From 89bedcae452c97b432b9e72f2420a688bc450cbe Mon Sep 17 00:00:00 2001
From: "Michele.Maris" <michele.maris@inaf.it>
Date: Fri, 9 May 2025 23:49:42 +0200
Subject: [PATCH] u

---
 .../numba_cubic_spline-checkpoint.ipynb       | 208 ++++++++++++
 notebooks/numba_cubic_spline.ipynb            | 208 ++++++++++++
 src/yapsut/numba_cubic_spline.py              | 307 ++++++++++++++++++
 3 files changed, 723 insertions(+)
 create mode 100644 notebooks/.ipynb_checkpoints/numba_cubic_spline-checkpoint.ipynb
 create mode 100644 notebooks/numba_cubic_spline.ipynb
 create mode 100644 src/yapsut/numba_cubic_spline.py

diff --git a/notebooks/.ipynb_checkpoints/numba_cubic_spline-checkpoint.ipynb b/notebooks/.ipynb_checkpoints/numba_cubic_spline-checkpoint.ipynb
new file mode 100644
index 0000000..21f513e
--- /dev/null
+++ b/notebooks/.ipynb_checkpoints/numba_cubic_spline-checkpoint.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "a79b0eaa",
+   "metadata": {},
+   "source": [
+    "# Numba cubic spline \n",
+    "\n",
+    "M.Maris - 2025 May 9 - \n",
+    "\n",
+    "Better to use NumbaNaturalCubicSpline\n",
+    "\n",
+    "Derivatives have some problems "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "73b19d27",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import time\n",
+    "\n",
+    "from matplotlib import pyplot as plt\n",
+    "\n",
+    "from yapsut.numba_cubic_spline import NumbaCubicSpline, NumbaNaturalCubicSpline\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "f843337d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "xx=np.linspace(0,2*np.pi,100)\n",
+    "yy=np.sin(xx)\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d00fd513",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "31d22314",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x7faa9b6b10a0>]"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVEElEQVR4nOzdeVxU9f7H8dfMsMsuIKAoroALopLklkuWmqWWlWuWmS2mVrbp/bXcm5VW93a7LmSZmpZ7e2qW+66IirgAioqisqrs+8z5/TGAkivIcGbg83w85lHOmeU9zJkzn/me76JRFEVBCCGEEKIW0aodQAghhBCiukmBI4QQQohaRwocIYQQQtQ6UuAIIYQQotaRAkcIIYQQtY4UOEIIIYSodaTAEUIIIUStIwWOEEIIIWodK7UDqMFgMHDx4kWcnJzQaDRqxxFCCCHEHVAUhezsbHx9fdFqb91GUycLnIsXL+Ln56d2DCGEEEJUQWJiIo0aNbrlbepkgePk5AQY/0DOzs4qpxFCCCHEncjKysLPz6/8e/xW6mSBU3ZaytnZWQocIYQQwsLcSfcS6WQshBBCiFpHChwhhBBC1DpS4AghhBCi1pECRwghhBC1jhQ4QgghhKh1pMARQgghRK0jBY4QQgghah0pcIQQQghR60iBI4QQQohaRwocFaXNnkNaePiNt4WHkzZ7Tg0nEkIIUZfVpu8lKXDUpNOSPmv2dTtTWng46bNmg07eHiGEEDWoFn0v1cm1qMyF54QJAMadpvTfZTuRx+RJ5duFEEKImlCbvpdMWopt376dRx55BF9fXzQaDb/88stt77N161Y6duyIra0tLVq04Ntvv73uNnPnzsXf3x87OzvCwsKIiIio/vA1xHPCBDwmTyJ91mxi2wVb5E5Uq2Qnw5YZxv8KIUQdVFu+l0xa4OTm5tK+fXvmzp17R7c/c+YMAwcOpHfv3kRFRfHqq6/y3HPP8eeff5bfZuXKlUyZMoX333+fgwcP0r59e/r160dqaqqpXobJeU6YgMbaGqW4GI21tcXtRLVKdjJsmykFjhCiTqsN30smPUU1YMAABgwYcMe3nzdvHk2bNuU///kPAEFBQezcuZP//ve/9OvXD4DPP/+c8ePHM3bs2PL7rF27loULFzJ16tTqfxGVcC7rHFFpUbjYuOBi64KrrSuutq442Tih0+puer+08HDytfXI9/DBPjuJtPBwi9yZLJGiKKRmF5KeU0hBsR5dcgYhwO5T6VgXXcbb2Y4GznbYWFnOeWchhLhblfleUhSF7OJsMgsyySzKJKMwg4zCDPyc/Gjv2b6Gk19lVn1w9uzZQ9++fStc169fP1599VUAioqKOHDgANOmTSvfrtVq6du3L3v27Lnp4xYWFlJYWFj+76ysrOoNXmp/8n7+ueef111vp7Ojdf3WtPdqT3tP48XD3gMw7kTRqyKJ7fIhoAEUAlctJRgpcu5KdjJELoLQseDkXX51alYBO+PTOX4xi5jkLGKSstHlpuClyQCgrTaBEGv4df16jhpiAUjDFcXRm2Ye9ejSvD5dm3sQ4udasei5yfMJIYSlud33UnZRNkfSj3A47TCH0w5zJO0IWUXXf68OCxgmBU6Z5ORkGjRoUOG6Bg0akJWVRX5+PleuXEGv19/wNrGxsTd93BkzZvCvf/3LJJmvVd++Pt18u3Gl8AqZhcYqNrc4lwJ9AQdTD3Iw9WD5bYPcg3j+gBv1f46+ZicC0BAXOAr3r94BkCKnqspONQUMIEVx5Y8jSaw7ksz+s5dRlIo3fc1qE69Y/VThuk+s55f//xclj/FF9uOkZRey78xlvth4EntrHaH+bjwS7MvD7X1wuOb5pMARQliqtPBwzn/13U2/l36N/5VZ7ZNQUK67r72VffnZCxdbF/yd/Wsy+nXMqsAxlWnTpjFlypTyf2dlZeHn51ftz9PLrxe9/HpVuK5YX0xidiKH0w4TnR7N4bTDxF+JJ+ZyDLvP67EKC8ClfCcyUtBgM+oF0OdUe8a6QkFBA0z9KZqVFy5UKGraN3KhQ2M3gnycCPJxppVDCBS8YtyYdBh+nwyPzAKf9hgUhae09emjd+bIhUx2n7rE3lOXuJRbxI6T6ew4mc70tcd5OSCHF9V4oUIIUZ30BuP3z+nrv5fWdfZCn3USBR1+Tn4EewYT7BFMe6/2NHdpjp2VnUqhb8ysChxvb29SUlIqXJeSkoKzszP29vbodDp0Ot0Nb+PtffNfzba2ttja2pok8+1Y66xp5tqMZq7NeLTlowBkFGSwPmE9v3v8zqkLZxl10ID2mv7eGi00GT8cRzfz2lnMXnYy+qwkdsWnc3DfNl4FlKRoWuNPkI8THdoE0is0mIau9n+7oyvQsOJVPu3BNwQtUL/0EtzIlVFhTVAUhRMpOew5fJSdh46RlFnAmaMJYA3zVvxE9/uyaOvrbGzJkdYcIYQF8Zw0EfsrBfCP3VzbSGPAwKE+9jzQ+hXWN3+Yho4Nb/4gZsKsCpwuXbqwbt26Ctdt2LCBLl26AGBjY0OnTp3YtGkTQ4YMAcBgMLBp0yYmTpxY03GrzNXOleGBwxkeOJwzmWdY47gTw3YftGgxYCC29Rb2Zhm43/V+NBrN7R9QGIuOtbMIiJ3LfcB9pdeXn2q6AuimgmvYXT+XRqMhwNuJgJitPFMwE66pnV/M+h+s+R8Al0On4P7w+3f9fEIIUVOiUqOYEzWHzKYa7js9DC1aFI1Cq8FOTOy33KK+k0xa4OTk5BAfH1/+7zNnzhAVFYW7uzuNGzdm2rRpXLhwgSVLlgDw4osvMmfOHN566y2effZZNm/ezKpVq1i7dm35Y0yZMoWnn36a0NBQOnfuzBdffEFubm75qCpL09SlKZNGNiXl/sv8dOB3fkpZTqr2Atu3/kawZzD/6vIvWri1UDumWUtIz+XdX48Se7I1XpqPcLKz4rnm2fSN/7D8VBNwZ60pTt7Qc+qd3TZ0rLHPDZSf2vq50dssOuOC3qBwabcb9xcf4bUHWuHhqE4LohBC3In0/HRm7JvBX2f/AsDKx4qQTi0Z5PE4TRv7WuQZBY2i/L3LZfXZunUrvXv3vu76p59+mm+//ZZnnnmGhIQEtm7dWuE+r732GsePH6dRo0a8++67PPPMMxXuP2fOHD777DOSk5MJCQlh1qxZhIXd+S/zrKwsXFxcyMzMxNnZuaovzySyirJYcmwJ3x3/jrySPKy11rwQ/ALPtnsWa6212vHMSmGJnq+2nWbOlniKSgzYWGl5uVcLnuvRlHqXjsLXPeH5beAbYvowF6PKny/eqjmfrI9jw3HjqVQ3B2tmPNaO/m19TJ9DCCEqQVEU1pxewyf7PyGzMBOdRsfgFoN5IfgFfB191Y53ncp8f5u0wDFX5lzglEnOTWb63ulsP78dgED3QD7o+gFB9YNUTmYejl7I5JUVhziVlgtAj5YeTB/cFn+PesYbXFNw1HSBU/Z8EWcu8/5vx4hJMg6ffKxjQ/45qA3OdlKoCiHU9/fvmQC3AKZ3m27W3zNS4NyGJRQ4YKys155Zy8yImeWV9WudXmNM6zEWdR60OimKwvKIRP75+zGKSgx4ONry3iOteSTYp+LfpKbnpbnJ8xWVGPhi4wnmbTuFQQFfFzv+/UR7urbwMH0mIYS4iS3ntvB/O/+P7OJsrLXWvNj+Rca2HWv2ZwqkwLkNSylwyqTnp/Pxvo/ZcHYDAAP8B/DPrv/EwdpB5WQ14JrCIdfGg3d+OcrPhy4AcH+gF/95sj2uDjYqh7y9A2cv89rKw5y7nAfAm/0CmNCrubEok0kChRA1xKAY+PLwl8w7PA+AtvXbMr3bdIvp6ykFzm1YWoEDpS0Xscv5bP9nPLq9EDeH+gz5cBluek8yUvNx9bLH0c3OuMS93oDnJMsZVXZLpad+Ep/4g7F/FhOfmoNOq+GtfgGM79EMrdZyWrJyC0uYvuY4K/YnAjA4xJdPhgZjl3akZk+nCSFqvbTZc0CnxXPCBHKuFJCRmo/OVc9HR/+Jx4otaBUFq/GjeTP0Tax15t1qc63KfH+b1TBxcXMajYaRQSMJcA9g454X6PtXOiuKPsRBMwwU0GigU8MknL83rvpa27y++jDxBY1p4GzL7BEd6dzUXe1IlVbP1oqZQ4Np29CFf/52jF+jLpJwKY9FD1pjea9GCGHWdFrSZ83m9GUXDlzwQVFAwUAjQz6DdxhIH/UAPcL+oXZKk5ICx8J0atCJRv9ey4//eB6HgifKr1cUiEz04uEXX8NzwvMqJqwG2cnlq3lHR24nGGhafAr/hvWY9lAQbh5F6ua7S6PvbUJAvVz+89N2ss+fYd6K8/wDjEPNy8gkgUKIu+A5YQJ5RVZsjmlQvuKCBi1OmuHkPdOcHlNrd3EDcorKYk5R/V1CTCpr/3f0uuuHvNaBhgFuKiSqRltmGNd1upmeU6H3tJtvtwR14TUKIVR1Pu4Kv/730HXXW/L3hJyiqgM8vJ3RaKi4cKRGwdnT8iZj+jul0zMsuRzEqsjztNUm8In1fAwPz0LrW4kJ+8xd6SSBOUUlLPvld57P+IJ3Dc8zdOBAQvxca8drFEKo6nDhfowLAVVcCsjF6+/L1dRO2tvfRJgjRzc7OjVMAkVvvELRk61fRnj8LAyKQd1wd0FRFP619TLv77fmmNKUjp17AhiLG98Q46U2fPk7eYNvCI7+oTz92GAADhY34cnf89mS5Vs7XqMQQjU/n/yZf0S9Sa5heYXviU6+SRY5K3FVSIFjodLCw3H+/kMeDjrDkNc60MxrLYO37yZ//hI+3vcxlnjmUVEUZv4Ry7e7EwCY8Vg7ht1T/au+mxtbK+PH8N5m7hSVGHj+u0jWH01WOZUQwlKtPrGa93a/x6M7Shi8fTcDg04z5LUOPBx0BufvPzSOtq0D5BSVBUoLDyd9lnG0VFmH4obTv2CHzWSGLd3ASpYzy8aJVzq+onLSyvnvxpN8tf00AB892pYRnRtDts2drw1lqUrXv5raoRcp65JZE53Ey8sOMndkR/q3rcWvWwhR7f448wfT90xn6E4Dw3YY8Jg0Cc+XXzBuDHieNJsS0mfNBowdkWszKXAskd5QWtxU3Dl7vDuLrcrLaM9t4Zsj3+Bo7ci4duNUClk5c7fEM2vTSQDee7g1o8KaGDc4edf+zralr9Ea+N9wH2x0Wn46dIHJKw6x5NnO3NusvtoJhRAWYPv57fxjxz9QUGjn3gaPSb3wfLni90T594becrsy3CkZRWWho6huZdHRRXx+4HMA3r33XZ4MeFLlRLf2zY7TfLg2BoCpAwJ5sWdzlROpq0RvYMLSg/x1PAUnWytWvHAvbXxd1I4lhDBj+5P389LGlyjUF/JQ04eY0WMGWk3t64VSme/v2vfqBWPbjmV8u/EAfLj3Q9aeXqtyoptbE32xvLh5rW+rOl/cAFjptMwa0YHOTd3JLizh6YX7OXcpT+1YQggzdTT9KBM3TaRQX0gvv1582P3DWlncVJb8BWqpSR0mMTxgOAoK7+x8h31J+9SOdJ0DZ68wZZVxcrux3fyZfL9lrIVSE+ysdcwfE0qgtxPpOYU8tXAfadmFascSQpiZ89nnmbBxAnkleXT27sy/e/7b7BfMrClS4NRSGo2GaWHTGNB0ACVKCVO2TuFs1lm1Y5U7dymP8UsiKSox0DeoAe8MbF1nV0i/GRd7a5Y82xk/d3vOXspj7LcR5Bfp1Y4lhDATOUU5TNo8iSuFVwhyD2JWn1nY6mzVjmU2pMCpxbQaLdO7TSfYI5isoiwmbppIZmGm2rHIzCvmmW8juJxbRNuGzswaEYLOghbNrEleznYseTaM+vVsOHohizd/OGyRUwAIIaqX3qDnre1vEZ8Rj6e9J7P7zKaedT21Y5kVKXBqOVudLf/r8z+863mTkJXA69tep9hQrFqeohIDL3wfyem0XHxd7Fj49D042Mhgvltp6lGPL0d3wlqnYU10EuFbT6kdSQihsv8c+A87LuzATmfH7D6zaVCvgdqRzI4UOHWAh70Hc/rMYcQuLY1W7+GTiE+uawVICw8nbfYc04XIToYtM/jPT9vYe/oyjrZWLBx7D17OdWNGzbvVuak7/xrUFoB//xXHxuMp5X/TsoVJhRC1T9rsOddNzPfDiR/47vh3DN1pYPaZbrTxaKNSOvMmBU4dEeAeQF//Bxm2w0DJguUsi1zN+bgr5FwpKJ84EJ0Jd4fsZNg2k52HjqHRwOyRHQj0rn1D9E1pZFhjRt/bGEWBV1dGce7saeOCnVLgCFF76bSkz5pNWng4OVcK2LRnL//dNqd8Ir/m9VupndBsybmBOqTzPz7jz8Ir9NhmIOYbd37VHAIUAmMjCb7BxIHV6VR6DmUDwF/r24reAV4me67a7P1H2nAyJYd9Zy4zfc1x5qsdSAhhUmXH5ehVkcRGBwAaRijvEHRyGR6TQmv9bMR3Q1pw6piur8wmNnAkmvI5EjTEBY7CfsSz1f9k2clwMYrs05H8sGYdAI/7pDMxMAcuRknLQxVY56XyVV8rejtfxD07FgAl6bDx7yl/UyFqJfsRzxIbOAowDsbQaLTG4/ZIExy3axFpwaljMtMK+Htdq6AhMzW/+leYjVwE22biBLxdetXYy/+F+f81/qPn1Nq/DEN1i1yE67aZLAIonepC8/vkq9vlbypErZORmk9ZcVPGZMftWkQKnDrG1cseUKj4YTHg4mVf/U8WOpaVWW1ZsvcsIVZn+Uj3NTwyC3zaG7fX5gU0TSV0LAQMAGDPrs10OfYv/lEynmeGDqZVAyf5mwpRC500HENRDNe0vIMGxTTH7VpETlHVMfnLFxIYuxQNxlFUiqInMHYZp+d/VO3PFZFuw7S9Wo4pTenZs6/xSp/24BtivMiXceU5eZf//e7t1huAw3p/xm0oJsu9jfxNhahlknOT2TfrFYLilgHGBTI1KATELiV/+UJ1w5k5acGpQ8pGSwVPnkTYiG5kpObxZcL/SP9hH8MWGki0c8Nv8pRqea7M/GJeWxmFQYGhHRvxYGsFdlbLQ4tSmtJWuAbOthy7nM+0H48wZ2QHmRFaiFqixFDCr++MZvCWPDY/eIoR73Um/5IeFy978pfHGUe/gnQ0vgkpcOoSvQGPa0ZLObrZ8X/N3mZ4/iHgFC3ObmaU8lq1fEG+9+tRLmTk09jdgX8NbgNF6cb+IdLCUH2cvKHnVKb43sf2xadYeySJrhH1GRXWRO1kQohqsODIAlKyL/JzLzue+vB73J2dwcO4zbGsqNEb1Ato5jRKHZz3vTLLrdcFMZdiGLluJCWGEj7s9iGDWwy+q8f75dAFXl0ZhU6rYfWLXejY2K2akoqb+WbHaT5cG4ONlZZ1k7vTwstJ7UhCiLtwLP0Yo9eNpkQp4ePuH/NI80fUjmQWKvP9LX1wBEH1g3g55GUAZkTM4ELOhSo/VuLlPN795SgAk/u0lOKmhozr3pSerTwpKjEwZdVhiuVXnRAWK78kn2k7p1GilPBgkwd5uNnDakeySFLgCADGthlLiGcIucW5/GPHP9AbKr9qdYnewGsro8guLKFTEzde7t389ncS1UKj0fDp48G42FsTfT6T8C2yXpUQluqLA19wJvMMnvaevHvvu9KvroqkwBEA6LQ6Pu7xMQ5WDhxMPciS40sq/RhfbT9N5NkrONpa8d8nQ7Ay5dIP4joNnO34YLBxTZrZm09y9IL6K8cLISpn94XdLItdBsD0btNxtXNVN5AFq5FvoLlz5+Lv74+dnR1hYWFERETc9La9evVCo9Fcdxk4cGD5bZ555pnrtvfv378mXkqt5ufkx9TOUwGYdWgWcZfj7vi+J1Ky+d/GkwD8c1AbGtd3MElGcWuD2vvyUDtvSgwKU1ZFUVBc+ZY4IYQ6MgszeXfXuwCMCBxBt4bdVE5k2Uxe4KxcuZIpU6bw/vvvc/DgQdq3b0+/fv1ITU294e1/+uknkpKSyi9Hjx5Fp9PxxBNPVLhd//79K9xu+fLlpn4pdcKQFkPo7debEkMJ/9j5D4oNxbe9j96g8OYP0RTpDdwf6MXQjg1rIKm4EY1Gw4dD2uHhaMOJlBz+u+GE2pGEEHdoRsQMUvNT8Xf257VOr6kdx+KZvMD5/PPPGT9+PGPHjqV169bMmzcPBwcHFi688QRF7u7ueHt7l182bNiAg4PDdQWOra1thdu5uUln1uqg0Wh4v8v7uNq6cuLKCRYdXXTb+yzYeZrDiRk42Vrx0aPt5Hyxytzr2TDjsWAAvt5xmv0Jl1VOJIS4ne3nt7P29Fq0Gi0fd/8YeyuZpfhumbTAKSoq4sCBA/Tt2/fqE2q19O3blz179tzRYyxYsIDhw4dTr169Ctdv3boVLy8vAgICeOmll7h06dJNH6OwsJCsrKwKF3Fz9e3r89Y9bwEw7/A8TmeevultT6fl8J+/jK0E7zwchLeLrItiDh5o3YDHOzVCUeDtH6PlVJUQZiy3OJfpe6cDMDpoNO0826mcqHYwaYGTnp6OXq+nQYMGFa5v0KABycm3X/U4IiKCo0eP8txzz1W4vn///ixZsoRNmzbxySefsG3bNgYMGIBef+OD+IwZM3BxcSm/+Pn5Vf1F1REPN3uY7g27U2wo5l+7/4VBuX7YscGg8PaP0RSWGOjewoMnQ+Xvak7efbg1nk62nE7LJXyrjKoSwlx9ceALknOTaejYsHzKDnH3zHqYy4IFC2jXrh2dO3eucP3w4cMZNGgQ7dq1Y8iQIaxZs4b9+/ezdevWGz7OtGnTyMzMLL8kJibWQHrLptFoePfed7G3sudg6kFWxa267jbf7T3L/oQrONjomPGYnJoyNy721vxrkHFU1Zdb4zmRkq1yIiHE3x1KPcTKuJUAvN/lfRysZYBGdTFpgePh4YFOpyMlJaXC9SkpKXh733rK/tzcXFasWMG4ceNu+zzNmjXDw8OD+Pj4G263tbXF2dm5wkXcnq+jL690fAWA/x74L8m5V1vdzl/J45P1sQBMHRCIn7t8KM3RgLbe9A3yolivMO2nIxgMdW7iciHMVqG+kPd3v4+CwpAWQ+ji20XtSLWKSQscGxsbOnXqxKZNm8qvMxgMbNq0iS5dbv1Grl69msLCQkaPHn3b5zl//jyXLl3Cx8fnrjOLioYHDKe9Z3vySvKYvnc6ZSt7/PO34+QV6bnH343RsvaR2dJoNHwwuC31bHQcOHuFZRHn1I4khCj1dfTXnMk8Q327+rwR+obacWodk5+imjJlCvPnz2fx4sXExMTw0ksvkZuby9ixYwEYM2YM06ZNu+5+CxYsYMiQIdSvX7/C9Tk5Obz55pvs3buXhIQENm3axODBg2nRogX9+vUz9cupc3RaHe8ea8UTu4y9/P+MXcWpVf/H4ZhYrLQapmdFcGnuXLVjilvwdbXnzX4BAHzyRyxpF8/ClhmQfft+cEKI6pE2ew5p4eHl/46/Es/CI8bRxDPjO1H09XdqRau1TL6a+LBhw0hLS+O9994jOTmZkJAQ1q9fX97x+Ny5c2i1FeusuLg4du7cyV9//XXd4+l0OqKjo1m8eDEZGRn4+vry4IMPMn36dGxtbU39cuok93oePLG9BIOiZbayhP+dyKSx4se0/FMoP62AyZPUjihu46ku/vwcdZHDiRnMX7ebf5yfCQEDZHV3IWqKTkv6rNkA2A0fy6y132BbUI9XTrjgsmadHEdNQFYTl/44dyRpziyO/xBFTMBINBotKAqBcUsJfjIUzwkT1I4n7kBMUhaPzN5JgHKatbb/B89vA98QtWMJUWekhYcTvSqS2MBRgAZFMRAUt0yOo5VQme9vk7fgiFogOxmnvt2JPdoaTdlZTY2GuMBRhPVxM57qkJYA85adTJCSzD86FBIXlQBA8flDWJdtd/KW91AIE7Mf8Syx0QGAccSpRqM1HkdHyJIMpiAFjri9yEVk/LUGmF7hagUNmYsn4vjgI9D7+n5UwoxELoJtM3kWKKtqrNe9enV7z6nyHgphYhmp+ZQVN2UUNGSm5uPoJpOkVjcpcMTthY7laE4nlDUG4+mpcgZcnp4DDX1ViybuUOhYY58b4FDENjpEvcc7hueZPPpxvBxtpfVGiBpwySYJRal4HNWg4OIlyzKYgllP9CfMQ7Z1ffZ/9xdBccsA44zGiqInMHYZmRu2y5ejJXDyNva38Q0hpPN9ABwqbsI/91sZr5f3UAiTUhSFvbMmVziOalAIiF1K/vIbr80o7o604Ijb2jDtYx6PXsvvnR5h/CQ3Mr+fxButvUk3xOE7dw82OhvpIGdBNKVN5DqthnVHktl5Mp3uLT1UTiVE7bbzw1e4748L/NgzjZHv/gvbHEdcvOzJXx5XPrpKjqPVSwoccUtn0nOJSrjM/sB+9H3nddwaKbg9+AhT/NrxgmEaGo2GEbmX8FQ7qLhzTt7Qcyr3XW5L9P4c3v/tKH+8ch82VtKgK4Qp5Bbnsu/CbnJ6aPGbOJlmDa+u2+dYVtTor1/vT9wdKXDELX20NoaNAQ9yXytP+gR6gUYDvafRFeh17k9+6LaVlIZJhN/2kYTZcPKG3tMYn1/M8uNbOZWWy7e7z/D8fc3VTiZErbTgyAIWdymksZM//9d6zHXbpeXGNOQnm7ipHSfT2BiTgk6r4b2Hg65bTPON0Dew0lqx48IOdl7YqVJKUVUu9ta8PSAQgNmb4knPKVQ5kRC1z4WcCyw+thiAKaFTsNZZ3+YeorpIgSNuqERv4IPfjwPw1L1NaOHldN1tmjg3YUTgCAA+2/8ZJYaSGs0o7t7jHRvRtqEz2YUlfLHxhNpxhKh1vjjwBUWGIjp7d6aPXx+149QpUuCIG1q67xwnU3Nwc7Dmtb6tbnq7F4JfwNXWldOZp1l9YnUNJhTVQavV8M7A1gAsj0jkZEq2yomEqD0OpR5ifcJ6NGh46563rmsFF6YlBY64TkZeEf8t/TU/5cEAXBxu3qTqYuvCyyEvAxAeFU5mYWaNZBTV595m9XmwdQP0BoWP18WoHUeIWsGgGPgk4hMAHmv5GAHuASonqnukwBHXmb05noy8YgIaODHiHr/b3v7xVo/T3KU5GYUZfBX9VQ0kFNVt2kNBWGk1bIlLY/uJNLXjCGHx1p5ey7FLx6hnXY+JHSaqHadOkgJHVJB4OY8lexIA+MfAIKx0t99FrLRWvHnPmwAsj1lOQmaCCRMKU2jqUY8xXfwB+HhdDHpDnVuDV4hqk1ecxxcHvgBgfLvxeNjLPFNqkAJHVPDZn3EU6xW6t/DgvkpM/tatYTd6NOxBiVLC/w7+z4QJhalMvr8FLvbWxCZnszoyUe04Qlis745/R2p+Kg0dGzK69Wi149RZUuCIctHnM/jt8EUApg4IrHSHuNc6vYZWo2XjuY0cTjtsiojChFwdbJh8f0sA/v3XCXIKZVScEJV1ueAyi44tAmByh8nY6mxVTlR3SYEjAOM6KWUdTB/t0JC2DV0q/Rgt3VoyqPkgAD6P/BxFkdMcluape5vgX9+B9JxC5m8/rXYcISzO/Oj55BbnEuQeRP+m/dWOU6dJgSMA2BqXxt7Tl7HRaXn9wZsPC7+dl0NexlZny8HUg2w/v70aE4qaYGOl5c1+xsn/vtlxWib/E6ISErMTWRG3Arjaoi3UI399gd6gMOMPY+vNM938aeTmUOXH8q7nzcigkQB8cfAL9AZ9tWQUNeehdt4EN3Iht0jPnM3xascRwmLMOTSHEkMJXXy60MW3i9px6jwpcAQ/HjjPiZQcXOyteblXi7t+vHFtx+Fs40x8Rjy/n/69GhKKmqTRaHi7v7EVZ+m+syRezlM5kRDmL+ZSDOvOrAOMrTdCfVLg1HEFxXo+32Cc1G9Snxa3nNTvTrnYujC+3XjA+IumoKTgrh9T1KxuLTzo0dKDYr1Svn8IIW7ui4NfAPBQ04cIqh+kbhgBSIFT532/9yzJWQX4utgx+t4m1fa4I4JG4F3Pm5S8FJbHLq+2xxU1563Svji/RF0gJilL5TRCmK89F/ew++JurLRWTOowSe04opQUOHVYTmEJ4VtPAfBK35bYWeuq7bFtdbZMDDHO3jn/yHyyiuQL0tK0a+TCwGAfFMU4P5IQ4nqKopS33gwPGE4jp0bqBhLlpMCpq7KTObZ0KrrcFJp61GNox+r/UN677izjI13JLspmybElFbalhYeTNntOtT+nqF5vPBiAlVbD5thUDh2LhS0zIDtZ7VhCqCZt9hzSwsPL/7353GaOXzqOg5UDI/ZayXHNjEiBU0dlpyUSdm4+XpoMXnug1R0tyVBZWisrHtiQztCdBn489CuxR86Rc6WAtPBw0mfNBhM8p6heTT3qMax0PbKlmyJg20wpcETdptOSPms2aeHhZF7KY+mmn6lX6MK7sYHkhn8jxzUzYqV2AKGOHw5eYCzQtL4DD7fzMclzeE6YAAr0WB2Jh3YkmyLigZMExkYSPHmScbswe6/c35IfDpw39sORSVlFHVd23IpeFUlsdACdeIyODME+dhkeclwzK1Lg1CXZyZCdzOXcIk5F7wItTAjMRZtcuqyCk7fxUo3sRz5L7JEANJQt+6AhLnAUYSO6VevzCBPJTsYrJ5m3ggs4cTgBACXpcPm7aYp9RghzZz/iWWKjA6D0k6BBK8c1MyQFTl0SuQi2zcQd+LC0FbV15DsQWbq951ToPa1anzIjNR+ouKaVgobM1Hwc3eyq9bmECZTuM+MASmcQ0Pw++ep2E+wzQpg7Oa5ZBilw6pLQsST79OaF7w4QyBk+sZ4Pj8wCn/bG7Sb4Je7qZQ8oVDwYKLh42Vf7cwkTCB0LAQMA+GPjnww4/TFfOExi8qihaDUaab0RdZJDfSsUDGiu6caqkeOa2ZHeUHWJkzdfHHPgsN4fq4alRY1Pe/ANMV5M8GWVv3whgbFL0WBceFNR9ATGLiV/+cJqfy5hAk7e5ftHt+59ANhwxZs/L3ubbJ8RwtxFzX2LoNhlKBgAY3ETIMc1syMtOHVI4uU8fjhwHoBRYU3AxKsolI2WCp48ibAR3Thw4ghvH36NAUoGvrP2AEiHPAvibHd1luv/bjzBg2280Wk1t7iHELVP0pxZ+CzfysoeWlqNG0BP5764eNmTvzzOODoUOa6ZCylw6pA5m+MpMSj0aOlB61ZNjP0nTPkLXG+oMKqgZ9g9dMwO5gfbHbRyC6Kv3mC65xbVz8mbgm5vkr/Lg9MpOayJvsjgkIZqpxKiRh1LPcLOHlr29GvE/3UcgrXOWPg7lhU1clwzGzVyimru3Ln4+/tjZ2dHWFgYERERN73tt99+i0ajqXCxs6vYaUtRFN577z18fHywt7enb9++nDx50tQvw6Kdu5THjweNrTev9m1lLGx6TzNpgeM5aeJ1v2ReDnkZgJltTpH39CMme25hAk7e2D3wDo/d1wmA/208SYkczEUdUlBSwEdt4/mxu5YX2r9QXtyU8ZwwAc9JE1VKJ/7O5AXOypUrmTJlCu+//z4HDx6kffv29OvXj9TU1Jvex9nZmaSkpPLL2bNnK2z/9NNPmTVrFvPmzWPfvn3Uq1ePfv36UVAgizrezJwtJykxKNzXypNOTdxUy9HGow33NboPg2Lg6+ivVcshqu6Zbk1xc7DmdHouv0ZdVDuOEDXmhxM/kJ6fTkPHhjzSXH6gmTuTFziff/4548ePZ+zYsbRu3Zp58+bh4ODAwoU374yl0Wjw9vYuvzRo0KB8m6IofPHFF7zzzjsMHjyY4OBglixZwsWLF/nll19M/XIskrH15gJgnLRNbS+1fwmAtafXci7rnMppRGU52lrxQs/mAMzZEo/eoKicSAjTKygpYMHRBQA81+45rLXWt7mHUJtJC5yioiIOHDhA3759rz6hVkvfvn3Zs2fPTe+Xk5NDkyZN8PPzY/DgwRw7dqx825kzZ0hOTq7wmC4uLoSFhd30MQsLC8nKyqpwqUvmbDmJ3gxab8q09WhL94bd0St6acWxUE/d2wQ3B2vOpOeyJlpacUTt9+PJH0nPT8enng+Dmw9WO464AyYtcNLT09Hr9RVaYAAaNGhAcvKN17MJCAhg4cKF/Prrr3z//fcYDAa6du3K+fPG/iNl96vMY86YMQMXF5fyi5+f392+NItx9lJueevNq33Vb70pU9aKs+b0GhKzElVOIyqrnq0Vz/VoBsDszdKKI2q3Qn0hC48Yzzo81+656/reCPNkdvPgdOnShTFjxhASEkLPnj356aef8PT05KuvvqryY06bNo3MzMzyS2Ji3flCnVP65dOzlScdG6vfelMm2DOYbg27oVf0zD8yX+04ogrGdGmCs50V8ak5/HE0Se04QpjMjyd+JDU/Fe963jza4lG144g7ZNICx8PDA51OR0pKSoXrU1JS8Pa+s9E71tbWdOjQgfj4eIDy+1XmMW1tbXF2dq5wqQsSL+fx06HSvjdm1HpTpqwV5/dTv5OYXXeKztrCyc6acd1LW3E2xWOQVhxRCxXqC6/2vWkrrTeWxKQFjo2NDZ06dWLTpk3l1xkMBjZt2kSXLl3u6DH0ej1HjhzBx8e44nXTpk3x9vau8JhZWVns27fvjh+zrvhy2yn0pfPemFPrTZn2nu3p6tuVEqWEb458o3YcUQXPdPPHydaKuJRs/jp+41PEQliyn07+RGpeKg0cGvBoS2m9sSQmP0U1ZcoU5s+fz+LFi4mJieGll14iNzeXsWPHAjBmzBimTbu6WN8HH3zAX3/9xenTpzl48CCjR4/m7NmzPPfcc4BxhNWrr77Khx9+yG+//caRI0cYM2YMvr6+DBkyxNQvx2IkZebzQ6Sx39KkPubXelOmrBXnt/jfuJgjnVUtjYu9NWO7+QPwv03xKIq04ojao1hfzIIjV0dO2ehsVE4kKsPkMxkPGzaMtLQ03nvvPZKTkwkJCWH9+vXlnYTPnTuHVnu1zrpy5Qrjx48nOTkZNzc3OnXqxO7du2ndunX5bd566y1yc3N5/vnnycjIoHv37qxfv/66CQHrsq+3n6ZIb6BzU3c6N3VXO85NhXiFcK/PvexN2svCowt559531I4kKunZ7k1ZsPMMMUlZbIxJ5YHWDW5/JyEswG+nfiMlLwVPe09pvbFAGqUO/uTKysrCxcWFzMzMWtkfJz2nkO6fbKag2MB34zrTo6Wn2pFuKSIpgnF/jcNGa8Ofj/+Jh72H2pFEJX26Ppbwrado19CF3yZ2Q6ORNaqEZSsxlDDol0EkZifyRugbPN3mabUjCSr3/W12o6jE3Vuw8wwFxQba+7nSvYX5Fwv3eN9De8/2FBmKWHJsidpxRBU816MZ9tY6jlzIZPvJdLXjCHHX/kz4k8TsRFxtXXmi1RNqxxFVIAVOLZORV8SS3QkATOrdwiJ+SWs0Gp4Pfh6AlXErySzMVDmRqCz3ejaMDGsMwNwt8SqnEeLuGBRD+cCH0UGjcbB2UDmRqAopcGqZb3cnkFukJ9DbifuDvNSOc8d6NOxBoHsgeSV5LI1ZqnYcUQXjezTDWqch4sxl9idcVjuOEFW2NXEr8RnxOFo7MiJohNpxRBVJgVOLZBcUs2hXAgAT+1hG600ZjUbDc+2MI+WWxiwltzhX5USisrxd7Hi8UyMAwqUVR1goRVGYH22cfHR44HCcbWpfP826QgqcWmTpvnNk5hfTzLMeA9r6qB2n0vo27ou/sz9ZRVmsiluldhxRBS/c1xytBrbEpXHsopxqFJZnT9Iejl46ip3OjtFBo9WOI+6CFDi1REGxngU7zwAwoVcLdFrLab0po9PqGNduHACLjy2moKRA5USisvw96vFwsC8AX249pXIaISqvrPVmaKuh1Levr3IacTekwKklfjx4nrTsQnxd7Bgc4qt2nCob2GwgvvV8uVRwiZ/jf1Y7jqiCl3o1B2DtkSROp+WonEaIO3co9RCRKZFYaa14ps0zascRd0kKnFqgRG/gq22nARh/XzOsdZb7tlprrRnb1jjL9bdHv6XYUKxyIlFZQT7O9A3yQlEo3y+FsARlsxYPaj4I73p3tl6iMF+W+00oyv1xNJlzl/Nwc7Bm2D1+ase5a0NaDMHdzp2LuRf5M+FPteOIKpjQuwUAPx06z8WMfJXTCHF7J6+cZNv5bWjQMLbNWLXjiGogBY6FU7KSyPrjAzy5wjNdm+JgY/LVN0wu+8tvmHrMeJpj0dFFFdY3SgsPJ232HLWiiTvUsbEbXZrVp1ivsHxzBGyZAdmyGKcwH2mz55AWHl7+70VHFwHQt0lf6i1dJ8eZWkAKHAt38HgsowqW09gmi6e7NlE7TvXQafFftYfhu3VcSE5h/a7t5FwpIC08nPRZs8GCT8HVJWV9cXZHHYNtM6XAEeZFpyV91mzSwsM5df4sUVEnqFfowrhIZznO1BKW/3O/jlsdmUgnYEAbH1wdasdKt54TJgBw76pIXBjJ6YN6TrOLwNhIgidPKt8uzFuPlh609nGmINkAtmqnEaKisuNI9KpIYqNbMZAJgIHk2GVynKklpMCxRNnJkJ1MTHI2SlI0WMPjDS/BxSjjdidv48WC2Y94ltjoADSUDXfXEBc4irAR3VTNJe5QdjKa7GTeal/AH6kJABSfP4R12fZasI8Ky1d2nKH8OKOV40wtIgWOJYpcBNtmEgR8UvqN4brx9avbe06F3tNUiVZdMlLzuXrQMVLQkJmaj6ObnTqhxJ0r3Ud7Ab1K91Hrda9e3V4L9lFh+eQ4U7tJgWOJQseS6NWLF78/QDttAjOt58Mjs8CnvXF7Lfhl7OplDyhUPPgouHjZq5RIVEroWAgYAMDuXZvpeuxffGLzMq+PeQIrraZW7KPC8tm6gYIBzTXdUTVynKk1pBeVJXLyZk5MPY4pTXFs2tF4nU978A0xXmrBl0f+8oUExi5Fg3EElaLoCYxdSv7yhSonE3fEybt8f+wY1guA7dm+/HGpQa3ZR4Xli/5yGkGxy1AwAMbiJkCOM7WGtOBYoNSsAn4+dAGAxzr4wXmVA1WzstFSwZMnETaiGwdPHuWtqFd5SMnEd9YeAOkAaEHsrK7+jvpq+ykeDvaxqIVgRe2UMncOvsu3sbKHloDnHuI+p/tx8bInf3mccRQVcpyxdFLgWKBvdydQpDcQ2sSN1q2aGfsz1KZfxHoDHteMYrivcyhBl1uy2jaS9p6d8NAbVA4oKsXJm/yub5K9oz7nLmSxK/4S3Vt6qJ1K1HGnLp3grx5atvT1YGrIw9hZGfvcOJYVNXKcsXhS4FiYnMISvt97FoDn72tmLGxqWWdNz0kTr7tubNuxRKZEMrPNKTY8Pk+FVKLKnLyxf/Ad+hQc49vdCczbdkoKHKEqRVH4b4ckYptomRg4sry4KSMtN7WD9MGxMCsizpFVUEIzz3r0DWqgdpwa071hd5q5NCOnOIcfT/6odhxRBc/1aIpOq2FnfDpHL2SqHUfUYfuS9xF7ORZ7K3uGBQxTO44wESlwLEix3sDCnWcAGN+jGVpt3enHoNVoy1f3/e74d7IIpwVq5ObAw8E+AHyzQxbhFOr59ui3gHHdO1c7V1WzCNORAseCrI1O4mJmAR6OtjzaoaHacWrcwGYD8bD3ICUvhfVn1qsdR1TB+B7NAPg9OkkW4RSqiLscx66Lu9BqtDzV+im14wgTkgLHQiiKwlfbjb96x3bzx85ap3Kimmejs2FU0CgAvj32bYVFOIVlaNvQha7N66M3KHy7O0HtOKIOWnJ8CQB9G/fFz8lP5TTClKTAsRA749OJScrCwUbH6LBasqhmFTzR6gnsrew5ceUEe5L2qB1HVMH4+4ytOMv2nSOrQE41ipqTnJvMutPrAMpPeYvaSwocC/F1aevNsHv8cHGwvs2tay8XWxeGthwKXD2PLixLr1aetPRyJKewhJURiWrHEXXIsphllCgldGrQiXae7dSOI0xMChwLEJucxY6T6Wg18Gy3pmrHUd3o1qPRaXTsSdpD3OU4teOIStJoNOV9cRbuOkOxzDciakBOUQ6rT6wGpPWmrpACxwJ8s8M4cmpAWx/83B1UTqO+ho4NebDJg4CxL46wPIM7+OLhaEtSZgFro5PUjiPqgB9P/khOcQ5NXZpyX6P71I4jaoAUOGYuNauAX6OMyzI810Nab8o83fZpANafWU9KborKaURl2VrpGNvNHzCefpUO48KUSgwlfB/zPQBjWo9Bq5GvvrpA3mUzt2TPWYr1CqFN3OjQ2E3tOGajTf02hDYIpUQpYVnsMrXjiCoYFdYYe2sdx5Oy2H3qktpxRC228exGknOTcbdz55Hmj6gdR9QQKXDMWF5RCd/vMy7L8FxpnwVx1ZjWYwBYfWI1ecV5KqcRleXqYMOwe4zDdMs60QtR3RRFYfGxxQAMDxiOrc5W5USipkiBY8Z+PHCejLximtR34IHWdWdZhjvV068njZ0ak12UzS/xv6gdR1TBs92aotHAthNpxKdmqx1H1EKHUg9x9NJRbLQ2PBnwpNpxRA2qkQJn7ty5+Pv7Y2dnR1hYGBERETe97fz58+nRowdubm64ubnRt2/f627/zDPPoNFoKlz69+9v6pdRo/QGhQWlyzI82824ho+o6NqZSL+P+R69Qa9yIlFZjes78GBp8b5gZ4K6YUStVDax3yPNH6G+fX2V04iaZPICZ+XKlUyZMoX333+fgwcP0r59e/r160dqauoNb79161ZGjBjBli1b2LNnD35+fjz44INcuHChwu369+9PUlJS+WX58uWmfik1alNMCgmX8nCxt+aJ0EZqxzFbg5oPwtnGmcTsRLYmblU7jqiCstOvPx08z6WcQpXTiNokMSuRzec2A8iyDHWQyQuczz//nPHjxzN27Fhat27NvHnzcHBwYOHChTe8/dKlS5kwYQIhISEEBgbyzTffYDAY2LRpU4Xb2dra4u3tXX5xc6tdHXDLhoaPCmuMg42VymnMl4O1Q/lqwGW/1IRlCW3iRvtGLhSWGFi675zacUQt8n3M9ygodG/YneauzdWOI2qYSQucoqIiDhw4QN++fa8+oVZL37592bPnzqbZz8vLo7i4GHd39wrXb926FS8vLwICAnjppZe4dOnmozAKCwvJysqqcDFnhxMziEi4jLVOw9Nd/dWOY/aGBw7HSmvFwdSDHEk7onYcUUkajYZnuxunQFiyJ4GCYjnVKO5eZmEmP8f/DMDTbZ5WOY1Qg0kLnPT0dPR6PQ0aVOwg26BBA5KTk+/oMd5++218fX0rFEn9+/dnyZIlbNq0iU8++YRt27YxYMAA9PobHxhnzJiBi4tL+cXPz7wXWCvre/NIsC8NnO1UTmP+vBy8eKjpQ4C04liqh9r54ONiR3pOEb8dvqh2HFEL/HDiB/JL8mnl1oow7zC14wgVmPUoqpkzZ7JixQp+/vln7OyuftEPHz6cQYMG0a5dO4YMGcKaNWvYv38/W7duveHjTJs2jczMzPJLYqL5rn+TlJnPuiPGmV3LftWK2ysbMr7h7AYu5sgXpKWx1ml5prS1cuHOMzLxn7grxYbi8vmxxrQeg0YjgzTqIpMWOB4eHuh0OlJSKs40m5KSgre39y3v++9//5uZM2fy119/ERwcfMvbNmvWDA8PD+Lj42+43dbWFmdn5woXc7V491lKDAphTd1p29BF7TgWI8A9gDDvMPSKnuWxtavDeV0xvHNjHGx0xCZnsyteJv4TVfdXwl+k5qXiYe/BgKYD1I4jVGLSAsfGxoZOnTpV6CBc1mG4S5cuN73fp59+yvTp01m/fj2hoaG3fZ7z589z6dIlfHx8qiW3WvKKSlgeYexkOU5abyqtbJTEjyd+lIn/LJCLvTVPhhpPH3+zUyb+E1WjKArfHf8OME7sZ6OzUTmRUIvJT1FNmTKF+fPns3jxYmJiYnjppZfIzc1l7NixAIwZM4Zp06aV3/6TTz7h3XffZeHChfj7+5OcnExycjI5OTkA5OTk8Oabb7J3714SEhLYtGkTgwcPpkWLFvTr18/UL8ekfjx4gcx848R+9wfJxH6V1aNRD5o4NyG7WCb+s1Rju/mj0cDWOJn4T1RNVFoUxy4dw1ZnyxMBT6gdR6jI5AXOsGHD+Pe//817771HSEgIUVFRrF+/vrzj8blz50hKurqa8JdffklRURGPP/44Pj4+5Zd///vfAOh0OqKjoxk0aBCtWrVi3LhxdOrUiR07dmBra7lTcBsykzBs+hhPrjC2q79M7FcFl+aEMyXa2AKwNGYpBsVQvi0tPJy02XPUiibuUJP69XigtLj/YWskbJkB2Xc2IEHUTWmz55AWHl7+77LWm4ebPYx+4Qr53NdhNTLBysSJE5k4ceINt/29Y3BCQsItH8ve3p4///yzmpKZj8hjMTxdvIK1tiE8Hmreo7zMlk6Lz/KtjOhlx28dM/lj5zZ6tu1C/vKFpM+ajcfkSWonFHfg2e5N+et4ChFHYkA3EwIGgNOt++yJOkynJX3WbAAyBz3E8SNnqWfrwog9OtLny+e+LpMZ5MzEr1EX6Az0a+ONo628LVXhOWECAGGrInFWRpJwUCGBXQTGRhI8eVL5dmHewpq609rHmcJkA+jUTiPMXdnnOnpVJLHRrXiElwED52OXyee+jpNvUjVlJ0N2MmfScym5cBis4VGfdLgYZdzu5C2/XCvJfsSzxEYHoKHsFJ+GuMBRhI3opmoucYeyk9FkJzOlbT4bUhMAKLkYdfVAJZ8JcQNln3vKP/da+dwLKXBUFbkIts2kKfCJtfEq901vQNmgs55Tofe0m91b3EBGaj5XD3JGChoyU/NxdJNJE81e6WeiL9C39DNhteaVq9vlMyFuQD734kakwFFT6FiuNO7L2IX7CeA0n1jPh0dmgU9743b5pVpprl72gMK1BzsNCi5e9qplEpUQOtbY5wbYuHkDfeM/ZI7jZCaOHGrcLp8JcQNOHrYoGNBcM25GPvfCrGcyrvWcvPkuwZUofROKPNsar/NpD74hxosczCstf/lCAmOXosE4E66i6AmIXUr+8hsv7irMjJN3+f7fqUsvAP641ICDJU3kMyFuKu6r9wmKXYaCceSkBkU+90JacNRUVGLgu71nARgc0hC2qpvH0qWFh5M+azbBkycRNqIbG6K38UncdB7VFuA7y7i4q3Q4tBxu9tbl/79w5xk6jnRTMY0wV2nh4TgtWcO6HlpcRnTkSe9RuHjZk788rnx0lXzu6yYpcFS09shF0rIL8XKypWv71qBMlV+od0NvwOOaURMP9+jD3NTP+P7eTLr6PoCH3nCbBxBmxcmbtI6vkbrbldijyVzMyMfXVU45iIrSc1JZ2UPLLz2sWR/6ON71jIWwY1lRI5/7OktOUalEURQW7UoAYEyXJti4+Ro7T0qBU2WekyZW+KVmrbVmeOBwAGaHJOMx8WW1oomqcPLGc9A/adGsBXqDwuI9CWonEmZoeTcDP3bX0rdJX7zrVTx+ek6YgOekG8/BJmo/KXBUcuDsFaLPZ2JjpWVE58Zqx6m1Hm/5OHY6O2Iux3Ag5YDacUQVPFu6LtuKiETyikpUTiPMyeWCy6w9vRaA0UGjVU4jzI0UOCopa715NKQh9R0td4kJc+dq58rAZgMB4/INwvL0CfSisbsDmfnF/HzogtpxhBlZHbeaIkMRbeq3ob1ne7XjCDMjBY4KLmTks/6YcX2dsd391Q1TB5T9stucuJkLOfIFaWl0Wg1Pd/UH4NtdCSiKom4gYRaK9cWsjFsJwOjWo9FoZP0+UZEUOCpYsicBvUGha/P6BHo7qx2n1mvh1oJ7fe7FoBhYEbtC7TiiCp4IbUQ9Gx0nU3PYGZ+udhxhBv46+xdp+Wl42nvSr0k/teMIMyQFTg3LKyph+b5zAIzt1lTlNHVHWSvOjyd/JK84T+U0orKc7ax5onQR2rLTu6JuKzvl/GTAk1jrrG9za1EXSYFTw346eIGsghIauzvQJ9BL7Th1Ro9GPWjs1Jjsomx+P/W72nFEFTzd1R+NBjbHpnImPVftOEJFh9MOcyT9CNZaa55o9YTacYSZkgKnBimKwre7EwB4pqs/Oq2cM64pWo2WkUEjAfg+5nsMisyNYWmaetSjd4DxR8Hi0s+RqJu+P/49AAObDaS+fX2V0whzJQVODdoZn058ag71bHQ8HtpI7Th1zpAWQ3C0diQhK4HdF3erHUdUwdhu/gCsjkwkq6BY3TBCFcm5yWw4uwGQoeHi1qTAqUHflvYdeCLUD2c7OWdc0+pZ12NIiyGADBm3VN1beNDSy5HcIj2r9ieqHUeoYFXcKvSKntAGoQS4B6gdR5gxKXBqSEJ6LpvjUgHKh7yKmjcycCQaNOy8sJMzmWfUjiMqSaPR8ExpK87i0tGIou4oKClg9YnVgLTeiNuTAqeGfLs7AUWB3gGeNPWop3acOsvP2Y+ejXoCsDx2ucppRFU81qERLvbWJF7OZ1NMitpxRA3648wfZBRm4FvPl15+vdSOI8ycFDg1ILugmB8OnAdkaLg5KOts/Gv8r2QXZaucRlSWvY2O4Z2NQ8a/lc7GdYaiKOWnlkcEjkCn1amcSJg7KXBqwA8HzpNTWEILL0d6tPRQO06dd6/PvTR3aU5eSR6/xP+idhxRBU/d2wStBnafukRcshSpdUFkSiRxV+Kwt7Ln0ZaPqh1HWAApcEzMYFDKh7Qa5/GQoeFq02g05a04y2KWoTfoVU4kKquRmwP92hhXjpZWnLphWcwyAB5p9gguti4qpxGWQAocE9t6IpWES3k42VkxtGNDteOIUg83exhnG2fO55xnx4UdascRVfBMaWf9nw+dJyOvSN0wwqQu5Fxgc+Jm4OopZiFuRwocEyubVn74PX442FipG0aUc7B2YGjLoYAMGbdUnZu6E+TjTEGxgRUyZLxWWxm7EoNioItPF5q7Nlc7jrAQUuCYUHxqNjtOpqPVwJgu/mrHEX8zPHA4Wo2WvUl7ib8Sr3YcUUkajaZ84r/v9pylRC+zU9dGecV5/HDyBwBGBY1SOY2wJFLgmFBZ34C+QQ3wc3dQN4y4jq+jL338+gCwLHaZymlEVQxq74t7PRsuZOSzUYaM10prTq8huygbPyc/ejTqoXYcYUGkwDGRzPxifjxwAZCh4eas7Hz+76d+J7MwU+U0orLsrHWMKB0yvlBWGa91FEUp71w8MnAkWo18ZYk7J3uLiayOTCS/WE+gtxP3NnNXO464idAGoQS4BVCgL+Dnkz+rHUdUwVP3GheujThzmWMXpUitTfYl7+NU5ikcrBwY3GKw2nGEhZECxwT0BoXFexIA40gPGRpuvjQaTfl5/eWxy2XIuAXydrFjQNvSIePSilOrlA0AGNxiME42TiqnEZZGChwT2BybSuLlfFwdrBkcIkPDzd2ApgNwtXXlYu5FtiZuVTuOqIKyzsa/Hr7I5VwZMl4bJGYlsi1xG2A8PSVEZdVIgTN37lz8/f2xs7MjLCyMiIiIW95+9erVBAYGYmdnR7t27Vi3bl2F7Yqi8N577+Hj44O9vT19+/bl5MmTpnwJlbJol3ERx+H3NMbeRqYTN3d2VnY83upxAJbGypBxS9SxsRvBjVwoKjGwPOKc2nFENVgetxwFhe4Nu+Pv4q92HGGBTF7grFy5kilTpvD+++9z8OBB2rdvT79+/UhNTb3h7Xfv3s2IESMYN24chw4dYsiQIQwZMoSjR4+W3+bTTz9l1qxZzJs3j3379lGvXj369etHQUGBqV/ODaXNnkNaeDgA8afi6Xz2KxporvBUlyakhYeTNnuOKrnEnUmbPYdB2wvRaXTsT95P3OW4q9vk/bMIGo2mfOK/dbsPod/8MWQnqxtKVMq1x9G84rzyPnGjgkbJ59BCXPsekp0MW2aUfw7VeA9NXuB8/vnnjB8/nrFjx9K6dWvmzZuHg4MDCxcuvOHt//e//9G/f3/efPNNgoKCmD59Oh07dmTOHOMfRlEUvvjiC9555x0GDx5McHAwS5Ys4eLFi/zyyy+mfjk3ptOSPms2aeHh/LH1MI/rTzDEzxqbZYtInzUbdHIm0KzptBTMW8TrRxpTr9CFH7auI+dKAWnh4fL+WZCBwT54ONpATgq67Z9IgWNprjmO/hy1Bud0bwJs2tLql8PyObQU17yHORcucv6vNeRcuKjasdSkU+sWFRVx4MABpk2bVn6dVqulb9++7Nmz54b32bNnD1OmTKlwXb9+/cqLlzNnzpCcnEzfvn3Lt7u4uBAWFsaePXsYPnx49b+Q2/CcMAGA6FWRaAJG8qtmOs5XFKJj/yR48qTy7cI8lb0/vqsiGZ01GY1Gy+K/dhEYGynvnwWxtdIxMqwJmzbH3f7Gwuxcexy9Ej2SQUwCFI7ELpXPoYW49j2MjQ4ApsMXV1Q7lpq0wElPT0ev19OgQYMK1zdo0IDY2Ngb3ic5OfmGt09OTi7fXnbdzW7zd4WFhRQWFpb/Oysrq3Iv5Hayk7Hvcy+x0QFoKBsxpSEucBRhfdyMvySdvKv3OUW1sh/x7I3fvxHdVM0l7lB2MmQn84x/Eem6BADOH99Lo7LtTt7yGbQA8jm0cNd8F2IG34V1os1vxowZuLi4lF/8/Pyq9wkiF5GxeBJX31AjBQ2ZiydC5KLqfT5R7TJS87nh+5ear04gUTmRi+DrnrgvfYCPreYD0Gjn2/B1T+NFPoMWQT6HFs7MvgtN2oLj4eGBTqcjJaXiFOopKSl4e9+4ivP29r7l7cv+m5KSgo+PT4XbhISE3PAxp02bVuG0V1ZWVvUWOaFjcfXpB19c4do3VoOCy9NzoKFv9T2XMAlXL3tAoeIH04CLl71KiUSlhI6FgAEAnDu2h8a7pvJ/Jc/zxtgncbO3ltYbC5FrfwVFMaC5ZsZiDYp8Di1F6FgOZIag/HGD91CF70KTtuDY2NjQqVMnNm3aVH6dwWBg06ZNdOnS5Yb36dKlS4XbA2zYsKH89k2bNsXb27vCbbKysti3b99NH9PW1hZnZ+cKl2rl5E3+5r0Exi5FgwIY39CA2KXkb94rB1cLkL98YYX3T1H0BMYuI3/5jTvDCzPj5A2+IeAbQuM2xuNAlL4J3ye4Gq+Xz6BFODbv/wiKWwYYF04tP47K59AiKI4NOLF6y43fQxW+C03aggMwZcoUnn76aUJDQ+ncuTNffPEFubm5jB07FoAxY8bQsGFDZsyYAcArr7xCz549+c9//sPAgQNZsWIFkZGRfP3114BxOOirr77Khx9+SMuWLWnatCnvvvsuvr6+DBkyxNQv54bKeogHT55EWB83MhdPxOXpOeRvDjX2HAfpIGfGKrx/I7px5txFXox4lgcMafjOMnaGl/fPMn239ywv9mqOtYzAMXsXZn9B0E9RrOyhpdcr42ipbY2Llz35y+PkOGohDnz4Hx4+8Dsr2gzg5QnOFC9/VdXvQpMXOMOGDSMtLY333nuP5ORkQkJCWL9+fXkn4XPnzqHVXj34dO3alWXLlvHOO+/wj3/8g5YtW/LLL7/Qtm3b8tu89dZb5Obm8vzzz5ORkUH37t1Zv349dnZ2pn45N6Y34FHWQzw7GccHH4GGvjiWvZF6gzq5xJ259v0D2rk1o1tGZ360+YOg+oH0kffPsjh5o+/xNvo9DUjNLmTdkSSZUdwCxKUfZ3sPLQcHNuf9wK7lS9zIcdRyHE64RHxgP2yfHodX0/qg8nehRlEUpUaf0QxkZWXh4uJCZmZm9Z+uErVCVGoUT/3xFDZaGzY8sQF3O1kw1dL8b+NJ/rvxBB0au/LzBBmFY84MioFBvwzibNZZ/i/s/xgeWPPTfYi7k5CeS+//bEVRYPPrPWnm6WiS56nM97e02wpxA+0929OmfhuKDEX8eOJHteOIKhgZ1hhrnYZD5zKISsxQO464hV0XdnE26yxO1k4Maj5I7TiiChbvSUBRoHeAp8mKm8qSAkeIG7h2lfEVcSsoNhSrnEhUlqeTLY8EG0dtLN6doG4YcUtlq4Y/2vJRHKwdVE4jKiunsITVkecBeKZbU5XTXCUFjhA30c+/H/Xt6pOal8qms5tufwdhdsaWHmzXRF8kNUudterErZ3OPM2ui7vQoJFTUxbqxwPnySksoZlnPXq08FA7TjkpcIS4CRudDU8GPAlc/YUpLEu7Ri50auJGsV5h6T5ZZdwcLY9ZDkAvv174OVXzJKzC5AwGpbyF9Jmu/mi1mlvfoQZJgSPELTwZ8CRWWiui0qI4ln5M7TiiCspWGV+67xyFJXp1w4gKsouy+fXUrwDlp4SFZdl2Mo3T6bk42VrxWMdGt79DDZICR4hb8LD3oL9/f0BacSxV/7beeDvbkZ5TyNroJLXjiGv8fPJn8kvyaeHags7endWOI6pg0a4EAJ68xw9HW5PPPFMpUuAIcRtlvyz/SPiD9Px0ldOIyrLWaXmqSxPAeDCugzNjmCW9Qc/yWOPpqVFBo8rnvRGWIz41h+0n0tBo4Oku/mrHuY4UOELcRluPtgR7BlNiKGF13Gq144gqGH6PHzZWWo5cyOTguQy14whg+/ntnM85j7ONMwObDVQ7jqiCsr439wc2oHF98xv9JgWOEHdgdNBoAFbGraRIX6RyGlFZ9R1tGdzeOGR80a4zKqcRcPWU7+OtHsfeShbTtDSZ+cX8eNA4NPzZbv7qhrkJKXCEuAN9m/TFy96LSwWX+DPhT7XjiCp4pvQg/MfRZJIy89UNU8eduHKCfcn70Gl0DA+QoeGWaHVkInlFegIaONGleX2149yQFDhC3AFrrTXDAocB8H3M99KPwwK18XWhc1N39AaF7/acVTtOnbYsZhkAfRr3wcfRR+U0orL0BoXFexIA4w8Hc+0/JQWOEHfo8VaPY6O14fil4xxOO6x2HFEFZU3pyyPOUVAsQ8bVkFGQwZrTa4Crp36FZdkUk0Li5XxcHawZYsYL2UqBI8QdcrdzL+8M+X3M9yqnEVXxQGtvGrracyWvmF+jLqgdp0764eQPFOoLCXIPooNXB7XjiCr4trRz8fB7GmNvo1M3zC1IgSNEJZQNGd94diPJuckqpxGVpdNqeLqrDBlXS7GhmBWxKwAZGm6pYpOz2H3qEjqtpnz6BXMlBY4QlRDgHsA93vegV/TlB2phWYaFNsbeWkdscjZ7Tl9SO06dsuncJlLyUnC3c2dA0wFqxxFV8G3pxH792jSgoat5j36TAkeISiprxfnh5A/kl8hoHEvj4mDN0E7GfgNls7CKmrH0uHFo+JMBT2Kjs1E5jaisy7lF/HzIeGp3rBmtGn4zUuAIUUm9GvWioWNDMgszWXt6rdpxRBU809V4cN4Yk8K5S3kqp6kbjqUfIyotCiutFU+2elLtOKIKlkeco7DEQNuGzoQ2cVM7zm1JgSNEJem0OkYEjgCMk5VJPw7L08LLkftaeaIolA93FaZV1jG/n38/PB08VU4jKqtYb2BJ6Wfl2W5NLaL/lBQ4QlTBoy0fxd7KnviMePYl71M7jqiCsaVDxlftTySnsETdMLVcWl4a6xPWA/BU0FMqpxFVse5IEilZhXg42jIw2DLmLpICR4gqcLZxZkiLIQB8f1yGjFuini09aeZRj+zCEn6ITFQ7Tq22Mm4lJYYSOnh1oI1HG7XjiCoo66/21L1NsLUy36Hh15ICR4gqKutsvO38Ns5mycy4lkar1ZQv3/Dt7gQMBjnVaAqF+kJWxa0CZGI/S3Xw3BWiEjOw0WkZGdZY7Th3TAocIaqoiXMT7mt0H3B14UBhWYZ2bISznRUJl/LYEpeqdpxaad3pdVwpvIJPPR/6NO6jdhxRBWWtN4NCfPF0slU3TCVIgSNEFaXNnsO4SGcAfon/hayirKvbwsNJmz1HrWjiDtWztWJEZ+Mv0p+2R8KWGZAtEzjejbTZc0gLDwdAURS+i/kOgBGBI7gy72v5XFiS7GSy13/A/iPHgav91iyFFDhCVJVOi/2iXxgf6Yo214bVW9aRc6WAtPBw0mfNBp18vCzBmK7+6LQaEhLOwLaZUuDcLZ2W9FmzSQsPZ+eJveQmKNTXN+CBzRnyubA02ck47f0P9ZUrhDV1p42vi9qJKsVK7QBCWCrPCRMAaLMqktFFIyk4qGXxz7sIjI0kePKk8u3CvDV0tad/G28Sjp5WO0qtULbfR6+KJDa6FYOYBBiIi10mnwsLU1BiwK70/y1hYr+/kwJHiLtgP+JZYqMD0FA2J4SGuMBRhI3opmoucYeykyE7mZcDc1h8PMF4VcIBnMq2O3kbL6JSyj4XlH8utPK5sBSlnwmAqIit3Av0cLzAA25JcDHZoj4TUuAIcRcyUvO5ehA3UtCQmZqPo5vdje8kzEfkItg2k9bAJ9bGq5z+mnJ1e8+p0HuaKtEsmXwuLFjpZwLg3tKrphaHw3xjvypL+kxIgSPEXXD1sgcUKh7MFVy8zHsROlEqdCwEGBd9PBSxjQ5R7/Gh7iXeeuZJbHRai/mlam6sXA0oigGN5mp/G418LixD6Wci8uwVVq9ZyyfW8ykY8F/s/Doat1vQZ0J6ewlxF/KXLyQwdikajHOoKIqewNil5C9fqHIycUecvME3BHxDaNvJOOR/T14j1qR5Ga+3oIO5OTny5TSC4pahYACMxU2AfC4sQ+ln4n/HHThq8AcwFjelnxNL+kxIC44QVVQ2Wip48iTCRnQj6mQMb0RN4iElE99ZewCkQ6UFsdZdbYVbsPMMj3ZoaBHr7ZiblLlzaLRiByt7aAkaP5Dujn1w8bInf3mccRQV8rkwdydSstlxMp12Ft4EIgWOEFWlN+BxzaiQ7p07EHCpOattD9LB6x489AaVA4pKcfImv+ubZO1wJ/FiFhFnLhPWrL7aqSzOmcvxrO+hZfP99ZnafiB2VsY+N45lRY18Lszewp1nAAhq2Qr8p1pUq821TFqfXb58mVGjRuHs7Iyrqyvjxo0jJyfnlrefNGkSAQEB2Nvb07hxYyZPnkxmZmaF22k0musuK1asMOVLEeI6npMmXvdLdEzrMQB80vY0ji+NUyOWqConb+wffIceHdsB8E3pQV5UzpxO6fzYXcuTAU+WFzdlPCdMwHPSRJWSiTtxKaeQnw5dAOCJ3qHGDsVS4Fxv1KhRHDt2jA0bNrBmzRq2b9/O888/f9PbX7x4kYsXL/Lvf/+bo0eP8u2337J+/XrGjbv+i2LRokUkJSWVX4YMGWLCVyLEnenl14tGjo3ILMzk91O/qx1HVMGzpfN9bIxJ4Ux6rsppLMvhtMMcTjuMtdaa4YHD1Y4jqmDZvnMUlRgIbuRCaBM3tePcFZMVODExMaxfv55vvvmGsLAwunfvzuzZs1mxYgUXL1684X3atm3Ljz/+yCOPPELz5s3p06cPH330Eb///jslJSUVbuvq6oq3t3f5xc5Ohh4K9em0Oka3Ni4o+N3x7zAo0hxvaVp4OdIn0AtFgUW7pBWnMr47blyW4aGmD+Fh76FyGlFZhSV6luw1Lhw8rntTi++DZrICZ8+ePbi6uhIaGlp+Xd++fdFqtezbt++OHyczMxNnZ2esrCp2F3r55Zfx8PCgc+fOLFy4EEW5+UrAhYWFZGVlVbgIYSpDWgzB0dqRhKwEdl7YqXYcUQXPdTe24qyOPE9mXrHKaSxDUk4SG89uBOCp1k+pnEZUxZrDSaRlF9LA2ZaH2vmoHeeumazASU5OxsvLq8J1VlZWuLu7k5x8Z2u9pKenM3369OtOa33wwQesWrWKDRs2MHToUCZMmMDs2bNv+jgzZszAxcWl/OLn51f5FyTEHapnXY+hLYcCsOT4EpXTiKro0rw+gd5O5BfrWRZxTu04FmFZ7DL0ip4w7zAC3APUjiMqSVEUFpT2OxvTxR/rWrBmWKVfwdSpU2/YyffaS2xs7F0Hy8rKYuDAgbRu3Zp//vOfFba9++67dOvWjQ4dOvD222/z1ltv8dlnn930saZNm0ZmZmb5JTEx8a7zCXErI4NGotPo2Je0j7jLcWrHEZWk0Wh4rkczABbvTqBYRv7cUm5xLj+c+AGAMW3GqJxGVMXuU5c4npSFvbWOUWGN1Y5TLSpd4Lz++uvExMTc8tKsWTO8vb1JTU2tcN+SkhIuX76Mt/ete2RnZ2fTv39/nJyc+Pnnn7G2tr7l7cPCwjh//jyFhYU33G5ra4uzs3OFixCm5OvoS98mfYGr/RKEZXmkvQ+eTrYkZxWw7kiS2nHM2i/xv5BTnIO/sz/dG3ZXO46ogm92GBebfSK0Ea4ONiqnqR6VLnA8PT0JDAy85cXGxoYuXbqQkZHBgQMHyu+7efNmDAYDYWFhN338rKwsHnzwQWxsbPjtt9/uqPNwVFQUbm5u2NraVvblCGEyZUPG155ZS1pemsppRGXZWul4uksTAObvOH3Lfn51md6gLy/iRweNRqux/FMbdU18ajZb4tLQaK6OIqwNTLYnBgUF0b9/f8aPH09ERAS7du1i4sSJDB8+HF9fXwAuXLhAYGAgERERwNXiJjc3lwULFpCVlUVycjLJycno9XoAfv/9d7755huOHj1KfHw8X375JR9//DGTJk0y1UsRokqCPYPp4NWBEkMJy2OXqx1HVMHIsCbYWWs5esE48Z+43qZzm7iQcwFXW1cGtRikdhxRBd/sMPa9ebB1A/w96qmcpvqYtNReunQpgYGB3H///Tz00EN0796dr7/+unx7cXExcXFx5OXlAXDw4EH27dvHkSNHaNGiBT4+PuWXsn4z1tbWzJ07ly5duhASEsJXX33F559/zvvvv2/KlyJElTzd+mkAVsatJK84T+U0orLc69nwWMdGAMzfIUPG/05RFBYfWwzAsIBh2FvJYpqWJi376sR+40v7ndUWJl2qwd3dnWXLlt10u7+/f4Vm3169et22Gbh///7079+/2jIKYUq9/Hrh5+RHYnYiv8T/wsigkWpHEpU0rntTlu07x6bYFE6l5dDc01HtSGYjKi2K6PRobLQ2MrGfhfpu71mKSgy093Olk4VP7Pd3crJUCBPSaXXlc4J8d/w79Aa9yolEZTX3dKRvUAMUhfJhtMKorPXmkeaPyMR+FqigWM/3pRP7je9h+RP7/Z0UOEKY2ODmg3G2ceZ8znm2JG5RO46ogufvMzbd/3jgPOk5Nx6tWdecyzrH5nObgasd6oVl+engBS7nFtHQ1Z7+bSxzvalbkQJHCBNzsHZgWMAwAL499q26YUSV3OPvRvtGLhSWGPhuz1m145iFJceXoKDQo2EPmrnWrr4bdYHBoPDNTuPQ8Ge7N8WqFkzs93e17xUJYYZGBo3EWmvN4bTDRKVGqR1HVJJGo2F8aSvOd3vPUlBct081ZhRk8Gv8rwA80+YZdcOIKtkcm8rptFycbK14MrSR2nFMQgocIWqAh70HA5sNBGT5BkvVv403jdzsuZxbxI8Hz6sdR1WrTqyiQF9AkHsQ93jfo3YcUQVfbze23owMa4yT3a0n07VUUuAIUUPK+ilsOreJxCxZLsTSWOm0jCtdhPObHWcwGOrmxH9F+iKWxRhHx45pM6bWdUytCw6du0JEwmWsdRrG1qKJ/f5OChwhakhLt5Z0a9gNg2KQVhwL9WSoH852VpxJz2VjTIracVSx5vQaLhVcooFDA/r591M7jqiCstabQe0b4u1y+9UCLJUUOELUoLFtxgLGtXsuF8jMuJamnq0Vo+69unxDXWNQDCw6ugiAp1o/hbW2dp7aqM0S0nNZfywZuDo6sLaSAkeIGtTZuzOt67emQF/AitgVascRVfBMV3+sdRr2J1zh4LkrasepUVsTt5KQlYCTtROPt3pc7TiiCr7ZeRpFgd4BngR4O6kdx6SkwBGiBmk0Gsa2NbbiLI9dLss3WKAGznYMCWkIwFfbTqmcpmaVtd4MCxxGPevas2ZRXZGeU8jqSGMH+efva65yGtOTAkeIGta3cV8aOTYiozCDX+J/UTuOqIIXehqb9v86bly+oS44lHqIqLQorLXWjAoapXYcUQVL9pylsMRAcCMX7m3mrnYck5MCR4gaZqW14q3oJgzdaexsXGIoqbA9LTyctNlzVEon7kQLL6fy5RuWb4yALTMgO1ntWNUqbfYc0sLDy/+98OhCAAY1H4SyaJXso5YkO5nijR/xx+5DgLHvTV0Y/SYFjhAqCPRszbAdBu5dn8gfRzZwPu4KOVcKSAsPJ33WbKiFs4rWNi/1MrbiRB6NhW0za12Bg05L+qzZpIWHc+zsCU4cPY9joSuj9lrLPmppspOx3vkpNgVp+LnXzmUZbsSkq4kLIW7MZ+JkDqUcoscODbFfWnOOQ4BCYGwkwZMn4TlhgtoRxW10auJOaBM38s/VzgU4y/bB6FWRxEa3YhCTAAPnYpfJPmphSgxK+Zf9+B7NauWyDDciBY4QKmn/8kx+Tj2CprwhVUNc4CjCRnRTNZe4A9nJkJ3Mm8EF/HQ+AYD8xIPYl2138jZeLJz9iGeJjQ4Ayk5naGUftRSl+yjAkcjtdADC7BJ5suFluJhRa/bRW5ECRwiVKJk2aDQVf0kpaMhMzcfRrfZOvlUrRC6CbTMJA8JKp4Kx/+O1q9t7ToXe01SJVp0yUvO5WtwYyT5qIUr3UYAOpVe9p8yDhfOM/6gl++itSIEjhEpcvewBhWu/QDQouHjZ3/Q+wkyEjoWAAQBE7t1CaPQ/+Uj3Em8+8yQ2Om2t+WWsc9WjYLimlVH2UYtRuo/uP3uFH9as5RPr+eT1+y8OTToat9eSffRW6saJOCHMUP7yhQTGLgUMpdcYCIhdSv7yhWrGEnfCyRt8Q8A3hPb39AJgd14jfk72MF5fS748Ds99m6DYZSil+6gGRfZRS1G6j34WbcdRgz+Asbgp3W9ryz56K9KCI4QKykZLBU+ehNdDDXnjt3+QZZfOklb9jSNUQDpxWghr3dUWuK+2nebxTn7otJY/BDdpziyarNrNyh5aQl4ayj12XXHxsid/eZzsoxbiwNnLRJy5THud5e+PVSEFjhBq0BvwKB2J4gm0atOIrefj+a5NIZPsJoHecNuHEGbCyZui7m9RsNOT0+m5rD+azMBgH7VT3bWYtGNs76Flb38/3mnXDyut8evCsayokX3U7H251bhe2j1tg8B7ap1otbmWRlEURe0QNS0rKwsXFxcyMzNxdnZWO44QRKVG8dQfT2GlteKPx/7Au17dOhDVBv/dcIL/bTpJax9n1k7ubtETqRUbihn400CScpN4J+wdhgUOUzuSqKQTKdk8+N/taDSwcUpPmns6qh2pWlTm+1v64AhhBkK8QghtEEqJoYTFxxarHUdUwTNd/XGw0XE8KYutJ9LUjnNX1p1eR1JuEvXt6jOk5RC144gqmFe6TtqAtt61pripLClwhDAT49uNB+DHkz9ypaBurVJdG7jVs2FUWGMAwrfEq5ym6gyKoXxZhqdaP4WtzlblRKKyzl/J47eoiwC82LP2L6p5M1LgCGEmuvh2Icg9iPySfJbFLlM7jqiC53o0w0anZX/CFSLOXFY7TpVsObeF05mncbJ2YliAnJqyRF9vP02JQaFbi/oEN3JVO45qpMARwkxoNBqea/ccAMtilpFbnKtyIlFZDZzteDy0EQBzLbAVR1EUvjnyDQDDA4fjaFM3T21YstSsAlbsTwRgYu+WKqdRlxQ4QpiR+xvfj7+zP1lFWayOW612HFEFL97XHK0Gtp1I4+iFTLXjVMrepL0cvXQUW50to4JGqR1HVMH8HacpKjEQ2sSNe5u5qx1HVVLgCGFGdFod49qNA+DbY99SUFKgciJRWY3rOzCovS8A4VstqxXnq+ivABjacij17eurnEZU1uXcIr7few6Al/u0sOiRfNVBChwhzMzAZgNp6NiQSwWX+PHkj2rHEVXwUq8WAPxxNJn41ByV09yZyORIDqQcwFprzdi2Y9WOI6pg4c4z5BfradvQmV6tPNWOozopcIQwM9Zaa55t+ywAC48upEhfpHIiUVkB3k480LoBimI5I6q+jv4agCEthsg8TBYoM7+YxbsTAGPfm7reegNS4Ahhloa0GEIDhwak5qXyS/wvascRVTC5j7GD5y9RF0hIN+8O49Fp0exJ2oOVxqr8FKmwLEt2J5BdWEKrBo482LqB2nHMghQ4QpghG51N+WmCBUcWUGwoVjmRqKx2jVzoE+iFQTH/EVVlfW8ebv4wDR0bqpxGVFZuYQkLdp0B4OXeLdDWgrXQqoNJC5zLly8zatQonJ2dcXV1Zdy4ceTk3Pp8dK9evdBoNBUuL774YoXbnDt3joEDB+Lg4ICXlxdvvvkmJSUlpnwpQtS4oS2HUt+uPhdzL7Lm1Bq144gqmNTH2Bfnp0MXSLycp3KaGzt+6Tjbz29Hq9GWTzYpLMvSfWfJyCvGv74DDwf7qh3HbJi0wBk1ahTHjh1jw4YNrFmzhu3bt/P888/f9n7jx48nKSmp/PLpp5+Wb9Pr9QwcOJCioiJ2797N4sWL+fbbb3nvvfdM+VKEqHF2VnblrTjzj8ynxCBFvKXp0NiN+1p5ojcoZjuiqqzvzYCmA2js3FjlNKKy8ov0fL3d2HozoVeLWrGSfXUxWYETExPD+vXr+eabbwgLC6N79+7Mnj2bFStWcPHixVve18HBAW9v7/LLtQtq/fXXXxw/fpzvv/+ekJAQBgwYwPTp05k7dy5FRdIZU9QuT7R6AldbVxKzE/njzB9qxxFVMLm0FeeHA+c5f8W8WnFOXDnBpnOb0KDh+Xa3//EpzM/SfWdJzymkoas9QzrI6cVrmazA2bNnD66uroSGhpZf17dvX7RaLfv27bvlfZcuXYqHhwdt27Zl2rRp5OVdPSjs2bOHdu3a0aDB1U5U/fr1Iysri2PHjt3w8QoLC8nKyqpwEcISOFg7MKb1GMDYiqM36FVOJCor1N+drs3rU6xXyhdANBfzo+cD8ECTB2jm2kzlNKKy8ov0zNt2GjCeDrWxkm611zLZXyM5ORkvL68K11lZWeHu7k5ycvJN7zdy5Ei+//57tmzZwrRp0/juu+8YPXp0hce9trgByv99s8edMWMGLi4u5Rc/P7+qviwhatyIwBE42zhzJvMM6xPWqx1HVMHk+40jqlbtP09SZr7KaYzir8TzZ8KfADwfLK03lqis9aaRmz2PdWykdhyzU+kCZ+rUqdd1Av77JTY2tsqBnn/+efr160e7du0YNWoUS5Ys4eeff+bUqar/8pk2bRqZmZnll8TExCo/lhA1zdHGkafbPA3AvMPzpC+OBbq3WX06N3WnSG9g3lbzaMX58vCXKCg80OQBAtwD1I4jKsnYemPclyb2ltabG6n0X+T1118nJibmlpdmzZrh7e1NampqhfuWlJRw+fJlvL3vfBKpsLAwAOLjjR30vL29SUlJqXCbsn/f7HFtbW1xdnaucBHCkowMHImLrQsJWQnSF8dCvVLairN8f6LqrThxl+P46+xfaNDwUvuXVM0iqsbYelNEIzd7hnaS1psbqXSB4+npSWBg4C0vNjY2dOnShYyMDA4cOFB+382bN2MwGMqLljsRFRUFgI+PDwBdunThyJEjFYqnDRs24OzsTOvWrSv7coSwCI42jjzT5hlAWnEsVdfm9ens705RiUH1eXHmHZ4HQD//frR0q9srTluia1tvJvVpgbVOWm9uxGR/laCgIPr378/48eOJiIhg165dTJw4keHDh+Praxynf+HCBQIDA4mIiADg1KlTTJ8+nQMHDpCQkMBvv/3GmDFjuO+++wgODgbgwQcfpHXr1jz11FMcPnyYP//8k3feeYeXX34ZW1tbU70cIVQ3MnAkbrZunMs+x5rTMi+OpdFoNEx5sBUAK/cnqjaiKvZyLBvPbUSDhhfbv3j7Owiz8/1eY+uNn7v0vbkVk5Z9S5cuJTAwkPvvv5+HHnqI7t278/XXX5dvLy4uJi4urnyUlI2NDRs3buTBBx8kMDCQ119/naFDh/L777+X30en07FmzRp0Oh1dunRh9OjRjBkzhg8++MCUL0UI1TlYO/DusZYM3Wngq8NfXTe7cVp4OGmz56iUTtyJe5vVp1sL44iqb9fvhS0zIPvmgy6qQ9rsOaSFh5f/OzzK+P/9m/bHedmfss9Ykuxkijd+xA/bIgGY1LultN7cgpUpH9zd3Z1ly5bddLu/vz+KopT/28/Pj23btt32cZs0acK6deuqJaMQlqSNVzCNVu8GzvFL0zV0qdcLVy978pcvJH3WbDwmT1I7oriNKQ8EsCt+NxFHYyBuJgQMACcTLm6p05I+azYA5/p3J+5oIk72bjwX6UL617LPWJTsZKx3fopV4Uf4ubfm0Y4y782tmLTAEUJUL99Jr3Ds0jF6bC0h5msnfuUQoBAYG0nw5El4TpigdkRxG52auNErwJO0E2dq5PnK9onoVZHERrdiEJMAA4mxy2SfsTC5RSXUK/3/SX2k9eZ2pMARwsJ0ePlTViRHoik/w6whLnAUYSO6qZpL3IHsZMhO5v86FPJNfAIAqSciKJ8xzMnbJK059iOeJTY6ACibxl8r+4ylKN1nAHbv3MwDQG/nizzmnQ4XL5lsn6kNpMARwsIUXFauKW6MFDRkpubj6GanUipxRyIXwbaZtAQ+sTZe5bX1Tdhaur3nVOg9rdqfNiM1n6vFjZHsMxaidJ8BeKD0qjcK58I3c43/MNE+UxtIgSOEhXH1sgcUrv3C0qDg4mWvWiZxh0LHGvvcABdj9+G7/S3eLh7Pi8MfpWn9eib7JX5KiUFRDGg0Vwtj2WcsROk+s2DXGU5E7eIT6/kYHp6F1re9cbu03tyUnMATwsLkL19IYOxSwACAgoGA2KXkL1+objBxe07e4BsCviH4BhrnAztq8OejgzbG603wZaUoCse+/D+C4pZRts9oUGSfsRRO3qQ4BvLpYTuOGvwBjMVN6X4kBc7NSQuOEBYkLTyc9FmzCZ48idBhXXnllzeI1Ufzjmfz8pEy0mnUsui0GjbGpLI/4TL3+LtX++NHzHiT3n8m82PPyzz9/kdos+xw8bInf3mc7DMWYvbmkxSWGGjt6wyX1U5jOaQFRwhLojfgUTryxaW+A6P7PkaubSYfBMbg8NI40BvUTijulJM39JzKvcFBAHzyR2yFaTOqg96gJ+LCHlb20OLy4nP4+fjQMMANRzc7PCdMMA4Rl33GrJ27lMeKCOP6iSP63GPscyOtNndEWnCEsCCekyZW+Pf9je+nbf22HL10lOVdSpjaeeJN7inMjpM39J7Gs5kFLD6yhcizV9gcm8r9QQ2q7Sl+P/07X3fOwsXWjT9Kl/q4lrTcmL8vNp6gxKDQo6UHHdsGAUFqR7IY0oIjhAXTaDRM7jgZgFVxq7iQc0HlRKKyvF3seKabPwCfro9Db6ieVpwifVH5rMXj2o7DycapWh5X1JzY5Cx+jjJ+pt/sJyu+V5YUOEJYuC6+XQjzCaPYUFz+hSYsy4SeLXC2syIuJZtfDlVPkboqbhVJuUl42XsxInBEtTymqFkz/4hFUeChdt4EN3JVO47FkQJHiFrglQ6vALDm9BpOXDmhchpRWS4O1rzUqwUAn284QWGJ/q4eL6coh/lH5gPwYsiL2FnJXDeWZld8Olvj0rDSanirX6DacSySFDhC1ALtPNvxQJMHMCgGPj/wudpxRBU809WfBs62XMjIZ+nec3f1WAuOLuBywWX8nf0Z0mJI9QQUNcZgUJjxRwwAo+9tgr9HvdvcQ9yIFDhC1BKvdnwVK60Vuy7sYvfF3WrHEZVkb6Pj1b6tAJizJZ6sguLb3OPGknOT+e74dwBM6TQFa611tWUUNeP36IscvZCFo60Vk/q0UDuOxZICR4haorFzY4YHDAfgP5H/QW+4u9McouY90akRzT3rcTm3iLlb4qv0GLMPzaZQX0hog1B6+fWq3oDC5ApL9Hy6Pg6Al3o1p76jrcqJLJcUOELUIi8Ev4CTtRMnrpzg99O/qx1HVJKVTsv/DTQOA160M4HEy3mVuv/xS8f5/ZTxfX8j9A00Gs1t7iHMzXd7znIhI58GzrY8262p2nEsmhQ4QtQirnauPB/8PACzD84mvyRf5USisnoHeNG9hQdFegMz18fe8f0UReE/kf9BQeGhpg/RxqONCVMKU8jMK2b2ZmPL3esPBGBvo1M5kWWTAkeIWmZE0AgaOjYkNT+VJceWqB1HVJJGo+H/Bgah0cDa6CQOnL1yR/fbcWEHEckR2GhtyudGEpZlzpaTZOYXE9DAiaGdGqkdx+JJgSNELWOrs2VyB+MX3IKjC0jPT1c5kaisIB9nnuzkB8D0Ncdvu4RDiaGE/0T+B4BRrUfR0LGhyTOK6nU6LYdvdycAMPWhQHRaOb14t6TAEaIW6t+0P23rtyW/JJ85h+aoHUdUwesPtsLBRkdUYga/Ryfd8rY/nviR05mncbV15bl2z9VQQlGdPlobQ7FeoXeAJ70DvNSOUytIgSNELaTVaHnznjcB+OnkT8RcilE5kagsL2c7XurZHDAuxFlQfONRcZmFmcyOMq4K/lL7l3C2ca6xjKJ6bI1LZVNsKlZaDe883FrtOLWGFDhC1FIdG3RkQNMBKCjMiJhR7StVC9N7rkczvJ3tuJCRz4KdZ254m7lRc8kszKSFawueDHiyhhOKu1WsNzB9zXHAONljc09HlRPVHlLgCFGLTek0BXsrew6lHmLdmXVqxxGVZG+j4+0BxkUW52yOJymz4qi4E1dOsDJuJQDTOk/DSmtV4xnF3fl+71lOpeXiXs+GSfe3VDtOrSIFjhC1mHc9b8a3Gw/A55Gfk1dcuXlVhPqGhDTkHn838ov1fLT26qlGRVGYGTETg2LggSYP0Nmns4opRVVczi3ivxuMa8e98WAALvYy63R1kgJHiFpuTJsxNHJsRGp+avkCjMJyaDQa/jmoDVoNrIlOYvcp46i4v87+xf7k/djqbHkj9A2VU4qq+HxDHFkFJQT5ODPsHj+149Q6UuAIUcvZ6mz5V0xrhu40sPjYYhKzEitsTwsPJ222jLQyZ14/fseMnP0A/O/nHeRs/IB/R3wCwAdx7bBe9JOa8URlZSeT+tv7bNh3GID3H2ktw8JNQAocIeqApm7NGbbDwKDthXy+fRbn466Qc6WAtPBw0mfNBp0cCsyaTkvwhpU8e3ozJWkpLN63k+yMIp6OcKDp6r3y/lkYQ1YSXge/wIMMBgb7cG+z+mpHqpWkR5oQdYDnyxO4UniFHr+dIub3fvyqOQQoBMZGEjx5Ep4TJqgdUdxC2fvTbVUk7m4tIHMqo88ZCIpbhsfkUHn/LMyfx1IYADjY6HhPhoWbjBQ4QtQRvmNfZ8OJnWjKG241xAWOImxEN1VziTuQnYx9n3uJjQ5Ag/FUhkajNb5/fdwgOxmcvFUOKW4pOxmyk7mSX8y+3VsYALzSOo8GObGQg/H9k/ewWkm7phB1REZqPn//yCtoyEyVBTnNXuQiMhZPAir201DQkLl4IkQuUieXuHORi+Drnrh915d/Mg+A7jEfwNc9jRd5D6udtOAIUUe4etkDChW/JBVcvOxVSiTuWOhYtB49UOYWXNMCBygG7EfNgiayMKPZCx3LEceuTP3pCO20Ccy0ng+PzAKf9sbt0npT7aQFR4g6In/5QgJjl6LBOKOxougJjF1K3rIFKicTt+Xkza5l/yModhkKBuN1ioHAuGXsWLhOvhwtQJG9F1N2wDGlKQ2D7jVe6dMefEOMF3kPq51JC5zLly8zatQonJ2dcXV1Zdy4ceTk5Nz09gkJCWg0mhteVq9eXX67G21fsWKFKV+KEBatbLRU8JOhjJnRjZ4T/Pnp3s/Y0XIfl2bPIS08XO2I4haOfPYebX8+yo6W++gw9jJD3N6h9aOw0dWZVuuWE/vpF2pHFLfxzc7TnEzNoX49G57p2kTtOHWCSU9RjRo1iqSkJDZs2EBxcTFjx47l+eefZ9myZTe8vZ+fH0lJFVfN/frrr/nss88YMGBAhesXLVpE//79y//t6upa7fmFqDX0BjyuGS3V1q0Zz1k/wwztDGx0NowsyMZT5YjixooNxWw7u5n0HloMzwylW+v7IO8Uvp3asCzVlSU/QcOjF2llUNDKXCpm6VRaDl9sPAnAtIeCcPK0gp5TpdXGxExW4MTExLB+/Xr2799PaGgoALNnz+ahhx7i3//+N76+vtfdR6fT4e1d8Q3/+eefefLJJ3F0rLgAmaur63W3FULcmOekidddNyxgGL+d+o3lXY6R3iSFz1XIJW5v8bHFfHVPJm629fmt0xSwc4Xe09AAHwx2pW98f3KL9LjsO8tTXfxVTiv+Tm9QeOuHaIpKDPRo6cHQjg1Bo4He09SOVuuZ7BTVnj17cHV1LS9uAPr27YtWq2Xfvn139BgHDhwgKiqKcePGXbft5ZdfxsPDg86dO7Nw4cJbrpRcWFhIVlZWhYsQdZ1Oq+P9Lu+j0+jYcHYDfyb8qXYk8Tcnr5wkPMp4+vCNe97A1c61wnYfF3ve6h8IwCfr465bjFOob8meBA6cvUI9Gx0zHmuHRiOtbDXFZAVOcnIyXl5eFa6zsrLC3d2d5OTkO3qMBQsWEBQURNeuXStc/8EHH7Bq1So2bNjA0KFDmTBhArNnz77p48yYMQMXF5fyi5+frPkhBEBQ/SCea/ccAB/t/YhL+ZdUTiTKlBhKeHfXuxQbiunZqCePNHvkhrcbfW8TOjR2JaewhP/7+egtf+yJmnXuUh6fro8DYOpDQTRyc1A5Ud1S6QJn6tSpN+0IXHaJjY2962D5+fksW7bshq037777Lt26daNDhw68/fbbvPXWW3z22Wc3faxp06aRmZlZfklMTLzpbYWoa14IfoFWbq24UniFj/Z9pHYcUWrR0UUcu3QMJxsn3uvy3k1/+eu0Gj4ZGoyNTsvm2FRWR56v4aTiRhRF4e0fo8kv1hPW1J1RnRurHanOqXSB8/rrrxMTE3PLS7NmzfD29iY1NbXCfUtKSrh8+fId9Z354YcfyMvLY8yYMbe9bVhYGOfPn6ewsPCG221tbXF2dq5wEUIYWeus+bDbh1hprNhwdgPrE9arHanOO3HlBOGHjaempnWehpeD1y1v36qBE1MebAXAB2uOc/5KnskziltbHpHIntOXsLPW8snQYOkAroJKdzL29PTE0/P24y26dOlCRkYGBw4coFOnTgBs3rwZg8FAWFjYbe+/YMECBg0adEfPFRUVhZubG7a2trd/AUKI6wTVD+K54OeYd3geH+39iNAGoXjYe6gdq04qNhTzzs53KDGU0KtRLx5u9vAd3W98j2ZsOJ7CgbNXeHN1NEufC5MvVZWcv5LHx+tiAHjjwQD8PeqpnKhuMlkfnKCgIPr378/48eOJiIhg165dTJw4keHDh5ePoLpw4QKBgYFERERUuG98fDzbt2/nueeeu+5xf//9d7755huOHj1KfHw8X375JR9//DGTJk0y1UsRok54vt3zBLgFkFGYwUd7P5K+HCpZeGQhMZdjcLZxvuWpqb/TaTX854n22Fvr2HP6Ekv2JJg2qLghvUFhysrD5BSW0LGxK2O7NVU7Up1l0on+li5dSmBgIPfffz8PPfQQ3bt35+uvvy7fXlxcTFxcHHl5FZtTFy5cSKNGjXjwwQeve0xra2vmzp1Lly5dCAkJ4auvvuLzzz/n/fffN+VLEaLWs9ZZ82F346mqjec2sub0GrUj1TnHLh1jXrRxnaJpYdPwdKjc7ET+HvX4x0PGUVUz18dyOu3mE6sK05i37RQRCZepZ6Pjv8NC0Ekrmmo0Sh38mZaVlYWLiwuZmZnSH0eIv/nq8FfMiZqDg5UDqx9ZTWNn6RxZE/KK83hyzZOczTpL38Z9+bzX51UaUmwwKIxZGMHO+HRC/Fz54cUuWOlkVZ6acDgxg6Ff7qbEoPDZ48E8ESojdqtbZb6/Za8XQlTwXLvn6NSgE3kleby1/S2K9cVqR6oTPt73MWezztLAoQH/7PrPKs+XotVq+PTxYJzsrIhKzCifQVeYVm5hCa+ujKLEoDCwnQ+Pd5IFUNUmBY4QogKdVsfMHjNxsXXh2KVjzD508zmmRPVYe3otv576Fa1GW/63vxu+rvZ89Gg7AOZujWfnyfTqiCluYfqa45xJz8XHxY6PHm0rE/qZASlwhBDX8a7nzb+6/osndujJ+moBuy/svu42aeHhpM2eo0I6y5V2g4VNE7MTmb53OkN3GpgRF0Kod+hN7l05g9r7MqJzYxQFXl0ZRWp2AWQnw5YZxv+Ku1f699yy/zAr9iei0cB/nmyPq4ON2skEUuAIIW7i/sb309qzHcN2GNjx4WQSk5I4H3eFnCsF5auTI307KkenJX3WbNLCw8m5UsDZmDTe+/MD+m/JZtgOA51876nWp3v/kdYENHAiPaeQ11ZGoc9Kgm0zpcCpLtnJsG0m89YafwC8cF9zujaX6RXMhUlXExdCWLaHpy/m65wHCD3Skt/+dQzjbyKFwNhIgq9ZnVzcmbK/V/SqSGKjAwANnZRhBJ3UY/tiAA1evn5R1LthZ61j7qgOPDJ7F7viL/FDpIFh1foMdVthiQFbIKdQT4fGrkx5oJXakcQ15OeXEOKm7Kzs6P3618QEjOTq4UJDXOAo7Ec8q2Y0i2U/4lliA0cBxj4aGo2W2MCReD39ikmer4V9LrN6aWijOcOhiG3GK5MOw8Uo40VacyonOxkuRqFcPMSv6/8A4F67RL7ua4VNarT8Pc2ItOAIIW7JrdAbjSapwnUKGjJT83F0s1MpleXKSM2nrLi5Smu6v2fkIh7YMZMHrp3o/ffJV/+/51ToPa36n7e2ilwE22aiAZ4svepdZR4sM85fJH9P8yEFjhDilly97AGFil/KCi5e9iolsmxa1xIUDGiuaUDXmPLvGToWAgaQX6znqxU/8Wr+HGY7Tub5Jx/F1koLTrdfG1BcI3QsJ9268+bqIwRwmk+s58Mjs8CnvXG7/D3NhpyiEkLcUv7yhQTGLkWDcU5QRdETGLuUzO/nqZzM8hgUA39++jRBsctQMADG4iYgdin5yxea5kmdvME3BPsmnRg++BEA1l9qwNu7NSg+7eULuZKuaN15Zn0xUfom1GvS0XilT3vwDTFe5O9pNqQFRwhxU2WjpYInTyJsRDcSz6fw1uHXSDfE4Tt3D9Zaa7xeflntmBZj3XtjuXftGX7oeZ6H35qCV3FDXLzsyV8eZxyVBibtuO3tbDwFptNq+CXqIkE+zrzQs7nJnq+2KSzR8/x3kVzIyKdJfQdee6ABLFY7lbgZKXCEEDenN+BxzWipILcmzPSZzhhlDFBApwu7eQQpcO7EutPrOJi0n8geWjq99REdmrUt3+ZYVtToDaYN4eQNPafylKYzb65PZeb6WFp5O9E7wMu0z1sLKIrCWz9Esz/hCk52VswfE4qTQ66xz4202pglWYtK1qISotJ+P/U7/9j5DwD+L+z/GB44XOVE5i0iKYIXNr5AiaGEp1o/xVv3vKVqHkVR+MfPR1gekYiTrRU/TuhKqwZOqmYyd5//FceszfFYaTV8O7Yz3VvKfDdqkLWohBAm9UjzR5gYYpyzZUbEDDaf26xyIvN14soJXt3yKiWGEh5o8gBvhL6hdiQ0Gg3/GtSWzv7uZBeWMGZBBBcy8tWOZbZ+OHCeWZvjAfjo0bZS3FgIKXCEEFXyfPDzDG05FINi4K3tbxGVGqV2JLOTnJvMhI0TyC7OpqNXR2b0mIFWYx6HXRsrLV+P6URLL0eSswp4asE+LucWqR3L7Ow+lc60n6IBmNCrOcPuaaxyInGnzOOTJoSwOBqNhnfufYf7Gt1Hob6QSZsnkZCZoHYss5FdlM2ETRNIyUuhqUtTZvWZha3O9vZ3rEGuDjYsGdcZXxc7TqflMvbb/eQWlqgdy2xEn8/ghSUHKNYrPBzswxsPBqgdSVSCFDhCiCqz0lrx2X2f0aZ+GzIKM3hx44tczLmodizV5RXnMWnzJE5eOYmHvQdf9v3yrlcINxUfF3uWjOuMq4M1hxMzeGnpQYpKTNzZ2QIcu5jJUwsiyC4soXNTd/79RHu0Wlkh3JJIgSOEuCsO1g7MvX8ujZ0acyHnAs/++WydLnLyivOYsGkCB1IO4GjtyNz759LQsaHasW6phZcTC5+5B3trHdtPpDFlVRQlph7RZcZOpGTz1IIIMvOL6djYlYXP3IOdtU7tWKKSpMARQty1+vb1WdBvQZ0vcv5e3Hz1wFe0rt9a7Vh3pGNjN8JHd8RKq2FNdBITlx2qky05p9NyGDnf2B+pXUMXFo3tjKOtzKhiiaTAEUJUC+963uVFTtc/zrH87cduWOSkhYeTNnuOCgmrT9rsOaSFh1e4rqy48f9xP6N26fjqga8I9gxWKWHV9A7wYt7oTtjotKw/lsyL3x+goFhvXEByy4zau5Bk6etLPHuakfP3kZ5TSKC3E0ue7YyLvbXa6UQVSYEjhKg2ZUWOk50rD23KZPnbj3Ey8Qzn466Qc6WgfGZkdBZ+6NFpSZ81m7TwcHKuFBB/7CKvrHkD/x/3M2yHgYdbDra44qZM39YNmP90KLZWWjbHpvLc4kjyr1yAbTNrd4GzbSZTF28gOauAFl6OfP9cGG71bNROJu6CtLsJIaqVdz1vRnzyE8vffoyQo4H8+dGp0oUlFQJjIwm+ZmZkS1WWP3pVJLHRAYCG9spjBJ0sQD/Oj7Zv/kvdgHepZytPvh3bmXGL97MzPp1/5l/iE7VDmdCBc1foBGTkF9Pax5lvn70HD0fzGvEmKk8KHCFEtfOu582j/1jNmg9irlk1W0Nc4CjCRnRTNVt1sR/xbHlxA6DRaIkNHEXYc7Xj9XXxKuaHwQ7887djkHwKrOFSfAT1y27g5G3ZSxRkJ0N2MptjU9m4+S86WcEQ7zRGDranXnYsYOGvT0iBI4QwDatsh2uKGyMFDRmpeTi62amUqvpsP7aXsuLmKg2Zqfm14vURuYjW22aySgOUdkOpv/lNKJu0uudU6D1NrXR3TYlciGbbJ/QB+pR+E46/8gV8+4XxHxb++oQUOEIIE3H1sgcUri0CFEXP4vPf8GaLV7HRWWb/BkVRWBa7jLkxXzFSeQ/NNTMTa1Bw8bJXMV01Ch0LAQMAyDoTifOG13m7eDyxNOXFns0ZEBqibr67kFVQzEdnQzla+BEAL7XK4eGzM+CRWeDT3ngjab2xeBbe008IYa7yly8kMHYpGsrW8zUQFLec4hWLGb1utEXOepxZmMmrW15lZsRMHoy4RFDcsvLXp0EhIHYp+csXqpyymjh5g28I+Ibg3DQUAPcW93BY789Lm/W8synNOMLKwhy7mMmg2TtZGVvMCW0zhg16mIf79Tdu9Glf/pqlwLF80oIjhKh2ZaOlgidPImxENzJT83Hxsidm3l8MW2xgJcd4MutJ/i/s/xjUfBAajfnPELs/eT/TdkwjJS+FJ3bBEzsMeEwKJWzk1deXvzzOOEoMLL4j9Y281a8VDo0d+c+GE3y/9xx7Tl3iv8NCCG7kqna021IUhRX7E3n/t2MUlRho6GrP3FEdCfFzhYtRascTJiAFjhCi+ukNeFwzWqqsT8o90z7ljL0HjRI2kF+SzDu73mH3xd28c+87ONk4qZn4pooNxXwd/TVfR3+NQTHg7+zP4y064hHS4LrX51hW1NS2WYCdvKHnVDROPky635u2jVx464doTqXl8lj4bib1acmE3s2xNtPh/xcz8vnnb8f463gKAH0Cvfj8yfa4OpSeJi19fdJqU7toFEVRbn+z2iUrKwsXFxcyMzNxdnZWO44QdY7eoGfB0QWER4WjV/S427nzasdX6bb+PBqd7oatH2nh4aA34DlpYrXlSJs9B3Tamz5fYsZZ/tU6ltOZpwEY0mII0zpPw8Haodoy/H979x7U5LnnAfybEBIoIjchJIAIcgleABVhAW+nslrb9ainY4XSGbxMu1LYamnPWrtVeqataKc9a3EtltajdnapdXrEqmfVskqhF0RF8Ui9odKDckstSgIqSPLuH2lT8RKxDb4v4fuZyUx4c3m+eYYhP97neZ+nv7rS0YXXdtTgbyeaAAAxgR5Y9YfRGKm9Zc8tYzNwZJNlPs/DKB5ua6/bZMbmb7/Hn0vO4lqXCQq5DDnTIrB40nDuK9VPPcj3N8/gENFD5yR3wnPRzyHePx4rvlmB7w3fY+W3K5F5bgh+t8+ymJxr2kJc1V+Hp58rrn/yF1zOX4chL/ybvYNYh5Ruba9l83+i64OPsXOiHBcC5PBSeWF5wnLMCJlh3/b7MS83Jf7r6TGYdlyNFTtqcPxSG/5l3deYExuAl6ZHIsDT1bqAHiJnPLwC56f2jl1R4T+Ka3CyyQAAiAv2wltzRiPSX5pnCsn+WOAQkWhi/WKx/ffbUXS6CAXHC1Aw9jL01+SYeMsCen25QODdFuwDzNCdrsVXE+XYMdEZz+jSkBmbicFKnu29nUwmw6zYAMSHeCPvf09j5/FGbD/WgN0nmrAgeRiydd0Qo5xYufM7fPx9AwDAw9UZy2fo8FRcEM/aDDB9NmD61ltvISkpCY888gg8PT179RpBELBy5UpoNBq4uroiJSUFtbW1PZ7T2tqK9PR0DB48GJ6enli0aBHa29v74BMQ0cPg7OSMjJEZ2D1nN2aHzcbe8V44Ffk0frm83LJAoGvawnu+x932hrI+dp+9r1zTFuK0Lv2W9uQ4FZkG/RNT8dff/xXL4pexuLkPjYcr8tPGYGd2Mh4LFhBuOo+vy/fjnc3bAACNpystE3kbq3u33cOD7H1lbIbQeAyHK0pRsHU7AKDz4jGMltdhyYgOHPhXHVLjh7K4GYD67AxOV1cX5s6di8TERGzcuLFXr3n77beRn5+PLVu2ICQkBCtWrMD06dNx8uRJuLhYJvGlp6ejqakJJSUluHnzJhYsWIDnnnsORUVFffVRiOghGOI6BG8kv4Hpzsdw/OiVHo8JkKGo8jNMjh+PCK+IO6+6usdQk62hrYb2BpRfKsc3h44hCo/1eEwmc8KrUa8j0NPbvh/SwUUHeqJA93fIWnpu7KAt/3eg3HL/RtIf4TLtNdtv1IuhLUEQcOziVbTvfRuTGjdiPIDxPz22xvlDy50LAE69Avhzwb6BqM8KnD/9ybIXy+bNm3v1fEEQsHbtWrz22muYNWsWAODjjz+GWq3Gjh07kJqailOnTmHv3r04fPgw4uIs6zKsW7cOjz/+ON555x1otdo++SxE9PDEhkfhOL7B7QsE/qV+A9a1rIG/mz8mBUxCkjYJwz2HI8A94B5DTb8MbflkLkZjeyPq2upQ2VyJry59hXNXzwEA3Do9oBOm3bFgn6cfJxL/GrK4hUDk4xAg4PzxbxFW+Spe7X4Wx03DAAA/lHrC78xXSBo+BImhPhgb7NWrHbs7u02obWnHqSYDahraUHKyBY1tN+CLsfCThcLVWY4FoQY88T0X7CMLyczBqaurQ3NzM1JSUqzHPDw8kJCQgIqKCqSmpqKiogKenp7W4gYAUlJSIJfLUVlZiTlz5tz1vTs7O9HZ2Wn92WAw9N0HIaLfxLJA4BGc0aVDgAwyCNCd+QSL3T2wPrYTzR3N2HZ2G7adtQx/OMmcEDAoAKGBkdDpeg5tndY9jQ+9N6P2vzeiy9zVox0nmRNi/WKRVqGA4kxRj/YsC/ad+eWyb+q9n/aokgEIgwyoBP44fx4+ueSF4qMN0OvboW8woKbBgMJyy9Vpg1QKjHC/hgi3Dvi4KRF4oxZzAWzZ/jlq5TW4cq0LR1tVaDJ79mjKTemExKiReHy0BlMifeHywwmgMO+XBftoQJNMgdPcbBlrVavVPY6r1WrrY83NzfDz8+vxuEKhgLe3t/U5d5OXl2c9o0RE0nWvBQKvf3IG2vx1mD4sE7WzY1F+qRzV+mrUG+txvfs66o316G5TQnfHtEI5rug70OXRBYVcgSD3IIzwGYHJgZORpE1C18b/weVPLUNYt7fnyAv2PWxejzjj+SlheH5KGPSGG6i48CMqzv+Ib85fxsXW62jv7EaSaSeWtm/v8bqMy3+23l8r/wM2qdIQpXFHlGYw/inUB5MjfOHi7PSwPw71Ew9U4LzyyitYs2aNzeecOnUKOp3uN4Wyt+XLlyMnJ8f6s8FgQFBQkIiJiOiu7rFA4K0L6E0KnIRJgZMAWIa29df0+IfhH6hrvIjLJ3vufQWYseyfcxAeOAwaNw0U8p5/8n7oRXv0G9xlAT2/wS6YFRuAWbEBAIBrXd1oaruBH5tC8H8/pOHHjk6o289gytk3UDn6dVzzHoVBKgVSg0OwRBtse9VrLthHt3igAuell17C/PnzbT4nNDT0VwXx97f8Qra0tECj0ViPt7S0IDY21vocvV7f43Xd3d1obW21vv5uVCoVVCrVr8pFRA+PrUX87nYmRSaTQe2mhtpNjZDiI/j76b/dNtRUhNGlcfB9fqJd2qMH5O5/3x25H1EqMNx3EIb7jgAwwnKwMQg4+wYSEn/3YENNvWiPBo4HKnB8fX3h6+vbJ0FCQkLg7++P/fv3Wwsag8GAyspKZGZmAgASExNx9epVVFVVYdy4cQCAAwcOwGw2IyEhoU9yEZH02Rra4lAT0cDUZ3Nw6uvr0draivr6ephMJlRXVwMAwsLCMGjQIACATqdDXl4e5syZA5lMhqVLl+LNN99EeHi49TJxrVaL2bNnAwCioqLw2GOP4dlnn8WGDRtw8+ZNZGdnIzU1lVdQEQ1kHGpyLBxqIjvos72o5s+fjy1bttxxvLS0FFOmTLE0LpNh06ZN1mEvQRCQm5uLwsJCXL16FRMmTMD777+PiIgI6+tbW1uRnZ2NXbt2QS6X48knn0R+fr61aOoN7kVFRETU/zzI9zc322SBQ0RE1C88yPe3NPe2JyIiIvoNWOAQERGRw2GBQ0RERA6HBQ4RERE5HBY4RERE5HBY4BAREZHDYYFDREREDocFDhERETkcFjhERETkcPpsLyop+3nxZoPBIHISIiIi6q2fv7d7swnDgCxwjEYjACAoKEjkJERERPSgjEYjPDw8bD5nQO5FZTab0djYCHd3d8hkMru+t8FgQFBQEC5evMh9rm7DvrGN/WMb+8c29s+9sW9s60/9IwgCjEYjtFot5HLbs2wG5BkcuVyOwMDAPm1j8ODBkv9FEQv7xjb2j23sH9vYP/fGvrGtv/TP/c7c/IyTjImIiMjhsMAhIiIih8MCx85UKhVyc3OhUqnEjiI57Bvb2D+2sX9sY//cG/vGNkftnwE5yZiIiIgcG8/gEBERkcNhgUNEREQOhwUOERERORwWOERERORwWODY0fr16zFs2DC4uLggISEBhw4dEjuSZJSXl2PmzJnQarWQyWTYsWOH2JEkIy8vD+PHj4e7uzv8/Pwwe/ZsnDlzRuxYklFQUIDo6GjrImSJiYnYs2eP2LEkafXq1ZDJZFi6dKnYUSTh9ddfh0wm63HT6XRix5KUhoYGPPPMM/Dx8YGrqytGjx6NI0eOiB3LLljg2Mmnn36KnJwc5Obm4ujRo4iJicH06dOh1+vFjiYJHR0diImJwfr168WOIjllZWXIysrCwYMHUVJSgps3b2LatGno6OgQO5okBAYGYvXq1aiqqsKRI0fw6KOPYtasWfjuu+/EjiYphw8fxgcffIDo6Gixo0jKyJEj0dTUZL19/fXXYkeSjCtXriA5ORnOzs7Ys2cPTp48iXfffRdeXl5iR7MPgewiPj5eyMrKsv5sMpkErVYr5OXliZhKmgAIxcXFYseQLL1eLwAQysrKxI4iWV5eXsJHH30kdgzJMBqNQnh4uFBSUiJMnjxZWLJkidiRJCE3N1eIiYkRO4ZkLVu2TJgwYYLYMfoMz+DYQVdXF6qqqpCSkmI9JpfLkZKSgoqKChGTUX/U1tYGAPD29hY5ifSYTCZs3boVHR0dSExMFDuOZGRlZeGJJ57o8TeILGpra6HVahEaGor09HTU19eLHUkydu7cibi4OMydOxd+fn4YM2YMPvzwQ7Fj2Q0LHDu4fPkyTCYT1Gp1j+NqtRrNzc0ipaL+yGw2Y+nSpUhOTsaoUaPEjiMZJ06cwKBBg6BSqbB48WIUFxdjxIgRYseShK1bt+Lo0aPIy8sTO4rkJCQkYPPmzdi7dy8KCgpQV1eHiRMnwmg0ih1NEi5cuICCggKEh4dj3759yMzMxAsvvIAtW7aIHc0uBuRu4kRSlZWVhZqaGs4TuE1kZCSqq6vR1taGzz77DBkZGSgrKxvwRc7FixexZMkSlJSUwMXFRew4kjNjxgzr/ejoaCQkJCA4OBjbtm3DokWLREwmDWazGXFxcVi1ahUAYMyYMaipqcGGDRuQkZEhcrrfjmdw7GDIkCFwcnJCS0tLj+MtLS3w9/cXKRX1N9nZ2di9ezdKS0sRGBgodhxJUSqVCAsLw7hx45CXl4eYmBi89957YscSXVVVFfR6PcaOHQuFQgGFQoGysjLk5+dDoVDAZDKJHVFSPD09ERERgXPnzokdRRI0Gs0d/yRERUU5zDAeCxw7UCqVGDduHPbv3289ZjabsX//fs4ToPsSBAHZ2dkoLi7GgQMHEBISInYkyTObzejs7BQ7huimTp2KEydOoLq62nqLi4tDeno6qqur4eTkJHZESWlvb8f58+eh0WjEjiIJycnJdyxJcfbsWQQHB4uUyL44RGUnOTk5yMjIQFxcHOLj47F27Vp0dHRgwYIFYkeThPb29h7/NdXV1aG6uhre3t4YOnSoiMnEl5WVhaKiInz++edwd3e3ztvy8PCAq6uryOnEt3z5csyYMQNDhw6F0WhEUVERvvzyS+zbt0/saKJzd3e/Y66Wm5sbfHx8OIcLwMsvv4yZM2ciODgYjY2NyM3NhZOTE9LS0sSOJgkvvvgikpKSsGrVKjz11FM4dOgQCgsLUVhYKHY0+xD7Mi5Hsm7dOmHo0KGCUqkU4uPjhYMHD4odSTJKS0sFAHfcMjIyxI4murv1CwBh06ZNYkeThIULFwrBwcGCUqkUfH19halTpwpffPGF2LEki5eJ/2LevHmCRqMRlEqlEBAQIMybN084d+6c2LEkZdeuXcKoUaMElUol6HQ6obCwUOxIdiMTBEEQqbYiIiIi6hOcg0NEREQOhwUOERERORwWOERERORwWOAQERGRw2GBQ0RERA6HBQ4RERE5HBY4RERE5HBY4BAREZHDYYFDREREDocFDhERETkcFjhERETkcFjgEBERkcP5fxZn4orpSGWTAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "spl=NumbaCubicSpline(xx,yy)\n",
