __name__ == "__main__": - level, owner, split_dim, split_val, box_lb, box_ub = parse_lines(l,ndims) - - #x = np.fromfile("../../robavaria/50_blobs_more_var.npy", np.float32) - print("Loading data file") - x = np.fromfile("./bb/ordered_data.npy", np.float64) - x = x.reshape((x.shape[0]//ndims,ndims)) - - #plot_boxes(x,0,1,owner,split_dim,split_val,box_lb,box_ub) - #plot_planes(x,0,1,owner,split_dim,split_val,box_lb,box_ub) - - print("Loading ngbh results") - ngbh = [] - for pp in range(p): - ngbh.append(np.fromfile(f"./bb/rank_{pp}.ngbh", dtype = [("value","f8"),("array_idx","u8")])) - ngbh = np.concatenate(ngbh) - - print("Searching for neighbors") - nn = NearestNeighbors(n_jobs=-1,n_neighbors=k) - - nn.fit(x) - dist, idx = nn.kneighbors(x) - - idx_c = ngbh["array_idx"] - idx_c.shape - dist_c = ngbh["value"] - - - idx_c = idx_c.reshape((len(idx_c)//k,k)) - dist_c = dist_c.reshape((len(dist_c)//k,k)) - - same_dist = 0 - sd_el = [] - abs_errors = 0 - - print("Check") - for i in range(len(idx_c)): - r1 = idx[i] - r2 = idx_c[i] - w = np.where(r1 != r2) - if len(w[0]) > 0: - d1 = dist[i,w[0][0]] - d2 = dist[i,w[0][1]] - #print(i, w[0]) - if not np.isclose(d1,d2): - abs_errors += 1 - same_dist += 1 - #print(" Found error in ", w[0], d1, d2) - print(f"Found {abs_errors} errors") - diff --git a/var.py b/var.py deleted file mode 100644 index 708cc54..0000000 --- a/var.py +++ /dev/null @@ -1,6 +0,0 @@ -import numpy as np - -d = np.fromfile("../norm_data/std_LR_091_0000", dtype=np.float32) -print(d.shape) -d = d.reshape((d.shape[0]//5,5)) -print(np.cov(d.T)) -- GitLab