+    "spl_der=spl.as_derivative()\n",
+    "\n",
+    "x_new = np.linspace(0, 2*np.pi, 33)\n",
+    "y_new = spl(x_new)\n",
+    "y_der = spl_der(x_new)\n",
+    "yy_der = spl.derivative(x_new)\n",
+    "\n",
+    "plt.plot(xx,np.sin(xx),'-')\n",
+    "plt.plot(x_new,y_new,'+')\n",
+    "plt.plot(xx,np.cos(xx),'-')\n",
+    "plt.plot(x_new,y_der,'x')\n",
+    "plt.plot(x_new,yy_der,'.')\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "0774180b",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x7faa9b155e50>]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTQ0lEQVR4nOzdd3xT9f7H8VdWF3TSlrZQKLvssi1TFFnKUNCiIIIIagWu4lXBgdeJ6/rzUqggG2U6QAUE2RuKIKNQNmU23bSlM+v3R2ilMlubnqT9PB+P81CSk+SdZpxPvuc7VBaLxYIQQgghRAWiVjqAEEIIIURZkwJHCCGEEBWOFDhCCCGEqHCkwBFCCCFEhSMFjhBCCCEqHClwhBBCCFHhSIEjhBBCiApHChwhhBBCVDhapQMowWw2c+XKFdzd3VGpVErHEUIIIcQ9sFgsZGVlERQUhFp95zaaSlngXLlyheDgYKVjCCGEEKIULl68SM2aNe+4T6UscNzd3QHrH8jDw0PhNEIIIYS4F5mZmQQHBxcdx++kUhY4haelPDw8pMARQgghHMy9dC+RTsZCCCGEqHCkwBFCCCFEhSMFjhBCCCEqHClwhBBCCFHhSIEjhBBCiApHChwhhBBCVDhS4AghhBCiwpECRwghhBAVjhQ4QgghhKhwbFrgbNu2jX79+hEUFIRKpWLlypV3vc2WLVto3bo1zs7O1K9fn/nz59+0z/Tp0wkJCcHFxYUOHToQExNT9uFLIDlqGsnR0be+Ljqa5Khp5ZxIlFqWHjZPsf5XCCHEPbO3Y6FNC5zs7GxatmzJ9OnT72n/c+fO8fDDD9O9e3cOHjzIyy+/zHPPPce6deuK9lm2bBkTJkzg3Xff5cCBA7Rs2ZJevXqRlJRkq6dxdxo1KVOjbnphk6OjSZkaBRppKHMYWXrY+okUOEIIUVL2diy0lBPAsmLFijvu8/rrr1uaNm1a7LKIiAhLr169iv7dvn17y0svvVT0b5PJZAkKCrJMmTLlnrNkZGRYAEtGRsY93+ZukqZPtxxrFGpJmj79lv8WDuLynxbLux7W/wohhCgRWx8LS3L8tqvFNnfv3k2PHj2KXdarVy9efvllAAoKCti/fz+TJk0qul6tVtOjRw9279592/vNz88nPz+/6N+ZmZllGxzwi4xEn60nZWoUSdHTURvNpA7rSUr/5qSnn6SuZ120arv6c1d6FouFS+m5nD13hty0y+QbzLhfPcoDwJr168j3vYyfuzMe/sH4B9bGz90ZjfruC7wJIURlYbFYuJh1kUvXLpGRn8HVB7zx1N8HU6NI/joalcGE7/hx+EVGlns2uzri6vV6qlevXuyy6tWrk5mZSW5uLunp6ZhMplvuc/z48dve75QpU3jvvfdskvlGcf2bETr/e3RGMwYNvBi8CTZuAsBV60pz3+a09GtJS7+WtA1oS86MeaBR3/KFT46OBpMZv3FjbZ67QsrSwx/zoO1IcA8AoMBoZufpFLaeTOZYQiZxCZlk5Rl5WfsDL2t/Knbzvuc+hnPW///K+BhfGQdT1VlLhzo+hNerRqf6vjSq7o66sOC5xeMJIYSjSY6adsfjkslo4OITHTmYdJBDyYc4nHyY9Pz04jvWg0Ua0BlMqHQ6RYobsLMCx1YmTZrEhAkTiv6dmZlJcHBwmT9Ok1+OojGBSatGZzTzr0NBrOvuwcWsi2QbsonRxxCjt3aIdtW68vKlGrT6+TgWiwX/l14qup/C85W+48eVecZK43pfGkP93uy4rGb1kQR+P6onM89YbDedRkVMtYG8X+UhnHUa6hpO8/iVz/il9kSOWeqQeq2AE9luaLNUXMs3svF4EhuPW/t7VaviRN/mgQy9rxah5ut9dxr1kQJHCOG4rvejAYoKE4vFwrH/vod69jJ+7u7GonWzi93ESe1ELY9aeLt44+XsRfi6i+hMsVh0WjAYSI6OlhacgIAAEhMTi12WmJiIh4cHrq6uaDQaNBrNLfcJCLj9QcXZ2RlnZ2ebZC6UHB2NZs7yoqa45OhoOk2NYkD9cfi88DxnM85yKPkQh5IP8Yf+Dy5du8SUJqcZlKYmImoaexP2Ev7Wl1jmLS8qbpSqeiuCrHwj7sAz82LYlVOz6HI/d2d6Na1Oq2BvmgR5UM+vKk7aGzq+XTkI33xG/1596B8UVnSxyWwhLiGTXWdS2Hk6lZhzaaRmF/DtnvN8u+c8jwel8jmQbzRj23eaEELYTuFxJ2VqFEazkQ0PeJP+9Tc8tD6FZV3U/HhfAT4uPrQLaFd0RiLUJxQnjRNw/Qf6it+KHQv/XjCVF7sqcMLDw1mzZk2xy9avX094eDgATk5OtGnTho0bNzJw4EAAzGYzGzduZOxY5U7l3NjiUvgC3vgmAWgQGUkD7wYMbjgYi8XC4ZTD/HrmV35z+g24SsQP+7iyogs6E7hHjpHipjSy9KQnXeTng5c5d3gX76kgOP8UXaqq6FSvGu2bN6Flk9BS9aPRqFU0q+FJsxqejOlajwKjmQNH49j8x2H2nE1DnXgOdPDZvGWEdUikd7MAdJ6B0pojhHA4Hs+P4nDyYZj2NS2/Bp0JfuiqI3toL6bX60fHoI637FN6L8fC8jy22bTAuXbtGqdPny7697lz5zh48CA+Pj7UqlWLSZMmcfnyZRYuXAjACy+8wLRp03j99dd59tln2bRpE8uXL2f16tVF9zFhwgSeeeYZ2rZtS/v27fnqq6/Izs5m5MiRtnwqd2Yy37LFpejfJnOxy1UqVVHl+3q719kSvgXjwy+jM1kwaOBx3+UMP+jC002epqpT1fJ6Fg4tt8DEgaWf0+nybEYAXK9hPtXNAiNwAgiYCOpJt70PwFqQdJt418LESavmvrRfuO/iJ6D76/J3LDNgzwzYA6cbj6XeEx+iUknHZCGE/TOYDaw8vZKZh2aSGJJo7UdjArNWw7+m7cDDyePOd1DCY6GtqSwWi8VWd75lyxa6d+9+0+XPPPMM8+fPZ8SIEcTHx7Nly5Zit3nllVc4duwYNWvW5J133mHEiBHFbj9t2jQ+//xz9Ho9YWFhTJ06lQ4dOtxzrszMTDw9PcnIyMDD4y4vWDkorHotOi0qg9HaDNhZja+rL+/c9w4P1HpA6Yh2bcuJJN75OZa8tCv4q67SsHpVnquXRdP9b0O/qRDY0rqje0DZtqhk6f+aLyfhEPw6nt1N32Xa8SpczTGQZPGidu26/Kd/U5rV8Cy7xxVCiDJ2NPUok3dO5mT6SQCG73XlkU1ZoNOBwWA33SZKcvy2aYFjr+ypwPl7k17S9OmkRk1jXQ8f5rSzDmfvU6cPk9pPwtvFW9Gs9iYpK48PVsXx66ErAAR6uvBuv6b0alodVcIh+KYbjNkKN/SlsZkrB4se71q1ZszceoZZ28+SZzCjVav414MNePH+emhl0kchhB0pMBXw9aGvmRc7D5PFhJezF/850ZSgJVtv6kdjD0VOSY7fdtUHp7K51ZvG/6WXUKlU9JoaRV2vtrzT8DC/nfuNvQl7eavDW/QM6alwavuwNjaB1384TGaeEbUKRnaqwysPNaSqs/Jv6arOWl7t2YihHWrz/qqjrDmi57/rT7LpRBL/90QYIb5VlI4ohBAcTj7MOzvf4WzGWQB6h/Rm3KEAspfMtpt+NP+EtOAo2IJzt/kGMJlJfPJ+3tn5DqevWvsyDWowiDc7vFnUY72yMZjMfPrbcWbvsE5S06KmJx8/2vzmU0DlPS/NbR7PYrHw88ErvPNzLFl5Rlx1Gt55pAlPtg+WvjlCCEVYLBYWHlvIl/u/xGwxU82lGu/c9w4P1n7wno5LSs7PJqeo7sJeCpx7VWAqYMahGcw+MhsLFsbu96VXvb6E/Ou1m/a1hzdgmbqhcNCbvRi7+AB/nLdOKvV817r8u1cjdA5w2ufy1Vz+vfwQu8+mAjC4TU0+erQZzlqNTBIohChztytUco25/PTmk5xJO8n3XTT0qdOHN9u/iZeLlzJBS6gkx2/7PzIInDROjG89nukPTsfdyZ2E3CRyv57Lkc8nF9uvQi7ueX3CvkPHjvPw1O38cT4dd2ctM59uw6S+jR2iuAGo4eXKouc68GbfUNQq+GH/JYbN3kvqtXxZ4FMIUfZusfDlpaxLzJnQi9a/nAC1hkntJ/Fpl08dprgpKeU7LIh71qVmF5Y+vJR/uf0LOEnEnO/ZmptKt8nT7aoTmC1M/uUoqaYQmgR68PWw1tSu5nj9WNRqFWO61qNRgAdjFx9gX3w6A6bv5Lu+LoQoHU4IUaH8vd/M2UfbsOn9Fxm4OZdfuleh77szaBvQVsmINienqBzgFNXf5RhyeHvn23gsWkfEdjNmrQa1UbkFzcrcDcOvt2/bQJfjH/CGYTTe9drySo+GOHsHOfypnHPnTvPRsi0kZOTRRnee99Xf2HZIuxCiUir88Wu4PqfN5l4BPPbxEgKqOOb3i/TBuQtHL3DA2kls+sHpdB02Hd319a+aHomtGB1XN0+xnrK5nW4ToftdJuyzd5XhOQohFPfz6Z+pM2Di9eOEivoHD+CidVE6VqnJMPFKQKVSEbFbTYoJa2VuNPP9pCcY9PFSNGqN0vH+EUOrZ5h6oR6bjifRTB3Pp7pZWPpNRXVj64ajazsSGvXBYLLww+pVPKn/gomG0fTq0YvujfwqxnMUQihqUdwiTn35MQ2v/wjWGM1kfTMXl4rQ0n8PHKOHprjJjX1uzqz8mOVdNTRfGcuSiY9hMBmUjldqJrOFl9foiYqrwnFVXR56wDrvjyqwpXXCvqCwinHwdw+AoDB0wa14ot8jABwxh/Ds7wUsv1KtYjxHIYQiLBYLMw7N4NSXHxOx3czxx1rR5MgRfMePu6njcUUmLTgO6O8dih8F3N5043v+zeO/nGSpZRBPfbrC4VpyzGYLr/9wmNWHE9BpVHw9tA09vBJgu9LJbEtz/bRin2YBHD0Cr/9wGIPJzNAOtRVOJoRwRDMOzyBx2jQitps598R9DHxvLiqVymEn7CstacFxRLdY0KxXSC+6T47m+65azqWf5v097+NI3assFgvv/BzLjwcuoVGriHqyNT2aVL/nxS8d2vXn+FK/TozoGALAWytiWRpzQdlcQgiHsyhuEdEHo1FbLFwa0oW+788r1jfTLzIS3/Hjyn3hSyVIJ2MH7WR8OxvOb+DVra9itph5pskzvNr2VbvveGyxWPhwdRxzdpxDpYKvIsIYEFZD6ViKsFgsfLwmjlnbz6FWwYxhbejZtAIXd0KIMvPLmV94a8dbAES2jOTFsBcVTlT2ZKK/SqxH7R78J/w/ACw4toBZR2YpG+ge/N/6k8y5vvTCp4+1qLTFDVg7j7/ZtzFPtK2J2QLjlvzJvvg0pWMJIezcpgubmLzTOvnrsMbDeKHlCwonUp4UOBXQow0e5bW21mUcov6MYsnxJQonur0lMReYusm6ztb7A5ryRLtghRMpT6VS8fGjzXkw1J98o5lR8/dxQp+ldCwhhJ2KSYjhta2vYbKY6F+vP6+1e83uW+7LgxQ4FdTwpsN5vsXzAEzZO4XNFzYrnOhmO06l8PbKWABe7tGA4eEhygayI1qNmmlPtaZ1LS8y84w8MzeGy1dzlY4lhLAzZ66e4V+b/0WBuYAHgh/gvY7voVbJoR2kwKnQXgp7iccbPo4FC29sf4MTaSeUjlTkVGIWLy7aj8ls4dFWNfjXgw2UjmR3XJ00zB3Rjvr+VdFn5vHM3Bgy8xx3CgAhRNm6mneVsRvHcs1wjdb+rfms22do1TI4upAUOBWYSqViUodJdAjoQK4xl/GbxpOam6p0LJKz8hk5fx9ZeUbah/jwyaDm0px6G15uTix8tj0BHi6cTrrGhGUHMZsr3bgAIcTfGEwGJmydwKVrl6hRtQb/1/3/cNY4Kx3LrkiBU8Hp1Dr+e/9/qeVeiyvZV3hlyysUmAoUy5NnMDF64R9cSs8lpJobM59ug7PWsebrKW9BXq7MfLoNTlo1G+KS+L8NJ5WOJIRQkMVi4eOYj9mn34eb1o2oB6LwcfFROpbdkQKnEvB09iTqwSiG7tRS96f9vL/75jlykqOjSY6aZrsQWXosmz9myrItHLx4FS83HXNHtMO7ipPtHrMCaRnsxSePNQcgatNp1hxJsC5IunlK0cKkQoiKJzlq2k0zDy8+vpgfTv7AoB1mpsd3oYG3nOK/FSlwKom6nnXpWbc3EdvNaBesYOGxhUXXFc6MjMaGb4csPaqtn/LH0Tg0ahXRQ1tT16+q7R6vAnqsdU2e61wHgFeXH+LcuTPWBTulwBGi4tKoiy2vsPvKbj7b9xmDdpiJ2G6mtnddhQPaL+mNVIm0njiFjfnpRCzZynLV5xz8sCU1fthVbNkHWzmVlEXhb4zXejWiYz1fmz1WRTaxTygnErPYfiqFD1YfY67SgYQQNnXj8grZhmwmBqzi0e1GIrab8R1n2+9tRycFTiXzwOSvWZQ9kCd+OYmh+5OkmLBdcZOlhyw9WXkGfly1holARI1Unm6QCVcOWpcoqMhLMNiANieJ6O5qXklOoFrWCdCB+cqhv5pi5W8qRIXjFxmJ2WImLWo6URrQmcBr7Iv4vSTFzZ3IUg0VbKmGe3Gt4BrnWrVDawKTVkWTI7G2mTdh8xTrKZTb6TYRuk8q+8etyORvKkSl9L8D/6P70zPQmQCdjsZHDisdSRElOX5LC04llDt7IVoTGDSgM1pY/58x9Hpvdtk/UNuRLM1sxrd7zhOmPc9Hmm+g31QIbGm9XloaSq7tSGjUB4A9uzZxX+x7vGkczTODBtCourv8TYWogHZc3kH619+gM4FFp0FlMJAcHS2np+5COhlXMoUdin3Hj+Pkig9Y1kVNrWU7OfzZO2X+WPtSnXhzj5qjljrcf38P64WBLSEozLrJwbjk3AOK/n4dOnYH4JAphOfWG8j0aSp/UyEqGH22nh0f/ouI7WaOPtqCJkdi8R0/rljHY3FrUuBUIjcWN36RkQxqMIi84f1Y1kWNbu4PXJz6ZZk9VmaegZeXHsRsgUGta/JQ4+pldt/CSoV1csTqHs5cTMtl0o9Hbhr+L4RwXEazkZ/fHsaAzTls6ulPvw+to1/9IiOlyLkHUuBUJiZzsQ7FKpWKyfdN5sDD9VjWRc3W85vL7AD5n5+PcvlqLrV83HhvwPWWhW4TpYWhLF3/m77yaFe0ahWrjySwJOai0qmEEGVkXuw8ErOu8NP9zvT/8LtiMxUXFjmYzAomtG/SybgSdjL+u2Opxxi6eihGi5GPO39Mv3r9/tH9/XroCuOW/IlaBd+/EE6b2jLDpq3N3HqGKb8dx1mrZvX4LtT3lzmGhHBkcalxPLX6KYwWIx91/oj+9forHckulOT4LS04gibVmvBCyxcA68rj+uzSTxx35Woub604AsDYBxpIcVNORnepS5cGvuQbzfz7+0MY5VedEA4r35TPpO2TMFqM9KjVg351/9mPzspKChwBwKjmo2jh24IsQxZv73gbs6XkB0iz2cKE5QfJzDPSMtiLcQ/Ut0FScStqtYpPB7XA3UXLwYtXmbntrNKRhBCl9L8D/+NMxhmquVRjcvhkWYy4lKTAEQBo1Vo+6vwRLhoX9ur3sjhucYnvY86Oc+w5m4abk4avIsLQ2XLpB3GTIC9X3u3XFICvNpzkuD5T4URCiJKKSYjh22PfAvB+p/fxdvFWOJHjKpcj0PTp0wkJCcHFxYUOHToQExNz233vv/9+VCrVTdvDDz9ctM+IESNuur53797l8VQqtBDPEF5t+yoAXx34irNX770V4GzyNb74/QQA7zzShDq+VWySUdzZoNY16NG4OgaThQnLDlFglFNVQjiKrIIs3tr5FgCDGgyia82uCidybDYvcJYtW8aECRN49913OXDgAC1btqRXr14kJSXdcv+ffvqJhISEoi02NhaNRsPjjz9ebL/evXsX22/JkiW2fiqVQkSjCDoFdSLflM9bO97CZDbd9TZms4WJPx4h32imSwNfhrQLLoek4lZUKhUfP9YMLzcdxxIymbb5tNKRhBD36Is/vkCfradm1Zq83u51peM4PJsXOF9++SWjR49m5MiRNGnShBkzZuDm5sbcubdeJtDHx4eAgICibf369bi5ud1U4Dg7Oxfbz9tbmvHKgkql4r2O7+Gucyc2NZbFx+9+qmrR3vPExFtPTX38aHM5X6wwf3cXPhzYDIDpm09z5FKGwomEEHezN2EvP536CYAPO3+Im85N4USOz6YFTkFBAfv376dHjx5/PaBaTY8ePdi9e/c93cecOXMYMmQIVaoUP+WxZcsW/P39adSoES+++CKpqam3vY/8/HwyMzOLbeL2qlepzoS2EwCI+jOKy9cu33bfS+k5fPLbcQDe6B1KsI98KO3BIy2CeLhFICazhdd+OIRBRlUJYbfyjHm8t/s9wNqK3qZ6G4UTVQw2LXBSUlIwmUxUr158Ftvq1auj1999KHJMTAyxsbE899xzxS7v3bs3CxcuZOPGjXz66ads3bqVPn36YDLd+nTKlClT8PT0LNqCg+UUyt081uAx2lZvS64xlw92f3DLCQAtFgtvroglu8BEuxBvnr6vtgJJxe28378p3m46juuzmLPjnNJxhBC38fWhr7mYdRF/N39ebv2y0nEqDLse5jJnzhyaN29O+/bti10+ZMgQ+vfvT/PmzRk4cCCrVq1i3759bNmy5Zb3M2nSJDIyMoq2ixdltte7UavUvBv+Lk5qJ3Ze2cmqs6tu2ufHA5fZdjIZJ62aTwa1QK2WU1P2pFpVZ97s2xiwjqq6kJqjcCIhxN/Fpcax4OgCAN7u8DZVnWSSzrJi0wLH19cXjUZDYmJiscsTExMJCLjzlP3Z2dksXbqUUaNG3fVx6tati6+vL6dP37pDpbOzMx4eHsU2cXchniG8GPYiAJ/u+5TU3L9OAyZn5fPBqmMAvNKjIfX85ENpjwa3qUl43WrkGcy8tVLWqhLCnhjNRt7d9S4mi4leIb3oXqu70pEqFJsWOE5OTrRp04aNGzcWXWY2m9m4cSPh4eF3vO33339Pfn4+w4YNu+vjXLp0idTUVAIDA/9xZlHcM02foZF3IzLyM/hs32dFl09ZE0dGroFmNTwY3aWOggnFnVhHVTXHSatm+6kUfjl0RelIQojrvjv2HXFpcXg4eTCx/USl41Q4Nj9FNWHCBGbNmsWCBQuIi4vjxRdfJDs7m5EjRwIwfPhwJk2adNPt5syZw8CBA6lWrVqxy69du8Zrr73Gnj17iI+PZ+PGjQwYMID69evTq1cvWz+dSken1vF+XBMG77Sw5twadpz6lUs/vcP2P2NRqWDKtX2ky2q2dq2ObxXGdbfOKv3+r8fISLoAm6dAVumX5BBClExy1LRiK39fvnaZ6QenAzDldGsss5cqFa3CsnmBExERwRdffMHkyZMJCwvj4MGDrF27tqjj8YULF0hISCh2mxMnTrBjx45bnp7SaDQcPnyY/v3707BhQ0aNGkWbNm3Yvn07zs7ON+0v/jk/9wCe2GZi0A4zH//5P/wPT8VfdZUpWTFoF8wCmbHY7j3frR4N/KuSml3A/HV7YesnUuAIUZ40alKmRhUVOZ/GfEqeKY/xhwLxW7RBvkdtQFYTl/449+Ry1FdkTp/Jsi5qajTJxLjrIe4/shvf8ePwi4xUOp64B/vi03h8xm6aqs6x2vktGLMVgsKUjiVEpZEcHU3K1CiyR/RnZOAaHt8Jj28zyvdoCZTk+K0tp0zCkWXpqTHofk5cPkDEyn0YdlVFZ9qN78jH8RvY0doS4H7nTuNCYVl62jnpmdAsh8tx8QCYrxz6qwnXPUBeQyFszC8y0jo7/LRoFmlAZ0KKGxuSAkfc3R/zYOsndHeBWE0gOpMKk9qCX+7/4Jv/QbeJ0P3mflTCjlx/DccD6KwXqVeN/+t6eQ2FKBc/d3Ei/GtrcYNOJ8WNDclJP3F3bUeyr+dKvjo0EK1JhUEDGrOK/eYI62mOtiOVTijupu1I62s1Zis7G08G4D3VC2QO3yCvoRDl5PK1yyRFT0dnAotWAwZDsY7HomxJgSPuqsDVn03T1tA7LoYLD/Rg7fM5LOuixm35dvQ/bZdTG47APcDa3yYojA6dHgAgJi+YTw+5WC+X11AIm9vwn+cZvNXAjr7BND5yBN/x44p1PBZlSwoccVcb3/yY/gdW8WPLh+nyxggi0zPY+oA3y7qoSZ8WLR9OB6O9YcbpxTEXiL0si3EKYWv7P5lI+1Vn+L6rlu7vRKNSqfCLjJQix4akD464o5Rr+ew7k8K20F60eu1fuPnooOsbvOpfi0kFn6BVaxmWl4Wf0kHFvXMPgG4TCbsUytGj+fznl6N8/0K4rAIvhI0YzAZ2XtxGWhc1VUc/Q33v+kXXFfXBkQVxy5wUOOKO/vv7SZY0eIjmNTz5qHVNUKug+yQetlhYdn4tyzoeJK9eFh8qHVTcO/cA6D6JsRm5/HRyK3+cT2flwcs82qqm0smEqJCWn1jOrPZZ+Lj4srrlCzddLx2NbUNOUYnbOnYlk2X7LgAwuV+TYotpqlQqXmv3GgC/nPmFY6nHFMkoSi/Q05WxD1h/SX7y23FyCowKJxKi4snIzyD6oPX009hWY2UxzXIkBY64JYvFwvurjmK2wCMtAmkX4nPTPi38WtC3Tl8sWPh83+eykKMDGtW5DjW9XUnMzGf29nNKxxGiwplxaAaZBZnU96rPo/UfVTpOpSIFjrildUf17DmbhrNWzcQ+obfd7+XWL+OsceaPxD/YdGFTOSYUZcFFp+GN3tbXd8bWMyRl5imcSIiKIz4jnqXHrWtMvdbuNbRq6RVSnqTAETfJN5r4aE0cAGO61qWmt9tt9w2sGsgzTZ8B4L/7/0uBqaBcMoqy80iLQFrV8iKnwMSX608qHUeICuO/+/+L0WKka82udAzqqHScSkcKHHGThbvOczEtl+oezrzQrd5d9x/VbBS+rr5czLrIkuNLyiGhKEsqlYq3H24MwPI/LnJcn6lwIiEc396EvWy5uAWNSsOrbV5VOk6lJAWOKCYjx8C0zacBeLVnI6o4371J1U3nxvhW1mn/Zx6aSXpeuk0zirLXprYPfZsHYLbAR6vjlI4jhEMzmU18vu9zAJ5o9AR1veoqnKhykgJHFBO95TQZuQYaVXdnUOt7Hzbcv15/Qn1CyTJkMfPwTBsmFLbyRu9QdBoV20+lsPVkstJxhHBYv579lRPpJ3B3cieypQwBV4oUOKLI5au5zNsVD8AbfRqhUd/7xG8atYYJbSYAsOzEMi5lXbJFRGFDtatV4ZnwEAA+Xh2HySyj4oQoqXxTPtMPTgdgdPPReLl4KRuoEpMCRxT58veTFBjNdKjjQ/dG/iW+fXhQOOGB4RjNxqIPuHAs4x5ogJebjhOJWfyw/6LScYRwOEuPL0Wfrae6W3WeDH1S6TiVmhQ4AoC4hEx++tPa6jKpb+NST9v/cpuXAVh9djUn0k6UVTxRTjzddIztbp3876sNp8gzmBROJITjyCzIZNaRWQC8FPYSLloXhRNVblLgCAA+XXsciwUebh5IWLBXqe+nSbUm9AnpgwULXx34qszyifIz7L7aBHq6kJCRx3d7zisdRwiHMS92Hhn5GdTzrEe/ev2UjlPpSYEj2HU6hS0nktGqVbzWq9E/vr+xrcaiVWnZcXkH+/T7yiChKE8uOg2v9GgIwPTNp8nMMyicSAj7l5STxHfHvgNgfOvxMqmfHZACp5KzWCx8svY4AEM71CLEt8o/vs9aHrUY1HAQAP+3//9kCQcH9FjrGtTzq0J6joHZ284qHUcIu/f1oa/JM+UR5hdG9+DuSscRSIFT6a07msjhSxm4OWkY92CDMrvfF1q+gKvWlSMpR9h4YWOZ3a8oH1qNmn/3tLbmzd5xjuSsfIUTCWG/zmWcY8WpFYC1H2Jp+zCKsiUFTiVmMlv4cr21I/CznergW9W5zO7b19WX4U2GA/C/A//DaJaVqh1N72YBtKjpSU6BienXJ38UQtws6s8oTBYT3Wp2o031NkrHEddJgVNZZek5texN0hMv4u6iZXSXsp9p89GtBQzd40R8Zjyrzq4qdl1ydDTJUdPK/DFF2VGpVEULcS7ae57LF8/B5imQpVc4mRDKSY6aRnJ0dNG/41LjWH9+PSpUjD1YXb7X7IgUOJWUISOB0BPR+Kuu8nzXuni66cr8MZycXBiwOYdBO8zMODQDg9naWTU5OpqUqVGgkbefvetU35fO9X0xmCws3bgPtn4iBY6o3DRqUqZGFRU5hXN+vXG0LpZZi+V7zY5IN+9KalNcIr0AL1cdIzvVsclj+EVGYjQbiZj2NXCRlc1Xcv+GZFKmRuE7fhx+kTKFuSN4rVcjdpxOYcvJJF51UjqNEMoq/N5KmRpFYnYiW/23MninhdbbTsj3mp2RAqcyydJDlp4Ck5kDe7fQC3ihYRZVUmOt17sHWLcyFDh2PMdSjxGxZCuGXZNJMSFfAo4kS09LjZ5R9TK4Fh9vvSzh0F/X2+A9I4S9u7HIWaQBnXyv2SWVpRKO4c3MzMTT05OMjAw8PDyUjlN+Nk+xnmK4nW4TofukMn/YfFM+J1qEoTOBWauhaWxsmT+GsBGF3jNC2Lv9ifvRPTAMnQnQ6Wh85LDSkSqFkhy/5WRhZdJ2JLnPbmKo5nPeMIy2XtZvKozZat3ajrTJw2bOnIPOBAYNqI0mEqZNtcnjCBtoO7Lo/fGd36sAfOf/qs3fM0LYM4vFwv5PJqIzgUmrBoOhWMdjYR+kwKlM3AP4Nt6Lndk1SHW3jo4hsCUEhVk3G5xqKOxQ7DP2JV5/vzbLuqi5Ou1r+TJwFO4BRe+Pzl17ALDkog/HqGuz94wQ9u7gZ2/R5bdLfN9Vi+/ejfiOH1es47GwD1LgVCI5BUZmbrXOShvRLtjmj1dY3PiOH0f1sWN5vsXz/NhZzc/d3eTLwAGFVHMr+v+vNpxUMIkQykmeHo3LvBUs66JGN+opAqoE4BcZKUWOHZJOxpXId3vOk5pdQO1qbnRv0wjUE237C9xkLtbxrl+9fsyJncOi+87T0i8cX5PZdo8typ57AGltXyF5pxdHjyVy5FIGzWt6Kp1KiHJ14eo5fu2iZnU3N9Y0f67o8qIOxvK9ZjfKpQVn+vTphISE4OLiQocOHYiJibntvvPnz0elUhXbXFyKLzlvsViYPHkygYGBuLq60qNHD06dOmXrp+HQcgqMfHN9TaGXutdH6xVk7RxqwwLHb9zYYqMKtGotL7R8AYCPmpzE7QXpv+FQ3APweeQ/dGzZFJBWHFH5WCwWvgy7wo+d1UQ0isDPza/Y9X6RkfiNG6tQOvF3Ni9wli1bxoQJE3j33Xc5cOAALVu2pFevXiQlJd32Nh4eHiQkJBRt58+fL3b9Z599xtSpU5kxYwZ79+6lSpUq9OrVi7y8PFs/HYe1aM8FUq4VUMvHjUdb1VAsR5+QPoR4hJCRn8HS40sVyyFKb/yDDVCrYOPxJA5evKp0HCHKze4ruzmcchhnjTMjmo1QOo64C5sXOF9++SWjR49m5MiRNGnShBkzZuDm5sbcuXNvexuVSkVAQEDRVr169aLrLBYLX331FW+//TYDBgygRYsWLFy4kCtXrrBy5UpbPx2HlFtgYua2MwCM7V4fnYIzbWrUGka3sI7gWnB0ATmGHMWyiNKp61eVgdeL5KiN0nIqKgeLxcLXh74G4PGGj+Pr6qtwInE3Nj3SFRQUsH//fnr06PHXA6rV9OjRg927d9/2dteuXaN27doEBwczYMAAjh49WnTduXPn0Ov1xe7T09OTDh063PY+8/PzyczMLLZVJov2niflWgHBPq482lq51ptCfev0Jdg9mPT8dJafWK50HFEKY7vXL2rFib2coXQcIWxur34vB5MP4qR24tlmzyodR9wDmxY4KSkpmEymYi0wANWrV0evv/V6No0aNWLu3Ln8/PPPfPfdd5jNZjp27MilS5cAim5XkvucMmUKnp6eRVtwsO1HENmL3AITM66PnFK69aaQVq1ldHNrK868o/PINeYqnEiUVF2/qjzSIgiAaZtkpXFR8c04NAOAwQ0H39T3Rtgn5Y92fxMeHs7w4cMJCwujW7du/PTTT/j5+TFz5sxS3+ekSZPIyMgo2i5evFiGie2btfUmn5rerjzWuqbScYo8Uu8RalStQVpeGj+c/EHpOKIUxj5QH5UK1h7Vc0KfpXQcIWxmn36fdeZitY6RzWRwhKOwaYHj6+uLRqMhMTGx2OWJiYkEBNzb6B2dTkerVq04fdr6K7HwdiW5T2dnZzw8PIptlUGewcTMbfbVelNIp9bx3PUhlnNj55JnlA7ijqZhdXf6NLN+5qI2SV8cUXHNPGT9gf1Yg8cIqCKTWzoKmx7xnJycaNOmDRs3biy6zGw2s3HjRsLDw+/pPkwmE0eOHCEwMBCAOnXqEBAQUOw+MzMz2bt37z3fZ2Wx/I+LJGflU8PLvlpvCg2oN4DAKoGk5Kbw46kflY4jSmFs9wYArD6SwOmkawqnEaLsHUg8wF79XrRqLaOajVI6jigBm/+knzBhArNmzWLBggXExcXx4osvkp2dzciR1ma+4cOHM2nSX4v1vf/++/z++++cPXuWAwcOMGzYMM6fP89zz1l/7atUKl5++WU+/PBDfvnlF44cOcLw4cMJCgpi4MCBtn46DsNgMhfNWvx8t7o4ae2n9aaQTnNDK86RuRSYChROJEqqSZAHPRpXx2KB6M3SF0dUPIV9bx6t/yiBVQMVTiNKwuYzGUdERJCcnMzkyZPR6/WEhYWxdu3aok7CFy5cQK3+6+Cbnp7O6NGj0ev1eHt706ZNG3bt2kWTJk2K9nn99dfJzs5mzJgxXL16lc6dO7N27dqbJgSszFb8eZnLV3Pxc3fmibb226l6YP2BzDw8k6ScJH4+8zOPN3xc6UiihMY/WJ8NcYn8fOgK/+rRgNrVqigdSYgycST5CLsTdqNVaRnVXFpvHI3KYrFYlA5R3kqy3LojMpkt9PhyK+dSsnmzbyhjutZTOtIdfXfsOz7d9yk1q9bk10d/RauWFUQczYh5MWw5kUxE22A+HdxC6ThClIl/bfoXmy5uYkC9AXzY+UOl4whKdvy2v/MW4h9bcySBcynZeLnpGNqhttJx7uqxBo/h7ezNpWuXWBe/Tuk4ohTGPWDti/PjgUtcuSrD/oXjO51+mk0XN6FCxbPNZd4bRyQFTgVjsViYfr0vxMiOdajibP+tIW46N4Y1GQbA7COzMVtksTpH06a2N+F1q2E0W5i1/azScYT4x+bEzgGgR+0e1PWsq3AaURpS4FQwG+OSOK7PoqqzlhEdQ5SOc8+GhA6hiq4Kp6+eZuvFrUrHEaUQ2d16KnRJzAVSr+UrnEaI0ruYdZHfzv0GIH1vHJgUOBWIxWJh2vXWm2H31cbTTadwonvn4eTBkEZDAJh1ZBaVsGuYw+tc35fmNTzJM5iZvyte6ThClNr82PmYLCY6BXWiabWmSscRpSQFTgWy60wqBy9exVmrZlTnOkrHKbFhTYbhrHHmSMoRYvQxSscRJaRSqYi839qKs2BXPFl5BoUTCVFyyTnJrDi9AqBoGgvhmKTAqUCit1hbb55sXws/d2eF05Scr6svjzV4DLC24gjH06tpAHX9qpCZZ2Tx3gtKxxGixBYeW4jBbKCVfyvaVG+jdBzxD0iBU0EcvnSVnadT0ahVPNfF8VpvCo1oOgKtSsvehL0cTj6sdBxRQmq1ihe6WVtxZu84R57BpHAiIe5dRn4Gy04sA6ytNyqVSuFE4p+QAqeCmLH1DAADWgZR09tN4TSlF1Q1iIfrPgxYR1QJxzMwrAaBni4kZ+Xzw/5LSscR4p4tjltMrjGXRt6N6FKji9JxxD8kBU4FcC4lm99i9QA8382+J/W7F4VzTmy+uJmzV2XIsaNx0qoZ3cU6rHbmtjMYTTLsX9i/HEMOi48vBqwjp6T1xvFJgePosvScWf4WvpZ0Hgj1p1GAu9KJ/jH3hWv49xHrBIXzj84vdl1ydDTJUdMUSCVKYkj7YLzddFxMy2XDvsOweQpk6ZWOJUSR5KhpJEdHF/175emVXM2/So2qNWi95ox8z1QAUuA4uDT9BXokzcNfdZUX73f81hsANGrarzrDoB1mfj37K4nZiYC1uEmZGgUaedvaOzcnLSM7WfuCrdr5J2z9RAocYV80alKmRpEcHY3RbGThsYUAvB5bh7So6fI9UwHY/zS34o5+PnSFkUDjQA/ahfgoHadM+EVGAhAxNQooYFHjRTwd40LK1Ch8x48rul7Yt+Hhtfl6yxnOpWSD4w3qExVc4fdIytQoTqWd4nLwZYbtcSZw8xb5nqkgpMBxRFl6yNJzrcBI/JFdoIJn62bAlYPW690DrJsD84uMJD4jnogFv2LYNYsUE/Kl40iy9Hhl6Xm5WQ5nD8dbL0s49Nf1FeA9KhyfX2QkWICoKBZpQGcyyvdMBSKriTviauKbp1ib/G+n20ToPqn88tiI2WLmaLNmaE0WzFoNTWNjlY4k7lUleY8Kx7fz8k7cez6HzgTodDQ+ItNT2DNZTbyiazuS/Gc3M0z7OW8YRlsv6zcVxmy1bm1HKpuvjKR+PQOtyYJBA2qjCf20KKUjiXvVdmTR+3FJwL8BWFz93xXuPSocX9x/30dnApNWDQZDsY7HwrFJgeOI3ANYmejLjms10Ls1tF4W2BKCwqxbBWj6L+xQ7DP2JSb8pwbLuqhJnxYtXz6Owj2g6P3YvmN3AJZc9OaiS8MK8x4Vju/oF/+h05oLfN9VS7U9G/AdP66o47FwfNIHxwGZzRa+2WadH2ZAWA3Yp3CgMlZY3BSeCx9+1IPPcz7Hy9mLXlOtrThyjtxx1POtCoDZArO3n+W9Ac0UTiSE9XtGPXsZy7qoKXi6H4FVA+GGjscg3zOOTlpwHNDmE0mcSc7G3VlLzw4trP0ZKtIvYpO5WEe/QQ0H4eHkwZx2mWQOfxhk4jjH4h7AhebjSbJ4seyPi6RlFyidSAgyctJZ3lXDj53VjGg2ouhyv8hIfMePk++ZCkAKHAdU2HrzVIdaVPUNtnbWrEAFjt+4scV+OVXRVSGiUQQA01sl4TdurFLRRGm4BxD82PtUr1GbPIOZhbvjlU4kBMu7qPihk4rONTrT0Lthsev8IiPle6YCkALHwRy6eJW959LQqlWM6BSidJxy82Tok+jUOv5M+pODSQeVjiNKSKVS8XxX60SUC3efJ7dAFuEUyrmad5WVp1cC8EzTZ5QNI2xGChwH8812a+tN/5ZBBHq6Kpym/Pi5+RUtwlk446hwLH2aBVDT25W07AJ+PCCLcArlLD+5nFxjLqE+oXQI6KB0HGEjUuA4kAupOfx2JAGA0V3rKpym/D3TxPpLa8P5DVzMvKhwGlFSWo2aZ68v3zB3xznM5ko3BZewA/mmfBbHWRfVfKbpM7KoZgUmBY4DmbvzHGYLdGngS+NAB5yg8B+q712fzjU6Y8HCt3HfKh1HlMIT7YJxd9FyNiWbjceTlI4jKqE1Z9eQmpdKdbfq9ArppXQcYUNS4DiIqzkFLNtnbbUYUwlbbwoVni9feXolV/OuKhtGlFhVZy1PdagFwKzrneWFKC9mi5n5R+cDMKzxMHRqnbKBhE1JgeMgvttznlyDicaBHnSu76t0HMV0COhAqE8oucZclp9crnQcUQojOoagVauIiU/j0MWrSscRlciOyzs4m3GWKroqDGo4SOk4wsakwHEA+UYTC3afB2B0lzqV+pyxSqUqasVZHLeYfFO+wolESQV6utKvZRAAs7ZLK44oPwuOLgBgcIPBuDu5K5xG2JoUOA7g10MJJGflU93DmUdaBCkdR3G9QnpR3a06qXmprDm7Ruk4ohSe62LtbPxbrJ5L6TkKpxGVwbHUY8ToY9CqtAxrMkzpOKIcSIFj5ywWC7Ov/8p9pmMITlp5yXRqHcMaW7+gFhxdgMUio3EcTdMgTzrVr4bJbGHeznil44hKoHB6iZ4hPQmoUnEmRhW3J0dLO7frTCrH9Vm46jQ81b6W0nHsxqCGg3DTunEm4wy7ruxSOo4ohee6WDvLL9t3kcw8g8JpREWWmJ3IunPrABjedLjCaUR5kQLHzs3ZcQ6Ax9vWxMvNSeE09sPdyZ3HGjwGwLfHZMi4I7q/oR8N/KtyLd/I0pgLSscRFdiS40swWoy0qd6GptWaKh1HlBMpcOzY6aRrbDqehEpF0QRp4i9PNX4KtUrNzis7OZ1+Wuk4ooRUKlVRX5z5O+MxyuKGwgZyDDl8f/J7AIY3kdabyqRcCpzp06cTEhKCi4sLHTp0ICYm5rb7zpo1iy5duuDt7Y23tzc9evS4af8RI0agUqmKbb1797b10yh3c3daW28ealydEN8qCqexP8HuwTwQ/AAA38V9p3AaURoDwmpQrYoTVzLy+C1Wr3QcUQH9cuYXMgsyCXYPplvNbkrHEeXI5gXOsmXLmDBhAu+++y4HDhygZcuW9OrVi6SkW89iumXLFp588kk2b97M7t27CQ4OpmfPnly+fLnYfr179yYhIaFoW7Jkia2fSrlKyy7gx/3W9XoK+yqImz3d5GkAfj3zK6m5qQqnESXlotMw9L7awF+nY4UoK2aLuejHz9DGQ9GoNQonEuXJ5gXOl19+yejRoxk5ciRNmjRhxowZuLm5MXfu3Fvuv2jRIiIjIwkLCyM0NJTZs2djNpvZuHFjsf2cnZ0JCAgo2ry9vW39VMrVoj3nyTeaaVHTk3YhFeu5laVW/q1oVq0ZBeYCmfjPQT19X22cNGoOXrzK/vPpSscRFci2S9s4n3ked507j9Z/VOk4opzZtMApKChg//799OjR468HVKvp0aMHu3fvvqf7yMnJwWAw4OPjU+zyLVu24O/vT6NGjXjxxRdJTb39r/f8/HwyMzOLbfbsxon9RnWu3BP73Y1KpSpqxVl6fKlM/OeA/Nyd6R9mnd9prrTiiDJUODR8cMPBuOncFE4jyptNC5yUlBRMJhPVq1cvdnn16tXR6+/tfPsbb7xBUFBQsSKpd+/eLFy4kI0bN/Lpp5+ydetW+vTpg8lkuuV9TJkyBU9Pz6ItODi49E+qHPx6KIGUa/kEerrQt3mg0nHs3kMhD1HdrTppeWky8Z+DKuxE/1tsgkz8J8pEXGoc+/T70Kg0PNX4KaXjCAXY9SiqTz75hKVLl7JixQpcXFyKLh8yZAj9+/enefPmDBw4kFWrVrFv3z62bNlyy/uZNGkSGRkZRdvFixfL6RmUnMViKfoVOzw8BJ3Grl8iu6BT64q+wL6N+1Ym/nNATYI86FivGmYLLLzeeinEP1E4fUTP2jKxX2Vl06Onr68vGo2GxMTEYpcnJiYSEHDnN9wXX3zBJ598wu+//06LFi3uuG/dunXx9fXl9OlbDxV2dnbGw8Oj2Gav9p5L41hCJq46DU+2t++WJnsyqMEgXLWunEo/xZ6EPUrHEaVQOGR8ScwFsvONCqcRjiw5J5nf4n8D/hqIICofmxY4Tk5OtGnTplgH4cIOw+Hh4be93WeffcYHH3zA2rVradu27V0f59KlS6SmphIY6Pincwpbbwa1qSET+5WAp7MnA+sPBGBR3CJlw4hSub+hP3X9qpCVZ+T7P+y3lVXYv6UnlmI0GwnzC6O5X3Ol4wiF2Pz8x4QJE5g1axYLFiwgLi6OF198kezsbEaOHAnA8OHDmTRpUtH+n376Ke+88w5z584lJCQEvV6PXq/n2rVrAFy7do3XXnuNPXv2EB8fz8aNGxkwYAD169enV69etn46NnU+NZv1cdbWrhEdZWK/khraeCgAWy9t5XymnOZwNGq1ipHX++LM2xWPySynGkXJ5Zvy+f6EdWI/ab2p3Gxe4ERERPDFF18wefJkwsLCOHjwIGvXri3qeHzhwgUSEhKK9v/6668pKChg8ODBBAYGFm1ffPEFABqNhsOHD9O/f38aNmzIqFGjaNOmDdu3b8fZ2dnWT8em5u+Kx2KB+xv5Ud+/qtJxHE5tj9pFE3lJK45jGtS6Bp6uOs6n5rAxLvHuNxDib9acXUN6fjqBVQJ5oNYDSscRClJZKmGPzMzMTDw9PcnIyLCb/jjXUi6yMOo/zMvvzn+f7UXXhn5KR3I4yVHTuJhzmWcCVuGqdWXD4xvwcLK+vsnR0WAy4zdurMIpxd188ttxZmw9Q5/a8HXoYWg7Etylk6i4teSoaaBR4xcZicViYdCvgziVfooJbSbwyLZc+dxXMCU5fssQHTuxIeYIkaofaFOtgC4NfJWO45g0alznrWT0H17kGnNZcWoFYC1uUqZGgYxIcwjDw2ujUau4cOEcbP0EsmQJB3EHGjUpU6NIjo4mRh/DqfRTuGpdeWjTVfncV3JapQMIMJkt/Hr4MgOBAS2DZGK/UvKLjATgoalRpOWpWVxlMb23ZJEWNR3f8eOKrhf2LcjLld7NAog/clbpKMIBFH6uU6ZGEXe2LjSH12PrkLXiG/ncV3JS4CgpSw9ZevaeTcU36wTo4EGvBLhy0Hq9e4A0zZeQX2QkRrORiGlf89iuC6SZpLhxKNc/Ey81usaCo/EAXIvfT1GPNPlMiFvwi4wkIz+DDjMXsug30JkOy+deSB8cRfvgbJ5ibYK/nW4Tofuk218vbutos6aojWaMGhXNjx5TOo64V/KZEKX0Scwn9B25AJ0JVDodoUcOKx1J2ID0wXEUbUdy5rHVPJz/EZOMo62X9ZsKY7Zat7Yjlc3noJKjo1EbzRg0oDVZOPbFe0pHEveq7cii9/+BMOvr9pHmRQyjtshnQtzWtYJrmOYuRWcCi06LxWCwDiwQlZoUOEpyD2DGCXeOWurgWff6hIaBLSEozLpJU3yJFXYo9h0/jkVf92dZFzWq2Uvly85RuAcUvf+bt7EO+d+VU5M1qf7ymRC3tefjV3lsSz6/P1SNxoetp6cKOx6Lykv64Cgo9Vo+Px+6AkD/ljXggsKBHNyNxY1fZCRPp8TyZOc1qFVqHp8aBSDn5B2ITvNXZ/u5O87RXzrgi1tImj6dGku3sayLmiZjx6NSqYp1PAb53FdWUuAoaEnMBQqMZlrW9KRxg3rW/gXyC7X0TOZiHQub+TajpV9Lvu90iLbV78PXZFY4oCgR9wBywv/N1W0+XL6UwYELV2lT21vpVMLOnE8/y+ouatY/4MUb9foVXV5U1MjnvtKSAkchBpOZb/dYlxMY2akOKo9A6Tz5D91qMq+hjYdyKPkQnzU7x/rB3yiQSpSaewBuvd6hY+Yhvt9/ibk7z0mBI24ys30Ge4PVjGxoXXD3RtJyU7lJHxyFrDmSQGJmPn7uzvRt7viLhNqrHrV74O/qT2peKuvOr1M6jiiFwvWp1sbqScjIVTiNsCen00+zN2EvapWaIY2GKB1H2BkpcBQyb2c8AMM61MZJKy+DrejUOiJCIwBYdGwRlXBWBIfXJMiD9nV8MJktfLdHFlEVf1l03Lrm3IO1HiSoapDCaYS9kSOrAv68kM7Bi1dx0qh5qkMtpeNUeIMbDsZJ7URsaiyHU2RuDEf0bKcQABbvvUCewaRsGGEXMvIzWHVmFQBPhT6lcBphj6TAUcD8XfEA9GsZhJ+7Y6+A7gh8XHzoW7cvYG3FEY6nR+Pq1PByJT3HwC/XRx6Kyu3HUz+SZ8oj1CeUNtXbKB1H2CEpcMpZYmYeqw8nADDy+q9SYXuFv/DWn19PYnaiwmlESWk1ap4Orw1YT+/KqcbKzWg2svT4UsD62ZbpA8StSIFTzhbtOY/RbKFdiDfNangqHafSaFytMa39W2O0GFl2YpnScUQpDGkXjItOTVxCJjHn0pSOIxS0+eJmErIT8Hb2LmqdFeLvpMApR/lGE4v2WmfzKxwZIsrPsCbDAPjh5A/km/IVTiNKysvNiUdb1QT+Os0rKqdFcdZTzYMbDsZZI6f5xa1JgVOOVh1KIDW7gEBPF3o2qa50nEqne3B3AqsEkp6fzpqza5SOI0phRMcQANYd1XP5qgwZr4yOpx1nf+J+tCotEY0ilI4j7JgUOOXEYrEU/eocdl9ttBr505c3rVrLkFDrXBlLji+RfhwOqFGAO53qV8NsgYW745WOIxSwOG4xYJ3jqnoV+aEobk+OsuXkwIWrHLmcgZNWzZPtZWi4Uh6r/xjOGmfi0uL4M+lPpeOIUhjR0Xp6d2nMRXILZMh4ZZKel87qs6sB6yzlQtyJFDjlpLD1ZmBYED5VnJQNU4l5uXjxSN1HgL/O4wvH8kCoP7V83MjINbDy4GWl44hy9OOpHykwF9CkWhNa+rVUOo6wc1LglAN9Rh6/HbEODX/meh8CoZwnQ58EYOOFjeiz9QqnESWlUasYfn3I+IJdMmS8sjCYDUVDw4c2HipDw8VdSYFTDhbttQ4Nbx/iQ9MgGRqutEY+jWgX0A6TxcTyE8uVjiNK4fG2wbjqNBzXZ7HnrAwZrww2XdhEYk4iPi4+9A7prXQc4QCkwLGxPIOJxdeHho+Qif3sRuHEf9+f/J48Y57CaURJebrqeKx1DQDm7zqncBpRHgo7Fw9uOBgnjZzmF3cnBY6NrTosQ8Pt0f3B9xNYJZCr+Vf57dxvSscRpVA4ZHz9sUQupecoG0bYVFxqHAeSDqBVaXmi4RNKxxEOQgocG7IODbf+unw6XIaG2xMZMu74GlT/a8j4t7LKeIW2+Li19eah2g/J0HBxz+SIa0P7z6cTezkTJ62aIe1kaLi9GdRgEC4aFxky7sAKh4wv2ydDxiuqtLy0ook5n2osq4aLeycFjg3J0HD75unsycN1HwZkyLijeiDUn2AfV67mGPhZhoxXSD+elKHhonSkwLERfUYea2OtQ5BlaLj9kiHjjk2jVjH8vhDA+oNCTjVWLAazoWhxXFk1XJSUFDg2IkPDHUMjn0a0rd5Whow7sCduGDK+V1YZr1BuHBrep04fpeMIByMFjg3kG00sibEODZfWG/tXOOW7rDLumDzddDxaOGR8Z7yyYUSZkqHh4p+QAscGVh9OIOXa9aHhTaXHv727P/h+AqoEkJ6fLkPGHVThkPHfj8kq4xXF8bTjMjRc/CPlUuBMnz6dkJAQXFxc6NChAzExMXfc//vvvyc0NBQXFxeaN2/OmjVril1vsViYPHkygYGBuLq60qNHD06dOmXLp3DPLJkJ5K//CD/SGXZfbXQyNNzupU+fwb+PWKf+Xxy3uFg/juToaJKjpikVTdyjhtXd6VjPOmT8p637YfMUyJI+VY4kOWoaydHRRf++cdVw9YIf5XPoaLL0in8ObX70XbZsGRMmTODdd9/lwIEDtGzZkl69epGUlHTL/Xft2sWTTz7JqFGj+PPPPxk4cCADBw4kNja2aJ/PPvuMqVOnMmPGDPbu3UuVKlXo1asXeXnKz0h7/PRpnsxdTA1tJkPaBSsdR9wLjZpay3byxC4VcWlxHEo+BFiLm5SpUSBFqkMobMXZeTAWtn4iBY6j0ahJmRpFcnQ06XnprDln/WH7dIyLfA4dUZZe8c+hzd8xX375JaNHj2bkyJE0adKEGTNm4Obmxty5c2+5///+9z969+7Na6+9RuPGjfnggw9o3bo106ZZq3eLxcJXX33F22+/zYABA2jRogULFy7kypUrrFy50tZP565WHb4CQLeGvlSr6qxwGnEv/CIj8R0/jsFbDQzaYWZR3KKi4sZ3/Dj8IiOVjijuwYONq1PT25WsPKPSUUQpFH4OU6ZGsXfKv8k35fPCfh90c36Qz6EoFa0t77ygoID9+/czadKkosvUajU9evRg9+7dt7zN7t27mTBhQrHLevXqVVS8nDt3Dr1eT48ePYqu9/T0pEOHDuzevZshQ4bcdJ/5+fnk5//VeTQzM/OfPK2bZekhS09adgHpp/eBFp6okQZXDlqvdw+wbsJu+UVGkpqbQsSsJRh2rSLFhHypOpIsPZosPa80zSFmdzwAloRDFA0qls+gQ/CLjMRsMUPUdBZpQGdKks+hI7l+LDyflsPWresZDpBw6K/ry/lzaNMCJyUlBZPJRPXqxTvaVq9enePHj9/yNnq9/pb76/X6ousLL7vdPn83ZcoU3nvvvVI9h3vyxzzY+gk+wMfX/6I1tr8B269f320idJ90u1sLOxH66mSOzF2KzmTBrFXLl6ojuf4ZHAQM0lkvUv06/q/r5TPoMI48Eop/NOhMgE4nn0NHcv1zWBusxQ2Agp9DmxY49mLSpEnFWoUyMzMJDi7D/jFtR0KjPiRk5HFg7xYejp8C/aZC4PVZN+WXo0NIjo5Ga7Jg0IDOaEY/LYqAseOUjiXuxfXPIMCPq1cz6PJnLPL/N0MH9rNeL59Bh3H2q0+pYQKzVo3aYCA5OlqKHEfRdiRZtR9ixLwY6pvP8qlulqLHQpsWOL6+vmg0GhITE4tdnpiYSEDArZ9oQEDAHfcv/G9iYiKBgYHF9gkLC7vlfTo7O+PsbMP+MNeb3QKD4GFPF/hmivUFDbp1HmF/Cvvc+Ix7iaH+K+n8ewIR06LRqDXy5eoIbmj6bn1fNvz4Gcsu+9DdrRFBXq4KhxP36vh/36fLb5dY3lXD8/+3Ac2Cn6wdjEE+h47APYClf+aw31CbQF8XuIaix0KbdjJ2cnKiTZs2bNy4segys9nMxo0bCQ8Pv+VtwsPDi+0PsH79+qL969SpQ0BAQLF9MjMz2bt3723vU4g7ubFDcfWXxjIkdAg/dlazuVdA0agO4TjqVKsCgMlsYdFeWWXcUSRHR2OZtYRlXdRkPNWTgCoBxToey+fQ/pnMFhbuiQegX8sgZcNQDqOoJkyYwKxZs1iwYAFxcXG8+OKLZGdnM3LkSACGDx9erBPyv/71L9auXct///tfjh8/zn/+8x/++OMPxo4dC4BKpeLll1/mww8/5JdffuHIkSMMHz6coKAgBg4caOunc3fuAdbzjNIk7jhM5mIdGQc1GIST2omvW6dgHPU4mMwKBxQl4h7A6cYvkWTxYknMRfIMssq4I8gryOHHbk782FldNLs4/DW6Sj6H9m/T8SQupuXi6aqja5vmih8Lbd4HJyIiguTkZCZPnoxerycsLIy1a9cWdRK+cOECavVfdVbHjh1ZvHgxb7/9Nm+++SYNGjRg5cqVNGvWrGif119/nezsbMaMGcPVq1fp3Lkza9euxcXFxdZP5+7cA6Qzo4PxGze22L+9XbzpW7cvK0+v5NsOeXzWdextbinsknsAIYM/xOncFi5fzeXXQ1d4vK3MSWXvNvSoxjJvM6E+obT2b13sOjk95RgW7IoHYEj7YFx9aih+LFRZKuHyu5mZmXh6epKRkYGHh4fScYQdikuN44lVT6BVaVk3eB3+bv5KRxIl9PWWM3y69jhNgzxYNa6zrERtx0xmE31/6suV7Cu83/F9Hm3wqNKRRAmdSsziof/bhloF217vTk1vN5s8TkmO3zI1pBC30LhaY1r7t8ZoMfL9ye+VjiNKYUi7YJy1ao5eyWT/+XSl44g72HJpC1eyr+Dl7CWrhjuoBdfnn3qoSXWbFTclJQWOELfxZOMnAfj+xPcUmAoUTiNKyruKEwPDrKuMz7vedC7sU+G6U4MaDMJFawddDUSJZOQa+HH/ZQCeub5kij2QAkeI23iw1oP4u/mTmpfKuvh1SscRpVD4Zbs2Vk9Chqwybo9OpZ8iRh+DWqUmolGE0nFEKXz/x0VyDSYaVXcnvG41peMUkQJHiNvQqXVFX7hLji9ROI0ojSZBHrSv42MdMr7ngtJxxC0UfrYerPUggVUD77K3sDcms4Vv91inY3imY4hd9XWTAkeIOxjUYBA6tY4jKUc4nHxY6TiiFEZeb8VZHHNBhozbmYz8DFadXQXAk6FPKpxGlMaWE0mcT83Bw0XLwFbKz31zIylwhLiDaq7Vijo9Lj6+WOE0ojQealKdIE8X0rILWHU4Qek44gYrT68k15hLQ++GtK3eVuk4ohTmX+/f9mT7Wrg52dfqT1LgCHEXTzV+CoB18etIyU1ROI0oKa1GzbDw2gDM33WOSjgzhl0ymU1Fp6eeCn3Krk5tiHtzKjGL7adSUKtg2H21lY5zEylwhLiLptWaEuYXhtFsZPmJ5UrHEaUwpF0tnLVqYi9ncuCCDBm3B1svbeXytct4OnvSt25fpeOIUigcGt6jcXWCfexjaPiNpMAR4h4UTh2//MRyGTLugHyqODEgzNo/YN7OeGXDCKD40HBXrSyI6mhuHBo+olOIsmFuQwocIe7Bg7UfxN9Vhow7ssIh47/JkHHFnUo/xV79XtQqNUMaDVE6jigFex0afiMpcIS4Bzq1johQ65DxRXGLpB+HA2oa5ClDxu1EYYd9GRrumExmCwt3W4eGj+hkX0PDbyQFjhD3aHDDwTipnTiaepTDKTJk3BHJkHHlZeRnsOqMdWj4jauGC8ex+XgSF9Jy8HTVFc0Wbo+kwBHiHvm4+BQNGV8Ut0jhNKI0HmpSnRperqRlF/DLoStKx6mUfjr1E3mmvFuuGi4cw/wbVw130igb5g6kwBGiBAqHjK+PX09STpLCaURJaTVqni4cMr4zXk41ljOj2ShDwx3cqcQsdpy2Dg1/2g6Hht9IChwhSqBJtSZFq4zLkHHHNKRdMC46NccSMtkXL0PGy9PWi1tJyE7A29lbhoY7qMLWG3taNfx2pMARooQKW3G+PymrjDsiLzcnHm11fZXxnecUTlO5LDpuPbU7uOFgnDXOCqcRJZWRY+CnA9eHhneso3Cau5MCR4gSeqDWA1R3q05aXhq/nftN6TiiFAqHjK87qufyVRkyXh5OpJ1gn34fGpWGJxo9oXQcUQpL910g12AiNMCd++r6KB3nrqTAEaKEdGodQ0Ktc3fIkHHHFBrgQcd61TBb4Nvrw12FbRV2zO9RuwcBVQIUTiNKymgyFw0Nf7ZTHYfoPyUFjhClMLiBtYk9Li2OA0kHlI4jSmHE9VacpfsukFsgQ8ZtKS0vjdVnVwMwrPEwhdOI0tgQl8jlq7l4u+noH2Zfq4bfjhQ4QpSCl4sXj9R9BJAh447qwcbVqentytUcAysPXlY6ToX2w8kfKDAX0LRaU1r6tVQ6jiiFudeXOHmqQy1cdPY7NPxGUuAIUUqFnY03XtjIlWsyp4qj0ahVPBMeAlg7G8upRtswmA0sO74MsE7s5winNkRxR69kEHMuDa1axdP3hSgd555JgSNEKTX0bkiHgA6YLWaWHl+qdBxRCk+0C8bNScPJxGvsOpOqdJwKaX38epJyk/B19aV3SG+l44hSmH+99aZP80ACPF2UDVMCUuAIUUrJUdMYs98bgB9O/UCOIeev66KjSY6aplQ0cY88XXUMblMTgB+3/AGbp0CWXuFUji05ahrJ0dFF/y48hftEoye4OnOWfC4cSZaenHUfsOvQUeCvfmuOQgocIUpLo8Z94SpGxlQlqyCLVWet6+skR0eTMjUKNPLxcgSFX9onz56GrZ9IgfNPadSkTI0iOTqaw8mHOZxyGJ1aR98t2fK5cDRZetx2f4GXKY2WNT1pXctL6UQlolU6gBCOyi8yEoA+U6PILFCzyHMR3TekkBIVhe/4cUXXC/tW168q3Rv5kXRSJv0rC4Xv+5SpURyJ/x2awuuxIeT8PEc+Fw7GYLKgu/7/Ix1kaPiNpMAR4h/wi4ykwFRAxPSZPLbrJCmmk/Il7kiy9JClZ1yTbJadjgcg9+IBXAuvdw+wbqJE/CIjyS7IpvWMuSxaDTpTnHwuHMX1zwRA7P5ttALC3S7xsG8SXEl2qM+EylIJhw5kZmbi6elJRkYGHh4eSscRFUBss6ZojGZMWhXNYo8pHUfcq81TrKelbqfbROg+qfzyVCBTD0zl/qe/RmcClU5H6JHDSkcS98LOPxMlOX7LyVAh/qHk6Gg0RjMGDWiMFk59+ZHSkcS9ajsSxmyFMVvZ2+w/AHzqFIlp9Bbr5W1HKhrPUeUZ88iZtQCdCSw6DRaDoVjHY2HHrn8mjvX7lTcMowG41vPLos+JI30m5BSVEP9AYYdi3/HjeL9RHNWWbiLim+9IdvGW5nhHcENze8v2ZoiFbVk1aHU1kJ5NHaMZ3h7t/fjfDNicw+oHPXg5aifpM76xdjAG+VzYu+ufiembDxBvDgGgakgbCApTNFZpSIEjRCndWNz4RUYyLGEvz3XeglatZZB8mTscF+1fDdrzdsZLgVNKydOj8V+8kWVd1NSJjESr1hbreAzyubB3l9Jz+C02gcZKB/mHpMARorRM5mIdJ9sHtKehd0OWdTxJu4BO+JrMCgcUJeIeQFaHV0nd7s3Rs6kcu5JJkyDpo1dSFzPO80sXNb/dX5UNDR4ruryoqJHPhd1buPs8ZguE1KkDDSc6TKfiv7NpH5y0tDSGDh2Kh4cHXl5ejBo1imvXrt1x/3HjxtGoUSNcXV2pVasW48ePJyMjo9h+KpXqpm3pUplJVpQvv3Fji/0SValURQsJft4sHq+XnlcqmigN9wDc+0ymbTPr79a5O2XYeGnMbp/Fj53VDKw/EHcn92LX+UVG4jdurELJxL3IzjeyJOYCAI91bWvtUCwFzs2GDh3K0aNHWb9+PatWrWLbtm2MGTPmtvtfuXKFK1eu8MUXXxAbG8v8+fNZu3Yto0aNumnfefPmkZCQULQNHDjQhs9EiHvTt25ffFx8SMxJZOP5jUrHEaUwqnMdAH45eIWkrDyF0ziWsxln2X55OypUDG08VOk4ohR+PHCJrDwjdXyr0L2Rv9Jx/hGbFThxcXGsXbuW2bNn06FDBzp37kxUVBRLly7lypVbL0zYrFkzfvzxR/r160e9evV44IEH+Oijj/j1118xGo3F9vXy8iIgIKBoc3FxnPUxRMXlrHEmolEEAN/GfatwGlEarWp507qWFwUmM9/tuaB0HIeyOG4xAN2Cu1HLo5bCaURJmc0W5l1fd2pkpxDUasea2O/vbFbg7N69Gy8vL9q2bVt0WY8ePVCr1ezdu/ee76dwrLtWW7y70EsvvYSvry/t27dn7ty5d1wJOD8/n8zMzGKbELbyRKMn0Kl1HE4+zKHkQ0rHEaUwqnNdABbtOU+ewaRwGseQkZ/BL2d+AWB4k+EKpxGlseVkEudSsnF30TKodU2l4/xjNitw9Ho9/v7Fm7e0Wi0+Pj7o9fe21ktKSgoffPDBTae13n//fZYvX8769esZNGgQkZGRREVF3fZ+pkyZgqenZ9EWHBxc8ickxD3ydfWlb52+AHx37DuF04jS6NW0OjW8XEnNLuDng5eVjuMQfjj5A7nGXEJ9Qmlbve3dbyDszpwd1n5nT7avRRVnxx+DVOICZ+LEibfs5Hvjdvz48X8cLDMzk4cffpgmTZrwn//8p9h177zzDp06daJVq1a88cYbvP7663z++ee3va9JkyaRkZFRtF28ePEf5xPiTp5u8jQA68+vJ+FagsJpRElpNeqiRTjn7Dh3xxZiAQazgcXHraenhjUe5nBrFgk4diWTnadT0ahVDA+vrXScMlHiAufVV18lLi7ujlvdunUJCAggKSmp2G2NRiNpaWkEBNy5R3ZWVha9e/fG3d2dFStWoNPp7rh/hw4duHTpEvn5+be83tnZGQ8Pj2KbELbUyKcR7QPaY7KYWHJ8idJxRCk80S4YNycNJxOvseN0itJx7NqG8xtIykmimks1+tTpo3QcUQqFrTd9mgVQ09tN4TRlo8RtUH5+fvj5+d11v/DwcK5evcr+/ftp06YNAJs2bcJsNtOhQ4fb3i4zM5NevXrh7OzML7/8ck+dhw8ePIi3tzfOzs73/kSEsLFhjYcRo4/hh5M/8ELLF3DTVYwvjcrC01XHE22Dmb8rnjk7ztGlwd2/9yoji8XCgqMLAIgIjcBJ46RwIlFSSZl5/HLIeir2uS51FU5TdmzWB6dx48b07t2b0aNHExMTw86dOxk7dixDhgwhKCgIgMuXLxMaGkpMTAxgLW569uxJdnY2c+bMITMzE71ej16vx2SydvT79ddfmT17NrGxsZw+fZqvv/6ajz/+mHHjxtnqqQhRKt2Cu1HbozZZhixWnF6hdBxRCiM7haBSwZYTyZxOylI6jl06kHSAo6lHi40gFI5l4e7zGEwW2tb2JizYS+k4Zcam8+AsWrSI0NBQHnzwQfr27Uvnzp355ptviq43GAycOHGCnJwcAA4cOMDevXs5cuQI9evXJzAwsGgr7Dej0+mYPn064eHhhIWFMXPmTL788kveffddWz4VIUpMrVLzdGNrX5xvj32LySyjcRxN7WpV6NG4OgBzrw+fFcUtPLoQgH71+uHj4qNwGlFSuQUmvtt7HoDnutRROE3ZUlkqYe+5kiy3LsQ/kWvM5aEfHiIjP4Mv7/+Sh2o/pHQkUUJ7z6YS8c0enLVqdk18gGpV5VR4ofOZ5+m3oh8WLPw88Gfqelac0xuVxXd7zvP2yliCfVzZ8u/uaOx87puSHL9t2oIjRGXnqnXliYZPAH/90hWOpX0dH1rU9CTfKBP//d13x77DgoWuNbtKceOAzGYLc693Lh7ZsY7dFzclJQWOEDb2VOOn0Kl1HEw+KBP/OSCVSlXU8XLh7niZ+O+6jPwMfj7zMyAT+zmqzSeSOJuSjbuzlifaVbz54aTAEcLGbpz4T1pxHFPfZgFFE/+t+FMm/gP4/uT3RRP7tQ9or3QcUQqzt1+f2K9DLapWgIn9/k4KHCHKwfCm1l+4Gy5s4FLWJYXTiJLSatSM7BQCwOztZzGbK13XxWIMJkPRulPDmwyXif0cUOzlDHaftU7s98z1SS0rGilwhCgHDb0bEh4YjtliZlHcIqXjiFKIaBeMu7OWM8nZbDmZdPcbVGC/xf9Gcm4y/q7+9A7prXQcUQqzt58FoG/zQGp4uSqcxjakwBGinDzT9BkAfjr1E5kFsuCro3F30fFkB+sK2d9sO6twGuXcOLHfk42fRKe580zzwv5cvprLr4etS8iMqUAT+/2dFDhClJOOQR2p71WfHGMOP5z8Qek4ohRGdAxBq1ax52wasZczlI6jiN0JuzmZfhJXrSuPN3xc6TiiFObtOIfJbCG8bjWa1/RUOo7NSIEjRDlRqVRFrTiLji3CYDIonEiUVJCXKw+3CARg1vbK2YozP3Y+AI81eAxP54p7cKyoMnINLImxTncwplvFbb0BKXCEKFcP13kYf1d/knKTWH1utdJxRCmMvt6kv+pwApev5iqcpnwdTzvO7oTdaFQanm7ytNJxRCksiblAdoGJBv5Vub9hxV5fTQocIcqRTqNjaJOhACw4uoBKOJG4w2tWw5PwutUw3TBJWmUx/+h8AHrW7kmNqjWUDSNKrMBoZt5O63t2dNe6FX70mxQ4QpSzxxs+ThVdFU5fPc32y9uVjiNK4fnrTftLYi6QkVM5TjUmXEtg7bm1AIxoNkLZMKJUfjl0hcTMfPzdnRkQFqR0HJuTAkeIcubu5M7gBoOBv34RC8fSraEfoQHu5NywUGFF923ct5gsJjoEdKBJtSZKxxElZLFYmHV99N+ITiE4azUKJ7I9KXCEUMCg7UYe3wn79PuITYktdl1ydDTJUdMUSibuhUqlYkxXayvOLzv+xLjxI8jSK5yqbCVHTSM5OhqwLstQOPJvRLMR8h51NFl6zv/4DmmJF6jipGFoh9pKJyoXUuAIoYCqLh48vs3IoB1m5sXOK7o8OTqalKlRoJGPpr3r1zKIIE8XtDmJaLd/VuEKHDRqUqZGkRwdXbQsQwPvBjRaeVjeo44mS09IbBT+qqtEtKuFp2vlmLuo4i0+IYQD8IuMJDU3hYhZS1iuWsfFNi/j8u2vpEyNwnf8OPwiI5WOKO5Cp1HzbOc6rFgTB4DZYqlQvxgL34MpU6NIi60KHWDC4ZqkfCfvUUdzKimLBoBGreLZziFKxyk3UuAIoZDQVycz98punlgdT0Z4b64ZzXLgcBRZesjS81QtE5ecrXOKHDuwg2aFo1LcA6ybg/OLjCQu9Rj9Fm2k91bQmdbLe9RRXH+PAuzdtZkGwFPB6dTMPQm5VJj36J2oLJVwnGpmZiaenp5kZGTg4eGhdBxRie1N2ItrjxHoTIBOR+Mjh5WOJO7F5imw9ZPbX99tInSfVH55bMRsMTNg5QA+evs0OhOodDpC5T3qGCroe7Qkx29pwRFCQXV/2k+KCQwa0BkMJEdHy69jR9B2JDTqA0DmuT/wWP8qbxhG88xj/WkS6FFhfhlvurCJNmvOFhXgFnmPOo7r79GoTae4FLeXT3WzoN9UCGxpvb6CvEfvRAocIRSSHB1NSlQUGcP7MrrG7zy5W8ujU6MA5ABi725o3i/8DRlrDuHLWFdmtwlTLFZZslgsnPzyIyK2mzk9uB39Plz4Vyd45D1q99wDSLJ4ERWXQANziPWywJYQFKZkqnIlBY4QCig8UPiOH0fDF54n5OeTLAmPp11AF5ADiENSqWBDXBIn9Fk0CnBXOs4/dvCzt+i+Ts+P3ZyIfPsroHjH4xv/LezT3J3xFJjMNA7ygDSl05S/itTpXwjHYfqrQ7FGreHZZs8C8EmTM3iPjQSTWeGA4p65B0C3iTRv1AiAr7ecVjhQ2fgzYT/LuqhRPxuBj4tP0eV+kZH4jh8n71E7l5lnYNEe6ySU/Tu1sva5qQSnpW4knYylk7GwAwWmAvr81IeknCT+E/4fBjUcpHQkUUKxlzN4JGoHGrWKLf++n2AfN6UjldrR1KMMWTUEjUrD6sdWy7pTDujrLWf4dO1xGvhXZd3LXVGrK8a6UyU5fksLjhB2wEnjxPAmwwGYd3QeJrNJ4USipJrV8KRrQz9MZgszt51ROs4/MufIHAD61OkjxY0DyjOYmHN9IdgXutWrMMVNSUmBI4SdGNxwMB5OHpzPPM/GCxuVjiNKIfL+egAs/+MSSVl5CqcpnfiMeDac3wBQdOpUOJYfD1wi5Vo+QZ4u9K8Ei2rejhQ4QtiJKroqPBn6JABzYudQCc8eO7wOdXxoXcuLAqO56Be0o5l/dD4WLNxf834aeDdQOo4oIaPJzIyt1hbE0V3roqvES2pU3mcuhB16qvFTuGhcOJZ6jN0Ju5WOI0pIpVIReX99ABbtuUBGrkHhRCWTmJ3Iz2d+BmBU81EKpxGl8cuhK1xMy6VaFSeGtKuldBxFSYEjhB3xcfEp6mA86/AshdOI0ngg1J9G1d25lm/k293xSscpkflH52M0G2lTvQ1h/mFKxxElZDZbiN5ibb0Z1aUOrk4ahRMpSwocIezMiKYj0Kq1/JH4B/sT9ysdR5SQWq3ixet9cebujCe3wDE6jKfmpvLDyR8AGNNijMJpRGmsO6rndNI1PFy0PH1fbaXjKE4KHCHsTECVAAbWHwhIK46jeqRFIME+rqRlF7A45oLSce7Jt8e+Jc+UR3Pf5oQHhisdR5SQxWJh2mbrHEwjOobg7qJTOJHypMARwg492+xZNCoNO6/sJDYlVuk4ooS0GjUvdrP2xZm59Qx5BvtuxcnIz2DJ8SWAtfVGpaqcw4od2ZaTyRy9kombk4aRneooHccuSIEjhB0Kdg/m4boPA/DN4W8UTiNKY1CbGgR6upCUlc/3f1xUOs4dLY5bTI4xh0bejehWs5vScUQJWSwWpm+ytt4M7VAL7ypOCieyDzYtcNLS0hg6dCgeHh54eXkxatQorl27dsfb3H///ahUqmLbCy+8UGyfCxcu8PDDD+Pm5oa/vz+vvfYaRqPRlk9FiHI3qvkoVKjYfHEzJ9JOKB1HlJCzVsML3ax9cb7ecoYCo30ubXCt4BrfxX0HwOgWo6X1xgHtPZfGH+fTcdKqGd2lrtJx7IZNC5yhQ4dy9OhR1q9fz6pVq9i2bRtjxty989ro0aNJSEgo2j777LOi60wmEw8//DAFBQXs2rWLBQsWMH/+fCZPnmzLpyJEuavrWZdeIb0AmH1ktsJpRGlEtAvG392ZKxl5/HTgktJxbmnZiWVkFmRSx7MOPWr1UDqOKIXp1/vePNG2Jv4eLgqnsR82K3Di4uJYu3Yts2fPpkOHDnTu3JmoqCiWLl3KlStX7nhbNzc3AgICirYb15v4/fffOXbsGN999x1hYWH06dOHDz74gOnTp1NQUGCrpyOEIp5r/hwA6+LXcTbjrMJpREm56DSM6Wr9RR295QxGO1ugMseQw8JjCwEY3Xw0GnXlHlbsiPafT2f7qRS0ahXPd62ndBy7YrMCZ/fu3Xh5edG2bduiy3r06IFarWbv3r13vO2iRYvw9fWlWbNmTJo0iZycnGL327x5c6pXr150Wa9evcjMzOTo0aO3vL/8/HwyMzOLbUI4gkY+jege3B0LlqL1gYRjGdqhNtWqOHEhLYefD975x115+/HUj6TlpVGjag361OmjdBxRCv/beAqAQa1rOvQCr7ZgswJHr9fj7+9f7DKtVouPjw96vf62t3vqqaf47rvv2Lx5M5MmTeLbb79l2LBhxe73xuIGKPr37e53ypQpeHp6Fm3BwcGlfVpClLvnWzwPwOqzq7mQ6RhDjsVfXJ00PHe9X8T0zacxme1jCY48Yx7zYucB1v5eWrVW4USipA5cSGfbyWQ0ahUvda+vdBy7U+ICZ+LEiTd1Av77dvz48VIHGjNmDL169aJ58+YMHTqUhQsXsmLFCs6cKf3qvJMmTSIjI6Nou3jRvkc0CHGjpr5N6VKjCyaLiZmHZyodR5TC0+G18XLTcTYlm9VHEpSOA8APJ38gOTeZwCqBDKw3UOk4ohT+t6Gw9aYGtapJ683flbjAefXVV4mLi7vjVrduXQICAkhKSip2W6PRSFpaGgEBAff8eB06dADg9GlrJ6qAgAASExOL7VP479vdr7OzMx4eHsU2IRzJiy1fBGDV2VWczzyvcBpRUlWdtYy6PjdJ1MZTirfi5BnzmBNrPeU5usVodBqZFM7R/Hkhna3XW2/GdpdFUW+lxAWOn58foaGhd9ycnJwIDw/n6tWr7N//11TzmzZtwmw2FxUt9+LgwYMABAYGAhAeHs6RI0eKFU/r16/Hw8ODJk2alPTpCOEQmvs1p2vNrpgtZpkXx0E90ykEDxctp5KuKd6Ks/zEclJyUwiqEiStNw6qsO/NY62k9eZ2bNYHp3HjxvTu3ZvRo0cTExPDzp07GTt2LEOGDCEoKAiAy5cvExoaSkxMDABnzpzhgw8+YP/+/cTHx/PLL78wfPhwunbtSosWLQDo2bMnTZo04emnn+bQoUOsW7eOt99+m5deeglnZ2dbPR0hFBfZMhKwtuLEZ8QrG0aUmIeLrmhE1VcbTirWipNrzGVu7FzAOmuxtN44noMXr7LlxPXWmwek783t2HQenEWLFhEaGsqDDz5I37596dy5M99889evT4PBwIkTJ4pGSTk5ObFhwwZ69uxJaGgor776KoMGDeLXX38tuo1Go2HVqlVoNBrCw8MZNmwYw4cP5/3337flUxFCcU19m9KtZjfMFrP0xXFQIzrVsfbFSc7ml0OXFcmw/MRyUvNSqVG1Bv3r91ckg/hn/rfhJACPtqpB7WpVFE5jv1QWi8U+uvSXo8zMTDw9PcnIyJD+OMKhHPtsMstP/ciKLlpWDlhJHc+/1pxJjo4Gkxm/cWMVTCju5ustZ/h07XFae+fxQ7sTqNs9C+733i+xpJKjpoFGjV9kJDmGHPr81Ie0vDTe6/geXdbr5T3jSLL06Dd9Tb/dDUhT+7BxQjdCfCtXgVOS47esRSWEA/GrGkDEdjOPbjcWa8VJjo4mZWoUaOQjbe+Gh1vnxcm/moB626eQdftpM8qERk3K1CiSo6NZfmI5aXlp1Kxak06/X5H3jKPJ0hPw51f4q64yICyo0hU3JSUTHwjhQPwiI0nJSSZi9lKWq1ZxtsUY3BetJWVqFL7jx+EXGal0RHEXVZy1vNCtHit/s64vZjBbsGUvmML3RMrUKBKPVIH7YNKx+qQtmi7vGQcTeyWTZoBWreLlBxsqHcfuSYEjhINp/O93WaDfxxOrzpDTqR/5RrMcqBxFlh6y9DwdYkbvegnM8OfeLbRXX1/g0j3AJqer/CIj2Z+4n/7LdtF3G2hNG+Q94yiuv2csWNixfQPNgGfqZFAr/yRcwWbvmYpA+uBIHxzhgE6knSC/y0B0JkCnpfGRI0pHEvdi8xTY+sntr+82EbpPKvOHzSzIpPePvZnxYTo6E6h0OkKPHC7zxxE2oNB7xl6V5PgtLThCOCCfpRtJMYFBAzqDkeToaPk17gjajoRG1jWfDJf+RLfmZd4wjKZr1wd5uHmgzX6Jz4+dT89NGUXFjcVgkPeMo2g7Ekuj3ryy/BDOybF8qpsF/aZCYEvr9dJ6c1tS4AjhYAo7FOuef5onqy1n4HYDEVOjAOSAZe9uOJ1Q2O8m1hzCpj90dO/eDDensv9KTslNIXPmHCK2m8kc/jAd3vzir07pyHvG7rkH8PsFWKm/Qhsn6zxKBLaEoDBFYzkCKXCEcCCFB6bC/hOP7jbwg+UHAqsG0lUOWA4p0NOFo1fzmbcz3iYLJm7/YDyDthawuVcAL076HCje8fjGfwv7YzZb+PJ367w3/VsGgZyNvmcyPlAIR2Iq3qH4+RbP46R2YlpYIjkjBoDJrHBAcc/cA6DbRAZ1awvAjK1nuJpTUKYPceXaFY4mH2FZFzWt3vgYlUpVdJ1fZCS+48fJe8bO/Xr4CicSs3B30fJolzbWPjdyWuqeSCdj6WQsHNzn+z5n4bGFNPZpzNJHlqJWye8WR2I2W+g7dTvH9Vk8360uk/o0LrP7nrxzMitOr6B9QHtm95xdrMAR9s9gMtPz/7ZxLiWbVx9qyLgHZVFNmehPiEpkVPNRuGndiEuLY8P5DUrHESWkVqt4vXcjAObvjEefkVcm93su4xw/n/kZgHGtxklx44CW7bvIuZRsqlVxYmTnOne/gShGChwhHJyPiw/Dmw4HIOrPKIxmo8KJREl1b+RPuxBv8o3molWi/6lpf07DbDFzf837CfMPK5P7FOUnO9/IVxus74XxDzagqrN0mS0pKXCEqACeafIMXs5exGfGs+L0CqXjiBJSqVS83jsUgOV/XORs8rV/dH9Hko/w+/nfUaFibCtZZ8oRzdp+lpRr+dSu5saT7WspHcchSYEjRAVQ1akqz7d4HoDpf04nx5CjcCJRUu1CfHgg1B+T2cJ/158s9f1YLBa++OMLAPrV60cjn0ZlFVGUk+SsfL7ZdhaA13o1wkkrh+rSkL+aEBVERKMIgt2DSc1LZf7R+UrHEaXwWq9GqFSw+nACBy9eLdV9bL64mQNJB3DWODOu1biyDSjKxdSNp8gpMNGypqd1AkhRKlLgCFFB6DQ6/tX6XwDMPzqf5JxkhROJkmoc6MFjrWoC8OGqY5R0kKvBbOD/9v8fAE83eZqAKjKc2NGcS8lmScwFACb1bSydw/8BKXCEqEB61u5JC78W5BpzmX5wutJxRCm81qsRLjo1f5xPZ22svkS3/enkT8RnxuPt7M2zzZ61UUJhS5+vO47RbOGBUH/uq1tN6TgOTQocISoQlUrFv9v+G4AVp1dw5uoZhROJkgrwdGFMF+uU/J+sPU6B8d4m4ss2ZBN9KBqAF1q+gLuTu80yCtv480I6a47oUavgjeudzkXpSYEjRAXTyr8VD9Z6ELPFXHS6QjiW57vVw7eqM+dTc/h2z/l7us282Hmk5aVR26M2jzd63MYJRVmzWCx8uDoOgEGta9IoQArUf0oKHCEqoH+1/hcalYatl7YSkxCjdBxRQlWctbzasyFg7XB6tyUcknKSWHhsIWB97XVq3R33F/bn18MJ7D+fjqtOw797yci3siAFjhAVUB3POgxuOBiAz//4HJPZpHAiUVJPtA2mUXV3MnINRG06fcd9/3fgf+QacwnzC6NHrR7llFCUldwCE5+ssbbeRN5fj+oeLgonqhikwBGigooMi8TdyZ3jacf56fRPSscRJaRRq3jzYeu6VAt3xxOfkn3L/Q4nH+aXM78A8Fq712TUjQP6ZttZrmTkUcPLldFd6yodp8KQAkeICsrHxYfIltZVx6MORJGRn6FwIlFS3Rr60bWhHwaThY+u/8K/kdli5pOYTwDoX68/LfxalHdE8Q8lZOQyY6t1MMCkvqG46DQKJ6o4pMARogKLCI2gnmc90vPTmXFohtJxRCm883BjtGoV648lsvVk8bmNfj3zK0dSjuCmdePl1i8rE1D8I5+tPUGuwUS7EG+Z1K+MSYEjRAWmU+t4vf3rACw5vkSGjTugBtXdeaZjCADv/XK0aNh4tiGbrw58BcDzLZ/Hz81PoYSitA5cSGfFn5dRqWDyI03l9GIZk+VJhajgOgZ15LVDtTibFc+nAZ8y86GZxb5Ik6OjwWTGb5wsymivRp5aD2cvMofuLNsUw9O6zcx0MZKSm8Kz+9zpm5EFzZROKe5Zlh7LvrlExTYH1AxuXZPmNT2VTlXhSAuOEJVAp+DORGw3E/T9TjZf3Fx0eXJ0NClTo0AjXwX2zNlZx+DDq3ny+Hp+3nGA8zu/4NtTPzJoh5neG9LRaGVYuEPJ0qPa9ilJCeep4qThNRkWbhPyrSZEJVDvlUmcGtyWiO1mDn76Fvmm/KLixnf8OPwiI5WOKO7ALzKSauPGMfz4Ojod2cvn1bwZsN1AxHYzvuPk9XM0mXmGov9/uUdD/GVYuE3IKSohKoke785kWlo3+m28yumWrVEbzVLcOIosPf6PdiRdf57e3/+C4aQOncmMZmhv/B7tCFl6cJeFNe1alt66Aes3rmcQ8KBXAiPqZsCVg9bXT17DMqWylHS52gogMzMTT09PMjIy8PDwUDqOEOVm7bm1BD3yCjoToNPS+MgRpSOJe7F5Cmz9hByVijPLA9GawKy20PSJBOv13SZC90nKZhR3dv01vC15De9JSY7fcopKiEqkzZqz6Exg0AAGI8nTo5WOJO5F25EwZivrr92P1gRGDajNKrZdtV5O25FKJxR303Ykxue2MN7jK94wjLZe1m+q9fWT19AmpMARopJIjo4mJSoKp+eH8+ykKizroiYlKso6ikrYN/cAji/5hYa/nmBZFzXpw9NY27g9fmvXcXbpNjm14QjcA/juvBe/JPkTr6tnvSywJQSFWTd5DcucTQuctLQ0hg4dioeHB15eXowaNYpr167ddv/4+HhUKtUtt++//75ov1tdv3TpUls+FSEc2o0diuu9MokxLcbwY2c1v3SvQspUKXLsXdL06VhmLWFZFzWZj3Wga24e+gceZGFoL/K/+Vpa4hxAUmYe//39JADPhIcoG6aSsGkn46FDh5KQkMD69esxGAyMHDmSMWPGsHjx4lvuHxwcTEJCQrHLvvnmGz7//HP69OlT7PJ58+bRu3fvon97eXmVeX4hKgxT8Q7FI5uOZPXZ1Xx331nqejXnfpNZ4YDiTo4lx7Kli5q13d35uc0EcGnACyEd6an3BaBfQgYyzZ99+2B1HFn5RlrW9KTXffXAaaK02tiYzQqcuLg41q5dy759+2jbti0AUVFR9O3bly+++IKgoKCbbqPRaAgIKP6Cr1ixgieeeIKqVasWu9zLy+umfYUQt/b3Sfx0Gh1v3/c2z657lvdD42jQ5005QNqplNwU3mx0iKw6aia2Gkd1/2bg34w6wIv3m5lqsrDB1ZkNuQY8XWU+HHu0/lgivx66gloFHw5sjsbTUzoUlwObnaLavXs3Xl5eRcUNQI8ePVCr1ezdu/ee7mP//v0cPHiQUaNG3XTdSy+9hK+vL+3bt2fu3LncaTBYfn4+mZmZxTYhKrt2Ae0YUG8AAO/tfo8CU4HCicStfBrzKVkFWTT2aUxEo4hi10XeX4+6vlVIzsrns7XHFUoo7iQj18BbK6yjFUd3rSszFpcjmxU4er0ef3//YpdptVp8fHzQ6/X3dB9z5syhcePGdOzYsdjl77//PsuXL2f9+vUMGjSIyMhIoqKibns/U6ZMwdPTs2gLDg4u+RMSogJ6te2r+Lj4cPrqaWYenql0HPE368+vZ238WjQqDe92fBetuniju4tOw0ePNgdg0d4L/BGfpkRMcQcfr44jKSufOr5VeKVHQ6XjVColLnAmTpx4247Ahdvx4//8l0Rubi6LFy++ZevNO++8Q6dOnWjVqhVvvPEGr7/+Op9//vlt72vSpElkZGQUbRcvXvzH+YSoCLxdvHn7vrcBmHNkDsdSjymcSBRKz0vnwz0fAvBss2dpWq3pLfcLr1eNJ9rWBOD1Hw6TW2Aqt4ziznacSmHZH9bjzaeDWuCi0yicqHIpcYHz6quvEhcXd8etbt26BAQEkJSUVOy2RqORtLS0e+o788MPP5CTk8Pw4cPvum+HDh24dOkS+fn5t7ze2dkZDw+PYpsQwuqh2g/RK6QXJouJt3e+jcFkuPuNhM1N2TuFtLw06nvV54WWL9xx37f6NqG6hzNnU7L5fN2Jckoo7iQ738jEnw4DMDy8Nu3r+CicqPIpcSdjPz8//Pzu3h0xPDycq1evsn//ftq0aQPApk2bMJvNdOjQ4a63nzNnDv3797+nxzp48CDe3t44Ozvf/QkIIW7yZoc3iUmI4VT6Kb458g0vhb2kdKRKbcP5DfwW/xsalYYPO32Ik8bpjvt7uun4ZFALRs7bx7xd5+jZtDr31a1WTmnFrXy+7gSX0nOp4eXK671DlY5TKdmsD07jxo3p3bs3o0ePJiYmhp07dzJ27FiGDBlSNILq8uXLhIaGEhMTU+y2p0+fZtu2bTz33HM33e+vv/7K7NmziY2N5fTp03z99dd8/PHHjBs3zlZPRYgKz8fFh7fuewuA2YdnE5cap3Ciyutq3lU+2PMBACObjaSp761PTf1d90b+DGkXjMUCr/1wiOx8oy1jijvYezaVBbvjAZjyWHOqOsuyj0qw6UR/ixYtIjQ0lAcffJC+ffvSuXNnvvnmm6LrDQYDJ06cICcnp9jt5s6dS82aNenZs+dN96nT6Zg+fTrh4eGEhYUxc+ZMvvzyS959911bPhUhKrxeIb14qPZDGC1GOVWloI9jPiYtL416nvV4seWLJbrtWw83poaXKxfTcvl4jRSpSsjMMzBh+SEsFniibU26NpQJGJQii21KfxwhiqTmpvLoz4+Snp/Os82e5ZU2rygdqVL57dxvvL7tddQqNd/1+Y7mfs1LfB+7zqTw1CzrVBwLn20vB9hy9vLSP1l58Aq1fNxY868u0npTxmSxTSFEqVRzrca74dbW0Hmx89iTsEfhRJXH5WuXeX/3+wA81/y5UhU3AB3r+TKiYwgAb/x4mIwcaYkrLz8fvMzKg1fQqFX8X0SYFDcKkwJHCFHMg7UfZHDDwViw8Ob2N0nPS1c6UoVnNBt5Y9sbXDNco6VfyxKfmvq7N3qHUse3CgkZebz+46E7ToQqysblq7m8vTIWgLHd69OmtrfCiYQUOEKIm7ze7nXqeNYhOTeZyTsnywHSxmYensmh5ENU1VXlky6f3DShX0m5OmmYOqQVOo2KdUcT+XbP+TJKKm7FZLYwYdlBsvKMhAV7Me6B+kpHEkiBI4S4BVetK591/YyIHVBt6SaWnVh20z7J0dEkR01TIJ3jSo6adtPK7fsT9/PN4W8YtMPMf0+3p6Z7zTJ5rOY1PZnYpzEAH66K4+iVDMjSw+Yp1v+Kf+763/O79XvZey4NNycNX0WEodXIodUeyKsghLilUJ9Q7qvRkYjtZk7938ecSj9VdF1ydDQpU6NAvshLRqMmZWpUUZGTkZ/BxO0TeXS7kYjtZhr4NirTh3u2UwgPhvpTYDIzbvGf5KZdhq2fSIFTVrL0sPUTfty2H4B3+zUhxLeKwqFEIekBJYS4rQffncG8rL4MXh3Pb5NHUuPL38meNZ+UqVH4jh+HX2Sk0hEdSuHfK2VqFBaLhY8an6TTuitEbDfj+dILZf73VKlUfP54S/r+bztnU7L5eksSE8r0ESq3tJwCfLCeohoYFsQTbWWdQ3siBY4Q4rZUKhX9P/yWubl96Lc+lbOt2qExmqW4+QduLHJGaUBnAvNzEQSN+5dNHs/HnMash7S8ueIciSfjQQckHPprB/cA6ybuTZYesvQYzRa+/3UVzwMPeiXwYkczqoRD8ve0IzIPjsyDI8RdHUw6iLr7k9aDsVZD09hYpSM5tF2Xd1G156jy+XtunmI9LXU73SZC90m2e/yKRv6eipJ5cIQQZarGD7vQmcCgAbXRxJ+fvql0JId1KesSWz8Yi84EJq0atdF0U8fjMtV2JIzZimn0Fub6WCdunKJ9kfSnN8CYrdbrxb1rO5JdPX7i4fyPeMMw2npZv6nWv6X8Pe2KFDhCiDsq7FDsO24cy2cOYlkXNS7zVnD2q0+VjuZwco25rHxrKAO35LKldyAND/2J7/hxxToelzn3AAgKQ1OjFY/3ewSAHdk1eX69kQL/FnI6pYTO5lXl+fVGjlrqUK9FJ+uFgS0hKMy6yd/TbkgfHCHEbRUVN9f73LxtzGN4+kmWcZSIGfPRa90IGCsL3d4Li8XCyreG8uDvSfzSvQrPfLQYJ41TsT45gE37Nrlfn1m3ipOGmPg03l91lA8Hlm7G5MooPbuAZ+fvIyvfSJva3ozs5Aqy5JfdkgJHCHF7puIdil20LnzV/SsisiOANBrEr+dJy0uoVdIYfDdzYudwJfU4J7tq6Pvu1wRU+euXflFRYzLbNoR7AHSbyDjPzgz//gLf7blAk0BPnupQy7aPWwHkG008/+1+4lNzqOHlyoxhbdCRbu1zI602dkk6GUsnYyFKLCYhhuc3PI/RbGRE0xG82vZVpSPZtVVnVzFpu7Xj6aT2k3iq8VMKJ4Lpm0/z+boT6DQqFjzbno71fJWOZLcsFguvLj/ET39ext1Zy4+RHWlY3V3pWJWSdDIWQthU+8D2vN/RujDk/KPzWRy3WOFE9mtvwl7e2fkOAM80ecYuihuAyPvr8UiLQAwmC2MW7if2cobSkexW1KbT/PTnZTRqFdHDWktx4yCkwBFClEq/ev0Y32o8AJ/EfMLGCxsVTmR/TqWf4uXNL2M0G+kV0osJbe1nmj2VSsUXj7fkvro+XMs3MmLePi6k5igdy+78fPAyX64/CcAHA5rRpYGfwonEvZICRwhRas81f65o5fE3tr3BoeRDd79RJZGYnciLG17kmuEarf1b81Hnj+yur5KLTsM3w9vSONCDlGv5PD13L8lZ+UrHshubjyfx7++t7+nRXepIXyUHY1+fNiGEQ1GpVLzV4S261uxKvimflza+xIm0E0rHUlxqbirPr3+exJxE6njWYeoDU3HWOCsd65Y8XHQsGNmOmt6unE/NYeT8GK7lG5WOpbidp1N4/rv9GEwWHmkRWLRwqXAcUuAIIf4RrVrL510/p4VvCzLyM3ju9+cqdZGTmpvKc78/x5mMM/i7+hP9YDSezp5Kx7ojfw8Xvh3VgWpVnIi9nMlzC/aRU1B5i5x98Wk8t+APCoxmejapzv9FhKFRq5SOJUpIChwhxD/mpnPj64e+plm1ZlzNv1ppi5y0vDSe+/05Tl89jb+rP3N7z6Wme02lY92TOr5VmDeyHVWcNOw5m8aIufsqZUvOwYtXGTlvH7kGE90a+hH1VCt0GjlUOiJ51YQQZcLDyYOZPWfStFpTHtqQyoq3nuJU+qmb9kuOjiY5apoCCctOctS0m2YeLixuWq46yTO7XZjTaw61PWorlLB0WtT04tvnOuDuoiUmPo2n5+wlI9dgXWBy8xTrfyui688v7uRJhs/Zy7V8I+F1qzHz6TY4azVKpxOlJAWOEKLMeDh5MPOhmVSr4s+AzTn89OaTxVpyCmdGxtF/EWvUxZZXSMlN4bnfn6PFryeI2G5mQMOBhHiGKJuxlFrX8mbxc/fh5abjzwtXGTZ7L1nJF60LTFbkAmfrJ7zz3QYy86yzFM9+pi0uOiluHJnMZCyEKFOezp4M++xnvmMA/dcl8sObEXR/J5oGPx8stuyDI7txeYX0vHTG197OfWsvErHdjHbMMBpMeEvhhP9M85qeLH7uPobN2cuRyxlMWpGEY7e53dnWU8l0A3INZjrVr8aMYW2o4iyHR0cnr6AQoswVFjnLNY/z2JqLGLaPIsVEhShuCvlFRnL52mWcv/mOzzSgM4Hu+aep/0rFWGm9iXsOKx6twpsrzlEl7STo4MrxvQQV7uAe4NhLFGTpIUvPzwevsGvnJrrp4Kla6TzeywmntKOO//yELNUgSzUIYTsFpgJOtmyFxmjGoIGt30UyNmwsKpXjj0hZfXY17+x8h/mf5KIzATodjY8cVjpW2dk8xXpa6na6TYTuk8ovTxkzb/oY9bZPb7+Dgz+/iqokx29pwRFC2EzGzNlojGbMWjU6o5nU6BlMfPoS74a/i5vOTel4pWIym/jmyDdEH4xm0A5zUXGDwUBydHSFaaGi7Uho1AeAnPMHcFv3Cm8YRnPUEsIz4SEMbtMGRy1TU67l8+6plsTnfwTAv5vn0v3kh9BvKgS2tO4krTcOz8F7+gkh7FVhh2Lf8eNoGnuU5KE9iNhuxvXbVUSsiuB42nGlI5ZYUk4Sz69/vqi4idhuptq4sTQ+chjf8eOKdTx2eO4BEBQGQWG41W4NQO2m4cSa6/DaThUvr9GTmWdQNmMp/BGfxsNTt7P6HJzV1mdMxKN0v/8h65WBLYuesxQ4jk9acIQQZe7G4qawRaPrO1EcdH6LiLk/AWd56tpTvNr2VZ4KfcohTlltu7SNt3e8TXp+OhG71Azabiz2/G7seHzjvyuSyPvrUbWOF+/9eoyfD17hj/h0/vtES+6rW03paHdlsViYs+McU347jslsoZ5fFWYMa0OD6u5wJVnpeMIGpMARQpQ9k/mWHYrDXv+Iiy7VqBu/AYP5Ip/EfMKehD281/E9fFx8FAp7Z/mmfP534H98e+xbAEJ9QnmiQQu8W1a76fkV/dtkLu+YtuUeYO2T4h7A8PAAGgd6MGH5QS6m5fLkrD2M6VKXCT0b2u2cMfEp2by9MpYdp1MA6N8yiCmPNf9rpNQNz09UHNLJWDoZC1HuLBYLi48v5r9//BeD2YC7kztjw8by4PoU1FrtLVs/kqOjwWTGb9zYMsuRHDUNNOpbP970aM6ln2Fy46NcvnYZgKGNh/JKm1fsdl2p8nQt38gHvx5j2R8XAQgNcOejR5vTprb3Xztl6eGPedb+POVRPPzt8fKNJr7ZepaozacpMJpx1qp5++HGDLuvtkO0GoqbleT4LX1whBDlTqVSMbTxUBb1XUQj70ZkFWQxJWYKy09/f8t+LDabIPBvE/YVOvnlR6RERbHm/FouX7uMv5s/U7tPZWL7iVLcXFfVWcung1vwzdNtqFbFieP6LAZ9vYvIRfuJT8m27nR9Ar1ymyDwhsfbczaVh6fu4L/rT1JgNNOlgS/rXu7K0+EhUtxUEnKKSgihmMbVGrPskWX8eOpHpv45lW/aXCU1V03E1CiScpJo+u//3LI/T1n5e7+ZguED2Pvxv2n800GWdVHzS1dnRjcdwXPNn3PYUV+21rNpAK1qefPFuhMs33+RNUf0rD+WyLD7avNKUwPl2UZuwYIKmPTTEZZcsra6+VZ14p1HmtC/ZZAUNpWMzVpwPvroIzp27IibmxteXl73dBuLxcLkyZMJDAzE1dWVHj16cOpU8bVs0tLSGDp0KB4eHnh5eTFq1CiuXbtmg2cghCgPGrWGJxo9waqBq4hoFMGKLlqWdVGjnr2MI02bkDI1imrjxt6xuLnV2lBF191l7SvfF1/EOOpxUqZGkdqhR1FxkzrkAX4e8DPjW4+X4uYu/Nyd+XRwC377Vxf611PT0HyWmF2b+Xz+cgAuHdsNVw5at3tpzSnJ2ldZesyX/2T3jo1MX/wTAOaEQ7TUxPNai1w2jQllQFgNKW4qIZu14BQUFPD4448THh7OnDlz7uk2n332GVOnTmXBggXUqVOHd955h169enHs2DFcXFwAGDp0KAkJCaxfvx6DwcDIkSMZM2YMixcvttVTEUKUAy8XL96+720eb/g48+rMw7DrZ3QmCwYNjAhcTf9DGrrV7EaoT+jNB6vrp5qg+OilG1t//u5i1kW2XdrGmrNrOOx/mEXXZyM2alT0fG8WHYM62vT5VkShAR5MrX8QLhefILDm/7d37zFRXXkcwL/zRgVBcBgYeYiKIioUoRActG4lttp1q9tVMTbB2m23FrZSdLea3YQ2bRxNthvFIJa6KyZbo40rrXajlkXEtUVR3Gm0Gp9UsLykCDNgizJz9w/qtFQcdR16rpfvJ5lk5s6duV9OJsxv7jn3nCOrgCM997+d8gcMmvlnz290u6tp3Ky7jt1xuST8t+46HPvXYXrD35EKIPX759bp3u+5cx5A6CogmBP2DUT9Psi4uLgYOTk5aGtr87ifJEkwm81YsWIFVq5cCQBob2+HyWRCcXExMjIycPbsWcTGxuL48eNISkoCAOzfvx+zZ8/G1atXYTabPR3CjYOMieTtdmHi0qqh7nZh51Q1/pnWc8I5eHAwpoVNg8VsweiA0QjzDYNOo7ujK+vHjwNf+R0abzSipr0GVQ1VqLhagcvtl93HW/CZCr85fAvQaYFb3YpaUuJn9/0SCBIkfHW6ElGfr8aful+GzdmzsnqzFIDhoZGwjA7ClDFBmBwxDP6DdL2L1nobUPQE8HJFz5w0ALq6nbjQ1IEzDXacutqO0jNNaLR/ByOuI1jVhiF6DV4Ybcesy2vunLCPV0cpxiM5k3FNTQ0aGxuRnp7u3ubv74+UlBRUVlYiIyMDlZWVCAgIcBc3AJCeng61Wo1jx45h3rx5fb53V1cXurq63I/tdnv//SFE9FB+WqjUb9yAhQWbEeUfhYKEZjTfaMau87uw6/wuAIBGpYHZ14zIsZFI+9U4TM7fiKZNBdB0u1D1y9H4aEQpaj/4G266bvY6jlalRYIpAYsqtQg7/J87CiNAmXPZ9LvvCwoVgCiogM+BPy5dgJ1XA7H75Ne41ujAtQY7zjbYseVIDQBgiF6DCUO/xdghnQgaokfYdxcwH8C23R/jgvo0rt+4iZOtBjS4AnodytegRVrsRMyeFIqp0cPhc+0UULTmhwn7aECTTYHT2NjT12oymXptN5lM7ucaGxsRHBzc63mtVovAwED3Pn2xWq146623vJyYiLytrwHF5t8vh06jQ3L+Rjw18lVcmjcZh+oO4YtrX+CK/QpudN9AnaMOdY46HJkAfPAvQPf92ld/mXQFaOt5b51ahwi/CMQGxWJa+DRMMU9B15Z/oGXHxgE3Yd/Pzd9Hh5enjcbL00bjmqMLRy9/g88vteCzi9+gtvUGOm86MaVtD3I6dvd6XWbLX93316t/jWKfRRgfMhTjQ4cidXRQT1Gjk+fcOyTeAxU4q1atwrp1HhYnA3D27FnExMQ8VChvW716NXJzc92P7XY7wsPDBSYioj7dZYLAH0+gZxlhgWWEBUBP13bLty34yv4VrtivIGB7KXTOw3BpNdB1O7HhqzQYfvs8RvqPRMjgEGjUvb8Mr93H8egh9DGBntHPgDnxZsyJ7xlScONmNxrbv0NLQxT+fW0RvunsgqnjHKaffxvHJr2JG4ET4WvQIiMyCsvN95i/hhP20Y88UIGzYsUKLFmyxOM+o0aN+r+ChIT0fCCbmpoQGhrq3t7U1ITHHnvMvU9zc3Ov13V3d6O1tdX9+r4YDAYYDJy7gkjuPE3i19eZFJVKBeNgI4yDjRi5+zhadhzu1dWE/I0YbpwE46sWrxyPHpBfyD1X5B6s12KU0RejjLEAYns21ocD599GSuovHqyr6T6ORwPHAxU4RqMRRqOxX4JERUUhJCQEZWVl7oLGbrfj2LFjWLZsGQAgNTUVbW1tqK6uRmJiIgDg4MGDcLlcSElJ6ZdcRCR/fXVtsauJaGDrtzE4tbW1aG1tRW1tLZxOJ2w2GwBgzJgx8PX1BQDExMTAarVi3rx5UKlUyMnJwTvvvIPo6Gj3ZeJmsxlz584FAIwfPx5PP/00XnrpJWzevBm3bt1CdnY2MjIy7vsKKiJSIHY1KQu7msgL+u0y8SVLlmDbtm13bC8vL8f06dN7Dq5SYevWre5uL0mSkJeXh6KiIrS1tSEtLQ2bNm3C2LFj3a9vbW1FdnY29u7dC7Vajeeeew75+fnuoul+8DJxIiKiR8+DfH9zsU0WOERERI8ELrZJREREAxoLHCIiIlIcFjhERESkOCxwiIiISHFY4BAREZHisMAhIiIixWGBQ0RERIrDAoeIiIgUhwUOERERKU6/rUUlZ7cnb7bb7YKTEBER0f26/b19P4swDMgCx+FwAADCw8MFJyEiIqIH5XA44O/v73GfAbkWlcvlQn19Pfz8/KBSqbz63na7HeHh4airq+M6Vz/BtvGM7eMZ28czts/dsW08e5TaR5IkOBwOmM1mqNWeR9kMyDM4arUaYWFh/XqMoUOHyv6DIgrbxjO2j2dsH8/YPnfHtvHsUWmfe525uY2DjImIiEhxWOAQERGR4rDA8TKDwYC8vDwYDAbRUWSHbeMZ28czto9nbJ+7Y9t4ptT2GZCDjImIiEjZeAaHiIiIFIcFDhERESkOCxwiIiJSHBY4REREpDgscLyooKAAI0eOhI+PD1JSUlBVVSU6kmwcPnwYc+bMgdlshkqlwkcffSQ6kmxYrVY8/vjj8PPzQ3BwMObOnYtz586JjiUbhYWFiIuLc09Clpqain379omOJUtr166FSqVCTk6O6Ciy8Oabb0KlUvW6xcTEiI4lK19//TWef/55BAUFYdCgQZg0aRJOnDghOpZXsMDxkp07dyI3Nxd5eXk4efIk4uPj8dRTT6G5uVl0NFno7OxEfHw8CgoKREeRnYqKCmRlZeHo0aMoLS3FrVu3MHPmTHR2doqOJgthYWFYu3YtqqurceLECTz55JN49tln8eWXX4qOJivHjx/He++9h7i4ONFRZGXChAloaGhw344cOSI6kmxcv34dFosFOp0O+/btw5kzZ/Duu+9i2LBhoqN5h0RekZycLGVlZbkfO51OyWw2S1arVWAqeQIglZSUiI4hW83NzRIAqaKiQnQU2Ro2bJi0ZcsW0TFkw+FwSNHR0VJpaan0xBNPSMuXLxcdSRby8vKk+Ph40TFk64033pDS0tJEx+g3PIPjBTdv3kR1dTXS09Pd29RqNdLT01FZWSkwGT2K2tvbAQCBgYGCk8iP0+nEjh070NnZidTUVNFxZCMrKwvPPPNMr/9B1OPChQswm80YNWoUFi9ejNraWtGRZGPPnj1ISkrC/PnzERwcjISEBLz//vuiY3kNCxwvaGlpgdPphMlk6rXdZDKhsbFRUCp6FLlcLuTk5MBisWDixImi48jGqVOn4OvrC4PBgFdeeQUlJSWIjY0VHUsWduzYgZMnT8JqtYqOIjspKSkoLi7G/v37UVhYiJqaGkydOhUOh0N0NFm4fPkyCgsLER0djQMHDmDZsmV47bXXsG3bNtHRvGJAriZOJFdZWVk4ffo0xwn8xLhx42Cz2dDe3o5du3YhMzMTFRUVA77Iqaurw/Lly1FaWgofHx/RcWRn1qxZ7vtxcXFISUlBZGQkPvzwQ7z44osCk8mDy+VCUlIS1qxZAwBISEjA6dOnsXnzZmRmZgpO9/B4BscLhg8fDo1Gg6ampl7bm5qaEBISIigVPWqys7PxySefoLy8HGFhYaLjyIper8eYMWOQmJgIq9WK+Ph4bNiwQXQs4aqrq9Hc3IzJkydDq9VCq9WioqIC+fn50Gq1cDqdoiPKSkBAAMaOHYuLFy+KjiILoaGhd/xIGD9+vGK68VjgeIFer0diYiLKysrc21wuF8rKyjhOgO5JkiRkZ2ejpKQEBw8eRFRUlOhIsudyudDV1SU6hnAzZszAqVOnYLPZ3LekpCQsXrwYNpsNGo1GdERZ6ejowKVLlxAaGio6iixYLJY7pqQ4f/48IiMjBSXyLnZReUlubi4yMzORlJSE5ORkrF+/Hp2dnXjhhRdER5OFjo6OXr+aampqYLPZEBgYiIiICIHJxMvKysL27dvx8ccfw8/Pzz1uy9/fH4MGDRKcTrzVq1dj1qxZiIiIgMPhwPbt23Ho0CEcOHBAdDTh/Pz87hirNWTIEAQFBXEMF4CVK1dizpw5iIyMRH19PfLy8qDRaLBo0SLR0WTh9ddfx5QpU7BmzRosWLAAVVVVKCoqQlFRkeho3iH6Mi4l2bhxoxQRESHp9XopOTlZOnr0qOhIslFeXi4BuOOWmZkpOppwfbULAGnr1q2io8nC0qVLpcjISEmv10tGo1GaMWOG9Omnn4qOJVu8TPwHCxculEJDQyW9Xi+NGDFCWrhwoXTx4kXRsWRl79690sSJEyWDwSDFxMRIRUVFoiN5jUqSJElQbUVERETULzgGh4iIiBSHBQ4REREpDgscIiIiUhwWOERERKQ4LHCIiIhIcVjgEBERkeKwwCEiIiLFYYFDREREisMCh4iIiBSHBQ4REREpDgscIiIiUhwWOERERKQ4/wM5rzOaEV7L1gAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "spl=NumbaNaturalCubicSpline(xx,yy)\n",
+    "\n",
+    "x_new = np.linspace(0, 2*np.pi, 33)\n",
+    "y_new = spl(x_new)\n",
+    "y_der = spl.derivative(x_new)\n",
+    "\n",
+    "plt.plot(xx,np.sin(xx),'-')\n",
+    "plt.plot(x_new,y_new,'+')\n",
+    "plt.plot(xx,np.cos(xx),'-')\n",
+    "plt.plot(x_new,y_der,'x')\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "07c44b10",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([-9.01808748e-08, -3.61131530e-07, -8.16514769e-07, -1.05347279e-06,\n",
+       "       -8.68221946e-07, -2.56088616e-07,  6.18383030e-07,  1.47649559e-06,\n",
+       "        1.99846874e-06,  1.90557548e-06,  1.04140781e-06, -4.53878964e-07,\n",
+       "       -1.18976568e-06, -1.11274057e-06, -6.60453420e-07, -2.15422938e-07,\n",
+       "       -3.66177375e-08, -2.15422938e-07, -6.60453421e-07, -1.11274057e-06,\n",
+       "       -1.18976568e-06, -4.53878964e-07,  1.04140781e-06,  1.90557548e-06,\n",
+       "        1.99846874e-06,  1.47649559e-06,  6.18383031e-07, -2.56088615e-07,\n",
+       "       -8.68221948e-07, -1.05347279e-06, -8.16514770e-07, -3.61131530e-07,\n",
+       "       -9.01808749e-08])"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "y_der-np.cos(x_new)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7daec340",
+   "metadata": {},
+   "source": [
+    "# Appendix\n",
+    "\n",
+    "Generated with chat gpt\n",
+    "\n",
+    "```\n",
+    "\n",
+    "```\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4ef193cf",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/notebooks/numba_cubic_spline.ipynb b/notebooks/numba_cubic_spline.ipynb
new file mode 100644
index 0000000..21f513e
--- /dev/null
+++ b/notebooks/numba_cubic_spline.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "a79b0eaa",
+   "metadata": {},
+   "source": [
+    "# Numba cubic spline \n",
+    "\n",
+    "M.Maris - 2025 May 9 - \n",
+    "\n",
+    "Better to use NumbaNaturalCubicSpline\n",
+    "\n",
+    "Derivatives have some problems "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "73b19d27",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import time\n",
+    "\n",
+    "from matplotlib import pyplot as plt\n",
+    "\n",
+    "from yapsut.numba_cubic_spline import NumbaCubicSpline, NumbaNaturalCubicSpline\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "f843337d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "xx=np.linspace(0,2*np.pi,100)\n",
+    "yy=np.sin(xx)\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d00fd513",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "31d22314",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x7faa9b6b10a0>]"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVEElEQVR4nOzdeVxU9f7H8dfMsMsuIKAoroALopLklkuWmqWWlWuWmS2mVrbp/bXcm5VW93a7LmSZmpZ7e2qW+66IirgAioqisqrs+8z5/TGAkivIcGbg83w85lHOmeU9zJkzn/me76JRFEVBCCGEEKIW0aodQAghhBCiukmBI4QQQohaRwocIYQQQtQ6UuAIIYQQotaRAkcIIYQQtY4UOEIIIYSodaTAEUIIIUStIwWOEEIIIWodK7UDqMFgMHDx4kWcnJzQaDRqxxFCCCHEHVAUhezsbHx9fdFqb91GUycLnIsXL+Ln56d2DCGEEEJUQWJiIo0aNbrlbepkgePk5AQY/0DOzs4qpxFCCCHEncjKysLPz6/8e/xW6mSBU3ZaytnZWQocIYQQwsLcSfcS6WQshBBCiFpHChwhhBBC1DpS4AghhBCi1pECRwghhBC1jhQ4QgghhKh1pMARQgghRK0jBY4QQgghah0pcIQQQghR60iBI4QQQohaRwocFaXNnkNaePiNt4WHkzZ7Tg0nEkIIUZfVpu8lKXDUpNOSPmv2dTtTWng46bNmg07eHiGEEDWoFn0v1cm1qMyF54QJAMadpvTfZTuRx+RJ5duFEEKImlCbvpdMWopt376dRx55BF9fXzQaDb/88stt77N161Y6duyIra0tLVq04Ntvv73uNnPnzsXf3x87OzvCwsKIiIio/vA1xHPCBDwmTyJ91mxi2wVb5E5Uq2Qnw5YZxv8KIUQdVFu+l0xa4OTm5tK+fXvmzp17R7c/c+YMAwcOpHfv3kRFRfHqq6/y3HPP8eeff5bfZuXKlUyZMoX333+fgwcP0r59e/r160dqaqqpXobJeU6YgMbaGqW4GI21tcXtRLVKdjJsmykFjhCiTqsN30smPUU1YMAABgwYcMe3nzdvHk2bNuU///kPAEFBQezcuZP//ve/9OvXD4DPP/+c8ePHM3bs2PL7rF27loULFzJ16tTqfxGVcC7rHFFpUbjYuOBi64KrrSuutq442Tih0+puer+08HDytfXI9/DBPjuJtPBwi9yZLJGiKKRmF5KeU0hBsR5dcgYhwO5T6VgXXcbb2Y4GznbYWFnOeWchhLhblfleUhSF7OJsMgsyySzKJKMwg4zCDPyc/Gjv2b6Gk19lVn1w9uzZQ9++fStc169fP1599VUAioqKOHDgANOmTSvfrtVq6du3L3v27Lnp4xYWFlJYWFj+76ysrOoNXmp/8n7+ueef111vp7Ojdf3WtPdqT3tP48XD3gMw7kTRqyKJ7fIhoAEUAlctJRgpcu5KdjJELoLQseDkXX51alYBO+PTOX4xi5jkLGKSstHlpuClyQCgrTaBEGv4df16jhpiAUjDFcXRm2Ye9ejSvD5dm3sQ4udasei5yfMJIYSlud33UnZRNkfSj3A47TCH0w5zJO0IWUXXf68OCxgmBU6Z5ORkGjRoUOG6Bg0akJWVRX5+PleuXEGv19/wNrGxsTd93BkzZvCvf/3LJJmvVd++Pt18u3Gl8AqZhcYqNrc4lwJ9AQdTD3Iw9WD5bYPcg3j+gBv1f46+ZicC0BAXOAr3r94BkCKnqspONQUMIEVx5Y8jSaw7ksz+s5dRlIo3fc1qE69Y/VThuk+s55f//xclj/FF9uOkZRey78xlvth4EntrHaH+bjwS7MvD7X1wuOb5pMARQliqtPBwzn/13U2/l36N/5VZ7ZNQUK67r72VffnZCxdbF/yd/Wsy+nXMqsAxlWnTpjFlypTyf2dlZeHn51ftz9PLrxe9/HpVuK5YX0xidiKH0w4TnR7N4bTDxF+JJ+ZyDLvP67EKC8ClfCcyUtBgM+oF0OdUe8a6QkFBA0z9KZqVFy5UKGraN3KhQ2M3gnycCPJxppVDCBS8YtyYdBh+nwyPzAKf9hgUhae09emjd+bIhUx2n7rE3lOXuJRbxI6T6ew4mc70tcd5OSCHF9V4oUIIUZ30BuP3z+nrv5fWdfZCn3USBR1+Tn4EewYT7BFMe6/2NHdpjp2VnUqhb8ysChxvb29SUlIqXJeSkoKzszP29vbodDp0Ot0Nb+PtffNfzba2ttja2pok8+1Y66xp5tqMZq7NeLTlowBkFGSwPmE9v3v8zqkLZxl10ID2mv7eGi00GT8cRzfz2lnMXnYy+qwkdsWnc3DfNl4FlKRoWuNPkI8THdoE0is0mIau9n+7oyvQsOJVPu3BNwQtUL/0EtzIlVFhTVAUhRMpOew5fJSdh46RlFnAmaMJYA3zVvxE9/uyaOvrbGzJkdYcIYQF8Zw0EfsrBfCP3VzbSGPAwKE+9jzQ+hXWN3+Yho4Nb/4gZsKsCpwuXbqwbt26Ctdt2LCBLl26AGBjY0OnTp3YtGkTQ4YMAcBgMLBp0yYmTpxY03GrzNXOleGBwxkeOJwzmWdY47gTw3YftGgxYCC29Rb2Zhm43/V+NBrN7R9QGIuOtbMIiJ3LfcB9pdeXn2q6AuimgmvYXT+XRqMhwNuJgJitPFMwE66pnV/M+h+s+R8Al0On4P7w+3f9fEIIUVOiUqOYEzWHzKYa7js9DC1aFI1Cq8FOTOy33KK+k0xa4OTk5BAfH1/+7zNnzhAVFYW7uzuNGzdm2rRpXLhwgSVLlgDw4osvMmfOHN566y2effZZNm/ezKpVq1i7dm35Y0yZMoWnn36a0NBQOnfuzBdffEFubm75qCpL09SlKZNGNiXl/sv8dOB3fkpZTqr2Atu3/kawZzD/6vIvWri1UDumWUtIz+XdX48Se7I1XpqPcLKz4rnm2fSN/7D8VBNwZ60pTt7Qc+qd3TZ0rLHPDZSf2vq50dssOuOC3qBwabcb9xcf4bUHWuHhqE4LohBC3In0/HRm7JvBX2f/AsDKx4qQTi0Z5PE4TRv7WuQZBY2i/L3LZfXZunUrvXv3vu76p59+mm+//ZZnnnmGhIQEtm7dWuE+r732GsePH6dRo0a8++67PPPMMxXuP2fOHD777DOSk5MJCQlh1qxZhIXd+S/zrKwsXFxcyMzMxNnZuaovzySyirJYcmwJ3x3/jrySPKy11rwQ/ALPtnsWa6212vHMSmGJnq+2nWbOlniKSgzYWGl5uVcLnuvRlHqXjsLXPeH5beAbYvowF6PKny/eqjmfrI9jw3HjqVQ3B2tmPNaO/m19TJ9DCCEqQVEU1pxewyf7PyGzMBOdRsfgFoN5IfgFfB191Y53ncp8f5u0wDFX5lzglEnOTWb63ulsP78dgED3QD7o+gFB9YNUTmYejl7I5JUVhziVlgtAj5YeTB/cFn+PesYbXFNw1HSBU/Z8EWcu8/5vx4hJMg6ffKxjQ/45qA3OdlKoCiHU9/fvmQC3AKZ3m27W3zNS4NyGJRQ4YKys155Zy8yImeWV9WudXmNM6zEWdR60OimKwvKIRP75+zGKSgx4ONry3iOteSTYp+LfpKbnpbnJ8xWVGPhi4wnmbTuFQQFfFzv+/UR7urbwMH0mIYS4iS3ntvB/O/+P7OJsrLXWvNj+Rca2HWv2ZwqkwLkNSylwyqTnp/Pxvo/ZcHYDAAP8B/DPrv/EwdpB5WQ14JrCIdfGg3d+OcrPhy4AcH+gF/95sj2uDjYqh7y9A2cv89rKw5y7nAfAm/0CmNCrubEok0kChRA1xKAY+PLwl8w7PA+AtvXbMr3bdIvp6ykFzm1YWoEDpS0Xscv5bP9nPLq9EDeH+gz5cBluek8yUvNx9bLH0c3OuMS93oDnJMsZVXZLpad+Ep/4g7F/FhOfmoNOq+GtfgGM79EMrdZyWrJyC0uYvuY4K/YnAjA4xJdPhgZjl3akZk+nCSFqvbTZc0CnxXPCBHKuFJCRmo/OVc9HR/+Jx4otaBUFq/GjeTP0Tax15t1qc63KfH+b1TBxcXMajYaRQSMJcA9g454X6PtXOiuKPsRBMwwU0GigU8MknL83rvpa27y++jDxBY1p4GzL7BEd6dzUXe1IlVbP1oqZQ4Np29CFf/52jF+jLpJwKY9FD1pjea9GCGHWdFrSZ83m9GUXDlzwQVFAwUAjQz6DdxhIH/UAPcL+oXZKk5ICx8J0atCJRv9ey4//eB6HgifKr1cUiEz04uEXX8NzwvMqJqwG2cnlq3lHR24nGGhafAr/hvWY9lAQbh5F6ua7S6PvbUJAvVz+89N2ss+fYd6K8/wDjEPNy8gkgUKIu+A5YQJ5RVZsjmlQvuKCBi1OmuHkPdOcHlNrd3EDcorKYk5R/V1CTCpr/3f0uuuHvNaBhgFuKiSqRltmGNd1upmeU6H3tJtvtwR14TUKIVR1Pu4Kv/730HXXW/L3hJyiqgM8vJ3RaKi4cKRGwdnT8iZj+jul0zMsuRzEqsjztNUm8In1fAwPz0LrW4kJ+8xd6SSBOUUlLPvld57P+IJ3Dc8zdOBAQvxca8drFEKo6nDhfowLAVVcCsjF6+/L1dRO2tvfRJgjRzc7OjVMAkVvvELRk61fRnj8LAyKQd1wd0FRFP619TLv77fmmNKUjp17AhiLG98Q46U2fPk7eYNvCI7+oTz92GAADhY34cnf89mS5Vs7XqMQQjU/n/yZf0S9Sa5heYXviU6+SRY5K3FVSIFjodLCw3H+/kMeDjrDkNc60MxrLYO37yZ//hI+3vcxlnjmUVEUZv4Ry7e7EwCY8Vg7ht1T/au+mxtbK+PH8N5m7hSVGHj+u0jWH01WOZUQwlKtPrGa93a/x6M7Shi8fTcDg04z5LUOPBx0BufvPzSOtq0D5BSVBUoLDyd9lnG0VFmH4obTv2CHzWSGLd3ASpYzy8aJVzq+onLSyvnvxpN8tf00AB892pYRnRtDts2drw1lqUrXv5raoRcp65JZE53Ey8sOMndkR/q3rcWvWwhR7f448wfT90xn6E4Dw3YY8Jg0Cc+XXzBuDHieNJsS0mfNBowdkWszKXAskd5QWtxU3Dl7vDuLrcrLaM9t4Zsj3+Bo7ci4duNUClk5c7fEM2vTSQDee7g1o8KaGDc4edf+zralr9Ea+N9wH2x0Wn46dIHJKw6x5NnO3NusvtoJhRAWYPv57fxjxz9QUGjn3gaPSb3wfLni90T594becrsy3CkZRWWho6huZdHRRXx+4HMA3r33XZ4MeFLlRLf2zY7TfLg2BoCpAwJ5sWdzlROpq0RvYMLSg/x1PAUnWytWvHAvbXxd1I4lhDBj+5P389LGlyjUF/JQ04eY0WMGWk3t64VSme/v2vfqBWPbjmV8u/EAfLj3Q9aeXqtyoptbE32xvLh5rW+rOl/cAFjptMwa0YHOTd3JLizh6YX7OXcpT+1YQggzdTT9KBM3TaRQX0gvv1582P3DWlncVJb8BWqpSR0mMTxgOAoK7+x8h31J+9SOdJ0DZ68wZZVxcrux3fyZfL9lrIVSE+ysdcwfE0qgtxPpOYU8tXAfadmFascSQpiZ89nnmbBxAnkleXT27sy/e/7b7BfMrClS4NRSGo2GaWHTGNB0ACVKCVO2TuFs1lm1Y5U7dymP8UsiKSox0DeoAe8MbF1nV0i/GRd7a5Y82xk/d3vOXspj7LcR5Bfp1Y4lhDATOUU5TNo8iSuFVwhyD2JWn1nY6mzVjmU2pMCpxbQaLdO7TSfYI5isoiwmbppIZmGm2rHIzCvmmW8juJxbRNuGzswaEYLOghbNrEleznYseTaM+vVsOHohizd/OGyRUwAIIaqX3qDnre1vEZ8Rj6e9J7P7zKaedT21Y5kVKXBqOVudLf/r8z+863mTkJXA69tep9hQrFqeohIDL3wfyem0XHxd7Fj49D042Mhgvltp6lGPL0d3wlqnYU10EuFbT6kdSQihsv8c+A87LuzATmfH7D6zaVCvgdqRzI4UOHWAh70Hc/rMYcQuLY1W7+GTiE+uawVICw8nbfYc04XIToYtM/jPT9vYe/oyjrZWLBx7D17OdWNGzbvVuak7/xrUFoB//xXHxuMp5X/TsoVJhRC1T9rsOddNzPfDiR/47vh3DN1pYPaZbrTxaKNSOvMmBU4dEeAeQF//Bxm2w0DJguUsi1zN+bgr5FwpKJ84EJ0Jd4fsZNg2k52HjqHRwOyRHQj0rn1D9E1pZFhjRt/bGEWBV1dGce7saeOCnVLgCFF76bSkz5pNWng4OVcK2LRnL//dNqd8Ir/m9VupndBsybmBOqTzPz7jz8Ir9NhmIOYbd37VHAIUAmMjCb7BxIHV6VR6DmUDwF/r24reAV4me67a7P1H2nAyJYd9Zy4zfc1x5qsdSAhhUmXH5ehVkcRGBwAaRijvEHRyGR6TQmv9bMR3Q1pw6piur8wmNnAkmvI5EjTEBY7CfsSz1f9k2clwMYrs05H8sGYdAI/7pDMxMAcuRknLQxVY56XyVV8rejtfxD07FgAl6bDx7yl/UyFqJfsRzxIbOAowDsbQaLTG4/ZIExy3axFpwaljMtMK+Htdq6AhMzW/+leYjVwE22biBLxdetXYy/+F+f81/qPn1Nq/DEN1i1yE67aZLAIonepC8/vkq9vlbypErZORmk9ZcVPGZMftWkQKnDrG1cseUKj4YTHg4mVf/U8WOpaVWW1ZsvcsIVZn+Uj3NTwyC3zaG7fX5gU0TSV0LAQMAGDPrs10OfYv/lEynmeGDqZVAyf5mwpRC500HENRDNe0vIMGxTTH7VpETlHVMfnLFxIYuxQNxlFUiqInMHYZp+d/VO3PFZFuw7S9Wo4pTenZs6/xSp/24BtivMiXceU5eZf//e7t1huAw3p/xm0oJsu9jfxNhahlknOT2TfrFYLilgHGBTI1KATELiV/+UJ1w5k5acGpQ8pGSwVPnkTYiG5kpObxZcL/SP9hH8MWGki0c8Nv8pRqea7M/GJeWxmFQYGhHRvxYGsFdlbLQ4tSmtJWuAbOthy7nM+0H48wZ2QHmRFaiFqixFDCr++MZvCWPDY/eIoR73Um/5IeFy978pfHGUe/gnQ0vgkpcOoSvQGPa0ZLObrZ8X/N3mZ4/iHgFC3ObmaU8lq1fEG+9+tRLmTk09jdgX8NbgNF6cb+IdLCUH2cvKHnVKb43sf2xadYeySJrhH1GRXWRO1kQohqsODIAlKyL/JzLzue+vB73J2dwcO4zbGsqNEb1Ato5jRKHZz3vTLLrdcFMZdiGLluJCWGEj7s9iGDWwy+q8f75dAFXl0ZhU6rYfWLXejY2K2akoqb+WbHaT5cG4ONlZZ1k7vTwstJ7UhCiLtwLP0Yo9eNpkQp4ePuH/NI80fUjmQWKvP9LX1wBEH1g3g55GUAZkTM4ELOhSo/VuLlPN795SgAk/u0lOKmhozr3pSerTwpKjEwZdVhiuVXnRAWK78kn2k7p1GilPBgkwd5uNnDakeySFLgCADGthlLiGcIucW5/GPHP9AbKr9qdYnewGsro8guLKFTEzde7t389ncS1UKj0fDp48G42FsTfT6T8C2yXpUQluqLA19wJvMMnvaevHvvu9KvroqkwBEA6LQ6Pu7xMQ5WDhxMPciS40sq/RhfbT9N5NkrONpa8d8nQ7Ay5dIP4joNnO34YLBxTZrZm09y9IL6K8cLISpn94XdLItdBsD0btNxtXNVN5AFq5FvoLlz5+Lv74+dnR1hYWFERETc9La9evVCo9Fcdxk4cGD5bZ555pnrtvfv378mXkqt5ufkx9TOUwGYdWgWcZfj7vi+J1Ky+d/GkwD8c1AbGtd3MElGcWuD2vvyUDtvSgwKU1ZFUVBc+ZY4IYQ6MgszeXfXuwCMCBxBt4bdVE5k2Uxe4KxcuZIpU6bw/vvvc/DgQdq3b0+/fv1ITU294e1/+uknkpKSyi9Hjx5Fp9PxxBNPVLhd//79K9xu+fLlpn4pdcKQFkPo7debEkMJ/9j5D4oNxbe9j96g8OYP0RTpDdwf6MXQjg1rIKm4EY1Gw4dD2uHhaMOJlBz+u+GE2pGEEHdoRsQMUvNT8Xf257VOr6kdx+KZvMD5/PPPGT9+PGPHjqV169bMmzcPBwcHFi688QRF7u7ueHt7l182bNiAg4PDdQWOra1thdu5uUln1uqg0Wh4v8v7uNq6cuLKCRYdXXTb+yzYeZrDiRk42Vrx0aPt5Hyxytzr2TDjsWAAvt5xmv0Jl1VOJIS4ne3nt7P29Fq0Gi0fd/8YeyuZpfhumbTAKSoq4sCBA/Tt2/fqE2q19O3blz179tzRYyxYsIDhw4dTr169Ctdv3boVLy8vAgICeOmll7h06dJNH6OwsJCsrKwKF3Fz9e3r89Y9bwEw7/A8TmeevultT6fl8J+/jK0E7zwchLeLrItiDh5o3YDHOzVCUeDtH6PlVJUQZiy3OJfpe6cDMDpoNO0826mcqHYwaYGTnp6OXq+nQYMGFa5v0KABycm3X/U4IiKCo0eP8txzz1W4vn///ixZsoRNmzbxySefsG3bNgYMGIBef+OD+IwZM3BxcSm/+Pn5Vf1F1REPN3uY7g27U2wo5l+7/4VBuX7YscGg8PaP0RSWGOjewoMnQ+Xvak7efbg1nk62nE7LJXyrjKoSwlx9ceALknOTaejYsHzKDnH3zHqYy4IFC2jXrh2dO3eucP3w4cMZNGgQ7dq1Y8iQIaxZs4b9+/ezdevWGz7OtGnTyMzMLL8kJibWQHrLptFoePfed7G3sudg6kFWxa267jbf7T3L/oQrONjomPGYnJoyNy721vxrkHFU1Zdb4zmRkq1yIiHE3x1KPcTKuJUAvN/lfRysZYBGdTFpgePh4YFOpyMlJaXC9SkpKXh733rK/tzcXFasWMG4ceNu+zzNmjXDw8OD+Pj4G263tbXF2dm5wkXcnq+jL690fAWA/x74L8m5V1vdzl/J45P1sQBMHRCIn7t8KM3RgLbe9A3yolivMO2nIxgMdW7iciHMVqG+kPd3v4+CwpAWQ+ji20XtSLWKSQscGxsbOnXqxKZNm8qvMxgMbNq0iS5dbv1Grl69msLCQkaPHn3b5zl//jyXLl3Cx8fnrjOLioYHDKe9Z3vySvKYvnc6ZSt7/PO34+QV6bnH343RsvaR2dJoNHwwuC31bHQcOHuFZRHn1I4khCj1dfTXnMk8Q327+rwR+obacWodk5+imjJlCvPnz2fx4sXExMTw0ksvkZuby9ixYwEYM2YM06ZNu+5+CxYsYMiQIdSvX7/C9Tk5Obz55pvs3buXhIQENm3axODBg2nRogX9+vUz9cupc3RaHe8ea8UTu4y9/P+MXcWpVf/H4ZhYrLQapmdFcGnuXLVjilvwdbXnzX4BAHzyRyxpF8/ClhmQfft+cEKI6pE2ew5p4eHl/46/Es/CI8bRxDPjO1H09XdqRau1TL6a+LBhw0hLS+O9994jOTmZkJAQ1q9fX97x+Ny5c2i1FeusuLg4du7cyV9//XXd4+l0OqKjo1m8eDEZGRn4+vry4IMPMn36dGxtbU39cuok93oePLG9BIOiZbayhP+dyKSx4se0/FMoP62AyZPUjihu46ku/vwcdZHDiRnMX7ebf5yfCQEDZHV3IWqKTkv6rNkA2A0fy6y132BbUI9XTrjgsmadHEdNQFYTl/44dyRpziyO/xBFTMBINBotKAqBcUsJfjIUzwkT1I4n7kBMUhaPzN5JgHKatbb/B89vA98QtWMJUWekhYcTvSqS2MBRgAZFMRAUt0yOo5VQme9vk7fgiFogOxmnvt2JPdoaTdlZTY2GuMBRhPVxM57qkJYA85adTJCSzD86FBIXlQBA8flDWJdtd/KW91AIE7Mf8Syx0QGAccSpRqM1HkdHyJIMpiAFjri9yEVk/LUGmF7hagUNmYsn4vjgI9D7+n5UwoxELoJtM3kWKKtqrNe9enV7z6nyHgphYhmp+ZQVN2UUNGSm5uPoJpOkVjcpcMTthY7laE4nlDUG4+mpcgZcnp4DDX1ViybuUOhYY58b4FDENjpEvcc7hueZPPpxvBxtpfVGiBpwySYJRal4HNWg4OIlyzKYgllP9CfMQ7Z1ffZ/9xdBccsA44zGiqInMHYZmRu2y5ejJXDyNva38Q0hpPN9ABwqbsI/91sZr5f3UAiTUhSFvbMmVziOalAIiF1K/vIbr80o7o604Ijb2jDtYx6PXsvvnR5h/CQ3Mr+fxButvUk3xOE7dw82OhvpIGdBNKVN5DqthnVHktl5Mp3uLT1UTiVE7bbzw1e4748L/NgzjZHv/gvbHEdcvOzJXx5XPrpKjqPVSwoccUtn0nOJSrjM/sB+9H3nddwaKbg9+AhT/NrxgmEaGo2GEbmX8FQ7qLhzTt7Qcyr3XW5L9P4c3v/tKH+8ch82VtKgK4Qp5Bbnsu/CbnJ6aPGbOJlmDa+u2+dYVtTor1/vT9wdKXDELX20NoaNAQ9yXytP+gR6gUYDvafRFeh17k9+6LaVlIZJhN/2kYTZcPKG3tMYn1/M8uNbOZWWy7e7z/D8fc3VTiZErbTgyAIWdymksZM//9d6zHXbpeXGNOQnm7ipHSfT2BiTgk6r4b2Hg65bTPON0Dew0lqx48IOdl7YqVJKUVUu9ta8PSAQgNmb4knPKVQ5kRC1z4WcCyw+thiAKaFTsNZZ3+YeorpIgSNuqERv4IPfjwPw1L1NaOHldN1tmjg3YUTgCAA+2/8ZJYaSGs0o7t7jHRvRtqEz2YUlfLHxhNpxhKh1vjjwBUWGIjp7d6aPXx+149QpUuCIG1q67xwnU3Nwc7Dmtb6tbnq7F4JfwNXWldOZp1l9YnUNJhTVQavV8M7A1gAsj0jkZEq2yomEqD0OpR5ifcJ6NGh46563rmsFF6YlBY64TkZeEf8t/TU/5cEAXBxu3qTqYuvCyyEvAxAeFU5mYWaNZBTV595m9XmwdQP0BoWP18WoHUeIWsGgGPgk4hMAHmv5GAHuASonqnukwBHXmb05noy8YgIaODHiHr/b3v7xVo/T3KU5GYUZfBX9VQ0kFNVt2kNBWGk1bIlLY/uJNLXjCGHx1p5ey7FLx6hnXY+JHSaqHadOkgJHVJB4OY8lexIA+MfAIKx0t99FrLRWvHnPmwAsj1lOQmaCCRMKU2jqUY8xXfwB+HhdDHpDnVuDV4hqk1ecxxcHvgBgfLvxeNjLPFNqkAJHVPDZn3EU6xW6t/DgvkpM/tatYTd6NOxBiVLC/w7+z4QJhalMvr8FLvbWxCZnszoyUe04Qlis745/R2p+Kg0dGzK69Wi149RZUuCIctHnM/jt8EUApg4IrHSHuNc6vYZWo2XjuY0cTjtsiojChFwdbJh8f0sA/v3XCXIKZVScEJV1ueAyi44tAmByh8nY6mxVTlR3SYEjAOM6KWUdTB/t0JC2DV0q/Rgt3VoyqPkgAD6P/BxFkdMcluape5vgX9+B9JxC5m8/rXYcISzO/Oj55BbnEuQeRP+m/dWOU6dJgSMA2BqXxt7Tl7HRaXn9wZsPC7+dl0NexlZny8HUg2w/v70aE4qaYGOl5c1+xsn/vtlxWib/E6ISErMTWRG3Arjaoi3UI399gd6gMOMPY+vNM938aeTmUOXH8q7nzcigkQB8cfAL9AZ9tWQUNeehdt4EN3Iht0jPnM3xascRwmLMOTSHEkMJXXy60MW3i9px6jwpcAQ/HjjPiZQcXOyteblXi7t+vHFtx+Fs40x8Rjy/n/69GhKKmqTRaHi7v7EVZ+m+syRezlM5kRDmL+ZSDOvOrAOMrTdCfVLg1HEFxXo+32Cc1G9Snxa3nNTvTrnYujC+3XjA+IumoKTgrh9T1KxuLTzo0dKDYr1Svn8IIW7ui4NfAPBQ04cIqh+kbhgBSIFT532/9yzJWQX4utgx+t4m1fa4I4JG4F3Pm5S8FJbHLq+2xxU1563Svji/RF0gJilL5TRCmK89F/ew++JurLRWTOowSe04opQUOHVYTmEJ4VtPAfBK35bYWeuq7bFtdbZMDDHO3jn/yHyyiuQL0tK0a+TCwGAfFMU4P5IQ4nqKopS33gwPGE4jp0bqBhLlpMCpq7KTObZ0KrrcFJp61GNox+r/UN677izjI13JLspmybElFbalhYeTNntOtT+nqF5vPBiAlVbD5thUDh2LhS0zIDtZ7VhCqCZt9hzSwsPL/7353GaOXzqOg5UDI/ZayXHNjEiBU0dlpyUSdm4+XpoMXnug1R0tyVBZWisrHtiQztCdBn489CuxR86Rc6WAtPBw0mfNBhM8p6heTT3qMax0PbKlmyJg20wpcETdptOSPms2aeHhZF7KY+mmn6lX6MK7sYHkhn8jxzUzYqV2AKGOHw5eYCzQtL4DD7fzMclzeE6YAAr0WB2Jh3YkmyLigZMExkYSPHmScbswe6/c35IfDpw39sORSVlFHVd23IpeFUlsdACdeIyODME+dhkeclwzK1Lg1CXZyZCdzOXcIk5F7wItTAjMRZtcuqyCk7fxUo3sRz5L7JEANJQt+6AhLnAUYSO6VevzCBPJTsYrJ5m3ggs4cTgBACXpcPm7aYp9RghzZz/iWWKjA6D0k6BBK8c1MyQFTl0SuQi2zcQd+LC0FbV15DsQWbq951ToPa1anzIjNR+ouKaVgobM1Hwc3eyq9bmECZTuM+MASmcQ0Pw++ep2E+wzQpg7Oa5ZBilw6pLQsST79OaF7w4QyBk+sZ4Pj8wCn/bG7Sb4Je7qZQ8oVDwYKLh42Vf7cwkTCB0LAQMA+GPjnww4/TFfOExi8qihaDUaab0RdZJDfSsUDGiu6caqkeOa2ZHeUHWJkzdfHHPgsN4fq4alRY1Pe/ANMV5M8GWVv3whgbFL0WBceFNR9ATGLiV/+cJqfy5hAk7e5ftHt+59ANhwxZs/L3ubbJ8RwtxFzX2LoNhlKBgAY3ETIMc1syMtOHVI4uU8fjhwHoBRYU3AxKsolI2WCp48ibAR3Thw4ghvH36NAUoGvrP2AEiHPAvibHd1luv/bjzBg2280Wk1t7iHELVP0pxZ+CzfysoeWlqNG0BP5764eNmTvzzOODoUOa6ZCylw6pA5m+MpMSj0aOlB61ZNjP0nTPkLXG+oMKqgZ9g9dMwO5gfbHbRyC6Kv3mC65xbVz8mbgm5vkr/Lg9MpOayJvsjgkIZqpxKiRh1LPcLOHlr29GvE/3UcgrXOWPg7lhU1clwzGzVyimru3Ln4+/tjZ2dHWFgYERERN73tt99+i0ajqXCxs6vYaUtRFN577z18fHywt7enb9++nDx50tQvw6Kdu5THjweNrTev9m1lLGx6TzNpgeM5aeJ1v2ReDnkZgJltTpH39CMme25hAk7e2D3wDo/d1wmA/208SYkczEUdUlBSwEdt4/mxu5YX2r9QXtyU8ZwwAc9JE1VKJ/7O5AXOypUrmTJlCu+//z4HDx6kffv29OvXj9TU1Jvex9nZmaSkpPLL2bNnK2z/9NNPmTVrFvPmzWPfvn3Uq1ePfv36UVAgizrezJwtJykxKNzXypNOTdxUy9HGow33NboPg2Lg6+ivVcshqu6Zbk1xc7DmdHouv0ZdVDuOEDXmhxM/kJ6fTkPHhjzSXH6gmTuTFziff/4548ePZ+zYsbRu3Zp58+bh4ODAwoU374yl0Wjw9vYuvzRo0KB8m6IofPHFF7zzzjsMHjyY4OBglixZwsWLF/nll19M/XIskrH15gJgnLRNbS+1fwmAtafXci7rnMppRGU52lrxQs/mAMzZEo/eoKicSAjTKygpYMHRBQA81+45rLXWt7mHUJtJC5yioiIOHDhA3759rz6hVkvfvn3Zs2fPTe+Xk5NDkyZN8PPzY/DgwRw7dqx825kzZ0hOTq7wmC4uLoSFhd30MQsLC8nKyqpwqUvmbDmJ3gxab8q09WhL94bd0St6acWxUE/d2wQ3B2vOpOeyJlpacUTt9+PJH0nPT8enng+Dmw9WO464AyYtcNLT09Hr9RVaYAAaNGhAcvKN17MJCAhg4cKF/Prrr3z//fcYDAa6du3K+fPG/iNl96vMY86YMQMXF5fyi5+f392+NItx9lJueevNq33Vb70pU9aKs+b0GhKzElVOIyqrnq0Vz/VoBsDszdKKI2q3Qn0hC48Yzzo81+656/reCPNkdvPgdOnShTFjxhASEkLPnj356aef8PT05KuvvqryY06bNo3MzMzyS2Ji3flCnVP65dOzlScdG6vfelMm2DOYbg27oVf0zD8yX+04ogrGdGmCs50V8ak5/HE0Se04QpjMjyd+JDU/Fe963jza4lG144g7ZNICx8PDA51OR0pKSoXrU1JS8Pa+s9E71tbWdOjQgfj4eIDy+1XmMW1tbXF2dq5wqQsSL+fx06HSvjdm1HpTpqwV5/dTv5OYXXeKztrCyc6acd1LW3E2xWOQVhxRCxXqC6/2vWkrrTeWxKQFjo2NDZ06dWLTpk3l1xkMBjZt2kSXLl3u6DH0ej1HjhzBx8e44nXTpk3x9vau8JhZWVns27fvjh+zrvhy2yn0pfPemFPrTZn2nu3p6tuVEqWEb458o3YcUQXPdPPHydaKuJRs/jp+41PEQliyn07+RGpeKg0cGvBoS2m9sSQmP0U1ZcoU5s+fz+LFi4mJieGll14iNzeXsWPHAjBmzBimTbu6WN8HH3zAX3/9xenTpzl48CCjR4/m7NmzPPfcc4BxhNWrr77Khx9+yG+//caRI0cYM2YMvr6+DBkyxNQvx2IkZebzQ6Sx39KkPubXelOmrBXnt/jfuJgjnVUtjYu9NWO7+QPwv03xKIq04ojao1hfzIIjV0dO2ehsVE4kKsPkMxkPGzaMtLQ03nvvPZKTkwkJCWH9+vXlnYTPnTuHVnu1zrpy5Qrjx48nOTkZNzc3OnXqxO7du2ndunX5bd566y1yc3N5/vnnycjIoHv37qxfv/66CQHrsq+3n6ZIb6BzU3c6N3VXO85NhXiFcK/PvexN2svCowt559531I4kKunZ7k1ZsPMMMUlZbIxJ5YHWDW5/JyEswG+nfiMlLwVPe09pvbFAGqUO/uTKysrCxcWFzMzMWtkfJz2nkO6fbKag2MB34zrTo6Wn2pFuKSIpgnF/jcNGa8Ofj/+Jh72H2pFEJX26Ppbwrado19CF3yZ2Q6ORNaqEZSsxlDDol0EkZifyRugbPN3mabUjCSr3/W12o6jE3Vuw8wwFxQba+7nSvYX5Fwv3eN9De8/2FBmKWHJsidpxRBU816MZ9tY6jlzIZPvJdLXjCHHX/kz4k8TsRFxtXXmi1RNqxxFVIAVOLZORV8SS3QkATOrdwiJ+SWs0Gp4Pfh6AlXErySzMVDmRqCz3ejaMDGsMwNwt8SqnEeLuGBRD+cCH0UGjcbB2UDmRqAopcGqZb3cnkFukJ9DbifuDvNSOc8d6NOxBoHsgeSV5LI1ZqnYcUQXjezTDWqch4sxl9idcVjuOEFW2NXEr8RnxOFo7MiJohNpxRBVJgVOLZBcUs2hXAgAT+1hG600ZjUbDc+2MI+WWxiwltzhX5USisrxd7Hi8UyMAwqUVR1goRVGYH22cfHR44HCcbWpfP826QgqcWmTpvnNk5hfTzLMeA9r6qB2n0vo27ou/sz9ZRVmsiluldhxRBS/c1xytBrbEpXHsopxqFJZnT9Iejl46ip3OjtFBo9WOI+6CFDi1REGxngU7zwAwoVcLdFrLab0po9PqGNduHACLjy2moKRA5USisvw96vFwsC8AX249pXIaISqvrPVmaKuh1Levr3IacTekwKklfjx4nrTsQnxd7Bgc4qt2nCob2GwgvvV8uVRwiZ/jf1Y7jqiCl3o1B2DtkSROp+WonEaIO3co9RCRKZFYaa14ps0zascRd0kKnFqgRG/gq22nARh/XzOsdZb7tlprrRnb1jjL9bdHv6XYUKxyIlFZQT7O9A3yQlEo3y+FsARlsxYPaj4I73p3tl6iMF+W+00oyv1xNJlzl/Nwc7Bm2D1+ase5a0NaDMHdzp2LuRf5M+FPteOIKpjQuwUAPx06z8WMfJXTCHF7J6+cZNv5bWjQMLbNWLXjiGogBY6FU7KSyPrjAzy5wjNdm+JgY/LVN0wu+8tvmHrMeJpj0dFFFdY3SgsPJ232HLWiiTvUsbEbXZrVp1ivsHxzBGyZAdmyGKcwH2mz55AWHl7+70VHFwHQt0lf6i1dJ8eZWkAKHAt38HgsowqW09gmi6e7NlE7TvXQafFftYfhu3VcSE5h/a7t5FwpIC08nPRZs8GCT8HVJWV9cXZHHYNtM6XAEeZFpyV91mzSwsM5df4sUVEnqFfowrhIZznO1BKW/3O/jlsdmUgnYEAbH1wdasdKt54TJgBw76pIXBjJ6YN6TrOLwNhIgidPKt8uzFuPlh609nGmINkAtmqnEaKisuNI9KpIYqNbMZAJgIHk2GVynKklpMCxRNnJkJ1MTHI2SlI0WMPjDS/BxSjjdidv48WC2Y94ltjoADSUDXfXEBc4irAR3VTNJe5QdjKa7GTeal/AH6kJABSfP4R12fZasI8Ky1d2nKH8OKOV40wtIgWOJYpcBNtmEgR8UvqN4brx9avbe06F3tNUiVZdMlLzuXrQMVLQkJmaj6ObnTqhxJ0r3Ud7Ab1K91Hrda9e3V4L9lFh+eQ4U7tJgWOJQseS6NWLF78/QDttAjOt58Mjs8CnvXF7Lfhl7OplDyhUPPgouHjZq5RIVEroWAgYAMDuXZvpeuxffGLzMq+PeQIrraZW7KPC8tm6gYIBzTXdUTVynKk1pBeVJXLyZk5MPY4pTXFs2tF4nU978A0xXmrBl0f+8oUExi5Fg3EElaLoCYxdSv7yhSonE3fEybt8f+wY1guA7dm+/HGpQa3ZR4Xli/5yGkGxy1AwAMbiJkCOM7WGtOBYoNSsAn4+dAGAxzr4wXmVA1WzstFSwZMnETaiGwdPHuWtqFd5SMnEd9YeAOkAaEHsrK7+jvpq+ykeDvaxqIVgRe2UMncOvsu3sbKHloDnHuI+p/tx8bInf3mccRQVcpyxdFLgWKBvdydQpDcQ2sSN1q2aGfsz1KZfxHoDHteMYrivcyhBl1uy2jaS9p6d8NAbVA4oKsXJm/yub5K9oz7nLmSxK/4S3Vt6qJ1K1HGnLp3grx5atvT1YGrIw9hZGfvcOJYVNXKcsXhS4FiYnMISvt97FoDn72tmLGxqWWdNz0kTr7tubNuxRKZEMrPNKTY8Pk+FVKLKnLyxf/Ad+hQc49vdCczbdkoKHKEqRVH4b4ckYptomRg4sry4KSMtN7WD9MGxMCsizpFVUEIzz3r0DWqgdpwa071hd5q5NCOnOIcfT/6odhxRBc/1aIpOq2FnfDpHL2SqHUfUYfuS9xF7ORZ7K3uGBQxTO44wESlwLEix3sDCnWcAGN+jGVpt3enHoNVoy1f3/e74d7IIpwVq5ObAw8E+AHyzQxbhFOr59ui3gHHdO1c7V1WzCNORAseCrI1O4mJmAR6OtjzaoaHacWrcwGYD8bD3ICUvhfVn1qsdR1TB+B7NAPg9OkkW4RSqiLscx66Lu9BqtDzV+im14wgTkgLHQiiKwlfbjb96x3bzx85ap3Kimmejs2FU0CgAvj32bYVFOIVlaNvQha7N66M3KHy7O0HtOKIOWnJ8CQB9G/fFz8lP5TTClKTAsRA749OJScrCwUbH6LBasqhmFTzR6gnsrew5ceUEe5L2qB1HVMH4+4ytOMv2nSOrQE41ipqTnJvMutPrAMpPeYvaSwocC/F1aevNsHv8cHGwvs2tay8XWxeGthwKXD2PLixLr1aetPRyJKewhJURiWrHEXXIsphllCgldGrQiXae7dSOI0xMChwLEJucxY6T6Wg18Gy3pmrHUd3o1qPRaXTsSdpD3OU4teOIStJoNOV9cRbuOkOxzDciakBOUQ6rT6wGpPWmrpACxwJ8s8M4cmpAWx/83B1UTqO+ho4NebDJg4CxL46wPIM7+OLhaEtSZgFro5PUjiPqgB9P/khOcQ5NXZpyX6P71I4jaoAUOGYuNauAX6OMyzI810Nab8o83fZpANafWU9KborKaURl2VrpGNvNHzCefpUO48KUSgwlfB/zPQBjWo9Bq5GvvrpA3mUzt2TPWYr1CqFN3OjQ2E3tOGajTf02hDYIpUQpYVnsMrXjiCoYFdYYe2sdx5Oy2H3qktpxRC228exGknOTcbdz55Hmj6gdR9QQKXDMWF5RCd/vMy7L8FxpnwVx1ZjWYwBYfWI1ecV5KqcRleXqYMOwe4zDdMs60QtR3RRFYfGxxQAMDxiOrc5W5USipkiBY8Z+PHCejLximtR34IHWdWdZhjvV068njZ0ak12UzS/xv6gdR1TBs92aotHAthNpxKdmqx1H1EKHUg9x9NJRbLQ2PBnwpNpxRA2qkQJn7ty5+Pv7Y2dnR1hYGBERETe97fz58+nRowdubm64ubnRt2/f627/zDPPoNFoKlz69+9v6pdRo/QGhQWlyzI82824ho+o6NqZSL+P+R69Qa9yIlFZjes78GBp8b5gZ4K6YUStVDax3yPNH6G+fX2V04iaZPICZ+XKlUyZMoX333+fgwcP0r59e/r160dqauoNb79161ZGjBjBli1b2LNnD35+fjz44INcuHChwu369+9PUlJS+WX58uWmfik1alNMCgmX8nCxt+aJ0EZqxzFbg5oPwtnGmcTsRLYmblU7jqiCstOvPx08z6WcQpXTiNokMSuRzec2A8iyDHWQyQuczz//nPHjxzN27Fhat27NvHnzcHBwYOHChTe8/dKlS5kwYQIhISEEBgbyzTffYDAY2LRpU4Xb2dra4u3tXX5xc6tdHXDLhoaPCmuMg42VymnMl4O1Q/lqwGW/1IRlCW3iRvtGLhSWGFi675zacUQt8n3M9ygodG/YneauzdWOI2qYSQucoqIiDhw4QN++fa8+oVZL37592bPnzqbZz8vLo7i4GHd39wrXb926FS8vLwICAnjppZe4dOnmozAKCwvJysqqcDFnhxMziEi4jLVOw9Nd/dWOY/aGBw7HSmvFwdSDHEk7onYcUUkajYZnuxunQFiyJ4GCYjnVKO5eZmEmP8f/DMDTbZ5WOY1Qg0kLnPT0dPR6PQ0aVOwg26BBA5KTk+/oMd5++218fX0rFEn9+/dnyZIlbNq0iU8++YRt27YxYMAA9PobHxhnzJiBi4tL+cXPz7wXWCvre/NIsC8NnO1UTmP+vBy8eKjpQ4C04liqh9r54ONiR3pOEb8dvqh2HFEL/HDiB/JL8mnl1oow7zC14wgVmPUoqpkzZ7JixQp+/vln7OyuftEPHz6cQYMG0a5dO4YMGcKaNWvYv38/W7duveHjTJs2jczMzPJLYqL5rn+TlJnPuiPGmV3LftWK2ysbMr7h7AYu5sgXpKWx1ml5prS1cuHOMzLxn7grxYbi8vmxxrQeg0YjgzTqIpMWOB4eHuh0OlJSKs40m5KSgre39y3v++9//5uZM2fy119/ERwcfMvbNmvWDA8PD+Lj42+43dbWFmdn5woXc7V491lKDAphTd1p29BF7TgWI8A9gDDvMPSKnuWxtavDeV0xvHNjHGx0xCZnsyteJv4TVfdXwl+k5qXiYe/BgKYD1I4jVGLSAsfGxoZOnTpV6CBc1mG4S5cuN73fp59+yvTp01m/fj2hoaG3fZ7z589z6dIlfHx8qiW3WvKKSlgeYexkOU5abyqtbJTEjyd+lIn/LJCLvTVPhhpPH3+zUyb+E1WjKArfHf8OME7sZ6OzUTmRUIvJT1FNmTKF+fPns3jxYmJiYnjppZfIzc1l7NixAIwZM4Zp06aV3/6TTz7h3XffZeHChfj7+5OcnExycjI5OTkA5OTk8Oabb7J3714SEhLYtGkTgwcPpkWLFvTr18/UL8ekfjx4gcx848R+9wfJxH6V1aNRD5o4NyG7WCb+s1Rju/mj0cDWOJn4T1RNVFoUxy4dw1ZnyxMBT6gdR6jI5AXOsGHD+Pe//817771HSEgIUVFRrF+/vrzj8blz50hKurqa8JdffklRURGPP/44Pj4+5Zd///vfAOh0OqKjoxk0aBCtWrVi3LhxdOrUiR07dmBra7lTcBsykzBs+hhPrjC2q79M7FcFl+aEMyXa2AKwNGYpBsVQvi0tPJy02XPUiibuUJP69XigtLj/YWskbJkB2Xc2IEHUTWmz55AWHl7+77LWm4ebPYx+4Qr53NdhNTLBysSJE5k4ceINt/29Y3BCQsItH8ve3p4///yzmpKZj8hjMTxdvIK1tiE8Hmreo7zMlk6Lz/KtjOhlx28dM/lj5zZ6tu1C/vKFpM+ajcfkSWonFHfg2e5N+et4ChFHYkA3EwIGgNOt++yJOkynJX3WbAAyBz3E8SNnqWfrwog9OtLny+e+LpMZ5MzEr1EX6Az0a+ONo628LVXhOWECAGGrInFWRpJwUCGBXQTGRhI8eVL5dmHewpq609rHmcJkA+jUTiPMXdnnOnpVJLHRrXiElwED52OXyee+jpNvUjVlJ0N2MmfScym5cBis4VGfdLgYZdzu5C2/XCvJfsSzxEYHoKHsFJ+GuMBRhI3opmoucYeyk9FkJzOlbT4bUhMAKLkYdfVAJZ8JcQNln3vKP/da+dwLKXBUFbkIts2kKfCJtfEq901vQNmgs55Tofe0m91b3EBGaj5XD3JGChoyU/NxdJNJE81e6WeiL9C39DNhteaVq9vlMyFuQD734kakwFFT6FiuNO7L2IX7CeA0n1jPh0dmgU9743b5pVpprl72gMK1BzsNCi5e9qplEpUQOtbY5wbYuHkDfeM/ZI7jZCaOHGrcLp8JcQNOHrYoGNBcM25GPvfCrGcyrvWcvPkuwZUofROKPNsar/NpD74hxosczCstf/lCAmOXosE4E66i6AmIXUr+8hsv7irMjJN3+f7fqUsvAP641ICDJU3kMyFuKu6r9wmKXYaCceSkBkU+90JacNRUVGLgu71nARgc0hC2qpvH0qWFh5M+azbBkycRNqIbG6K38UncdB7VFuA7y7i4q3Q4tBxu9tbl/79w5xk6jnRTMY0wV2nh4TgtWcO6HlpcRnTkSe9RuHjZk788rnx0lXzu6yYpcFS09shF0rIL8XKypWv71qBMlV+od0NvwOOaURMP9+jD3NTP+P7eTLr6PoCH3nCbBxBmxcmbtI6vkbrbldijyVzMyMfXVU45iIrSc1JZ2UPLLz2sWR/6ON71jIWwY1lRI5/7OktOUalEURQW7UoAYEyXJti4+Ro7T0qBU2WekyZW+KVmrbVmeOBwAGaHJOMx8WW1oomqcPLGc9A/adGsBXqDwuI9CWonEmZoeTcDP3bX0rdJX7zrVTx+ek6YgOekG8/BJmo/KXBUcuDsFaLPZ2JjpWVE58Zqx6m1Hm/5OHY6O2Iux3Ag5YDacUQVPFu6LtuKiETyikpUTiPMyeWCy6w9vRaA0UGjVU4jzI0UOCopa715NKQh9R0td4kJc+dq58rAZgMB4/INwvL0CfSisbsDmfnF/HzogtpxhBlZHbeaIkMRbeq3ob1ne7XjCDMjBY4KLmTks/6YcX2dsd391Q1TB5T9stucuJkLOfIFaWl0Wg1Pd/UH4NtdCSiKom4gYRaK9cWsjFsJwOjWo9FoZP0+UZEUOCpYsicBvUGha/P6BHo7qx2n1mvh1oJ7fe7FoBhYEbtC7TiiCp4IbUQ9Gx0nU3PYGZ+udhxhBv46+xdp+Wl42nvSr0k/teMIMyQFTg3LKyph+b5zAIzt1lTlNHVHWSvOjyd/JK84T+U0orKc7ax5onQR2rLTu6JuKzvl/GTAk1jrrG9za1EXSYFTw346eIGsghIauzvQJ9BL7Th1Ro9GPWjs1Jjsomx+P/W72nFEFTzd1R+NBjbHpnImPVftOEJFh9MOcyT9CNZaa55o9YTacYSZkgKnBimKwre7EwB4pqs/Oq2cM64pWo2WkUEjAfg+5nsMisyNYWmaetSjd4DxR8Hi0s+RqJu+P/49AAObDaS+fX2V0whzJQVODdoZn058ag71bHQ8HtpI7Th1zpAWQ3C0diQhK4HdF3erHUdUwdhu/gCsjkwkq6BY3TBCFcm5yWw4uwGQoeHi1qTAqUHflvYdeCLUD2c7OWdc0+pZ12NIiyGADBm3VN1beNDSy5HcIj2r9ieqHUeoYFXcKvSKntAGoQS4B6gdR5gxKXBqSEJ6LpvjUgHKh7yKmjcycCQaNOy8sJMzmWfUjiMqSaPR8ExpK87i0tGIou4oKClg9YnVgLTeiNuTAqeGfLs7AUWB3gGeNPWop3acOsvP2Y+ejXoCsDx2ucppRFU81qERLvbWJF7OZ1NMitpxRA3648wfZBRm4FvPl15+vdSOI8ycFDg1ILugmB8OnAdkaLg5KOts/Gv8r2QXZaucRlSWvY2O4Z2NQ8a/lc7GdYaiKOWnlkcEjkCn1amcSJg7KXBqwA8HzpNTWEILL0d6tPRQO06dd6/PvTR3aU5eSR6/xP+idhxRBU/d2wStBnafukRcshSpdUFkSiRxV+Kwt7Ln0ZaPqh1HWAApcEzMYFDKh7Qa5/GQoeFq02g05a04y2KWoTfoVU4kKquRmwP92hhXjpZWnLphWcwyAB5p9gguti4qpxGWQAocE9t6IpWES3k42VkxtGNDteOIUg83exhnG2fO55xnx4UdascRVfBMaWf9nw+dJyOvSN0wwqQu5Fxgc+Jm4OopZiFuRwocEyubVn74PX442FipG0aUc7B2YGjLoYAMGbdUnZu6E+TjTEGxgRUyZLxWWxm7EoNioItPF5q7Nlc7jrAQUuCYUHxqNjtOpqPVwJgu/mrHEX8zPHA4Wo2WvUl7ib8Sr3YcUUkajaZ84r/v9pylRC+zU9dGecV5/HDyBwBGBY1SOY2wJFLgmFBZ34C+QQ3wc3dQN4y4jq+jL338+gCwLHaZymlEVQxq74t7PRsuZOSzUYaM10prTq8huygbPyc/ejTqoXYcYUGkwDGRzPxifjxwAZCh4eas7Hz+76d+J7MwU+U0orLsrHWMKB0yvlBWGa91FEUp71w8MnAkWo18ZYk7J3uLiayOTCS/WE+gtxP3NnNXO464idAGoQS4BVCgL+Dnkz+rHUdUwVP3GheujThzmWMXpUitTfYl7+NU5ikcrBwY3GKw2nGEhZECxwT0BoXFexIA40gPGRpuvjQaTfl5/eWxy2XIuAXydrFjQNvSIePSilOrlA0AGNxiME42TiqnEZZGChwT2BybSuLlfFwdrBkcIkPDzd2ApgNwtXXlYu5FtiZuVTuOqIKyzsa/Hr7I5VwZMl4bJGYlsi1xG2A8PSVEZdVIgTN37lz8/f2xs7MjLCyMiIiIW95+9erVBAYGYmdnR7t27Vi3bl2F7Yqi8N577+Hj44O9vT19+/bl5MmTpnwJlbJol3ERx+H3NMbeRqYTN3d2VnY83upxAJbGypBxS9SxsRvBjVwoKjGwPOKc2nFENVgetxwFhe4Nu+Pv4q92HGGBTF7grFy5kilTpvD+++9z8OBB2rdvT79+/UhNTb3h7Xfv3s2IESMYN24chw4dYsiQIQwZMoSjR4+W3+bTTz9l1qxZzJs3j3379lGvXj369etHQUGBqV/ODaXNnkNaeDgA8afi6Xz2KxporvBUlyakhYeTNnuOKrnEnUmbPYdB2wvRaXTsT95P3OW4q9vk/bMIGo2mfOK/dbsPod/8MWQnqxtKVMq1x9G84rzyPnGjgkbJ59BCXPsekp0MW2aUfw7VeA9NXuB8/vnnjB8/nrFjx9K6dWvmzZuHg4MDCxcuvOHt//e//9G/f3/efPNNgoKCmD59Oh07dmTOHOMfRlEUvvjiC9555x0GDx5McHAwS5Ys4eLFi/zyyy+mfjk3ptOSPms2aeHh/LH1MI/rTzDEzxqbZYtInzUbdHIm0KzptBTMW8TrRxpTr9CFH7auI+dKAWnh4fL+WZCBwT54ONpATgq67Z9IgWNprjmO/hy1Bud0bwJs2tLql8PyObQU17yHORcucv6vNeRcuKjasdSkU+sWFRVx4MABpk2bVn6dVqulb9++7Nmz54b32bNnD1OmTKlwXb9+/cqLlzNnzpCcnEzfvn3Lt7u4uBAWFsaePXsYPnx49b+Q2/CcMAGA6FWRaAJG8qtmOs5XFKJj/yR48qTy7cI8lb0/vqsiGZ01GY1Gy+K/dhEYGynvnwWxtdIxMqwJmzbH3f7Gwuxcexy9Ej2SQUwCFI7ELpXPoYW49j2MjQ4ApsMXV1Q7lpq0wElPT0ev19OgQYMK1zdo0IDY2Ngb3ic5OfmGt09OTi7fXnbdzW7zd4WFhRQWFpb/Oysrq3Iv5Hayk7Hvcy+x0QFoKBsxpSEucBRhfdyMvySdvKv3OUW1sh/x7I3fvxHdVM0l7lB2MmQn84x/Eem6BADOH99Lo7LtTt7yGbQA8jm0cNd8F2IG34V1os1vxowZuLi4lF/8/Pyq9wkiF5GxeBJX31AjBQ2ZiydC5KLqfT5R7TJS87nh+5ear04gUTmRi+DrnrgvfYCPreYD0Gjn2/B1T+NFPoMWQT6HFs7MvgtN2oLj4eGBTqcjJaXiFOopKSl4e9+4ivP29r7l7cv+m5KSgo+PT4XbhISE3PAxp02bVuG0V1ZWVvUWOaFjcfXpB19c4do3VoOCy9NzoKFv9T2XMAlXL3tAoeIH04CLl71KiUSlhI6FgAEAnDu2h8a7pvJ/Jc/zxtgncbO3ltYbC5FrfwVFMaC5ZsZiDYp8Di1F6FgOZIag/HGD91CF70KTtuDY2NjQqVMnNm3aVH6dwWBg06ZNdOnS5Yb36dKlS4XbA2zYsKH89k2bNsXb27vCbbKysti3b99NH9PW1hZnZ+cKl2rl5E3+5r0Exi5FgwIY39CA2KXkb94rB1cLkL98YYX3T1H0BMYuI3/5jTvDCzPj5A2+IeAbQuM2xuNAlL4J3ye4Gq+Xz6BFODbv/wiKWwYYF04tP47K59AiKI4NOLF6y43fQxW+C03aggMwZcoUnn76aUJDQ+ncuTNffPEFubm5jB07FoAxY8bQsGFDZsyYAcArr7xCz549+c9//sPAgQNZsWIFkZGRfP3114BxOOirr77Khx9+SMuWLWnatCnvvvsuvr6+DBkyxNQv54bKeogHT55EWB83MhdPxOXpOeRvDjX2HAfpIGfGKrx/I7px5txFXox4lgcMafjOMnaGl/fPMn239ywv9mqOtYzAMXsXZn9B0E9RrOyhpdcr42ipbY2Llz35y+PkOGohDnz4Hx4+8Dsr2gzg5QnOFC9/VdXvQpMXOMOGDSMtLY333nuP5ORkQkJCWL9+fXkn4XPnzqHVXj34dO3alWXLlvHOO+/wj3/8g5YtW/LLL7/Qtm3b8tu89dZb5Obm8vzzz5ORkUH37t1Zv349dnZ2pn45N6Y34FHWQzw7GccHH4GGvjiWvZF6gzq5xJ259v0D2rk1o1tGZ360+YOg+oH0kffPsjh5o+/xNvo9DUjNLmTdkSSZUdwCxKUfZ3sPLQcHNuf9wK7lS9zIcdRyHE64RHxgP2yfHodX0/qg8nehRlEUpUaf0QxkZWXh4uJCZmZm9Z+uErVCVGoUT/3xFDZaGzY8sQF3O1kw1dL8b+NJ/rvxBB0au/LzBBmFY84MioFBvwzibNZZ/i/s/xgeWPPTfYi7k5CeS+//bEVRYPPrPWnm6WiS56nM97e02wpxA+0929OmfhuKDEX8eOJHteOIKhgZ1hhrnYZD5zKISsxQO464hV0XdnE26yxO1k4Maj5I7TiiChbvSUBRoHeAp8mKm8qSAkeIG7h2lfEVcSsoNhSrnEhUlqeTLY8EG0dtLN6doG4YcUtlq4Y/2vJRHKwdVE4jKiunsITVkecBeKZbU5XTXCUFjhA30c+/H/Xt6pOal8qms5tufwdhdsaWHmzXRF8kNUudterErZ3OPM2ui7vQoJFTUxbqxwPnySksoZlnPXq08FA7TjkpcIS4CRudDU8GPAlc/YUpLEu7Ri50auJGsV5h6T5ZZdwcLY9ZDkAvv174OVXzJKzC5AwGpbyF9Jmu/mi1mlvfoQZJgSPELTwZ8CRWWiui0qI4ln5M7TiiCspWGV+67xyFJXp1w4gKsouy+fXUrwDlp4SFZdl2Mo3T6bk42VrxWMdGt79DDZICR4hb8LD3oL9/f0BacSxV/7beeDvbkZ5TyNroJLXjiGv8fPJn8kvyaeHags7endWOI6pg0a4EAJ68xw9HW5PPPFMpUuAIcRtlvyz/SPiD9Px0ldOIyrLWaXmqSxPAeDCugzNjmCW9Qc/yWOPpqVFBo8rnvRGWIz41h+0n0tBo4Oku/mrHuY4UOELcRluPtgR7BlNiKGF13Gq144gqGH6PHzZWWo5cyOTguQy14whg+/ntnM85j7ONMwObDVQ7jqiCsr439wc2oHF98xv9JgWOEHdgdNBoAFbGraRIX6RyGlFZ9R1tGdzeOGR80a4zKqcRcPWU7+OtHsfeShbTtDSZ+cX8eNA4NPzZbv7qhrkJKXCEuAN9m/TFy96LSwWX+DPhT7XjiCp4pvQg/MfRZJIy89UNU8eduHKCfcn70Gl0DA+QoeGWaHVkInlFegIaONGleX2149yQFDhC3AFrrTXDAocB8H3M99KPwwK18XWhc1N39AaF7/acVTtOnbYsZhkAfRr3wcfRR+U0orL0BoXFexIA4w8Hc+0/JQWOEHfo8VaPY6O14fil4xxOO6x2HFEFZU3pyyPOUVAsQ8bVkFGQwZrTa4Crp36FZdkUk0Li5XxcHawZYsYL2UqBI8QdcrdzL+8M+X3M9yqnEVXxQGtvGrracyWvmF+jLqgdp0764eQPFOoLCXIPooNXB7XjiCr4trRz8fB7GmNvo1M3zC1IgSNEJZQNGd94diPJuckqpxGVpdNqeLqrDBlXS7GhmBWxKwAZGm6pYpOz2H3qEjqtpnz6BXMlBY4QlRDgHsA93vegV/TlB2phWYaFNsbeWkdscjZ7Tl9SO06dsuncJlLyUnC3c2dA0wFqxxFV8G3pxH792jSgoat5j36TAkeISiprxfnh5A/kl8hoHEvj4mDN0E7GfgNls7CKmrH0uHFo+JMBT2Kjs1E5jaisy7lF/HzIeGp3rBmtGn4zUuAIUUm9GvWioWNDMgszWXt6rdpxRBU809V4cN4Yk8K5S3kqp6kbjqUfIyotCiutFU+2elLtOKIKlkeco7DEQNuGzoQ2cVM7zm1JgSNEJem0OkYEjgCMk5VJPw7L08LLkftaeaIolA93FaZV1jG/n38/PB08VU4jKqtYb2BJ6Wfl2W5NLaL/lBQ4QlTBoy0fxd7KnviMePYl71M7jqiCsaVDxlftTySnsETdMLVcWl4a6xPWA/BU0FMqpxFVse5IEilZhXg42jIw2DLmLpICR4gqcLZxZkiLIQB8f1yGjFuini09aeZRj+zCEn6ITFQ7Tq22Mm4lJYYSOnh1oI1HG7XjiCoo66/21L1NsLUy36Hh15ICR4gqKutsvO38Ns5mycy4lkar1ZQv3/Dt7gQMBjnVaAqF+kJWxa0CZGI/S3Xw3BWiEjOw0WkZGdZY7Th3TAocIaqoiXMT7mt0H3B14UBhWYZ2bISznRUJl/LYEpeqdpxaad3pdVwpvIJPPR/6NO6jdhxRBWWtN4NCfPF0slU3TCVIgSNEFaXNnsO4SGcAfon/hayirKvbwsNJmz1HrWjiDtWztWJEZ+Mv0p+2R8KWGZAtEzjejbTZc0gLDwdAURS+i/kOgBGBI7gy72v5XFiS7GSy13/A/iPHgav91iyFFDhCVJVOi/2iXxgf6Yo214bVW9aRc6WAtPBw0mfNBp18vCzBmK7+6LQaEhLOwLaZUuDcLZ2W9FmzSQsPZ+eJveQmKNTXN+CBzRnyubA02ck47f0P9ZUrhDV1p42vi9qJKsVK7QBCWCrPCRMAaLMqktFFIyk4qGXxz7sIjI0kePKk8u3CvDV0tad/G28Sjp5WO0qtULbfR6+KJDa6FYOYBBiIi10mnwsLU1BiwK70/y1hYr+/kwJHiLtgP+JZYqMD0FA2J4SGuMBRhI3opmoucYeykyE7mZcDc1h8PMF4VcIBnMq2O3kbL6JSyj4XlH8utPK5sBSlnwmAqIit3Av0cLzAA25JcDHZoj4TUuAIcRcyUvO5ehA3UtCQmZqPo5vdje8kzEfkItg2k9bAJ9bGq5z+mnJ1e8+p0HuaKtEsmXwuLFjpZwLg3tKrphaHw3xjvypL+kxIgSPEXXD1sgcUKh7MFVy8zHsROlEqdCwEGBd9PBSxjQ5R7/Gh7iXeeuZJbHRai/mlam6sXA0oigGN5mp/G418LixD6Wci8uwVVq9ZyyfW8ykY8F/s/Doat1vQZ0J6ewlxF/KXLyQwdikajHOoKIqewNil5C9fqHIycUecvME3BHxDaNvJOOR/T14j1qR5Ga+3oIO5OTny5TSC4pahYACMxU2AfC4sQ+ln4n/HHThq8AcwFjelnxNL+kxIC44QVVQ2Wip48iTCRnQj6mQMb0RN4iElE99ZewCkQ6UFsdZdbYVbsPMMj3ZoaBHr7ZiblLlzaLRiByt7aAkaP5Dujn1w8bInf3mccRQV8rkwdydSstlxMp12Ft4EIgWOEFWlN+BxzaiQ7p07EHCpOattD9LB6x489AaVA4pKcfImv+ubZO1wJ/FiFhFnLhPWrL7aqSzOmcvxrO+hZfP99ZnafiB2VsY+N45lRY18Lszewp1nAAhq2Qr8p1pUq821TFqfXb58mVGjRuHs7Iyrqyvjxo0jJyfnlrefNGkSAQEB2Nvb07hxYyZPnkxmZmaF22k0musuK1asMOVLEeI6npMmXvdLdEzrMQB80vY0ji+NUyOWqConb+wffIceHdsB8E3pQV5UzpxO6fzYXcuTAU+WFzdlPCdMwHPSRJWSiTtxKaeQnw5dAOCJ3qHGDsVS4Fxv1KhRHDt2jA0bNrBmzRq2b9/O888/f9PbX7x4kYsXL/Lvf/+bo0eP8u2337J+/XrGjbv+i2LRokUkJSWVX4YMGWLCVyLEnenl14tGjo3ILMzk91O/qx1HVMGzpfN9bIxJ4Ux6rsppLMvhtMMcTjuMtdaa4YHD1Y4jqmDZvnMUlRgIbuRCaBM3tePcFZMVODExMaxfv55vvvmGsLAwunfvzuzZs1mxYgUXL1684X3atm3Ljz/+yCOPPELz5s3p06cPH330Eb///jslJSUVbuvq6oq3t3f5xc5Ohh4K9em0Oka3Ni4o+N3x7zAo0hxvaVp4OdIn0AtFgUW7pBWnMr47blyW4aGmD+Fh76FyGlFZhSV6luw1Lhw8rntTi++DZrICZ8+ePbi6uhIaGlp+Xd++fdFqtezbt++OHyczMxNnZ2esrCp2F3r55Zfx8PCgc+fOLFy4EEW5+UrAhYWFZGVlVbgIYSpDWgzB0dqRhKwEdl7YqXYcUQXPdTe24qyOPE9mXrHKaSxDUk4SG89uBOCp1k+pnEZUxZrDSaRlF9LA2ZaH2vmoHeeumazASU5OxsvLq8J1VlZWuLu7k5x8Z2u9pKenM3369OtOa33wwQesWrWKDRs2MHToUCZMmMDs2bNv+jgzZszAxcWl/OLn51f5FyTEHapnXY+hLYcCsOT4EpXTiKro0rw+gd5O5BfrWRZxTu04FmFZ7DL0ip4w7zAC3APUjiMqSVEUFpT2OxvTxR/rWrBmWKVfwdSpU2/YyffaS2xs7F0Hy8rKYuDAgbRu3Zp//vOfFba9++67dOvWjQ4dOvD222/z1ltv8dlnn930saZNm0ZmZmb5JTEx8a7zCXErI4NGotPo2Je0j7jLcWrHEZWk0Wh4rkczABbvTqBYRv7cUm5xLj+c+AGAMW3GqJxGVMXuU5c4npSFvbWOUWGN1Y5TLSpd4Lz++uvExMTc8tKsWTO8vb1JTU2tcN+SkhIuX76Mt/ete2RnZ2fTv39/nJyc+Pnnn7G2tr7l7cPCwjh//jyFhYU33G5ra4uzs3OFixCm5OvoS98mfYGr/RKEZXmkvQ+eTrYkZxWw7kiS2nHM2i/xv5BTnIO/sz/dG3ZXO46ogm92GBebfSK0Ea4ONiqnqR6VLnA8PT0JDAy85cXGxoYuXbqQkZHBgQMHyu+7efNmDAYDYWFhN338rKwsHnzwQWxsbPjtt9/uqPNwVFQUbm5u2NraVvblCGEyZUPG155ZS1pemsppRGXZWul4uksTAObvOH3Lfn51md6gLy/iRweNRqux/FMbdU18ajZb4tLQaK6OIqwNTLYnBgUF0b9/f8aPH09ERAS7du1i4sSJDB8+HF9fXwAuXLhAYGAgERERwNXiJjc3lwULFpCVlUVycjLJycno9XoAfv/9d7755huOHj1KfHw8X375JR9//DGTJk0y1UsRokqCPYPp4NWBEkMJy2OXqx1HVMHIsCbYWWs5esE48Z+43qZzm7iQcwFXW1cGtRikdhxRBd/sMPa9ebB1A/w96qmcpvqYtNReunQpgYGB3H///Tz00EN0796dr7/+unx7cXExcXFx5OXlAXDw4EH27dvHkSNHaNGiBT4+PuWXsn4z1tbWzJ07ly5duhASEsJXX33F559/zvvvv2/KlyJElTzd+mkAVsatJK84T+U0orLc69nwWMdGAMzfIUPG/05RFBYfWwzAsIBh2FvJYpqWJi376sR+40v7ndUWJl2qwd3dnWXLlt10u7+/f4Vm3169et22Gbh///7079+/2jIKYUq9/Hrh5+RHYnYiv8T/wsigkWpHEpU0rntTlu07x6bYFE6l5dDc01HtSGYjKi2K6PRobLQ2MrGfhfpu71mKSgy093Olk4VP7Pd3crJUCBPSaXXlc4J8d/w79Aa9yolEZTX3dKRvUAMUhfJhtMKorPXmkeaPyMR+FqigWM/3pRP7je9h+RP7/Z0UOEKY2ODmg3G2ceZ8znm2JG5RO46ogufvMzbd/3jgPOk5Nx6tWdecyzrH5nObgasd6oVl+engBS7nFtHQ1Z7+bSxzvalbkQJHCBNzsHZgWMAwAL499q26YUSV3OPvRvtGLhSWGPhuz1m145iFJceXoKDQo2EPmrnWrr4bdYHBoPDNTuPQ8Ge7N8WqFkzs93e17xUJYYZGBo3EWmvN4bTDRKVGqR1HVJJGo2F8aSvOd3vPUlBct081ZhRk8Gv8rwA80+YZdcOIKtkcm8rptFycbK14MrSR2nFMQgocIWqAh70HA5sNBGT5BkvVv403jdzsuZxbxI8Hz6sdR1WrTqyiQF9AkHsQ93jfo3YcUQVfbze23owMa4yT3a0n07VUUuAIUUPK+ilsOreJxCxZLsTSWOm0jCtdhPObHWcwGOrmxH9F+iKWxRhHx45pM6bWdUytCw6du0JEwmWsdRrG1qKJ/f5OChwhakhLt5Z0a9gNg2KQVhwL9WSoH852VpxJz2VjTIracVSx5vQaLhVcooFDA/r591M7jqiCstabQe0b4u1y+9UCLJUUOELUoLFtxgLGtXsuF8jMuJamnq0Vo+69unxDXWNQDCw6ugiAp1o/hbW2dp7aqM0S0nNZfywZuDo6sLaSAkeIGtTZuzOt67emQF/AitgVascRVfBMV3+sdRr2J1zh4LkrasepUVsTt5KQlYCTtROPt3pc7TiiCr7ZeRpFgd4BngR4O6kdx6SkwBGiBmk0Gsa2NbbiLI9dLss3WKAGznYMCWkIwFfbTqmcpmaVtd4MCxxGPevas2ZRXZGeU8jqSGMH+efva65yGtOTAkeIGta3cV8aOTYiozCDX+J/UTuOqIIXehqb9v86bly+oS44lHqIqLQorLXWjAoapXYcUQVL9pylsMRAcCMX7m3mrnYck5MCR4gaZqW14q3oJgzdaexsXGIoqbA9LTyctNlzVEon7kQLL6fy5RuWb4yALTMgO1ntWNUqbfYc0sLDy/+98OhCAAY1H4SyaJXso5YkO5nijR/xx+5DgLHvTV0Y/SYFjhAqCPRszbAdBu5dn8gfRzZwPu4KOVcKSAsPJ33WbKiFs4rWNi/1MrbiRB6NhW0za12Bg05L+qzZpIWHc+zsCU4cPY9joSuj9lrLPmppspOx3vkpNgVp+LnXzmUZbsSkq4kLIW7MZ+JkDqUcoscODbFfWnOOQ4BCYGwkwZMn4TlhgtoRxW10auJOaBM38s/VzgU4y/bB6FWRxEa3YhCTAAPnYpfJPmphSgxK+Zf9+B7NauWyDDciBY4QKmn/8kx+Tj2CprwhVUNc4CjCRnRTNZe4A9nJkJ3Mm8EF/HQ+AYD8xIPYl2138jZeLJz9iGeJjQ4Ayk5naGUftRSl+yjAkcjtdADC7BJ5suFluJhRa/bRW5ECRwiVKJk2aDQVf0kpaMhMzcfRrfZOvlUrRC6CbTMJA8JKp4Kx/+O1q9t7ToXe01SJVp0yUvO5WtwYyT5qIUr3UYAOpVe9p8yDhfOM/6gl++itSIEjhEpcvewBhWu/QDQouHjZ3/Q+wkyEjoWAAQBE7t1CaPQ/+Uj3Em8+8yQ2Om2t+WWsc9WjYLimlVH2UYtRuo/uP3uFH9as5RPr+eT1+y8OTToat9eSffRW6saJOCHMUP7yhQTGLgUMpdcYCIhdSv7yhWrGEnfCyRt8Q8A3hPb39AJgd14jfk72MF5fS748Ds99m6DYZSil+6gGRfZRS1G6j34WbcdRgz+Asbgp3W9ryz56K9KCI4QKykZLBU+ehNdDDXnjt3+QZZfOklb9jSNUQDpxWghr3dUWuK+2nebxTn7otJY/BDdpziyarNrNyh5aQl4ayj12XXHxsid/eZzsoxbiwNnLRJy5THud5e+PVSEFjhBq0BvwKB2J4gm0atOIrefj+a5NIZPsJoHecNuHEGbCyZui7m9RsNOT0+m5rD+azMBgH7VT3bWYtGNs76Flb38/3mnXDyut8evCsayokX3U7H251bhe2j1tg8B7ap1otbmWRlEURe0QNS0rKwsXFxcyMzNxdnZWO44QRKVG8dQfT2GlteKPx/7Au17dOhDVBv/dcIL/bTpJax9n1k7ubtETqRUbihn400CScpN4J+wdhgUOUzuSqKQTKdk8+N/taDSwcUpPmns6qh2pWlTm+1v64AhhBkK8QghtEEqJoYTFxxarHUdUwTNd/XGw0XE8KYutJ9LUjnNX1p1eR1JuEvXt6jOk5RC144gqmFe6TtqAtt61pripLClwhDAT49uNB+DHkz9ypaBurVJdG7jVs2FUWGMAwrfEq5ym6gyKoXxZhqdaP4WtzlblRKKyzl/J47eoiwC82LP2L6p5M1LgCGEmuvh2Icg9iPySfJbFLlM7jqiC53o0w0anZX/CFSLOXFY7TpVsObeF05mncbJ2YliAnJqyRF9vP02JQaFbi/oEN3JVO45qpMARwkxoNBqea/ccAMtilpFbnKtyIlFZDZzteDy0EQBzLbAVR1EUvjnyDQDDA4fjaFM3T21YstSsAlbsTwRgYu+WKqdRlxQ4QpiR+xvfj7+zP1lFWayOW612HFEFL97XHK0Gtp1I4+iFTLXjVMrepL0cvXQUW50to4JGqR1HVMH8HacpKjEQ2sSNe5u5qx1HVVLgCGFGdFod49qNA+DbY99SUFKgciJRWY3rOzCovS8A4VstqxXnq+ivABjacij17eurnEZU1uXcIr7few6Al/u0sOiRfNVBChwhzMzAZgNp6NiQSwWX+PHkj2rHEVXwUq8WAPxxNJn41ByV09yZyORIDqQcwFprzdi2Y9WOI6pg4c4z5BfradvQmV6tPNWOozopcIQwM9Zaa55t+ywAC48upEhfpHIiUVkB3k480LoBimI5I6q+jv4agCEthsg8TBYoM7+YxbsTAGPfm7reegNS4Ahhloa0GEIDhwak5qXyS/wvascRVTC5j7GD5y9RF0hIN+8O49Fp0exJ2oOVxqr8FKmwLEt2J5BdWEKrBo482LqB2nHMghQ4QpghG51N+WmCBUcWUGwoVjmRqKx2jVzoE+iFQTH/EVVlfW8ebv4wDR0bqpxGVFZuYQkLdp0B4OXeLdDWgrXQqoNJC5zLly8zatQonJ2dcXV1Zdy4ceTk3Pp8dK9evdBoNBUuL774YoXbnDt3joEDB+Lg4ICXlxdvvvkmJSUlpnwpQtS4oS2HUt+uPhdzL7Lm1Bq144gqmNTH2Bfnp0MXSLycp3KaGzt+6Tjbz29Hq9GWTzYpLMvSfWfJyCvGv74DDwf7qh3HbJi0wBk1ahTHjh1jw4YNrFmzhu3bt/P888/f9n7jx48nKSmp/PLpp5+Wb9Pr9QwcOJCioiJ2797N4sWL+fbbb3nvvfdM+VKEqHF2VnblrTjzj8ynxCBFvKXp0NiN+1p5ojcoZjuiqqzvzYCmA2js3FjlNKKy8ov0fL3d2HozoVeLWrGSfXUxWYETExPD+vXr+eabbwgLC6N79+7Mnj2bFStWcPHixVve18HBAW9v7/LLtQtq/fXXXxw/fpzvv/+ekJAQBgwYwPTp05k7dy5FRdIZU9QuT7R6AldbVxKzE/njzB9qxxFVMLm0FeeHA+c5f8W8WnFOXDnBpnOb0KDh+Xa3//EpzM/SfWdJzymkoas9QzrI6cVrmazA2bNnD66uroSGhpZf17dvX7RaLfv27bvlfZcuXYqHhwdt27Zl2rRp5OVdPSjs2bOHdu3a0aDB1U5U/fr1Iysri2PHjt3w8QoLC8nKyqpwEcISOFg7MKb1GMDYiqM36FVOJCor1N+drs3rU6xXyhdANBfzo+cD8ECTB2jm2kzlNKKy8ov0zNt2GjCeDrWxkm611zLZXyM5ORkvL68K11lZWeHu7k5ycvJN7zdy5Ei+//57tmzZwrRp0/juu+8YPXp0hce9trgByv99s8edMWMGLi4u5Rc/P7+qviwhatyIwBE42zhzJvMM6xPWqx1HVMHk+40jqlbtP09SZr7KaYzir8TzZ8KfADwfLK03lqis9aaRmz2PdWykdhyzU+kCZ+rUqdd1Av77JTY2tsqBnn/+efr160e7du0YNWoUS5Ys4eeff+bUqar/8pk2bRqZmZnll8TExCo/lhA1zdHGkafbPA3AvMPzpC+OBbq3WX06N3WnSG9g3lbzaMX58vCXKCg80OQBAtwD1I4jKsnYemPclyb2ltabG6n0X+T1118nJibmlpdmzZrh7e1NampqhfuWlJRw+fJlvL3vfBKpsLAwAOLjjR30vL29SUlJqXCbsn/f7HFtbW1xdnaucBHCkowMHImLrQsJWQnSF8dCvVLairN8f6LqrThxl+P46+xfaNDwUvuXVM0iqsbYelNEIzd7hnaS1psbqXSB4+npSWBg4C0vNjY2dOnShYyMDA4cOFB+382bN2MwGMqLljsRFRUFgI+PDwBdunThyJEjFYqnDRs24OzsTOvWrSv7coSwCI42jjzT5hlAWnEsVdfm9ens705RiUH1eXHmHZ4HQD//frR0q9srTluia1tvJvVpgbVOWm9uxGR/laCgIPr378/48eOJiIhg165dTJw4keHDh+Praxynf+HCBQIDA4mIiADg1KlTTJ8+nQMHDpCQkMBvv/3GmDFjuO+++wgODgbgwQcfpHXr1jz11FMcPnyYP//8k3feeYeXX34ZW1tbU70cIVQ3MnAkbrZunMs+x5rTMi+OpdFoNEx5sBUAK/cnqjaiKvZyLBvPbUSDhhfbv3j7Owiz8/1eY+uNn7v0vbkVk5Z9S5cuJTAwkPvvv5+HHnqI7t278/XXX5dvLy4uJi4urnyUlI2NDRs3buTBBx8kMDCQ119/naFDh/L777+X30en07FmzRp0Oh1dunRh9OjRjBkzhg8++MCUL0UI1TlYO/DusZYM3Wngq8NfXTe7cVp4OGmz56iUTtyJe5vVp1sL44iqb9fvhS0zIPvmgy6qQ9rsOaSFh5f/OzzK+P/9m/bHedmfss9Ykuxkijd+xA/bIgGY1LultN7cgpUpH9zd3Z1ly5bddLu/vz+KopT/28/Pj23btt32cZs0acK6deuqJaMQlqSNVzCNVu8GzvFL0zV0qdcLVy978pcvJH3WbDwmT1I7oriNKQ8EsCt+NxFHYyBuJgQMACcTLm6p05I+azYA5/p3J+5oIk72bjwX6UL617LPWJTsZKx3fopV4Uf4ubfm0Y4y782tmLTAEUJUL99Jr3Ds0jF6bC0h5msnfuUQoBAYG0nw5El4TpigdkRxG52auNErwJO0E2dq5PnK9onoVZHERrdiEJMAA4mxy2SfsTC5RSXUK/3/SX2k9eZ2pMARwsJ0ePlTViRHoik/w6whLnAUYSO6qZpL3IHsZMhO5v86FPJNfAIAqSciKJ8xzMnbJK059iOeJTY6ACibxl8r+4ylKN1nAHbv3MwDQG/nizzmnQ4XL5lsn6kNpMARwsIUXFauKW6MFDRkpubj6GanUipxRyIXwbaZtAQ+sTZe5bX1Tdhaur3nVOg9rdqfNiM1n6vFjZHsMxaidJ8BeKD0qjcK58I3c43/MNE+UxtIgSOEhXH1sgcUrv3C0qDg4mWvWiZxh0LHGvvcABdj9+G7/S3eLh7Pi8MfpWn9eib7JX5KiUFRDGg0Vwtj2WcsROk+s2DXGU5E7eIT6/kYHp6F1re9cbu03tyUnMATwsLkL19IYOxSwACAgoGA2KXkL1+objBxe07e4BsCviH4BhrnAztq8OejgzbG603wZaUoCse+/D+C4pZRts9oUGSfsRRO3qQ4BvLpYTuOGvwBjMVN6X4kBc7NSQuOEBYkLTyc9FmzCZ48idBhXXnllzeI1Ufzjmfz8pEy0mnUsui0GjbGpLI/4TL3+LtX++NHzHiT3n8m82PPyzz9/kdos+xw8bInf3mc7DMWYvbmkxSWGGjt6wyX1U5jOaQFRwhLojfgUTryxaW+A6P7PkaubSYfBMbg8NI40BvUTijulJM39JzKvcFBAHzyR2yFaTOqg96gJ+LCHlb20OLy4nP4+fjQMMANRzc7PCdMMA4Rl33GrJ27lMeKCOP6iSP63GPscyOtNndEWnCEsCCekyZW+Pf9je+nbf22HL10lOVdSpjaeeJN7inMjpM39J7Gs5kFLD6yhcizV9gcm8r9QQ2q7Sl+P/07X3fOwsXWjT9Kl/q4lrTcmL8vNp6gxKDQo6UHHdsGAUFqR7IY0oIjhAXTaDRM7jgZgFVxq7iQc0HlRKKyvF3seKabPwCfro9Db6ieVpwifVH5rMXj2o7DycapWh5X1JzY5Cx+jjJ+pt/sJyu+V5YUOEJYuC6+XQjzCaPYUFz+hSYsy4SeLXC2syIuJZtfDlVPkboqbhVJuUl42XsxInBEtTymqFkz/4hFUeChdt4EN3JVO47FkQJHiFrglQ6vALDm9BpOXDmhchpRWS4O1rzUqwUAn284QWGJ/q4eL6coh/lH5gPwYsiL2FnJXDeWZld8Olvj0rDSanirX6DacSySFDhC1ALtPNvxQJMHMCgGPj/wudpxRBU809WfBs62XMjIZ+nec3f1WAuOLuBywWX8nf0Z0mJI9QQUNcZgUJjxRwwAo+9tgr9HvdvcQ9yIFDhC1BKvdnwVK60Vuy7sYvfF3WrHEZVkb6Pj1b6tAJizJZ6sguLb3OPGknOT+e74dwBM6TQFa611tWUUNeP36IscvZCFo60Vk/q0UDuOxZICR4haorFzY4YHDAfgP5H/QW+4u9McouY90akRzT3rcTm3iLlb4qv0GLMPzaZQX0hog1B6+fWq3oDC5ApL9Hy6Pg6Al3o1p76jrcqJLJcUOELUIi8Ev4CTtRMnrpzg99O/qx1HVJKVTsv/DTQOA160M4HEy3mVuv/xS8f5/ZTxfX8j9A00Gs1t7iHMzXd7znIhI58GzrY8262p2nEsmhQ4QtQirnauPB/8PACzD84mvyRf5USisnoHeNG9hQdFegMz18fe8f0UReE/kf9BQeGhpg/RxqONCVMKU8jMK2b2ZmPL3esPBGBvo1M5kWWTAkeIWmZE0AgaOjYkNT+VJceWqB1HVJJGo+H/Bgah0cDa6CQOnL1yR/fbcWEHEckR2GhtyudGEpZlzpaTZOYXE9DAiaGdGqkdx+JJgSNELWOrs2VyB+MX3IKjC0jPT1c5kaisIB9nnuzkB8D0Ncdvu4RDiaGE/0T+B4BRrUfR0LGhyTOK6nU6LYdvdycAMPWhQHRaOb14t6TAEaIW6t+0P23rtyW/JJ85h+aoHUdUwesPtsLBRkdUYga/Ryfd8rY/nviR05mncbV15bl2z9VQQlGdPlobQ7FeoXeAJ70DvNSOUytIgSNELaTVaHnznjcB+OnkT8RcilE5kagsL2c7XurZHDAuxFlQfONRcZmFmcyOMq4K/lL7l3C2ca6xjKJ6bI1LZVNsKlZaDe883FrtOLWGFDhC1FIdG3RkQNMBKCjMiJhR7StVC9N7rkczvJ3tuJCRz4KdZ254m7lRc8kszKSFawueDHiyhhOKu1WsNzB9zXHAONljc09HlRPVHlLgCFGLTek0BXsrew6lHmLdmXVqxxGVZG+j4+0BxkUW52yOJymz4qi4E1dOsDJuJQDTOk/DSmtV4xnF3fl+71lOpeXiXs+GSfe3VDtOrSIFjhC1mHc9b8a3Gw/A55Gfk1dcuXlVhPqGhDTkHn838ov1fLT26qlGRVGYGTETg2LggSYP0Nmns4opRVVczi3ivxuMa8e98WAALvYy63R1kgJHiFpuTJsxNHJsRGp+avkCjMJyaDQa/jmoDVoNrIlOYvcp46i4v87+xf7k/djqbHkj9A2VU4qq+HxDHFkFJQT5ODPsHj+149Q6UuAIUcvZ6mz5V0xrhu40sPjYYhKzEitsTwsPJ222jLQyZ14/fseMnP0A/O/nHeRs/IB/R3wCwAdx7bBe9JOa8URlZSeT+tv7bNh3GID3H2ktw8JNQAocIeqApm7NGbbDwKDthXy+fRbn466Qc6WAtPBw0mfNBp0cCsyaTkvwhpU8e3ozJWkpLN63k+yMIp6OcKDp6r3y/lkYQ1YSXge/wIMMBgb7cG+z+mpHqpWkR5oQdYDnyxO4UniFHr+dIub3fvyqOQQoBMZGEjx5Ep4TJqgdUdxC2fvTbVUk7m4tIHMqo88ZCIpbhsfkUHn/LMyfx1IYADjY6HhPhoWbjBQ4QtQRvmNfZ8OJnWjKG241xAWOImxEN1VziTuQnYx9n3uJjQ5Ag/FUhkajNb5/fdwgOxmcvFUOKW4pOxmyk7mSX8y+3VsYALzSOo8GObGQg/H9k/ewWkm7phB1REZqPn//yCtoyEyVBTnNXuQiMhZPAir201DQkLl4IkQuUieXuHORi+Drnrh915d/Mg+A7jEfwNc9jRd5D6udtOAIUUe4etkDChW/JBVcvOxVSiTuWOhYtB49UOYWXNMCBygG7EfNgiayMKPZCx3LEceuTP3pCO20Ccy0ng+PzAKf9sbt0npT7aQFR4g6In/5QgJjl6LBOKOxougJjF1K3rIFKicTt+Xkza5l/yModhkKBuN1ioHAuGXsWLhOvhwtQJG9F1N2wDGlKQ2D7jVe6dMefEOMF3kPq51JC5zLly8zatQonJ2dcXV1Zdy4ceTk5Nz09gkJCWg0mhteVq9eXX67G21fsWKFKV+KEBatbLRU8JOhjJnRjZ4T/Pnp3s/Y0XIfl2bPIS08XO2I4haOfPYebX8+yo6W++gw9jJD3N6h9aOw0dWZVuuWE/vpF2pHFLfxzc7TnEzNoX49G57p2kTtOHWCSU9RjRo1iqSkJDZs2EBxcTFjx47l+eefZ9myZTe8vZ+fH0lJFVfN/frrr/nss88YMGBAhesXLVpE//79y//t6upa7fmFqDX0BjyuGS3V1q0Zz1k/wwztDGx0NowsyMZT5YjixooNxWw7u5n0HloMzwylW+v7IO8Uvp3asCzVlSU/QcOjF2llUNDKXCpm6VRaDl9sPAnAtIeCcPK0gp5TpdXGxExW4MTExLB+/Xr2799PaGgoALNnz+ahhx7i3//+N76+vtfdR6fT4e1d8Q3/+eefefLJJ3F0rLgAmaur63W3FULcmOekidddNyxgGL+d+o3lXY6R3iSFz1XIJW5v8bHFfHVPJm629fmt0xSwc4Xe09AAHwx2pW98f3KL9LjsO8tTXfxVTiv+Tm9QeOuHaIpKDPRo6cHQjg1Bo4He09SOVuuZ7BTVnj17cHV1LS9uAPr27YtWq2Xfvn139BgHDhwgKiqKcePGXbft5ZdfxsPDg86dO7Nw4cJbrpRcWFhIVlZWhYsQdZ1Oq+P9Lu+j0+jYcHYDfyb8qXYk8Tcnr5wkPMp4+vCNe97A1c61wnYfF3ve6h8IwCfr465bjFOob8meBA6cvUI9Gx0zHmuHRiOtbDXFZAVOcnIyXl5eFa6zsrLC3d2d5OTkO3qMBQsWEBQURNeuXStc/8EHH7Bq1So2bNjA0KFDmTBhArNnz77p48yYMQMXF5fyi5+frPkhBEBQ/SCea/ccAB/t/YhL+ZdUTiTKlBhKeHfXuxQbiunZqCePNHvkhrcbfW8TOjR2JaewhP/7+egtf+yJmnXuUh6fro8DYOpDQTRyc1A5Ud1S6QJn6tSpN+0IXHaJjY2962D5+fksW7bshq037777Lt26daNDhw68/fbbvPXWW3z22Wc3faxp06aRmZlZfklMTLzpbYWoa14IfoFWbq24UniFj/Z9pHYcUWrR0UUcu3QMJxsn3uvy3k1/+eu0Gj4ZGoyNTsvm2FRWR56v4aTiRhRF4e0fo8kv1hPW1J1RnRurHanOqXSB8/rrrxMTE3PLS7NmzfD29iY1NbXCfUtKSrh8+fId9Z354YcfyMvLY8yYMbe9bVhYGOfPn6ewsPCG221tbXF2dq5wEUIYWeus+bDbh1hprNhwdgPrE9arHanOO3HlBOGHjaempnWehpeD1y1v36qBE1MebAXAB2uOc/5KnskziltbHpHIntOXsLPW8snQYOkAroJKdzL29PTE0/P24y26dOlCRkYGBw4coFOnTgBs3rwZg8FAWFjYbe+/YMECBg0adEfPFRUVhZubG7a2trd/AUKI6wTVD+K54OeYd3geH+39iNAGoXjYe6gdq04qNhTzzs53KDGU0KtRLx5u9vAd3W98j2ZsOJ7CgbNXeHN1NEufC5MvVZWcv5LHx+tiAHjjwQD8PeqpnKhuMlkfnKCgIPr378/48eOJiIhg165dTJw4keHDh5ePoLpw4QKBgYFERERUuG98fDzbt2/nueeeu+5xf//9d7755huOHj1KfHw8X375JR9//DGTJk0y1UsRok54vt3zBLgFkFGYwUd7P5K+HCpZeGQhMZdjcLZxvuWpqb/TaTX854n22Fvr2HP6Ekv2JJg2qLghvUFhysrD5BSW0LGxK2O7NVU7Up1l0on+li5dSmBgIPfffz8PPfQQ3bt35+uvvy7fXlxcTFxcHHl5FZtTFy5cSKNGjXjwwQeve0xra2vmzp1Lly5dCAkJ4auvvuLzzz/n/fffN+VLEaLWs9ZZ82F346mqjec2sub0GrUj1TnHLh1jXrRxnaJpYdPwdKjc7ET+HvX4x0PGUVUz18dyOu3mE6sK05i37RQRCZepZ6Pjv8NC0Ekrmmo0Sh38mZaVlYWLiwuZmZnSH0eIv/nq8FfMiZqDg5UDqx9ZTWNn6RxZE/KK83hyzZOczTpL38Z9+bzX51UaUmwwKIxZGMHO+HRC/Fz54cUuWOlkVZ6acDgxg6Ff7qbEoPDZ48E8ESojdqtbZb6/Za8XQlTwXLvn6NSgE3kleby1/S2K9cVqR6oTPt73MWezztLAoQH/7PrPKs+XotVq+PTxYJzsrIhKzCifQVeYVm5hCa+ujKLEoDCwnQ+Pd5IFUNUmBY4QogKdVsfMHjNxsXXh2KVjzD508zmmRPVYe3otv576Fa1GW/63vxu+rvZ89Gg7AOZujWfnyfTqiCluYfqa45xJz8XHxY6PHm0rE/qZASlwhBDX8a7nzb+6/osndujJ+moBuy/svu42aeHhpM2eo0I6y5V2g4VNE7MTmb53OkN3GpgRF0Kod+hN7l05g9r7MqJzYxQFXl0ZRWp2AWQnw5YZxv+Ku1f699yy/zAr9iei0cB/nmyPq4ON2skEUuAIIW7i/sb309qzHcN2GNjx4WQSk5I4H3eFnCsF5auTI307KkenJX3WbNLCw8m5UsDZmDTe+/MD+m/JZtgOA51876nWp3v/kdYENHAiPaeQ11ZGoc9Kgm0zpcCpLtnJsG0m89YafwC8cF9zujaX6RXMhUlXExdCWLaHpy/m65wHCD3Skt/+dQzjbyKFwNhIgq9ZnVzcmbK/V/SqSGKjAwANnZRhBJ3UY/tiAA1evn5R1LthZ61j7qgOPDJ7F7viL/FDpIFh1foMdVthiQFbIKdQT4fGrkx5oJXakcQ15OeXEOKm7Kzs6P3618QEjOTq4UJDXOAo7Ec8q2Y0i2U/4lliA0cBxj4aGo2W2MCReD39ikmer4V9LrN6aWijOcOhiG3GK5MOw8Uo40VacyonOxkuRqFcPMSv6/8A4F67RL7ua4VNarT8Pc2ItOAIIW7JrdAbjSapwnUKGjJT83F0s1MpleXKSM2nrLi5Smu6v2fkIh7YMZMHrp3o/ffJV/+/51ToPa36n7e2ilwE22aiAZ4svepdZR4sM85fJH9P8yEFjhDilly97AGFil/KCi5e9iolsmxa1xIUDGiuaUDXmPLvGToWAgaQX6znqxU/8Wr+HGY7Tub5Jx/F1koLTrdfG1BcI3QsJ9268+bqIwRwmk+s58Mjs8CnvXG7/D3NhpyiEkLcUv7yhQTGLkWDcU5QRdETGLuUzO/nqZzM8hgUA39++jRBsctQMADG4iYgdin5yxea5kmdvME3BPsmnRg++BEA1l9qwNu7NSg+7eULuZKuaN15Zn0xUfom1GvS0XilT3vwDTFe5O9pNqQFRwhxU2WjpYInTyJsRDcSz6fw1uHXSDfE4Tt3D9Zaa7xeflntmBZj3XtjuXftGX7oeZ6H35qCV3FDXLzsyV8eZxyVBibtuO3tbDwFptNq+CXqIkE+zrzQs7nJnq+2KSzR8/x3kVzIyKdJfQdee6ABLFY7lbgZKXCEEDenN+BxzWipILcmzPSZzhhlDFBApwu7eQQpcO7EutPrOJi0n8geWjq99REdmrUt3+ZYVtToDaYN4eQNPafylKYzb65PZeb6WFp5O9E7wMu0z1sLKIrCWz9Esz/hCk52VswfE4qTQ66xz4202pglWYtK1qISotJ+P/U7/9j5DwD+L+z/GB44XOVE5i0iKYIXNr5AiaGEp1o/xVv3vKVqHkVR+MfPR1gekYiTrRU/TuhKqwZOqmYyd5//FceszfFYaTV8O7Yz3VvKfDdqkLWohBAm9UjzR5gYYpyzZUbEDDaf26xyIvN14soJXt3yKiWGEh5o8gBvhL6hdiQ0Gg3/GtSWzv7uZBeWMGZBBBcy8tWOZbZ+OHCeWZvjAfjo0bZS3FgIKXCEEFXyfPDzDG05FINi4K3tbxGVGqV2JLOTnJvMhI0TyC7OpqNXR2b0mIFWYx6HXRsrLV+P6URLL0eSswp4asE+LucWqR3L7Ow+lc60n6IBmNCrOcPuaaxyInGnzOOTJoSwOBqNhnfufYf7Gt1Hob6QSZsnkZCZoHYss5FdlM2ETRNIyUuhqUtTZvWZha3O9vZ3rEGuDjYsGdcZXxc7TqflMvbb/eQWlqgdy2xEn8/ghSUHKNYrPBzswxsPBqgdSVSCFDhCiCqz0lrx2X2f0aZ+GzIKM3hx44tczLmodizV5RXnMWnzJE5eOYmHvQdf9v3yrlcINxUfF3uWjOuMq4M1hxMzeGnpQYpKTNzZ2QIcu5jJUwsiyC4soXNTd/79RHu0Wlkh3JJIgSOEuCsO1g7MvX8ujZ0acyHnAs/++WydLnLyivOYsGkCB1IO4GjtyNz759LQsaHasW6phZcTC5+5B3trHdtPpDFlVRQlph7RZcZOpGTz1IIIMvOL6djYlYXP3IOdtU7tWKKSpMARQty1+vb1WdBvQZ0vcv5e3Hz1wFe0rt9a7Vh3pGNjN8JHd8RKq2FNdBITlx2qky05p9NyGDnf2B+pXUMXFo3tjKOtzKhiiaTAEUJUC+963uVFTtc/zrH87cduWOSkhYeTNnuOCgmrT9rsOaSFh1e4rqy48f9xP6N26fjqga8I9gxWKWHV9A7wYt7oTtjotKw/lsyL3x+goFhvXEByy4zau5Bk6etLPHuakfP3kZ5TSKC3E0ue7YyLvbXa6UQVSYEjhKg2ZUWOk50rD23KZPnbj3Ey8Qzn466Qc6WgfGZkdBZ+6NFpSZ81m7TwcHKuFBB/7CKvrHkD/x/3M2yHgYdbDra44qZM39YNmP90KLZWWjbHpvLc4kjyr1yAbTNrd4GzbSZTF28gOauAFl6OfP9cGG71bNROJu6CtLsJIaqVdz1vRnzyE8vffoyQo4H8+dGp0oUlFQJjIwm+ZmZkS1WWP3pVJLHRAYCG9spjBJ0sQD/Oj7Zv/kvdgHepZytPvh3bmXGL97MzPp1/5l/iE7VDmdCBc1foBGTkF9Pax5lvn70HD0fzGvEmKk8KHCFEtfOu582j/1jNmg9irlk1W0Nc4CjCRnRTNVt1sR/xbHlxA6DRaIkNHEXYc7Xj9XXxKuaHwQ7887djkHwKrOFSfAT1y27g5G3ZSxRkJ0N2MptjU9m4+S86WcEQ7zRGDranXnYsYOGvT0iBI4QwDatsh2uKGyMFDRmpeTi62amUqvpsP7aXsuLmKg2Zqfm14vURuYjW22aySgOUdkOpv/lNKJu0uudU6D1NrXR3TYlciGbbJ/QB+pR+E46/8gV8+4XxHxb++oQUOEIIE3H1sgcUri0CFEXP4vPf8GaLV7HRWWb/BkVRWBa7jLkxXzFSeQ/NNTMTa1Bw8bJXMV01Ch0LAQMAyDoTifOG13m7eDyxNOXFns0ZEBqibr67kFVQzEdnQzla+BEAL7XK4eGzM+CRWeDT3ngjab2xeBbe008IYa7yly8kMHYpGsrW8zUQFLec4hWLGb1utEXOepxZmMmrW15lZsRMHoy4RFDcsvLXp0EhIHYp+csXqpyymjh5g28I+Ibg3DQUAPcW93BY789Lm/W8synNOMLKwhy7mMmg2TtZGVvMCW0zhg16mIf79Tdu9Glf/pqlwLF80oIjhKh2ZaOlgidPImxENzJT83Hxsidm3l8MW2xgJcd4MutJ/i/s/xjUfBAajfnPELs/eT/TdkwjJS+FJ3bBEzsMeEwKJWzk1deXvzzOOEoMLL4j9Y281a8VDo0d+c+GE3y/9xx7Tl3iv8NCCG7kqna021IUhRX7E3n/t2MUlRho6GrP3FEdCfFzhYtRascTJiAFjhCi+ukNeFwzWqqsT8o90z7ljL0HjRI2kF+SzDu73mH3xd28c+87ONk4qZn4pooNxXwd/TVfR3+NQTHg7+zP4y064hHS4LrX51hW1NS2WYCdvKHnVDROPky635u2jVx464doTqXl8lj4bib1acmE3s2xNtPh/xcz8vnnb8f463gKAH0Cvfj8yfa4OpSeJi19fdJqU7toFEVRbn+z2iUrKwsXFxcyMzNxdnZWO44QdY7eoGfB0QWER4WjV/S427nzasdX6bb+PBqd7oatH2nh4aA34DlpYrXlSJs9B3Tamz5fYsZZ/tU6ltOZpwEY0mII0zpPw8Haodoy/H979x7U5LnnAfybEBIoIjchJIAIcgleABVhAW+nslrb9ainY4XSGbxMu1LYamnPWrtVeqataKc9a3EtltajdnapdXrEqmfVskqhF0RF8Ui9odKDckstSgIqSPLuH2lT8RKxDb4v4fuZyUx4c3m+eYYhP97neZ+nv7rS0YXXdtTgbyeaAAAxgR5Y9YfRGKm9Zc8tYzNwZJNlPs/DKB5ua6/bZMbmb7/Hn0vO4lqXCQq5DDnTIrB40nDuK9VPPcj3N8/gENFD5yR3wnPRzyHePx4rvlmB7w3fY+W3K5F5bgh+t8+ymJxr2kJc1V+Hp58rrn/yF1zOX4chL/ybvYNYh5Ruba9l83+i64OPsXOiHBcC5PBSeWF5wnLMCJlh3/b7MS83Jf7r6TGYdlyNFTtqcPxSG/5l3deYExuAl6ZHIsDT1bqAHiJnPLwC56f2jl1R4T+Ka3CyyQAAiAv2wltzRiPSX5pnCsn+WOAQkWhi/WKx/ffbUXS6CAXHC1Aw9jL01+SYeMsCen25QODdFuwDzNCdrsVXE+XYMdEZz+jSkBmbicFKnu29nUwmw6zYAMSHeCPvf09j5/FGbD/WgN0nmrAgeRiydd0Qo5xYufM7fPx9AwDAw9UZy2fo8FRcEM/aDDB9NmD61ltvISkpCY888gg8PT179RpBELBy5UpoNBq4uroiJSUFtbW1PZ7T2tqK9PR0DB48GJ6enli0aBHa29v74BMQ0cPg7OSMjJEZ2D1nN2aHzcbe8V44Ffk0frm83LJAoGvawnu+x932hrI+dp+9r1zTFuK0Lv2W9uQ4FZkG/RNT8dff/xXL4pexuLkPjYcr8tPGYGd2Mh4LFhBuOo+vy/fjnc3bAACNpystE3kbq3u33cOD7H1lbIbQeAyHK0pRsHU7AKDz4jGMltdhyYgOHPhXHVLjh7K4GYD67AxOV1cX5s6di8TERGzcuLFXr3n77beRn5+PLVu2ICQkBCtWrMD06dNx8uRJuLhYJvGlp6ejqakJJSUluHnzJhYsWIDnnnsORUVFffVRiOghGOI6BG8kv4Hpzsdw/OiVHo8JkKGo8jNMjh+PCK+IO6+6usdQk62hrYb2BpRfKsc3h44hCo/1eEwmc8KrUa8j0NPbvh/SwUUHeqJA93fIWnpu7KAt/3eg3HL/RtIf4TLtNdtv1IuhLUEQcOziVbTvfRuTGjdiPIDxPz22xvlDy50LAE69Avhzwb6BqM8KnD/9ybIXy+bNm3v1fEEQsHbtWrz22muYNWsWAODjjz+GWq3Gjh07kJqailOnTmHv3r04fPgw4uIs6zKsW7cOjz/+ON555x1otdo++SxE9PDEhkfhOL7B7QsE/qV+A9a1rIG/mz8mBUxCkjYJwz2HI8A94B5DTb8MbflkLkZjeyPq2upQ2VyJry59hXNXzwEA3Do9oBOm3bFgn6cfJxL/GrK4hUDk4xAg4PzxbxFW+Spe7X4Wx03DAAA/lHrC78xXSBo+BImhPhgb7NWrHbs7u02obWnHqSYDahraUHKyBY1tN+CLsfCThcLVWY4FoQY88T0X7CMLyczBqaurQ3NzM1JSUqzHPDw8kJCQgIqKCqSmpqKiogKenp7W4gYAUlJSIJfLUVlZiTlz5tz1vTs7O9HZ2Wn92WAw9N0HIaLfxLJA4BGc0aVDgAwyCNCd+QSL3T2wPrYTzR3N2HZ2G7adtQx/OMmcEDAoAKGBkdDpeg5tndY9jQ+9N6P2vzeiy9zVox0nmRNi/WKRVqGA4kxRj/YsC/ad+eWyb+q9n/aokgEIgwyoBP44fx4+ueSF4qMN0OvboW8woKbBgMJyy9Vpg1QKjHC/hgi3Dvi4KRF4oxZzAWzZ/jlq5TW4cq0LR1tVaDJ79mjKTemExKiReHy0BlMifeHywwmgMO+XBftoQJNMgdPcbBlrVavVPY6r1WrrY83NzfDz8+vxuEKhgLe3t/U5d5OXl2c9o0RE0nWvBQKvf3IG2vx1mD4sE7WzY1F+qRzV+mrUG+txvfs66o316G5TQnfHtEI5rug70OXRBYVcgSD3IIzwGYHJgZORpE1C18b/weVPLUNYt7fnyAv2PWxejzjj+SlheH5KGPSGG6i48CMqzv+Ib85fxsXW62jv7EaSaSeWtm/v8bqMy3+23l8r/wM2qdIQpXFHlGYw/inUB5MjfOHi7PSwPw71Ew9U4LzyyitYs2aNzeecOnUKOp3uN4Wyt+XLlyMnJ8f6s8FgQFBQkIiJiOiu7rFA4K0L6E0KnIRJgZMAWIa29df0+IfhH6hrvIjLJ3vufQWYseyfcxAeOAwaNw0U8p5/8n7oRXv0G9xlAT2/wS6YFRuAWbEBAIBrXd1oaruBH5tC8H8/pOHHjk6o289gytk3UDn6dVzzHoVBKgVSg0OwRBtse9VrLthHt3igAuell17C/PnzbT4nNDT0VwXx97f8Qra0tECj0ViPt7S0IDY21vocvV7f43Xd3d1obW21vv5uVCoVVCrVr8pFRA+PrUX87nYmRSaTQe2mhtpNjZDiI/j76b/dNtRUhNGlcfB9fqJd2qMH5O5/3x25H1EqMNx3EIb7jgAwwnKwMQg4+wYSEn/3YENNvWiPBo4HKnB8fX3h6+vbJ0FCQkLg7++P/fv3Wwsag8GAyspKZGZmAgASExNx9epVVFVVYdy4cQCAAwcOwGw2IyEhoU9yEZH02Rra4lAT0cDUZ3Nw6uvr0draivr6ephMJlRXVwMAwsLCMGjQIACATqdDXl4e5syZA5lMhqVLl+LNN99EeHi49TJxrVaL2bNnAwCioqLw2GOP4dlnn8WGDRtw8+ZNZGdnIzU1lVdQEQ1kHGpyLBxqIjvos72o5s+fjy1bttxxvLS0FFOmTLE0LpNh06ZN1mEvQRCQm5uLwsJCXL16FRMmTMD777+PiIgI6+tbW1uRnZ2NXbt2QS6X48knn0R+fr61aOoN7kVFRETU/zzI9zc322SBQ0RE1C88yPe3NPe2JyIiIvoNWOAQERGRw2GBQ0RERA6HBQ4RERE5HBY4RERE5HBY4BAREZHDYYFDREREDocFDhERETkcFjhERETkcPpsLyop+3nxZoPBIHISIiIi6q2fv7d7swnDgCxwjEYjACAoKEjkJERERPSgjEYjPDw8bD5nQO5FZTab0djYCHd3d8hkMru+t8FgQFBQEC5evMh9rm7DvrGN/WMb+8c29s+9sW9s60/9IwgCjEYjtFot5HLbs2wG5BkcuVyOwMDAPm1j8ODBkv9FEQv7xjb2j23sH9vYP/fGvrGtv/TP/c7c/IyTjImIiMjhsMAhIiIih8MCx85UKhVyc3OhUqnEjiI57Bvb2D+2sX9sY//cG/vGNkftnwE5yZiIiIgcG8/gEBERkcNhgUNEREQOhwUOERERORwWOERERORwWODY0fr16zFs2DC4uLggISEBhw4dEjuSZJSXl2PmzJnQarWQyWTYsWOH2JEkIy8vD+PHj4e7uzv8/Pwwe/ZsnDlzRuxYklFQUIDo6GjrImSJiYnYs2eP2LEkafXq1ZDJZFi6dKnYUSTh9ddfh0wm63HT6XRix5KUhoYGPPPMM/Dx8YGrqytGjx6NI0eOiB3LLljg2Mmnn36KnJwc5Obm4ujRo4iJicH06dOh1+vFjiYJHR0diImJwfr168WOIjllZWXIysrCwYMHUVJSgps3b2LatGno6OgQO5okBAYGYvXq1aiqqsKRI0fw6KOPYtasWfjuu+/EjiYphw8fxgcffIDo6Gixo0jKyJEj0dTUZL19/fXXYkeSjCtXriA5ORnOzs7Ys2cPTp48iXfffRdeXl5iR7MPgewiPj5eyMrKsv5sMpkErVYr5OXliZhKmgAIxcXFYseQLL1eLwAQysrKxI4iWV5eXsJHH30kdgzJMBqNQnh4uFBSUiJMnjxZWLJkidiRJCE3N1eIiYkRO4ZkLVu2TJgwYYLYMfoMz+DYQVdXF6qqqpCSkmI9JpfLkZKSgoqKChGTUX/U1tYGAPD29hY5ifSYTCZs3boVHR0dSExMFDuOZGRlZeGJJ57o8TeILGpra6HVahEaGor09HTU19eLHUkydu7cibi4OMydOxd+fn4YM2YMPvzwQ7Fj2Q0LHDu4fPkyTCYT1Gp1j+NqtRrNzc0ipaL+yGw2Y+nSpUhOTsaoUaPEjiMZJ06cwKBBg6BSqbB48WIUFxdjxIgRYseShK1bt+Lo0aPIy8sTO4rkJCQkYPPmzdi7dy8KCgpQV1eHiRMnwmg0ih1NEi5cuICCggKEh4dj3759yMzMxAsvvIAtW7aIHc0uBuRu4kRSlZWVhZqaGs4TuE1kZCSqq6vR1taGzz77DBkZGSgrKxvwRc7FixexZMkSlJSUwMXFRew4kjNjxgzr/ejoaCQkJCA4OBjbtm3DokWLREwmDWazGXFxcVi1ahUAYMyYMaipqcGGDRuQkZEhcrrfjmdw7GDIkCFwcnJCS0tLj+MtLS3w9/cXKRX1N9nZ2di9ezdKS0sRGBgodhxJUSqVCAsLw7hx45CXl4eYmBi89957YscSXVVVFfR6PcaOHQuFQgGFQoGysjLk5+dDoVDAZDKJHVFSPD09ERERgXPnzokdRRI0Gs0d/yRERUU5zDAeCxw7UCqVGDduHPbv3289ZjabsX//fs4ToPsSBAHZ2dkoLi7GgQMHEBISInYkyTObzejs7BQ7huimTp2KEydOoLq62nqLi4tDeno6qqur4eTkJHZESWlvb8f58+eh0WjEjiIJycnJdyxJcfbsWQQHB4uUyL44RGUnOTk5yMjIQFxcHOLj47F27Vp0dHRgwYIFYkeThPb29h7/NdXV1aG6uhre3t4YOnSoiMnEl5WVhaKiInz++edwd3e3ztvy8PCAq6uryOnEt3z5csyYMQNDhw6F0WhEUVERvvzyS+zbt0/saKJzd3e/Y66Wm5sbfHx8OIcLwMsvv4yZM2ciODgYjY2NyM3NhZOTE9LS0sSOJgkvvvgikpKSsGrVKjz11FM4dOgQCgsLUVhYKHY0+xD7Mi5Hsm7dOmHo0KGCUqkU4uPjhYMHD4odSTJKS0sFAHfcMjIyxI4murv1CwBh06ZNYkeThIULFwrBwcGCUqkUfH19halTpwpffPGF2LEki5eJ/2LevHmCRqMRlEqlEBAQIMybN084d+6c2LEkZdeuXcKoUaMElUol6HQ6obCwUOxIdiMTBEEQqbYiIiIi6hOcg0NEREQOhwUOERERORwWOERERORwWOAQERGRw2GBQ0RERA6HBQ4RERE5HBY4RERE5HBY4BAREZHDYYFDREREDocFDhERETkcFjhERETkcFjgEBERkcP5fxZn4orpSGWTAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "spl=NumbaCubicSpline(xx,yy)\n",
+    "spl_der=spl.as_derivative()\n",
+    "\n",
+    "x_new = np.linspace(0, 2*np.pi, 33)\n",
+    "y_new = spl(x_new)\n",
+    "y_der = spl_der(x_new)\n",
+    "yy_der = spl.derivative(x_new)\n",
+    "\n",
+    "plt.plot(xx,np.sin(xx),'-')\n",
+    "plt.plot(x_new,y_new,'+')\n",
+    "plt.plot(xx,np.cos(xx),'-')\n",
+    "plt.plot(x_new,y_der,'x')\n",
+    "plt.plot(x_new,yy_der,'.')\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "0774180b",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x7faa9b155e50>]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTQ0lEQVR4nOzdd3xT9f7H8VdWF3TSlrZQKLvssi1TFFnKUNCiIIIIagWu4lXBgdeJ6/rzUqggG2U6QAUE2RuKIKNQNmU23bSlM+v3R2ilMlubnqT9PB+P81CSk+SdZpxPvuc7VBaLxYIQQgghRAWiVjqAEEIIIURZkwJHCCGEEBWOFDhCCCGEqHCkwBFCCCFEhSMFjhBCCCEqHClwhBBCCFHhSIEjhBBCiApHChwhhBBCVDhapQMowWw2c+XKFdzd3VGpVErHEUIIIcQ9sFgsZGVlERQUhFp95zaaSlngXLlyheDgYKVjCCGEEKIULl68SM2aNe+4T6UscNzd3QHrH8jDw0PhNEIIIYS4F5mZmQQHBxcdx++kUhY4haelPDw8pMARQgghHMy9dC+RTsZCCCGEqHCkwBFCCCFEhSMFjhBCCCEqHClwhBBCCFHhSIEjhBBCiApHChwhhBBCVDhS4AghhBCiwpECRwghhBAVjhQ4QgghhKhwbFrgbNu2jX79+hEUFIRKpWLlypV3vc2WLVto3bo1zs7O1K9fn/nz59+0z/Tp0wkJCcHFxYUOHToQExNT9uFLIDlqGsnR0be+Ljqa5Khp5ZxIlFqWHjZPsf5XCCHEPbO3Y6FNC5zs7GxatmzJ9OnT72n/c+fO8fDDD9O9e3cOHjzIyy+/zHPPPce6deuK9lm2bBkTJkzg3Xff5cCBA7Rs2ZJevXqRlJRkq6dxdxo1KVOjbnphk6OjSZkaBRppKHMYWXrY+okUOEIIUVL2diy0lBPAsmLFijvu8/rrr1uaNm1a7LKIiAhLr169iv7dvn17y0svvVT0b5PJZAkKCrJMmTLlnrNkZGRYAEtGRsY93+ZukqZPtxxrFGpJmj79lv8WDuLynxbLux7W/wohhCgRWx8LS3L8tqvFNnfv3k2PHj2KXdarVy9efvllAAoKCti/fz+TJk0qul6tVtOjRw9279592/vNz88nPz+/6N+ZmZllGxzwi4xEn60nZWoUSdHTURvNpA7rSUr/5qSnn6SuZ120arv6c1d6FouFS+m5nD13hty0y+QbzLhfPcoDwJr168j3vYyfuzMe/sH4B9bGz90ZjfruC7wJIURlYbFYuJh1kUvXLpGRn8HVB7zx1N8HU6NI/joalcGE7/hx+EVGlns2uzri6vV6qlevXuyy6tWrk5mZSW5uLunp6ZhMplvuc/z48dve75QpU3jvvfdskvlGcf2bETr/e3RGMwYNvBi8CTZuAsBV60pz3+a09GtJS7+WtA1oS86MeaBR3/KFT46OBpMZv3FjbZ67QsrSwx/zoO1IcA8AoMBoZufpFLaeTOZYQiZxCZlk5Rl5WfsDL2t/Knbzvuc+hnPW///K+BhfGQdT1VlLhzo+hNerRqf6vjSq7o66sOC5xeMJIYSjSY6adsfjkslo4OITHTmYdJBDyYc4nHyY9Pz04jvWg0Ua0BlMqHQ6RYobsLMCx1YmTZrEhAkTiv6dmZlJcHBwmT9Ok1+OojGBSatGZzTzr0NBrOvuwcWsi2QbsonRxxCjt3aIdtW68vKlGrT6+TgWiwX/l14qup/C85W+48eVecZK43pfGkP93uy4rGb1kQR+P6onM89YbDedRkVMtYG8X+UhnHUa6hpO8/iVz/il9kSOWeqQeq2AE9luaLNUXMs3svF4EhuPW/t7VaviRN/mgQy9rxah5ut9dxr1kQJHCOG4rvejAYoKE4vFwrH/vod69jJ+7u7GonWzi93ESe1ELY9aeLt44+XsRfi6i+hMsVh0WjAYSI6OlhacgIAAEhMTi12WmJiIh4cHrq6uaDQaNBrNLfcJCLj9QcXZ2RlnZ2ebZC6UHB2NZs7yoqa45OhoOk2NYkD9cfi88DxnM85yKPkQh5IP8Yf+Dy5du8SUJqcZlKYmImoaexP2Ev7Wl1jmLS8qbpSqeiuCrHwj7sAz82LYlVOz6HI/d2d6Na1Oq2BvmgR5UM+vKk7aGzq+XTkI33xG/1596B8UVnSxyWwhLiGTXWdS2Hk6lZhzaaRmF/DtnvN8u+c8jwel8jmQbzRj23eaEELYTuFxJ2VqFEazkQ0PeJP+9Tc8tD6FZV3U/HhfAT4uPrQLaFd0RiLUJxQnjRNw/Qf6it+KHQv/XjCVF7sqcMLDw1mzZk2xy9avX094eDgATk5OtGnTho0bNzJw4EAAzGYzGzduZOxY5U7l3NjiUvgC3vgmAWgQGUkD7wYMbjgYi8XC4ZTD/HrmV35z+g24SsQP+7iyogs6E7hHjpHipjSy9KQnXeTng5c5d3gX76kgOP8UXaqq6FSvGu2bN6Flk9BS9aPRqFU0q+FJsxqejOlajwKjmQNH49j8x2H2nE1DnXgOdPDZvGWEdUikd7MAdJ6B0pojhHA4Hs+P4nDyYZj2NS2/Bp0JfuiqI3toL6bX60fHoI637FN6L8fC8jy22bTAuXbtGqdPny7697lz5zh48CA+Pj7UqlWLSZMmcfnyZRYuXAjACy+8wLRp03j99dd59tln2bRpE8uXL2f16tVF9zFhwgSeeeYZ2rZtS/v27fnqq6/Izs5m5MiRtnwqd2Yy37LFpejfJnOxy1UqVVHl+3q719kSvgXjwy+jM1kwaOBx3+UMP+jC002epqpT1fJ6Fg4tt8DEgaWf0+nybEYAXK9hPtXNAiNwAgiYCOpJt70PwFqQdJt418LESavmvrRfuO/iJ6D76/J3LDNgzwzYA6cbj6XeEx+iUknHZCGE/TOYDaw8vZKZh2aSGJJo7UdjArNWw7+m7cDDyePOd1DCY6GtqSwWi8VWd75lyxa6d+9+0+XPPPMM8+fPZ8SIEcTHx7Nly5Zit3nllVc4duwYNWvW5J133mHEiBHFbj9t2jQ+//xz9Ho9YWFhTJ06lQ4dOtxzrszMTDw9PcnIyMDD4y4vWDkorHotOi0qg9HaDNhZja+rL+/c9w4P1HpA6Yh2bcuJJN75OZa8tCv4q67SsHpVnquXRdP9b0O/qRDY0rqje0DZtqhk6f+aLyfhEPw6nt1N32Xa8SpczTGQZPGidu26/Kd/U5rV8Cy7xxVCiDJ2NPUok3dO5mT6SQCG73XlkU1ZoNOBwWA33SZKcvy2aYFjr+ypwPl7k17S9OmkRk1jXQ8f5rSzDmfvU6cPk9pPwtvFW9Gs9iYpK48PVsXx66ErAAR6uvBuv6b0alodVcIh+KYbjNkKN/SlsZkrB4se71q1ZszceoZZ28+SZzCjVav414MNePH+emhl0kchhB0pMBXw9aGvmRc7D5PFhJezF/850ZSgJVtv6kdjD0VOSY7fdtUHp7K51ZvG/6WXUKlU9JoaRV2vtrzT8DC/nfuNvQl7eavDW/QM6alwavuwNjaB1384TGaeEbUKRnaqwysPNaSqs/Jv6arOWl7t2YihHWrz/qqjrDmi57/rT7LpRBL/90QYIb5VlI4ohBAcTj7MOzvf4WzGWQB6h/Rm3KEAspfMtpt+NP+EtOAo2IJzt/kGMJlJfPJ+3tn5DqevWvsyDWowiDc7vFnUY72yMZjMfPrbcWbvsE5S06KmJx8/2vzmU0DlPS/NbR7PYrHw88ErvPNzLFl5Rlx1Gt55pAlPtg+WvjlCCEVYLBYWHlvIl/u/xGwxU82lGu/c9w4P1n7wno5LSs7PJqeo7sJeCpx7VWAqYMahGcw+MhsLFsbu96VXvb6E/Ou1m/a1hzdgmbqhcNCbvRi7+AB/nLdOKvV817r8u1cjdA5w2ufy1Vz+vfwQu8+mAjC4TU0+erQZzlqNTBIohChztytUco25/PTmk5xJO8n3XTT0qdOHN9u/iZeLlzJBS6gkx2/7PzIInDROjG89nukPTsfdyZ2E3CRyv57Lkc8nF9uvQi7ueX3CvkPHjvPw1O38cT4dd2ctM59uw6S+jR2iuAGo4eXKouc68GbfUNQq+GH/JYbN3kvqtXxZ4FMIUfZusfDlpaxLzJnQi9a/nAC1hkntJ/Fpl08dprgpKeU7LIh71qVmF5Y+vJR/uf0LOEnEnO/ZmptKt8nT7aoTmC1M/uUoqaYQmgR68PWw1tSu5nj9WNRqFWO61qNRgAdjFx9gX3w6A6bv5Lu+LoQoHU4IUaH8vd/M2UfbsOn9Fxm4OZdfuleh77szaBvQVsmINienqBzgFNXf5RhyeHvn23gsWkfEdjNmrQa1UbkFzcrcDcOvt2/bQJfjH/CGYTTe9drySo+GOHsHOfypnHPnTvPRsi0kZOTRRnee99Xf2HZIuxCiUir88Wu4PqfN5l4BPPbxEgKqOOb3i/TBuQtHL3DA2kls+sHpdB02Hd319a+aHomtGB1XN0+xnrK5nW4ToftdJuyzd5XhOQohFPfz6Z+pM2Di9eOEivoHD+CidVE6VqnJMPFKQKVSEbFbTYoJa2VuNPP9pCcY9PFSNGqN0vH+EUOrZ5h6oR6bjifRTB3Pp7pZWPpNRXVj64ajazsSGvXBYLLww+pVPKn/gomG0fTq0YvujfwqxnMUQihqUdwiTn35MQ2v/wjWGM1kfTMXl4rQ0n8PHKOHprjJjX1uzqz8mOVdNTRfGcuSiY9hMBmUjldqJrOFl9foiYqrwnFVXR56wDrvjyqwpXXCvqCwinHwdw+AoDB0wa14ot8jABwxh/Ds7wUsv1KtYjxHIYQiLBYLMw7N4NSXHxOx3czxx1rR5MgRfMePu6njcUUmLTgO6O8dih8F3N5043v+zeO/nGSpZRBPfbrC4VpyzGYLr/9wmNWHE9BpVHw9tA09vBJgu9LJbEtz/bRin2YBHD0Cr/9wGIPJzNAOtRVOJoRwRDMOzyBx2jQitps598R9DHxvLiqVymEn7CstacFxRLdY0KxXSC+6T47m+65azqWf5v097+NI3assFgvv/BzLjwcuoVGriHqyNT2aVL/nxS8d2vXn+FK/TozoGALAWytiWRpzQdlcQgiHsyhuEdEHo1FbLFwa0oW+788r1jfTLzIS3/Hjyn3hSyVIJ2MH7WR8OxvOb+DVra9itph5pskzvNr2VbvveGyxWPhwdRxzdpxDpYKvIsIYEFZD6ViKsFgsfLwmjlnbz6FWwYxhbejZtAIXd0KIMvPLmV94a8dbAES2jOTFsBcVTlT2ZKK/SqxH7R78J/w/ACw4toBZR2YpG+ge/N/6k8y5vvTCp4+1qLTFDVg7j7/ZtzFPtK2J2QLjlvzJvvg0pWMJIezcpgubmLzTOvnrsMbDeKHlCwonUp4UOBXQow0e5bW21mUcov6MYsnxJQonur0lMReYusm6ztb7A5ryRLtghRMpT6VS8fGjzXkw1J98o5lR8/dxQp+ldCwhhJ2KSYjhta2vYbKY6F+vP6+1e83uW+7LgxQ4FdTwpsN5vsXzAEzZO4XNFzYrnOhmO06l8PbKWABe7tGA4eEhygayI1qNmmlPtaZ1LS8y84w8MzeGy1dzlY4lhLAzZ66e4V+b/0WBuYAHgh/gvY7voVbJoR2kwKnQXgp7iccbPo4FC29sf4MTaSeUjlTkVGIWLy7aj8ls4dFWNfjXgw2UjmR3XJ00zB3Rjvr+VdFn5vHM3Bgy8xx3CgAhRNm6mneVsRvHcs1wjdb+rfms22do1TI4upAUOBWYSqViUodJdAjoQK4xl/GbxpOam6p0LJKz8hk5fx9ZeUbah/jwyaDm0px6G15uTix8tj0BHi6cTrrGhGUHMZsr3bgAIcTfGEwGJmydwKVrl6hRtQb/1/3/cNY4Kx3LrkiBU8Hp1Dr+e/9/qeVeiyvZV3hlyysUmAoUy5NnMDF64R9cSs8lpJobM59ug7PWsebrKW9BXq7MfLoNTlo1G+KS+L8NJ5WOJIRQkMVi4eOYj9mn34eb1o2oB6LwcfFROpbdkQKnEvB09iTqwSiG7tRS96f9vL/75jlykqOjSY6aZrsQWXosmz9myrItHLx4FS83HXNHtMO7ipPtHrMCaRnsxSePNQcgatNp1hxJsC5IunlK0cKkQoiKJzlq2k0zDy8+vpgfTv7AoB1mpsd3oYG3nOK/FSlwKom6nnXpWbc3EdvNaBesYOGxhUXXFc6MjMaGb4csPaqtn/LH0Tg0ahXRQ1tT16+q7R6vAnqsdU2e61wHgFeXH+LcuTPWBTulwBGi4tKoiy2vsPvKbj7b9xmDdpiJ2G6mtnddhQPaL+mNVIm0njiFjfnpRCzZynLV5xz8sCU1fthVbNkHWzmVlEXhb4zXejWiYz1fmz1WRTaxTygnErPYfiqFD1YfY67SgYQQNnXj8grZhmwmBqzi0e1GIrab8R1n2+9tRycFTiXzwOSvWZQ9kCd+OYmh+5OkmLBdcZOlhyw9WXkGfly1holARI1Unm6QCVcOWpcoqMhLMNiANieJ6O5qXklOoFrWCdCB+cqhv5pi5W8qRIXjFxmJ2WImLWo6URrQmcBr7Iv4vSTFzZ3IUg0VbKmGe3Gt4BrnWrVDawKTVkWTI7G2mTdh8xTrKZTb6TYRuk8q+8etyORvKkSl9L8D/6P70zPQmQCdjsZHDisdSRElOX5LC04llDt7IVoTGDSgM1pY/58x9Hpvdtk/UNuRLM1sxrd7zhOmPc9Hmm+g31QIbGm9XloaSq7tSGjUB4A9uzZxX+x7vGkczTODBtCourv8TYWogHZc3kH619+gM4FFp0FlMJAcHS2np+5COhlXMoUdin3Hj+Pkig9Y1kVNrWU7OfzZO2X+WPtSnXhzj5qjljrcf38P64WBLSEozLrJwbjk3AOK/n4dOnYH4JAphOfWG8j0aSp/UyEqGH22nh0f/ouI7WaOPtqCJkdi8R0/rljHY3FrUuBUIjcWN36RkQxqMIi84f1Y1kWNbu4PXJz6ZZk9VmaegZeXHsRsgUGta/JQ4+pldt/CSoV1csTqHs5cTMtl0o9Hbhr+L4RwXEazkZ/fHsaAzTls6ulPvw+to1/9IiOlyLkHUuBUJiZzsQ7FKpWKyfdN5sDD9VjWRc3W85vL7AD5n5+PcvlqLrV83HhvwPWWhW4TpYWhLF3/m77yaFe0ahWrjySwJOai0qmEEGVkXuw8ErOu8NP9zvT/8LtiMxUXFjmYzAomtG/SybgSdjL+u2Opxxi6eihGi5GPO39Mv3r9/tH9/XroCuOW/IlaBd+/EE6b2jLDpq3N3HqGKb8dx1mrZvX4LtT3lzmGhHBkcalxPLX6KYwWIx91/oj+9forHckulOT4LS04gibVmvBCyxcA68rj+uzSTxx35Woub604AsDYBxpIcVNORnepS5cGvuQbzfz7+0MY5VedEA4r35TPpO2TMFqM9KjVg351/9mPzspKChwBwKjmo2jh24IsQxZv73gbs6XkB0iz2cKE5QfJzDPSMtiLcQ/Ut0FScStqtYpPB7XA3UXLwYtXmbntrNKRhBCl9L8D/+NMxhmquVRjcvhkWYy4lKTAEQBo1Vo+6vwRLhoX9ur3sjhucYnvY86Oc+w5m4abk4avIsLQ2XLpB3GTIC9X3u3XFICvNpzkuD5T4URCiJKKSYjh22PfAvB+p/fxdvFWOJHjKpcj0PTp0wkJCcHFxYUOHToQExNz233vv/9+VCrVTdvDDz9ctM+IESNuur53797l8VQqtBDPEF5t+yoAXx34irNX770V4GzyNb74/QQA7zzShDq+VWySUdzZoNY16NG4OgaThQnLDlFglFNVQjiKrIIs3tr5FgCDGgyia82uCidybDYvcJYtW8aECRN49913OXDgAC1btqRXr14kJSXdcv+ffvqJhISEoi02NhaNRsPjjz9ebL/evXsX22/JkiW2fiqVQkSjCDoFdSLflM9bO97CZDbd9TZms4WJPx4h32imSwNfhrQLLoek4lZUKhUfP9YMLzcdxxIymbb5tNKRhBD36Is/vkCfradm1Zq83u51peM4PJsXOF9++SWjR49m5MiRNGnShBkzZuDm5sbcubdeJtDHx4eAgICibf369bi5ud1U4Dg7Oxfbz9tbmvHKgkql4r2O7+Gucyc2NZbFx+9+qmrR3vPExFtPTX38aHM5X6wwf3cXPhzYDIDpm09z5FKGwomEEHezN2EvP536CYAPO3+Im85N4USOz6YFTkFBAfv376dHjx5/PaBaTY8ePdi9e/c93cecOXMYMmQIVaoUP+WxZcsW/P39adSoES+++CKpqam3vY/8/HwyMzOLbeL2qlepzoS2EwCI+jOKy9cu33bfS+k5fPLbcQDe6B1KsI98KO3BIy2CeLhFICazhdd+OIRBRlUJYbfyjHm8t/s9wNqK3qZ6G4UTVQw2LXBSUlIwmUxUr158Ftvq1auj1999KHJMTAyxsbE899xzxS7v3bs3CxcuZOPGjXz66ads3bqVPn36YDLd+nTKlClT8PT0LNqCg+UUyt081uAx2lZvS64xlw92f3DLCQAtFgtvroglu8BEuxBvnr6vtgJJxe28378p3m46juuzmLPjnNJxhBC38fWhr7mYdRF/N39ebv2y0nEqDLse5jJnzhyaN29O+/bti10+ZMgQ+vfvT/PmzRk4cCCrVq1i3759bNmy5Zb3M2nSJDIyMoq2ixdltte7UavUvBv+Lk5qJ3Ze2cmqs6tu2ufHA5fZdjIZJ62aTwa1QK2WU1P2pFpVZ97s2xiwjqq6kJqjcCIhxN/Fpcax4OgCAN7u8DZVnWSSzrJi0wLH19cXjUZDYmJiscsTExMJCLjzlP3Z2dksXbqUUaNG3fVx6tati6+vL6dP37pDpbOzMx4eHsU2cXchniG8GPYiAJ/u+5TU3L9OAyZn5fPBqmMAvNKjIfX85ENpjwa3qUl43WrkGcy8tVLWqhLCnhjNRt7d9S4mi4leIb3oXqu70pEqFJsWOE5OTrRp04aNGzcWXWY2m9m4cSPh4eF3vO33339Pfn4+w4YNu+vjXLp0idTUVAIDA/9xZlHcM02foZF3IzLyM/hs32dFl09ZE0dGroFmNTwY3aWOggnFnVhHVTXHSatm+6kUfjl0RelIQojrvjv2HXFpcXg4eTCx/USl41Q4Nj9FNWHCBGbNmsWCBQuIi4vjxRdfJDs7m5EjRwIwfPhwJk2adNPt5syZw8CBA6lWrVqxy69du8Zrr73Gnj17iI+PZ+PGjQwYMID69evTq1cvWz+dSken1vF+XBMG77Sw5twadpz6lUs/vcP2P2NRqWDKtX2ky2q2dq2ObxXGdbfOKv3+r8fISLoAm6dAVumX5BBClExy1LRiK39fvnaZ6QenAzDldGsss5cqFa3CsnmBExERwRdffMHkyZMJCwvj4MGDrF27tqjj8YULF0hISCh2mxMnTrBjx45bnp7SaDQcPnyY/v3707BhQ0aNGkWbNm3Yvn07zs7ON+0v/jk/9wCe2GZi0A4zH//5P/wPT8VfdZUpWTFoF8wCmbHY7j3frR4N/KuSml3A/HV7YesnUuAIUZ40alKmRhUVOZ/GfEqeKY/xhwLxW7RBvkdtQFYTl/449+Ry1FdkTp/Jsi5qajTJxLjrIe4/shvf8ePwi4xUOp64B/vi03h8xm6aqs6x2vktGLMVgsKUjiVEpZEcHU3K1CiyR/RnZOAaHt8Jj28zyvdoCZTk+K0tp0zCkWXpqTHofk5cPkDEyn0YdlVFZ9qN78jH8RvY0doS4H7nTuNCYVl62jnpmdAsh8tx8QCYrxz6qwnXPUBeQyFszC8y0jo7/LRoFmlAZ0KKGxuSAkfc3R/zYOsndHeBWE0gOpMKk9qCX+7/4Jv/QbeJ0P3mflTCjlx/DccD6KwXqVeN/+t6eQ2FKBc/d3Ei/GtrcYNOJ8WNDclJP3F3bUeyr+dKvjo0EK1JhUEDGrOK/eYI62mOtiOVTijupu1I62s1Zis7G08G4D3VC2QO3yCvoRDl5PK1yyRFT0dnAotWAwZDsY7HomxJgSPuqsDVn03T1tA7LoYLD/Rg7fM5LOuixm35dvQ/bZdTG47APcDa3yYojA6dHgAgJi+YTw+5WC+X11AIm9vwn+cZvNXAjr7BND5yBN/x44p1PBZlSwoccVcb3/yY/gdW8WPLh+nyxggi0zPY+oA3y7qoSZ8WLR9OB6O9YcbpxTEXiL0si3EKYWv7P5lI+1Vn+L6rlu7vRKNSqfCLjJQix4akD464o5Rr+ew7k8K20F60eu1fuPnooOsbvOpfi0kFn6BVaxmWl4Wf0kHFvXMPgG4TCbsUytGj+fznl6N8/0K4rAIvhI0YzAZ2XtxGWhc1VUc/Q33v+kXXFfXBkQVxy5wUOOKO/vv7SZY0eIjmNTz5qHVNUKug+yQetlhYdn4tyzoeJK9eFh8qHVTcO/cA6D6JsRm5/HRyK3+cT2flwcs82qqm0smEqJCWn1jOrPZZ+Lj4srrlCzddLx2NbUNOUYnbOnYlk2X7LgAwuV+TYotpqlQqXmv3GgC/nPmFY6nHFMkoSi/Q05WxD1h/SX7y23FyCowKJxKi4snIzyD6oPX009hWY2UxzXIkBY64JYvFwvurjmK2wCMtAmkX4nPTPi38WtC3Tl8sWPh83+eykKMDGtW5DjW9XUnMzGf29nNKxxGiwplxaAaZBZnU96rPo/UfVTpOpSIFjrildUf17DmbhrNWzcQ+obfd7+XWL+OsceaPxD/YdGFTOSYUZcFFp+GN3tbXd8bWMyRl5imcSIiKIz4jnqXHrWtMvdbuNbRq6RVSnqTAETfJN5r4aE0cAGO61qWmt9tt9w2sGsgzTZ8B4L/7/0uBqaBcMoqy80iLQFrV8iKnwMSX608qHUeICuO/+/+L0WKka82udAzqqHScSkcKHHGThbvOczEtl+oezrzQrd5d9x/VbBS+rr5czLrIkuNLyiGhKEsqlYq3H24MwPI/LnJcn6lwIiEc396EvWy5uAWNSsOrbV5VOk6lJAWOKCYjx8C0zacBeLVnI6o4371J1U3nxvhW1mn/Zx6aSXpeuk0zirLXprYPfZsHYLbAR6vjlI4jhEMzmU18vu9zAJ5o9AR1veoqnKhykgJHFBO95TQZuQYaVXdnUOt7Hzbcv15/Qn1CyTJkMfPwTBsmFLbyRu9QdBoV20+lsPVkstJxhHBYv579lRPpJ3B3cieypQwBV4oUOKLI5au5zNsVD8AbfRqhUd/7xG8atYYJbSYAsOzEMi5lXbJFRGFDtatV4ZnwEAA+Xh2HySyj4oQoqXxTPtMPTgdgdPPReLl4KRuoEpMCRxT58veTFBjNdKjjQ/dG/iW+fXhQOOGB4RjNxqIPuHAs4x5ogJebjhOJWfyw/6LScYRwOEuPL0Wfrae6W3WeDH1S6TiVmhQ4AoC4hEx++tPa6jKpb+NST9v/cpuXAVh9djUn0k6UVTxRTjzddIztbp3876sNp8gzmBROJITjyCzIZNaRWQC8FPYSLloXhRNVblLgCAA+XXsciwUebh5IWLBXqe+nSbUm9AnpgwULXx34qszyifIz7L7aBHq6kJCRx3d7zisdRwiHMS92Hhn5GdTzrEe/ev2UjlPpSYEj2HU6hS0nktGqVbzWq9E/vr+xrcaiVWnZcXkH+/T7yiChKE8uOg2v9GgIwPTNp8nMMyicSAj7l5STxHfHvgNgfOvxMqmfHZACp5KzWCx8svY4AEM71CLEt8o/vs9aHrUY1HAQAP+3//9kCQcH9FjrGtTzq0J6joHZ284qHUcIu/f1oa/JM+UR5hdG9+DuSscRSIFT6a07msjhSxm4OWkY92CDMrvfF1q+gKvWlSMpR9h4YWOZ3a8oH1qNmn/3tLbmzd5xjuSsfIUTCWG/zmWcY8WpFYC1H2Jp+zCKsiUFTiVmMlv4cr21I/CznergW9W5zO7b19WX4U2GA/C/A//DaJaVqh1N72YBtKjpSU6BienXJ38UQtws6s8oTBYT3Wp2o031NkrHEddJgVNZZek5texN0hMv4u6iZXSXsp9p89GtBQzd40R8Zjyrzq4qdl1ydDTJUdPK/DFF2VGpVEULcS7ae57LF8/B5imQpVc4mRDKSY6aRnJ0dNG/41LjWH9+PSpUjD1YXb7X7IgUOJWUISOB0BPR+Kuu8nzXuni66cr8MZycXBiwOYdBO8zMODQDg9naWTU5OpqUqVGgkbefvetU35fO9X0xmCws3bgPtn4iBY6o3DRqUqZGFRU5hXN+vXG0LpZZi+V7zY5IN+9KalNcIr0AL1cdIzvVsclj+EVGYjQbiZj2NXCRlc1Xcv+GZFKmRuE7fhx+kTKFuSN4rVcjdpxOYcvJJF51UjqNEMoq/N5KmRpFYnYiW/23MninhdbbTsj3mp2RAqcyydJDlp4Ck5kDe7fQC3ihYRZVUmOt17sHWLcyFDh2PMdSjxGxZCuGXZNJMSFfAo4kS09LjZ5R9TK4Fh9vvSzh0F/X2+A9I4S9u7HIWaQBnXyv2SWVpRKO4c3MzMTT05OMjAw8PDyUjlN+Nk+xnmK4nW4TofukMn/YfFM+J1qEoTOBWauhaWxsmT+GsBGF3jNC2Lv9ifvRPTAMnQnQ6Wh85LDSkSqFkhy/5WRhZdJ2JLnPbmKo5nPeMIy2XtZvKozZat3ajrTJw2bOnIPOBAYNqI0mEqZNtcnjCBtoO7Lo/fGd36sAfOf/qs3fM0LYM4vFwv5PJqIzgUmrBoOhWMdjYR+kwKlM3AP4Nt6Lndk1SHW3jo4hsCUEhVk3G5xqKOxQ7DP2JV5/vzbLuqi5Ou1r+TJwFO4BRe+Pzl17ALDkog/HqGuz94wQ9u7gZ2/R5bdLfN9Vi+/ejfiOH1es47GwD1LgVCI5BUZmbrXOShvRLtjmj1dY3PiOH0f1sWN5vsXz/NhZzc/d3eTLwAGFVHMr+v+vNpxUMIkQykmeHo3LvBUs66JGN+opAqoE4BcZKUWOHZJOxpXId3vOk5pdQO1qbnRv0wjUE237C9xkLtbxrl+9fsyJncOi+87T0i8cX5PZdo8typ57AGltXyF5pxdHjyVy5FIGzWt6Kp1KiHJ14eo5fu2iZnU3N9Y0f67o8qIOxvK9ZjfKpQVn+vTphISE4OLiQocOHYiJibntvvPnz0elUhXbXFyKLzlvsViYPHkygYGBuLq60qNHD06dOmXrp+HQcgqMfHN9TaGXutdH6xVk7RxqwwLHb9zYYqMKtGotL7R8AYCPmpzE7QXpv+FQ3APweeQ/dGzZFJBWHFH5WCwWvgy7wo+d1UQ0isDPza/Y9X6RkfiNG6tQOvF3Ni9wli1bxoQJE3j33Xc5cOAALVu2pFevXiQlJd32Nh4eHiQkJBRt58+fL3b9Z599xtSpU5kxYwZ79+6lSpUq9OrVi7y8PFs/HYe1aM8FUq4VUMvHjUdb1VAsR5+QPoR4hJCRn8HS40sVyyFKb/yDDVCrYOPxJA5evKp0HCHKze4ruzmcchhnjTMjmo1QOo64C5sXOF9++SWjR49m5MiRNGnShBkzZuDm5sbcuXNvexuVSkVAQEDRVr169aLrLBYLX331FW+//TYDBgygRYsWLFy4kCtXrrBy5UpbPx2HlFtgYua2MwCM7V4fnYIzbWrUGka3sI7gWnB0ATmGHMWyiNKp61eVgdeL5KiN0nIqKgeLxcLXh74G4PGGj+Pr6qtwInE3Nj3SFRQUsH//fnr06PHXA6rV9OjRg927d9/2dteuXaN27doEBwczYMAAjh49WnTduXPn0Ov1xe7T09OTDh063PY+8/PzyczMLLZVJov2niflWgHBPq482lq51ptCfev0Jdg9mPT8dJafWK50HFEKY7vXL2rFib2coXQcIWxur34vB5MP4qR24tlmzyodR9wDmxY4KSkpmEymYi0wANWrV0evv/V6No0aNWLu3Ln8/PPPfPfdd5jNZjp27MilS5cAim5XkvucMmUKnp6eRVtwsO1HENmL3AITM66PnFK69aaQVq1ldHNrK868o/PINeYqnEiUVF2/qjzSIgiAaZtkpXFR8c04NAOAwQ0H39T3Rtgn5Y92fxMeHs7w4cMJCwujW7du/PTTT/j5+TFz5sxS3+ekSZPIyMgo2i5evFiGie2btfUmn5rerjzWuqbScYo8Uu8RalStQVpeGj+c/EHpOKIUxj5QH5UK1h7Vc0KfpXQcIWxmn36fdeZitY6RzWRwhKOwaYHj6+uLRqMhMTGx2OWJiYkEBNzb6B2dTkerVq04fdr6K7HwdiW5T2dnZzw8PIptlUGewcTMbfbVelNIp9bx3PUhlnNj55JnlA7ijqZhdXf6NLN+5qI2SV8cUXHNPGT9gf1Yg8cIqCKTWzoKmx7xnJycaNOmDRs3biy6zGw2s3HjRsLDw+/pPkwmE0eOHCEwMBCAOnXqEBAQUOw+MzMz2bt37z3fZ2Wx/I+LJGflU8PLvlpvCg2oN4DAKoGk5Kbw46kflY4jSmFs9wYArD6SwOmkawqnEaLsHUg8wF79XrRqLaOajVI6jigBm/+knzBhArNmzWLBggXExcXx4osvkp2dzciR1ma+4cOHM2nSX4v1vf/++/z++++cPXuWAwcOMGzYMM6fP89zz1l/7atUKl5++WU+/PBDfvnlF44cOcLw4cMJCgpi4MCBtn46DsNgMhfNWvx8t7o4ae2n9aaQTnNDK86RuRSYChROJEqqSZAHPRpXx2KB6M3SF0dUPIV9bx6t/yiBVQMVTiNKwuYzGUdERJCcnMzkyZPR6/WEhYWxdu3aok7CFy5cQK3+6+Cbnp7O6NGj0ev1eHt706ZNG3bt2kWTJk2K9nn99dfJzs5mzJgxXL16lc6dO7N27dqbJgSszFb8eZnLV3Pxc3fmibb226l6YP2BzDw8k6ScJH4+8zOPN3xc6UiihMY/WJ8NcYn8fOgK/+rRgNrVqigdSYgycST5CLsTdqNVaRnVXFpvHI3KYrFYlA5R3kqy3LojMpkt9PhyK+dSsnmzbyhjutZTOtIdfXfsOz7d9yk1q9bk10d/RauWFUQczYh5MWw5kUxE22A+HdxC6ThClIl/bfoXmy5uYkC9AXzY+UOl4whKdvy2v/MW4h9bcySBcynZeLnpGNqhttJx7uqxBo/h7ezNpWuXWBe/Tuk4ohTGPWDti/PjgUtcuSrD/oXjO51+mk0XN6FCxbPNZd4bRyQFTgVjsViYfr0vxMiOdajibP+tIW46N4Y1GQbA7COzMVtksTpH06a2N+F1q2E0W5i1/azScYT4x+bEzgGgR+0e1PWsq3AaURpS4FQwG+OSOK7PoqqzlhEdQ5SOc8+GhA6hiq4Kp6+eZuvFrUrHEaUQ2d16KnRJzAVSr+UrnEaI0ruYdZHfzv0GIH1vHJgUOBWIxWJh2vXWm2H31cbTTadwonvn4eTBkEZDAJh1ZBaVsGuYw+tc35fmNTzJM5iZvyte6ThClNr82PmYLCY6BXWiabWmSscRpSQFTgWy60wqBy9exVmrZlTnOkrHKbFhTYbhrHHmSMoRYvQxSscRJaRSqYi839qKs2BXPFl5BoUTCVFyyTnJrDi9AqBoGgvhmKTAqUCit1hbb55sXws/d2eF05Scr6svjzV4DLC24gjH06tpAHX9qpCZZ2Tx3gtKxxGixBYeW4jBbKCVfyvaVG+jdBzxD0iBU0EcvnSVnadT0ahVPNfF8VpvCo1oOgKtSsvehL0cTj6sdBxRQmq1ihe6WVtxZu84R57BpHAiIe5dRn4Gy04sA6ytNyqVSuFE4p+QAqeCmLH1DAADWgZR09tN4TSlF1Q1iIfrPgxYR1QJxzMwrAaBni4kZ+Xzw/5LSscR4p4tjltMrjGXRt6N6FKji9JxxD8kBU4FcC4lm99i9QA8382+J/W7F4VzTmy+uJmzV2XIsaNx0qoZ3cU6rHbmtjMYTTLsX9i/HEMOi48vBqwjp6T1xvFJgePosvScWf4WvpZ0Hgj1p1GAu9KJ/jH3hWv49xHrBIXzj84vdl1ydDTJUdMUSCVKYkj7YLzddFxMy2XDvsOweQpk6ZWOJUSR5KhpJEdHF/175emVXM2/So2qNWi95ox8z1QAUuA4uDT9BXokzcNfdZUX73f81hsANGrarzrDoB1mfj37K4nZiYC1uEmZGgUaedvaOzcnLSM7WfuCrdr5J2z9RAocYV80alKmRpEcHY3RbGThsYUAvB5bh7So6fI9UwHY/zS34o5+PnSFkUDjQA/ahfgoHadM+EVGAhAxNQooYFHjRTwd40LK1Ch8x48rul7Yt+Hhtfl6yxnOpWSD4w3qExVc4fdIytQoTqWd4nLwZYbtcSZw8xb5nqkgpMBxRFl6yNJzrcBI/JFdoIJn62bAlYPW690DrJsD84uMJD4jnogFv2LYNYsUE/Kl40iy9Hhl6Xm5WQ5nD8dbL0s49Nf1FeA9KhyfX2QkWICoKBZpQGcyyvdMBSKriTviauKbp1ib/G+n20ToPqn88tiI2WLmaLNmaE0WzFoNTWNjlY4k7lUleY8Kx7fz8k7cez6HzgTodDQ+ItNT2DNZTbyiazuS/Gc3M0z7OW8YRlsv6zcVxmy1bm1HKpuvjKR+PQOtyYJBA2qjCf20KKUjiXvVdmTR+3FJwL8BWFz93xXuPSocX9x/30dnApNWDQZDsY7HwrFJgeOI3ANYmejLjms10Ls1tF4W2BKCwqxbBWj6L+xQ7DP2JSb8pwbLuqhJnxYtXz6Owj2g6P3YvmN3AJZc9OaiS8MK8x4Vju/oF/+h05oLfN9VS7U9G/AdP66o47FwfNIHxwGZzRa+2WadH2ZAWA3Yp3CgMlZY3BSeCx9+1IPPcz7Hy9mLXlOtrThyjtxx1POtCoDZArO3n+W9Ac0UTiSE9XtGPXsZy7qoKXi6H4FVA+GGjscg3zOOTlpwHNDmE0mcSc7G3VlLzw4trP0ZKtIvYpO5WEe/QQ0H4eHkwZx2mWQOfxhk4jjH4h7AhebjSbJ4seyPi6RlFyidSAgyctJZ3lXDj53VjGg2ouhyv8hIfMePk++ZCkAKHAdU2HrzVIdaVPUNtnbWrEAFjt+4scV+OVXRVSGiUQQA01sl4TdurFLRRGm4BxD82PtUr1GbPIOZhbvjlU4kBMu7qPihk4rONTrT0Lthsev8IiPle6YCkALHwRy6eJW959LQqlWM6BSidJxy82Tok+jUOv5M+pODSQeVjiNKSKVS8XxX60SUC3efJ7dAFuEUyrmad5WVp1cC8EzTZ5QNI2xGChwH8812a+tN/5ZBBHq6Kpym/Pi5+RUtwlk446hwLH2aBVDT25W07AJ+PCCLcArlLD+5nFxjLqE+oXQI6KB0HGEjUuA4kAupOfx2JAGA0V3rKpym/D3TxPpLa8P5DVzMvKhwGlFSWo2aZ68v3zB3xznM5ko3BZewA/mmfBbHWRfVfKbpM7KoZgUmBY4DmbvzHGYLdGngS+NAB5yg8B+q712fzjU6Y8HCt3HfKh1HlMIT7YJxd9FyNiWbjceTlI4jKqE1Z9eQmpdKdbfq9ArppXQcYUNS4DiIqzkFLNtnbbUYUwlbbwoVni9feXolV/OuKhtGlFhVZy1PdagFwKzrneWFKC9mi5n5R+cDMKzxMHRqnbKBhE1JgeMgvttznlyDicaBHnSu76t0HMV0COhAqE8oucZclp9crnQcUQojOoagVauIiU/j0MWrSscRlciOyzs4m3GWKroqDGo4SOk4wsakwHEA+UYTC3afB2B0lzqV+pyxSqUqasVZHLeYfFO+wolESQV6utKvZRAAs7ZLK44oPwuOLgBgcIPBuDu5K5xG2JoUOA7g10MJJGflU93DmUdaBCkdR3G9QnpR3a06qXmprDm7Ruk4ohSe62LtbPxbrJ5L6TkKpxGVwbHUY8ToY9CqtAxrMkzpOKIcSIFj5ywWC7Ov/8p9pmMITlp5yXRqHcMaW7+gFhxdgMUio3EcTdMgTzrVr4bJbGHeznil44hKoHB6iZ4hPQmoUnEmRhW3J0dLO7frTCrH9Vm46jQ81b6W0nHsxqCGg3DTunEm4wy7ruxSOo4ohee6WDvLL9t3kcw8g8JpREWWmJ3IunPrABjedLjCaUR5kQLHzs3ZcQ6Ax9vWxMvNSeE09sPdyZ3HGjwGwLfHZMi4I7q/oR8N/KtyLd/I0pgLSscRFdiS40swWoy0qd6GptWaKh1HlBMpcOzY6aRrbDqehEpF0QRp4i9PNX4KtUrNzis7OZ1+Wuk4ooRUKlVRX5z5O+MxyuKGwgZyDDl8f/J7AIY3kdabyqRcCpzp06cTEhKCi4sLHTp0ICYm5rb7zpo1iy5duuDt7Y23tzc9evS4af8RI0agUqmKbb1797b10yh3c3daW28ealydEN8qCqexP8HuwTwQ/AAA38V9p3AaURoDwmpQrYoTVzLy+C1Wr3QcUQH9cuYXMgsyCXYPplvNbkrHEeXI5gXOsmXLmDBhAu+++y4HDhygZcuW9OrVi6SkW89iumXLFp588kk2b97M7t27CQ4OpmfPnly+fLnYfr179yYhIaFoW7Jkia2fSrlKyy7gx/3W9XoK+yqImz3d5GkAfj3zK6m5qQqnESXlotMw9L7awF+nY4UoK2aLuejHz9DGQ9GoNQonEuXJ5gXOl19+yejRoxk5ciRNmjRhxowZuLm5MXfu3Fvuv2jRIiIjIwkLCyM0NJTZs2djNpvZuHFjsf2cnZ0JCAgo2ry9vW39VMrVoj3nyTeaaVHTk3YhFeu5laVW/q1oVq0ZBeYCmfjPQT19X22cNGoOXrzK/vPpSscRFci2S9s4n3ked507j9Z/VOk4opzZtMApKChg//799OjR468HVKvp0aMHu3fvvqf7yMnJwWAw4OPjU+zyLVu24O/vT6NGjXjxxRdJTb39r/f8/HwyMzOLbfbsxon9RnWu3BP73Y1KpSpqxVl6fKlM/OeA/Nyd6R9mnd9prrTiiDJUODR8cMPBuOncFE4jyptNC5yUlBRMJhPVq1cvdnn16tXR6+/tfPsbb7xBUFBQsSKpd+/eLFy4kI0bN/Lpp5+ydetW+vTpg8lkuuV9TJkyBU9Pz6ItODi49E+qHPx6KIGUa/kEerrQt3mg0nHs3kMhD1HdrTppeWky8Z+DKuxE/1tsgkz8J8pEXGoc+/T70Kg0PNX4KaXjCAXY9SiqTz75hKVLl7JixQpcXFyKLh8yZAj9+/enefPmDBw4kFWrVrFv3z62bNlyy/uZNGkSGRkZRdvFixfL6RmUnMViKfoVOzw8BJ3Grl8iu6BT64q+wL6N+1Ym/nNATYI86FivGmYLLLzeeinEP1E4fUTP2jKxX2Vl06Onr68vGo2GxMTEYpcnJiYSEHDnN9wXX3zBJ598wu+//06LFi3uuG/dunXx9fXl9OlbDxV2dnbGw8Oj2Gav9p5L41hCJq46DU+2t++WJnsyqMEgXLWunEo/xZ6EPUrHEaVQOGR8ScwFsvONCqcRjiw5J5nf4n8D/hqIICofmxY4Tk5OtGnTplgH4cIOw+Hh4be93WeffcYHH3zA2rVradu27V0f59KlS6SmphIY6Pincwpbbwa1qSET+5WAp7MnA+sPBGBR3CJlw4hSub+hP3X9qpCVZ+T7P+y3lVXYv6UnlmI0GwnzC6O5X3Ol4wiF2Pz8x4QJE5g1axYLFiwgLi6OF198kezsbEaOHAnA8OHDmTRpUtH+n376Ke+88w5z584lJCQEvV6PXq/n2rVrAFy7do3XXnuNPXv2EB8fz8aNGxkwYAD169enV69etn46NnU+NZv1cdbWrhEdZWK/khraeCgAWy9t5XymnOZwNGq1ipHX++LM2xWPySynGkXJ5Zvy+f6EdWI/ab2p3Gxe4ERERPDFF18wefJkwsLCOHjwIGvXri3qeHzhwgUSEhKK9v/6668pKChg8ODBBAYGFm1ffPEFABqNhsOHD9O/f38aNmzIqFGjaNOmDdu3b8fZ2dnWT8em5u+Kx2KB+xv5Ud+/qtJxHE5tj9pFE3lJK45jGtS6Bp6uOs6n5rAxLvHuNxDib9acXUN6fjqBVQJ5oNYDSscRClJZKmGPzMzMTDw9PcnIyLCb/jjXUi6yMOo/zMvvzn+f7UXXhn5KR3I4yVHTuJhzmWcCVuGqdWXD4xvwcLK+vsnR0WAy4zdurMIpxd188ttxZmw9Q5/a8HXoYWg7Etylk6i4teSoaaBR4xcZicViYdCvgziVfooJbSbwyLZc+dxXMCU5fssQHTuxIeYIkaofaFOtgC4NfJWO45g0alznrWT0H17kGnNZcWoFYC1uUqZGgYxIcwjDw2ujUau4cOEcbP0EsmQJB3EHGjUpU6NIjo4mRh/DqfRTuGpdeWjTVfncV3JapQMIMJkt/Hr4MgOBAS2DZGK/UvKLjATgoalRpOWpWVxlMb23ZJEWNR3f8eOKrhf2LcjLld7NAog/clbpKMIBFH6uU6ZGEXe2LjSH12PrkLXiG/ncV3JS4CgpSw9ZevaeTcU36wTo4EGvBLhy0Hq9e4A0zZeQX2QkRrORiGlf89iuC6SZpLhxKNc/Ey81usaCo/EAXIvfT1GPNPlMiFvwi4wkIz+DDjMXsug30JkOy+deSB8cRfvgbJ5ibYK/nW4Tofuk218vbutos6aojWaMGhXNjx5TOo64V/KZEKX0Scwn9B25AJ0JVDodoUcOKx1J2ID0wXEUbUdy5rHVPJz/EZOMo62X9ZsKY7Zat7Yjlc3noJKjo1EbzRg0oDVZOPbFe0pHEveq7cii9/+BMOvr9pHmRQyjtshnQtzWtYJrmOYuRWcCi06LxWCwDiwQlZoUOEpyD2DGCXeOWurgWff6hIaBLSEozLpJU3yJFXYo9h0/jkVf92dZFzWq2Uvly85RuAcUvf+bt7EO+d+VU5M1qf7ymRC3tefjV3lsSz6/P1SNxoetp6cKOx6Lykv64Cgo9Vo+Px+6AkD/ljXggsKBHNyNxY1fZCRPp8TyZOc1qFVqHp8aBSDn5B2ITvNXZ/u5O87RXzrgi1tImj6dGku3sayLmiZjx6NSqYp1PAb53FdWUuAoaEnMBQqMZlrW9KRxg3rW/gXyC7X0TOZiHQub+TajpV9Lvu90iLbV78PXZFY4oCgR9wBywv/N1W0+XL6UwYELV2lT21vpVMLOnE8/y+ouatY/4MUb9foVXV5U1MjnvtKSAkchBpOZb/dYlxMY2akOKo9A6Tz5D91qMq+hjYdyKPkQnzU7x/rB3yiQSpSaewBuvd6hY+Yhvt9/ibk7z0mBI24ys30Ge4PVjGxoXXD3RtJyU7lJHxyFrDmSQGJmPn7uzvRt7viLhNqrHrV74O/qT2peKuvOr1M6jiiFwvWp1sbqScjIVTiNsCen00+zN2EvapWaIY2GKB1H2BkpcBQyb2c8AMM61MZJKy+DrejUOiJCIwBYdGwRlXBWBIfXJMiD9nV8MJktfLdHFlEVf1l03Lrm3IO1HiSoapDCaYS9kSOrAv68kM7Bi1dx0qh5qkMtpeNUeIMbDsZJ7URsaiyHU2RuDEf0bKcQABbvvUCewaRsGGEXMvIzWHVmFQBPhT6lcBphj6TAUcD8XfEA9GsZhJ+7Y6+A7gh8XHzoW7cvYG3FEY6nR+Pq1PByJT3HwC/XRx6Kyu3HUz+SZ8oj1CeUNtXbKB1H2CEpcMpZYmYeqw8nADDy+q9SYXuFv/DWn19PYnaiwmlESWk1ap4Orw1YT+/KqcbKzWg2svT4UsD62ZbpA8StSIFTzhbtOY/RbKFdiDfNangqHafSaFytMa39W2O0GFl2YpnScUQpDGkXjItOTVxCJjHn0pSOIxS0+eJmErIT8Hb2LmqdFeLvpMApR/lGE4v2WmfzKxwZIsrPsCbDAPjh5A/km/IVTiNKysvNiUdb1QT+Os0rKqdFcdZTzYMbDsZZI6f5xa1JgVOOVh1KIDW7gEBPF3o2qa50nEqne3B3AqsEkp6fzpqza5SOI0phRMcQANYd1XP5qgwZr4yOpx1nf+J+tCotEY0ilI4j7JgUOOXEYrEU/eocdl9ttBr505c3rVrLkFDrXBlLji+RfhwOqFGAO53qV8NsgYW745WOIxSwOG4xYJ3jqnoV+aEobk+OsuXkwIWrHLmcgZNWzZPtZWi4Uh6r/xjOGmfi0uL4M+lPpeOIUhjR0Xp6d2nMRXILZMh4ZZKel87qs6sB6yzlQtyJFDjlpLD1ZmBYED5VnJQNU4l5uXjxSN1HgL/O4wvH8kCoP7V83MjINbDy4GWl44hy9OOpHykwF9CkWhNa+rVUOo6wc1LglAN9Rh6/HbEODX/meh8CoZwnQ58EYOOFjeiz9QqnESWlUasYfn3I+IJdMmS8sjCYDUVDw4c2HipDw8VdSYFTDhbttQ4Nbx/iQ9MgGRqutEY+jWgX0A6TxcTyE8uVjiNK4fG2wbjqNBzXZ7HnrAwZrww2XdhEYk4iPi4+9A7prXQc4QCkwLGxPIOJxdeHho+Qif3sRuHEf9+f/J48Y57CaURJebrqeKx1DQDm7zqncBpRHgo7Fw9uOBgnjZzmF3cnBY6NrTosQ8Pt0f3B9xNYJZCr+Vf57dxvSscRpVA4ZHz9sUQupecoG0bYVFxqHAeSDqBVaXmi4RNKxxEOQgocG7IODbf+unw6XIaG2xMZMu74GlT/a8j4t7LKeIW2+Li19eah2g/J0HBxz+SIa0P7z6cTezkTJ62aIe1kaLi9GdRgEC4aFxky7sAKh4wv2ydDxiuqtLy0ook5n2osq4aLeycFjg3J0HD75unsycN1HwZkyLijeiDUn2AfV67mGPhZhoxXSD+elKHhonSkwLERfUYea2OtQ5BlaLj9kiHjjk2jVjH8vhDA+oNCTjVWLAazoWhxXFk1XJSUFDg2IkPDHUMjn0a0rd5Whow7sCduGDK+V1YZr1BuHBrep04fpeMIByMFjg3kG00sibEODZfWG/tXOOW7rDLumDzddDxaOGR8Z7yyYUSZkqHh4p+QAscGVh9OIOXa9aHhTaXHv727P/h+AqoEkJ6fLkPGHVThkPHfj8kq4xXF8bTjMjRc/CPlUuBMnz6dkJAQXFxc6NChAzExMXfc//vvvyc0NBQXFxeaN2/OmjVril1vsViYPHkygYGBuLq60qNHD06dOmXLp3DPLJkJ5K//CD/SGXZfbXQyNNzupU+fwb+PWKf+Xxy3uFg/juToaJKjpikVTdyjhtXd6VjPOmT8p637YfMUyJI+VY4kOWoaydHRRf++cdVw9YIf5XPoaLL0in8ObX70XbZsGRMmTODdd9/lwIEDtGzZkl69epGUlHTL/Xft2sWTTz7JqFGj+PPPPxk4cCADBw4kNja2aJ/PPvuMqVOnMmPGDPbu3UuVKlXo1asXeXnKz0h7/PRpnsxdTA1tJkPaBSsdR9wLjZpay3byxC4VcWlxHEo+BFiLm5SpUSBFqkMobMXZeTAWtn4iBY6j0ahJmRpFcnQ06XnprDln/WH7dIyLfA4dUZZe8c+hzd8xX375JaNHj2bkyJE0adKEGTNm4Obmxty5c2+5///+9z969+7Na6+9RuPGjfnggw9o3bo106ZZq3eLxcJXX33F22+/zYABA2jRogULFy7kypUrrFy50tZP565WHb4CQLeGvlSr6qxwGnEv/CIj8R0/jsFbDQzaYWZR3KKi4sZ3/Dj8IiOVjijuwYONq1PT25WsPKPSUUQpFH4OU6ZGsXfKv8k35fPCfh90c36Qz6EoFa0t77ygoID9+/czadKkosvUajU9evRg9+7dt7zN7t27mTBhQrHLevXqVVS8nDt3Dr1eT48ePYqu9/T0pEOHDuzevZshQ4bcdJ/5+fnk5//VeTQzM/OfPK2bZekhS09adgHpp/eBFp6okQZXDlqvdw+wbsJu+UVGkpqbQsSsJRh2rSLFhHypOpIsPZosPa80zSFmdzwAloRDFA0qls+gQ/CLjMRsMUPUdBZpQGdKks+hI7l+LDyflsPWresZDpBw6K/ry/lzaNMCJyUlBZPJRPXqxTvaVq9enePHj9/yNnq9/pb76/X6ousLL7vdPn83ZcoU3nvvvVI9h3vyxzzY+gk+wMfX/6I1tr8B269f320idJ90u1sLOxH66mSOzF2KzmTBrFXLl6ojuf4ZHAQM0lkvUv06/q/r5TPoMI48Eop/NOhMgE4nn0NHcv1zWBusxQ2Agp9DmxY49mLSpEnFWoUyMzMJDi7D/jFtR0KjPiRk5HFg7xYejp8C/aZC4PVZN+WXo0NIjo5Ga7Jg0IDOaEY/LYqAseOUjiXuxfXPIMCPq1cz6PJnLPL/N0MH9rNeL59Bh3H2q0+pYQKzVo3aYCA5OlqKHEfRdiRZtR9ixLwY6pvP8qlulqLHQpsWOL6+vmg0GhITE4tdnpiYSEDArZ9oQEDAHfcv/G9iYiKBgYHF9gkLC7vlfTo7O+PsbMP+MNeb3QKD4GFPF/hmivUFDbp1HmF/Cvvc+Ix7iaH+K+n8ewIR06LRqDXy5eoIbmj6bn1fNvz4Gcsu+9DdrRFBXq4KhxP36vh/36fLb5dY3lXD8/+3Ac2Cn6wdjEE+h47APYClf+aw31CbQF8XuIaix0KbdjJ2cnKiTZs2bNy4segys9nMxo0bCQ8Pv+VtwsPDi+0PsH79+qL969SpQ0BAQLF9MjMz2bt3723vU4g7ubFDcfWXxjIkdAg/dlazuVdA0agO4TjqVKsCgMlsYdFeWWXcUSRHR2OZtYRlXdRkPNWTgCoBxToey+fQ/pnMFhbuiQegX8sgZcNQDqOoJkyYwKxZs1iwYAFxcXG8+OKLZGdnM3LkSACGDx9erBPyv/71L9auXct///tfjh8/zn/+8x/++OMPxo4dC4BKpeLll1/mww8/5JdffuHIkSMMHz6coKAgBg4caOunc3fuAdbzjNIk7jhM5mIdGQc1GIST2omvW6dgHPU4mMwKBxQl4h7A6cYvkWTxYknMRfIMssq4I8gryOHHbk782FldNLs4/DW6Sj6H9m/T8SQupuXi6aqja5vmih8Lbd4HJyIiguTkZCZPnoxerycsLIy1a9cWdRK+cOECavVfdVbHjh1ZvHgxb7/9Nm+++SYNGjRg5cqVNGvWrGif119/nezsbMaMGcPVq1fp3Lkza9euxcXFxdZP5+7cA6Qzo4PxGze22L+9XbzpW7cvK0+v5NsOeXzWdextbinsknsAIYM/xOncFi5fzeXXQ1d4vK3MSWXvNvSoxjJvM6E+obT2b13sOjk95RgW7IoHYEj7YFx9aih+LFRZKuHyu5mZmXh6epKRkYGHh4fScYQdikuN44lVT6BVaVk3eB3+bv5KRxIl9PWWM3y69jhNgzxYNa6zrERtx0xmE31/6suV7Cu83/F9Hm3wqNKRRAmdSsziof/bhloF217vTk1vN5s8TkmO3zI1pBC30LhaY1r7t8ZoMfL9ye+VjiNKYUi7YJy1ao5eyWT/+XSl44g72HJpC1eyr+Dl7CWrhjuoBdfnn3qoSXWbFTclJQWOELfxZOMnAfj+xPcUmAoUTiNKyruKEwPDrKuMz7vedC7sU+G6U4MaDMJFawddDUSJZOQa+HH/ZQCeub5kij2QAkeI23iw1oP4u/mTmpfKuvh1SscRpVD4Zbs2Vk9Chqwybo9OpZ8iRh+DWqUmolGE0nFEKXz/x0VyDSYaVXcnvG41peMUkQJHiNvQqXVFX7hLji9ROI0ojSZBHrSv42MdMr7ngtJxxC0UfrYerPUggVUD77K3sDcms4Vv91inY3imY4hd9XWTAkeIOxjUYBA6tY4jKUc4nHxY6TiiFEZeb8VZHHNBhozbmYz8DFadXQXAk6FPKpxGlMaWE0mcT83Bw0XLwFbKz31zIylwhLiDaq7Vijo9Lj6+WOE0ojQealKdIE8X0rILWHU4Qek44gYrT68k15hLQ++GtK3eVuk4ohTmX+/f9mT7Wrg52dfqT1LgCHEXTzV+CoB18etIyU1ROI0oKa1GzbDw2gDM33WOSjgzhl0ymU1Fp6eeCn3Krk5tiHtzKjGL7adSUKtg2H21lY5zEylwhLiLptWaEuYXhtFsZPmJ5UrHEaUwpF0tnLVqYi9ncuCCDBm3B1svbeXytct4OnvSt25fpeOIUigcGt6jcXWCfexjaPiNpMAR4h4UTh2//MRyGTLugHyqODEgzNo/YN7OeGXDCKD40HBXrSyI6mhuHBo+olOIsmFuQwocIe7Bg7UfxN9Vhow7ssIh47/JkHHFnUo/xV79XtQqNUMaDVE6jigFex0afiMpcIS4Bzq1johQ65DxRXGLpB+HA2oa5ClDxu1EYYd9GRrumExmCwt3W4eGj+hkX0PDbyQFjhD3aHDDwTipnTiaepTDKTJk3BHJkHHlZeRnsOqMdWj4jauGC8ex+XgSF9Jy8HTVFc0Wbo+kwBHiHvm4+BQNGV8Ut0jhNKI0HmpSnRperqRlF/DLoStKx6mUfjr1E3mmvFuuGi4cw/wbVw130igb5g6kwBGiBAqHjK+PX09STpLCaURJaTVqni4cMr4zXk41ljOj2ShDwx3cqcQsdpy2Dg1/2g6Hht9IChwhSqBJtSZFq4zLkHHHNKRdMC46NccSMtkXL0PGy9PWi1tJyE7A29lbhoY7qMLWG3taNfx2pMARooQKW3G+PymrjDsiLzcnHm11fZXxnecUTlO5LDpuPbU7uOFgnDXOCqcRJZWRY+CnA9eHhneso3Cau5MCR4gSeqDWA1R3q05aXhq/nftN6TiiFAqHjK87qufyVRkyXh5OpJ1gn34fGpWGJxo9oXQcUQpL910g12AiNMCd++r6KB3nrqTAEaKEdGodQ0Ktc3fIkHHHFBrgQcd61TBb4Nvrw12FbRV2zO9RuwcBVQIUTiNKymgyFw0Nf7ZTHYfoPyUFjhClMLiBtYk9Li2OA0kHlI4jSmHE9VacpfsukFsgQ8ZtKS0vjdVnVwMwrPEwhdOI0tgQl8jlq7l4u+noH2Zfq4bfjhQ4QpSCl4sXj9R9BJAh447qwcbVqentytUcAysPXlY6ToX2w8kfKDAX0LRaU1r6tVQ6jiiFudeXOHmqQy1cdPY7NPxGUuAIUUqFnY03XtjIlWsyp4qj0ahVPBMeAlg7G8upRtswmA0sO74MsE7s5winNkRxR69kEHMuDa1axdP3hSgd555JgSNEKTX0bkiHgA6YLWaWHl+qdBxRCk+0C8bNScPJxGvsOpOqdJwKaX38epJyk/B19aV3SG+l44hSmH+99aZP80ACPF2UDVMCUuAIUUrJUdMYs98bgB9O/UCOIeev66KjSY6aplQ0cY88XXUMblMTgB+3/AGbp0CWXuFUji05ahrJ0dFF/y48hftEoye4OnOWfC4cSZaenHUfsOvQUeCvfmuOQgocIUpLo8Z94SpGxlQlqyCLVWet6+skR0eTMjUKNPLxcgSFX9onz56GrZ9IgfNPadSkTI0iOTqaw8mHOZxyGJ1aR98t2fK5cDRZetx2f4GXKY2WNT1pXctL6UQlolU6gBCOyi8yEoA+U6PILFCzyHMR3TekkBIVhe/4cUXXC/tW168q3Rv5kXRSJv0rC4Xv+5SpURyJ/x2awuuxIeT8PEc+Fw7GYLKgu/7/Ix1kaPiNpMAR4h/wi4ykwFRAxPSZPLbrJCmmk/Il7kiy9JClZ1yTbJadjgcg9+IBXAuvdw+wbqJE/CIjyS7IpvWMuSxaDTpTnHwuHMX1zwRA7P5ttALC3S7xsG8SXEl2qM+EylIJhw5kZmbi6elJRkYGHh4eSscRFUBss6ZojGZMWhXNYo8pHUfcq81TrKelbqfbROg+qfzyVCBTD0zl/qe/RmcClU5H6JHDSkcS98LOPxMlOX7LyVAh/qHk6Gg0RjMGDWiMFk59+ZHSkcS9ajsSxmyFMVvZ2+w/AHzqFIlp9Bbr5W1HKhrPUeUZ88iZtQCdCSw6DRaDoVjHY2HHrn8mjvX7lTcMowG41vPLos+JI30m5BSVEP9AYYdi3/HjeL9RHNWWbiLim+9IdvGW5nhHcENze8v2ZoiFbVk1aHU1kJ5NHaMZ3h7t/fjfDNicw+oHPXg5aifpM76xdjAG+VzYu+ufiembDxBvDgGgakgbCApTNFZpSIEjRCndWNz4RUYyLGEvz3XeglatZZB8mTscF+1fDdrzdsZLgVNKydOj8V+8kWVd1NSJjESr1hbreAzyubB3l9Jz+C02gcZKB/mHpMARorRM5mIdJ9sHtKehd0OWdTxJu4BO+JrMCgcUJeIeQFaHV0nd7s3Rs6kcu5JJkyDpo1dSFzPO80sXNb/dX5UNDR4ruryoqJHPhd1buPs8ZguE1KkDDSc6TKfiv7NpH5y0tDSGDh2Kh4cHXl5ejBo1imvXrt1x/3HjxtGoUSNcXV2pVasW48ePJyMjo9h+KpXqpm3pUplJVpQvv3Fji/0SValURQsJft4sHq+XnlcqmigN9wDc+0ymbTPr79a5O2XYeGnMbp/Fj53VDKw/EHcn92LX+UVG4jdurELJxL3IzjeyJOYCAI91bWvtUCwFzs2GDh3K0aNHWb9+PatWrWLbtm2MGTPmtvtfuXKFK1eu8MUXXxAbG8v8+fNZu3Yto0aNumnfefPmkZCQULQNHDjQhs9EiHvTt25ffFx8SMxJZOP5jUrHEaUwqnMdAH45eIWkrDyF0ziWsxln2X55OypUDG08VOk4ohR+PHCJrDwjdXyr0L2Rv9Jx/hGbFThxcXGsXbuW2bNn06FDBzp37kxUVBRLly7lypVbL0zYrFkzfvzxR/r160e9evV44IEH+Oijj/j1118xGo3F9vXy8iIgIKBoc3FxnPUxRMXlrHEmolEEAN/GfatwGlEarWp507qWFwUmM9/tuaB0HIeyOG4xAN2Cu1HLo5bCaURJmc0W5l1fd2pkpxDUasea2O/vbFbg7N69Gy8vL9q2bVt0WY8ePVCr1ezdu/ee76dwrLtWW7y70EsvvYSvry/t27dn7ty5d1wJOD8/n8zMzGKbELbyRKMn0Kl1HE4+zKHkQ0rHEaUwqnNdABbtOU+ewaRwGseQkZ/BL2d+AWB4k+EKpxGlseVkEudSsnF30TKodU2l4/xjNitw9Ho9/v7Fm7e0Wi0+Pj7o9fe21ktKSgoffPDBTae13n//fZYvX8769esZNGgQkZGRREVF3fZ+pkyZgqenZ9EWHBxc8ickxD3ydfWlb52+AHx37DuF04jS6NW0OjW8XEnNLuDng5eVjuMQfjj5A7nGXEJ9Qmlbve3dbyDszpwd1n5nT7avRRVnxx+DVOICZ+LEibfs5Hvjdvz48X8cLDMzk4cffpgmTZrwn//8p9h177zzDp06daJVq1a88cYbvP7663z++ee3va9JkyaRkZFRtF28ePEf5xPiTp5u8jQA68+vJ+FagsJpRElpNeqiRTjn7Dh3xxZiAQazgcXHraenhjUe5nBrFgk4diWTnadT0ahVDA+vrXScMlHiAufVV18lLi7ujlvdunUJCAggKSmp2G2NRiNpaWkEBNy5R3ZWVha9e/fG3d2dFStWoNPp7rh/hw4duHTpEvn5+be83tnZGQ8Pj2KbELbUyKcR7QPaY7KYWHJ8idJxRCk80S4YNycNJxOvseN0itJx7NqG8xtIykmimks1+tTpo3QcUQqFrTd9mgVQ09tN4TRlo8RtUH5+fvj5+d11v/DwcK5evcr+/ftp06YNAJs2bcJsNtOhQ4fb3i4zM5NevXrh7OzML7/8ck+dhw8ePIi3tzfOzs73/kSEsLFhjYcRo4/hh5M/8ELLF3DTVYwvjcrC01XHE22Dmb8rnjk7ztGlwd2/9yoji8XCgqMLAIgIjcBJ46RwIlFSSZl5/HLIeir2uS51FU5TdmzWB6dx48b07t2b0aNHExMTw86dOxk7dixDhgwhKCgIgMuXLxMaGkpMTAxgLW569uxJdnY2c+bMITMzE71ej16vx2SydvT79ddfmT17NrGxsZw+fZqvv/6ajz/+mHHjxtnqqQhRKt2Cu1HbozZZhixWnF6hdBxRCiM7haBSwZYTyZxOylI6jl06kHSAo6lHi40gFI5l4e7zGEwW2tb2JizYS+k4Zcam8+AsWrSI0NBQHnzwQfr27Uvnzp355ptviq43GAycOHGCnJwcAA4cOMDevXs5cuQI9evXJzAwsGgr7Dej0+mYPn064eHhhIWFMXPmTL788kveffddWz4VIUpMrVLzdGNrX5xvj32LySyjcRxN7WpV6NG4OgBzrw+fFcUtPLoQgH71+uHj4qNwGlFSuQUmvtt7HoDnutRROE3ZUlkqYe+5kiy3LsQ/kWvM5aEfHiIjP4Mv7/+Sh2o/pHQkUUJ7z6YS8c0enLVqdk18gGpV5VR4ofOZ5+m3oh8WLPw88Gfqelac0xuVxXd7zvP2yliCfVzZ8u/uaOx87puSHL9t2oIjRGXnqnXliYZPAH/90hWOpX0dH1rU9CTfKBP//d13x77DgoWuNbtKceOAzGYLc693Lh7ZsY7dFzclJQWOEDb2VOOn0Kl1HEw+KBP/OSCVSlXU8XLh7niZ+O+6jPwMfj7zMyAT+zmqzSeSOJuSjbuzlifaVbz54aTAEcLGbpz4T1pxHFPfZgFFE/+t+FMm/gP4/uT3RRP7tQ9or3QcUQqzt1+f2K9DLapWgIn9/k4KHCHKwfCm1l+4Gy5s4FLWJYXTiJLSatSM7BQCwOztZzGbK13XxWIMJkPRulPDmwyXif0cUOzlDHaftU7s98z1SS0rGilwhCgHDb0bEh4YjtliZlHcIqXjiFKIaBeMu7OWM8nZbDmZdPcbVGC/xf9Gcm4y/q7+9A7prXQcUQqzt58FoG/zQGp4uSqcxjakwBGinDzT9BkAfjr1E5kFsuCro3F30fFkB+sK2d9sO6twGuXcOLHfk42fRKe580zzwv5cvprLr4etS8iMqUAT+/2dFDhClJOOQR2p71WfHGMOP5z8Qek4ohRGdAxBq1ax52wasZczlI6jiN0JuzmZfhJXrSuPN3xc6TiiFObtOIfJbCG8bjWa1/RUOo7NSIEjRDlRqVRFrTiLji3CYDIonEiUVJCXKw+3CARg1vbK2YozP3Y+AI81eAxP54p7cKyoMnINLImxTncwplvFbb0BKXCEKFcP13kYf1d/knKTWH1utdJxRCmMvt6kv+pwApev5iqcpnwdTzvO7oTdaFQanm7ytNJxRCksiblAdoGJBv5Vub9hxV5fTQocIcqRTqNjaJOhACw4uoBKOJG4w2tWw5PwutUw3TBJWmUx/+h8AHrW7kmNqjWUDSNKrMBoZt5O63t2dNe6FX70mxQ4QpSzxxs+ThVdFU5fPc32y9uVjiNK4fnrTftLYi6QkVM5TjUmXEtg7bm1AIxoNkLZMKJUfjl0hcTMfPzdnRkQFqR0HJuTAkeIcubu5M7gBoOBv34RC8fSraEfoQHu5NywUGFF923ct5gsJjoEdKBJtSZKxxElZLFYmHV99N+ITiE4azUKJ7I9KXCEUMCg7UYe3wn79PuITYktdl1ydDTJUdMUSibuhUqlYkxXayvOLzv+xLjxI8jSK5yqbCVHTSM5OhqwLstQOPJvRLMR8h51NFl6zv/4DmmJF6jipGFoh9pKJyoXUuAIoYCqLh48vs3IoB1m5sXOK7o8OTqalKlRoJGPpr3r1zKIIE8XtDmJaLd/VuEKHDRqUqZGkRwdXbQsQwPvBjRaeVjeo44mS09IbBT+qqtEtKuFp2vlmLuo4i0+IYQD8IuMJDU3hYhZS1iuWsfFNi/j8u2vpEyNwnf8OPwiI5WOKO5Cp1HzbOc6rFgTB4DZYqlQvxgL34MpU6NIi60KHWDC4ZqkfCfvUUdzKimLBoBGreLZziFKxyk3UuAIoZDQVycz98punlgdT0Z4b64ZzXLgcBRZesjS81QtE5ecrXOKHDuwg2aFo1LcA6ybg/OLjCQu9Rj9Fm2k91bQmdbLe9RRXH+PAuzdtZkGwFPB6dTMPQm5VJj36J2oLJVwnGpmZiaenp5kZGTg4eGhdBxRie1N2ItrjxHoTIBOR+Mjh5WOJO7F5imw9ZPbX99tInSfVH55bMRsMTNg5QA+evs0OhOodDpC5T3qGCroe7Qkx29pwRFCQXV/2k+KCQwa0BkMJEdHy69jR9B2JDTqA0DmuT/wWP8qbxhG88xj/WkS6FFhfhlvurCJNmvOFhXgFnmPOo7r79GoTae4FLeXT3WzoN9UCGxpvb6CvEfvRAocIRSSHB1NSlQUGcP7MrrG7zy5W8ujU6MA5ABi725o3i/8DRlrDuHLWFdmtwlTLFZZslgsnPzyIyK2mzk9uB39Plz4Vyd45D1q99wDSLJ4ERWXQANziPWywJYQFKZkqnIlBY4QCig8UPiOH0fDF54n5OeTLAmPp11AF5ADiENSqWBDXBIn9Fk0CnBXOs4/dvCzt+i+Ts+P3ZyIfPsroHjH4xv/LezT3J3xFJjMNA7ygDSl05S/itTpXwjHYfqrQ7FGreHZZs8C8EmTM3iPjQSTWeGA4p65B0C3iTRv1AiAr7ecVjhQ2fgzYT/LuqhRPxuBj4tP0eV+kZH4jh8n71E7l5lnYNEe6ySU/Tu1sva5qQSnpW4knYylk7GwAwWmAvr81IeknCT+E/4fBjUcpHQkUUKxlzN4JGoHGrWKLf++n2AfN6UjldrR1KMMWTUEjUrD6sdWy7pTDujrLWf4dO1xGvhXZd3LXVGrK8a6UyU5fksLjhB2wEnjxPAmwwGYd3QeJrNJ4USipJrV8KRrQz9MZgszt51ROs4/MufIHAD61OkjxY0DyjOYmHN9IdgXutWrMMVNSUmBI4SdGNxwMB5OHpzPPM/GCxuVjiNKIfL+egAs/+MSSVl5CqcpnfiMeDac3wBQdOpUOJYfD1wi5Vo+QZ4u9K8Ei2rejhQ4QtiJKroqPBn6JABzYudQCc8eO7wOdXxoXcuLAqO56Be0o5l/dD4WLNxf834aeDdQOo4oIaPJzIyt1hbE0V3roqvES2pU3mcuhB16qvFTuGhcOJZ6jN0Ju5WOI0pIpVIReX99ABbtuUBGrkHhRCWTmJ3Iz2d+BmBU81EKpxGl8cuhK1xMy6VaFSeGtKuldBxFSYEjhB3xcfEp6mA86/AshdOI0ngg1J9G1d25lm/k293xSscpkflH52M0G2lTvQ1h/mFKxxElZDZbiN5ibb0Z1aUOrk4ahRMpSwocIezMiKYj0Kq1/JH4B/sT9ysdR5SQWq3ixet9cebujCe3wDE6jKfmpvLDyR8AGNNijMJpRGmsO6rndNI1PFy0PH1fbaXjKE4KHCHsTECVAAbWHwhIK46jeqRFIME+rqRlF7A45oLSce7Jt8e+Jc+UR3Pf5oQHhisdR5SQxWJh2mbrHEwjOobg7qJTOJHypMARwg492+xZNCoNO6/sJDYlVuk4ooS0GjUvdrP2xZm59Qx5BvtuxcnIz2DJ8SWAtfVGpaqcw4od2ZaTyRy9kombk4aRneooHccuSIEjhB0Kdg/m4boPA/DN4W8UTiNKY1CbGgR6upCUlc/3f1xUOs4dLY5bTI4xh0bejehWs5vScUQJWSwWpm+ytt4M7VAL7ypOCieyDzYtcNLS0hg6dCgeHh54eXkxatQorl27dsfb3H///ahUqmLbCy+8UGyfCxcu8PDDD+Pm5oa/vz+vvfYaRqPRlk9FiHI3qvkoVKjYfHEzJ9JOKB1HlJCzVsML3ax9cb7ecoYCo30ubXCt4BrfxX0HwOgWo6X1xgHtPZfGH+fTcdKqGd2lrtJx7IZNC5yhQ4dy9OhR1q9fz6pVq9i2bRtjxty989ro0aNJSEgo2j777LOi60wmEw8//DAFBQXs2rWLBQsWMH/+fCZPnmzLpyJEuavrWZdeIb0AmH1ktsJpRGlEtAvG392ZKxl5/HTgktJxbmnZiWVkFmRSx7MOPWr1UDqOKIXp1/vePNG2Jv4eLgqnsR82K3Di4uJYu3Yts2fPpkOHDnTu3JmoqCiWLl3KlStX7nhbNzc3AgICirYb15v4/fffOXbsGN999x1hYWH06dOHDz74gOnTp1NQUGCrpyOEIp5r/hwA6+LXcTbjrMJpREm56DSM6Wr9RR295QxGO1ugMseQw8JjCwEY3Xw0GnXlHlbsiPafT2f7qRS0ahXPd62ndBy7YrMCZ/fu3Xh5edG2bduiy3r06IFarWbv3r13vO2iRYvw9fWlWbNmTJo0iZycnGL327x5c6pXr150Wa9evcjMzOTo0aO3vL/8/HwyMzOLbUI4gkY+jege3B0LlqL1gYRjGdqhNtWqOHEhLYefD975x115+/HUj6TlpVGjag361OmjdBxRCv/beAqAQa1rOvQCr7ZgswJHr9fj7+9f7DKtVouPjw96vf62t3vqqaf47rvv2Lx5M5MmTeLbb79l2LBhxe73xuIGKPr37e53ypQpeHp6Fm3BwcGlfVpClLvnWzwPwOqzq7mQ6RhDjsVfXJ00PHe9X8T0zacxme1jCY48Yx7zYucB1v5eWrVW4USipA5cSGfbyWQ0ahUvda+vdBy7U+ICZ+LEiTd1Av77dvz48VIHGjNmDL169aJ58+YMHTqUhQsXsmLFCs6cKf3qvJMmTSIjI6Nou3jRvkc0CHGjpr5N6VKjCyaLiZmHZyodR5TC0+G18XLTcTYlm9VHEpSOA8APJ38gOTeZwCqBDKw3UOk4ohT+t6Gw9aYGtapJ683flbjAefXVV4mLi7vjVrduXQICAkhKSip2W6PRSFpaGgEBAff8eB06dADg9GlrJ6qAgAASExOL7VP479vdr7OzMx4eHsU2IRzJiy1fBGDV2VWczzyvcBpRUlWdtYy6PjdJ1MZTirfi5BnzmBNrPeU5usVodBqZFM7R/Hkhna3XW2/GdpdFUW+lxAWOn58foaGhd9ycnJwIDw/n6tWr7N//11TzmzZtwmw2FxUt9+LgwYMABAYGAhAeHs6RI0eKFU/r16/Hw8ODJk2alPTpCOEQmvs1p2vNrpgtZpkXx0E90ykEDxctp5KuKd6Ks/zEclJyUwiqEiStNw6qsO/NY62k9eZ2bNYHp3HjxvTu3ZvRo0cTExPDzp07GTt2LEOGDCEoKAiAy5cvExoaSkxMDABnzpzhgw8+YP/+/cTHx/PLL78wfPhwunbtSosWLQDo2bMnTZo04emnn+bQoUOsW7eOt99+m5deeglnZ2dbPR0hFBfZMhKwtuLEZ8QrG0aUmIeLrmhE1VcbTirWipNrzGVu7FzAOmuxtN44noMXr7LlxPXWmwek783t2HQenEWLFhEaGsqDDz5I37596dy5M99889evT4PBwIkTJ4pGSTk5ObFhwwZ69uxJaGgor776KoMGDeLXX38tuo1Go2HVqlVoNBrCw8MZNmwYw4cP5/3337flUxFCcU19m9KtZjfMFrP0xXFQIzrVsfbFSc7ml0OXFcmw/MRyUvNSqVG1Bv3r91ckg/hn/rfhJACPtqpB7WpVFE5jv1QWi8U+uvSXo8zMTDw9PcnIyJD+OMKhHPtsMstP/ciKLlpWDlhJHc+/1pxJjo4Gkxm/cWMVTCju5ustZ/h07XFae+fxQ7sTqNs9C+733i+xpJKjpoFGjV9kJDmGHPr81Ie0vDTe6/geXdbr5T3jSLL06Dd9Tb/dDUhT+7BxQjdCfCtXgVOS47esRSWEA/GrGkDEdjOPbjcWa8VJjo4mZWoUaOQjbe+Gh1vnxcm/moB626eQdftpM8qERk3K1CiSo6NZfmI5aXlp1Kxak06/X5H3jKPJ0hPw51f4q64yICyo0hU3JSUTHwjhQPwiI0nJSSZi9lKWq1ZxtsUY3BetJWVqFL7jx+EXGal0RHEXVZy1vNCtHit/s64vZjBbsGUvmML3RMrUKBKPVIH7YNKx+qQtmi7vGQcTeyWTZoBWreLlBxsqHcfuSYEjhINp/O93WaDfxxOrzpDTqR/5RrMcqBxFlh6y9DwdYkbvegnM8OfeLbRXX1/g0j3AJqer/CIj2Z+4n/7LdtF3G2hNG+Q94yiuv2csWNixfQPNgGfqZFAr/yRcwWbvmYpA+uBIHxzhgE6knSC/y0B0JkCnpfGRI0pHEvdi8xTY+sntr+82EbpPKvOHzSzIpPePvZnxYTo6E6h0OkKPHC7zxxE2oNB7xl6V5PgtLThCOCCfpRtJMYFBAzqDkeToaPk17gjajoRG1jWfDJf+RLfmZd4wjKZr1wd5uHmgzX6Jz4+dT89NGUXFjcVgkPeMo2g7Ekuj3ryy/BDOybF8qpsF/aZCYEvr9dJ6c1tS4AjhYAo7FOuef5onqy1n4HYDEVOjAOSAZe9uOJ1Q2O8m1hzCpj90dO/eDDensv9KTslNIXPmHCK2m8kc/jAd3vzir07pyHvG7rkH8PsFWKm/Qhsn6zxKBLaEoDBFYzkCKXCEcCCFB6bC/hOP7jbwg+UHAqsG0lUOWA4p0NOFo1fzmbcz3iYLJm7/YDyDthawuVcAL076HCje8fjGfwv7YzZb+PJ367w3/VsGgZyNvmcyPlAIR2Iq3qH4+RbP46R2YlpYIjkjBoDJrHBAcc/cA6DbRAZ1awvAjK1nuJpTUKYPceXaFY4mH2FZFzWt3vgYlUpVdJ1fZCS+48fJe8bO/Xr4CicSs3B30fJolzbWPjdyWuqeSCdj6WQsHNzn+z5n4bGFNPZpzNJHlqJWye8WR2I2W+g7dTvH9Vk8360uk/o0LrP7nrxzMitOr6B9QHtm95xdrMAR9s9gMtPz/7ZxLiWbVx9qyLgHZVFNmehPiEpkVPNRuGndiEuLY8P5DUrHESWkVqt4vXcjAObvjEefkVcm93su4xw/n/kZgHGtxklx44CW7bvIuZRsqlVxYmTnOne/gShGChwhHJyPiw/Dmw4HIOrPKIxmo8KJREl1b+RPuxBv8o3molWi/6lpf07DbDFzf837CfMPK5P7FOUnO9/IVxus74XxDzagqrN0mS0pKXCEqACeafIMXs5exGfGs+L0CqXjiBJSqVS83jsUgOV/XORs8rV/dH9Hko/w+/nfUaFibCtZZ8oRzdp+lpRr+dSu5saT7WspHcchSYEjRAVQ1akqz7d4HoDpf04nx5CjcCJRUu1CfHgg1B+T2cJ/158s9f1YLBa++OMLAPrV60cjn0ZlFVGUk+SsfL7ZdhaA13o1wkkrh+rSkL+aEBVERKMIgt2DSc1LZf7R+UrHEaXwWq9GqFSw+nACBy9eLdV9bL64mQNJB3DWODOu1biyDSjKxdSNp8gpMNGypqd1AkhRKlLgCFFB6DQ6/tX6XwDMPzqf5JxkhROJkmoc6MFjrWoC8OGqY5R0kKvBbOD/9v8fAE83eZqAKjKc2NGcS8lmScwFACb1bSydw/8BKXCEqEB61u5JC78W5BpzmX5wutJxRCm81qsRLjo1f5xPZ22svkS3/enkT8RnxuPt7M2zzZ61UUJhS5+vO47RbOGBUH/uq1tN6TgOTQocISoQlUrFv9v+G4AVp1dw5uoZhROJkgrwdGFMF+uU/J+sPU6B8d4m4ss2ZBN9KBqAF1q+gLuTu80yCtv480I6a47oUavgjeudzkXpSYEjRAXTyr8VD9Z6ELPFXHS6QjiW57vVw7eqM+dTc/h2z/l7us282Hmk5aVR26M2jzd63MYJRVmzWCx8uDoOgEGta9IoQArUf0oKHCEqoH+1/hcalYatl7YSkxCjdBxRQlWctbzasyFg7XB6tyUcknKSWHhsIWB97XVq3R33F/bn18MJ7D+fjqtOw797yci3siAFjhAVUB3POgxuOBiAz//4HJPZpHAiUVJPtA2mUXV3MnINRG06fcd9/3fgf+QacwnzC6NHrR7llFCUldwCE5+ssbbeRN5fj+oeLgonqhikwBGigooMi8TdyZ3jacf56fRPSscRJaRRq3jzYeu6VAt3xxOfkn3L/Q4nH+aXM78A8Fq712TUjQP6ZttZrmTkUcPLldFd6yodp8KQAkeICsrHxYfIltZVx6MORJGRn6FwIlFS3Rr60bWhHwaThY+u/8K/kdli5pOYTwDoX68/LfxalHdE8Q8lZOQyY6t1MMCkvqG46DQKJ6o4pMARogKLCI2gnmc90vPTmXFohtJxRCm883BjtGoV648lsvVk8bmNfj3zK0dSjuCmdePl1i8rE1D8I5+tPUGuwUS7EG+Z1K+MSYEjRAWmU+t4vf3rACw5vkSGjTugBtXdeaZjCADv/XK0aNh4tiGbrw58BcDzLZ/Hz81PoYSitA5cSGfFn5dRqWDyI03l9GIZk+VJhajgOgZ15LVDtTibFc+nAZ8y86GZxb5Ik6OjwWTGb5wsymivRp5aD2cvMofuLNsUw9O6zcx0MZKSm8Kz+9zpm5EFzZROKe5Zlh7LvrlExTYH1AxuXZPmNT2VTlXhSAuOEJVAp+DORGw3E/T9TjZf3Fx0eXJ0NClTo0AjXwX2zNlZx+DDq3ny+Hp+3nGA8zu/4NtTPzJoh5neG9LRaGVYuEPJ0qPa9ilJCeep4qThNRkWbhPyrSZEJVDvlUmcGtyWiO1mDn76Fvmm/KLixnf8OPwiI5WOKO7ALzKSauPGMfz4Ojod2cvn1bwZsN1AxHYzvuPk9XM0mXmGov9/uUdD/GVYuE3IKSohKoke785kWlo3+m28yumWrVEbzVLcOIosPf6PdiRdf57e3/+C4aQOncmMZmhv/B7tCFl6cJeFNe1alt66Aes3rmcQ8KBXAiPqZsCVg9bXT17DMqWylHS52gogMzMTT09PMjIy8PDwUDqOEOVm7bm1BD3yCjoToNPS+MgRpSOJe7F5Cmz9hByVijPLA9GawKy20PSJBOv13SZC90nKZhR3dv01vC15De9JSY7fcopKiEqkzZqz6Exg0AAGI8nTo5WOJO5F25EwZivrr92P1gRGDajNKrZdtV5O25FKJxR303Ykxue2MN7jK94wjLZe1m+q9fWT19AmpMARopJIjo4mJSoKp+eH8+ykKizroiYlKso6ikrYN/cAji/5hYa/nmBZFzXpw9NY27g9fmvXcXbpNjm14QjcA/juvBe/JPkTr6tnvSywJQSFWTd5DcucTQuctLQ0hg4dioeHB15eXowaNYpr167ddv/4+HhUKtUtt++//75ov1tdv3TpUls+FSEc2o0diuu9MokxLcbwY2c1v3SvQspUKXLsXdL06VhmLWFZFzWZj3Wga24e+gceZGFoL/K/+Vpa4hxAUmYe//39JADPhIcoG6aSsGkn46FDh5KQkMD69esxGAyMHDmSMWPGsHjx4lvuHxwcTEJCQrHLvvnmGz7//HP69OlT7PJ58+bRu3fvon97eXmVeX4hKgxT8Q7FI5uOZPXZ1Xx331nqejXnfpNZ4YDiTo4lx7Kli5q13d35uc0EcGnACyEd6an3BaBfQgYyzZ99+2B1HFn5RlrW9KTXffXAaaK02tiYzQqcuLg41q5dy759+2jbti0AUVFR9O3bly+++IKgoKCbbqPRaAgIKP6Cr1ixgieeeIKqVasWu9zLy+umfYUQt/b3Sfx0Gh1v3/c2z657lvdD42jQ5005QNqplNwU3mx0iKw6aia2Gkd1/2bg34w6wIv3m5lqsrDB1ZkNuQY8XWU+HHu0/lgivx66gloFHw5sjsbTUzoUlwObnaLavXs3Xl5eRcUNQI8ePVCr1ezdu/ee7mP//v0cPHiQUaNG3XTdSy+9hK+vL+3bt2fu3LncaTBYfn4+mZmZxTYhKrt2Ae0YUG8AAO/tfo8CU4HCicStfBrzKVkFWTT2aUxEo4hi10XeX4+6vlVIzsrns7XHFUoo7iQj18BbK6yjFUd3rSszFpcjmxU4er0ef3//YpdptVp8fHzQ6/X3dB9z5syhcePGdOzYsdjl77//PsuXL2f9+vUMGjSIyMhIoqKibns/U6ZMwdPTs2gLDg4u+RMSogJ6te2r+Lj4cPrqaWYenql0HPE368+vZ238WjQqDe92fBetuniju4tOw0ePNgdg0d4L/BGfpkRMcQcfr44jKSufOr5VeKVHQ6XjVColLnAmTpx4247Ahdvx4//8l0Rubi6LFy++ZevNO++8Q6dOnWjVqhVvvPEGr7/+Op9//vlt72vSpElkZGQUbRcvXvzH+YSoCLxdvHn7vrcBmHNkDsdSjymcSBRKz0vnwz0fAvBss2dpWq3pLfcLr1eNJ9rWBOD1Hw6TW2Aqt4ziznacSmHZH9bjzaeDWuCi0yicqHIpcYHz6quvEhcXd8etbt26BAQEkJSUVOy2RqORtLS0e+o788MPP5CTk8Pw4cPvum+HDh24dOkS+fn5t7ze2dkZDw+PYpsQwuqh2g/RK6QXJouJt3e+jcFkuPuNhM1N2TuFtLw06nvV54WWL9xx37f6NqG6hzNnU7L5fN2Jckoo7iQ738jEnw4DMDy8Nu3r+CicqPIpcSdjPz8//Pzu3h0xPDycq1evsn//ftq0aQPApk2bMJvNdOjQ4a63nzNnDv3797+nxzp48CDe3t44Ozvf/QkIIW7yZoc3iUmI4VT6Kb458g0vhb2kdKRKbcP5DfwW/xsalYYPO32Ik8bpjvt7uun4ZFALRs7bx7xd5+jZtDr31a1WTmnFrXy+7gSX0nOp4eXK671DlY5TKdmsD07jxo3p3bs3o0ePJiYmhp07dzJ27FiGDBlSNILq8uXLhIaGEhMTU+y2p0+fZtu2bTz33HM33e+vv/7K7NmziY2N5fTp03z99dd8/PHHjBs3zlZPRYgKz8fFh7fuewuA2YdnE5cap3Ciyutq3lU+2PMBACObjaSp761PTf1d90b+DGkXjMUCr/1wiOx8oy1jijvYezaVBbvjAZjyWHOqOsuyj0qw6UR/ixYtIjQ0lAcffJC+ffvSuXNnvvnmm6LrDQYDJ06cICcnp9jt5s6dS82aNenZs+dN96nT6Zg+fTrh4eGEhYUxc+ZMvvzyS959911bPhUhKrxeIb14qPZDGC1GOVWloI9jPiYtL416nvV4seWLJbrtWw83poaXKxfTcvl4jRSpSsjMMzBh+SEsFniibU26NpQJGJQii21KfxwhiqTmpvLoz4+Snp/Os82e5ZU2rygdqVL57dxvvL7tddQqNd/1+Y7mfs1LfB+7zqTw1CzrVBwLn20vB9hy9vLSP1l58Aq1fNxY868u0npTxmSxTSFEqVRzrca74dbW0Hmx89iTsEfhRJXH5WuXeX/3+wA81/y5UhU3AB3r+TKiYwgAb/x4mIwcaYkrLz8fvMzKg1fQqFX8X0SYFDcKkwJHCFHMg7UfZHDDwViw8Ob2N0nPS1c6UoVnNBt5Y9sbXDNco6VfyxKfmvq7N3qHUse3CgkZebz+46E7ToQqysblq7m8vTIWgLHd69OmtrfCiYQUOEKIm7ze7nXqeNYhOTeZyTsnywHSxmYensmh5ENU1VXlky6f3DShX0m5OmmYOqQVOo2KdUcT+XbP+TJKKm7FZLYwYdlBsvKMhAV7Me6B+kpHEkiBI4S4BVetK591/YyIHVBt6SaWnVh20z7J0dEkR01TIJ3jSo6adtPK7fsT9/PN4W8YtMPMf0+3p6Z7zTJ5rOY1PZnYpzEAH66K4+iVDMjSw+Yp1v+Kf+763/O79XvZey4NNycNX0WEodXIodUeyKsghLilUJ9Q7qvRkYjtZk7938ecSj9VdF1ydDQpU6NAvshLRqMmZWpUUZGTkZ/BxO0TeXS7kYjtZhr4NirTh3u2UwgPhvpTYDIzbvGf5KZdhq2fSIFTVrL0sPUTfty2H4B3+zUhxLeKwqFEIekBJYS4rQffncG8rL4MXh3Pb5NHUuPL38meNZ+UqVH4jh+HX2Sk0hEdSuHfK2VqFBaLhY8an6TTuitEbDfj+dILZf73VKlUfP54S/r+bztnU7L5eksSE8r0ESq3tJwCfLCeohoYFsQTbWWdQ3siBY4Q4rZUKhX9P/yWubl96Lc+lbOt2qExmqW4+QduLHJGaUBnAvNzEQSN+5dNHs/HnMash7S8ueIciSfjQQckHPprB/cA6ybuTZYesvQYzRa+/3UVzwMPeiXwYkczqoRD8ve0IzIPjsyDI8RdHUw6iLr7k9aDsVZD09hYpSM5tF2Xd1G156jy+XtunmI9LXU73SZC90m2e/yKRv6eipJ5cIQQZarGD7vQmcCgAbXRxJ+fvql0JId1KesSWz8Yi84EJq0atdF0U8fjMtV2JIzZimn0Fub6WCdunKJ9kfSnN8CYrdbrxb1rO5JdPX7i4fyPeMMw2npZv6nWv6X8Pe2KFDhCiDsq7FDsO24cy2cOYlkXNS7zVnD2q0+VjuZwco25rHxrKAO35LKldyAND/2J7/hxxToelzn3AAgKQ1OjFY/3ewSAHdk1eX69kQL/FnI6pYTO5lXl+fVGjlrqUK9FJ+uFgS0hKMy6yd/TbkgfHCHEbRUVN9f73LxtzGN4+kmWcZSIGfPRa90IGCsL3d4Li8XCyreG8uDvSfzSvQrPfLQYJ41TsT45gE37Nrlfn1m3ipOGmPg03l91lA8Hlm7G5MooPbuAZ+fvIyvfSJva3ozs5Aqy5JfdkgJHCHF7puIdil20LnzV/SsisiOANBrEr+dJy0uoVdIYfDdzYudwJfU4J7tq6Pvu1wRU+euXflFRYzLbNoR7AHSbyDjPzgz//gLf7blAk0BPnupQy7aPWwHkG008/+1+4lNzqOHlyoxhbdCRbu1zI602dkk6GUsnYyFKLCYhhuc3PI/RbGRE0xG82vZVpSPZtVVnVzFpu7Xj6aT2k3iq8VMKJ4Lpm0/z+boT6DQqFjzbno71fJWOZLcsFguvLj/ET39ext1Zy4+RHWlY3V3pWJWSdDIWQthU+8D2vN/RujDk/KPzWRy3WOFE9mtvwl7e2fkOAM80ecYuihuAyPvr8UiLQAwmC2MW7if2cobSkexW1KbT/PTnZTRqFdHDWktx4yCkwBFClEq/ev0Y32o8AJ/EfMLGCxsVTmR/TqWf4uXNL2M0G+kV0osJbe1nmj2VSsUXj7fkvro+XMs3MmLePi6k5igdy+78fPAyX64/CcAHA5rRpYGfwonEvZICRwhRas81f65o5fE3tr3BoeRDd79RJZGYnciLG17kmuEarf1b81Hnj+yur5KLTsM3w9vSONCDlGv5PD13L8lZ+UrHshubjyfx7++t7+nRXepIXyUHY1+fNiGEQ1GpVLzV4S261uxKvimflza+xIm0E0rHUlxqbirPr3+exJxE6njWYeoDU3HWOCsd65Y8XHQsGNmOmt6unE/NYeT8GK7lG5WOpbidp1N4/rv9GEwWHmkRWLRwqXAcUuAIIf4RrVrL510/p4VvCzLyM3ju9+cqdZGTmpvKc78/x5mMM/i7+hP9YDSezp5Kx7ojfw8Xvh3VgWpVnIi9nMlzC/aRU1B5i5x98Wk8t+APCoxmejapzv9FhKFRq5SOJUpIChwhxD/mpnPj64e+plm1ZlzNv1ppi5y0vDSe+/05Tl89jb+rP3N7z6Wme02lY92TOr5VmDeyHVWcNOw5m8aIufsqZUvOwYtXGTlvH7kGE90a+hH1VCt0GjlUOiJ51YQQZcLDyYOZPWfStFpTHtqQyoq3nuJU+qmb9kuOjiY5apoCCctOctS0m2YeLixuWq46yTO7XZjTaw61PWorlLB0WtT04tvnOuDuoiUmPo2n5+wlI9dgXWBy8xTrfyui688v7uRJhs/Zy7V8I+F1qzHz6TY4azVKpxOlJAWOEKLMeDh5MPOhmVSr4s+AzTn89OaTxVpyCmdGxtF/EWvUxZZXSMlN4bnfn6PFryeI2G5mQMOBhHiGKJuxlFrX8mbxc/fh5abjzwtXGTZ7L1nJF60LTFbkAmfrJ7zz3QYy86yzFM9+pi0uOiluHJnMZCyEKFOezp4M++xnvmMA/dcl8sObEXR/J5oGPx8stuyDI7txeYX0vHTG197OfWsvErHdjHbMMBpMeEvhhP9M85qeLH7uPobN2cuRyxlMWpGEY7e53dnWU8l0A3INZjrVr8aMYW2o4iyHR0cnr6AQoswVFjnLNY/z2JqLGLaPIsVEhShuCvlFRnL52mWcv/mOzzSgM4Hu+aep/0rFWGm9iXsOKx6twpsrzlEl7STo4MrxvQQV7uAe4NhLFGTpIUvPzwevsGvnJrrp4Kla6TzeywmntKOO//yELNUgSzUIYTsFpgJOtmyFxmjGoIGt30UyNmwsKpXjj0hZfXY17+x8h/mf5KIzATodjY8cVjpW2dk8xXpa6na6TYTuk8ovTxkzb/oY9bZPb7+Dgz+/iqokx29pwRFC2EzGzNlojGbMWjU6o5nU6BlMfPoS74a/i5vOTel4pWIym/jmyDdEH4xm0A5zUXGDwUBydHSFaaGi7Uho1AeAnPMHcFv3Cm8YRnPUEsIz4SEMbtMGRy1TU67l8+6plsTnfwTAv5vn0v3kh9BvKgS2tO4krTcOz8F7+gkh7FVhh2Lf8eNoGnuU5KE9iNhuxvXbVUSsiuB42nGlI5ZYUk4Sz69/vqi4idhuptq4sTQ+chjf8eOKdTx2eO4BEBQGQWG41W4NQO2m4cSa6/DaThUvr9GTmWdQNmMp/BGfxsNTt7P6HJzV1mdMxKN0v/8h65WBLYuesxQ4jk9acIQQZe7G4qawRaPrO1EcdH6LiLk/AWd56tpTvNr2VZ4KfcohTlltu7SNt3e8TXp+OhG71Azabiz2/G7seHzjvyuSyPvrUbWOF+/9eoyfD17hj/h0/vtES+6rW03paHdlsViYs+McU347jslsoZ5fFWYMa0OD6u5wJVnpeMIGpMARQpQ9k/mWHYrDXv+Iiy7VqBu/AYP5Ip/EfMKehD281/E9fFx8FAp7Z/mmfP534H98e+xbAEJ9QnmiQQu8W1a76fkV/dtkLu+YtuUeYO2T4h7A8PAAGgd6MGH5QS6m5fLkrD2M6VKXCT0b2u2cMfEp2by9MpYdp1MA6N8yiCmPNf9rpNQNz09UHNLJWDoZC1HuLBYLi48v5r9//BeD2YC7kztjw8by4PoU1FrtLVs/kqOjwWTGb9zYMsuRHDUNNOpbP970aM6ln2Fy46NcvnYZgKGNh/JKm1fsdl2p8nQt38gHvx5j2R8XAQgNcOejR5vTprb3Xztl6eGPedb+POVRPPzt8fKNJr7ZepaozacpMJpx1qp5++HGDLuvtkO0GoqbleT4LX1whBDlTqVSMbTxUBb1XUQj70ZkFWQxJWYKy09/f8t+LDabIPBvE/YVOvnlR6RERbHm/FouX7uMv5s/U7tPZWL7iVLcXFfVWcung1vwzdNtqFbFieP6LAZ9vYvIRfuJT8m27nR9Ar1ymyDwhsfbczaVh6fu4L/rT1JgNNOlgS/rXu7K0+EhUtxUEnKKSgihmMbVGrPskWX8eOpHpv45lW/aXCU1V03E1CiScpJo+u//3LI/T1n5e7+ZguED2Pvxv2n800GWdVHzS1dnRjcdwXPNn3PYUV+21rNpAK1qefPFuhMs33+RNUf0rD+WyLD7avNKUwPl2UZuwYIKmPTTEZZcsra6+VZ14p1HmtC/ZZAUNpWMzVpwPvroIzp27IibmxteXl73dBuLxcLkyZMJDAzE1dWVHj16cOpU8bVs0tLSGDp0KB4eHnh5eTFq1CiuXbtmg2cghCgPGrWGJxo9waqBq4hoFMGKLlqWdVGjnr2MI02bkDI1imrjxt6xuLnV2lBF191l7SvfF1/EOOpxUqZGkdqhR1FxkzrkAX4e8DPjW4+X4uYu/Nyd+XRwC377Vxf611PT0HyWmF2b+Xz+cgAuHdsNVw5at3tpzSnJ2ldZesyX/2T3jo1MX/wTAOaEQ7TUxPNai1w2jQllQFgNKW4qIZu14BQUFPD4448THh7OnDlz7uk2n332GVOnTmXBggXUqVOHd955h169enHs2DFcXFwAGDp0KAkJCaxfvx6DwcDIkSMZM2YMixcvttVTEUKUAy8XL96+720eb/g48+rMw7DrZ3QmCwYNjAhcTf9DGrrV7EaoT+jNB6vrp5qg+OilG1t//u5i1kW2XdrGmrNrOOx/mEXXZyM2alT0fG8WHYM62vT5VkShAR5MrX8QLhefILDm/7d37zFRXXkcwL/zRgVBcBgYeYiKIioUoRActG4lttp1q9tVMTbB2m23FrZSdLea3YQ2bRxNthvFIJa6KyZbo40rrXajlkXEtUVR3Gm0Gp9UsLykCDNgizJz9w/qtFQcdR16rpfvJ5lk5s6duV9OJsxv7jn3nCOrgCM997+d8gcMmvlnz290u6tp3Ky7jt1xuST8t+46HPvXYXrD35EKIPX759bp3u+5cx5A6CogmBP2DUT9Psi4uLgYOTk5aGtr87ifJEkwm81YsWIFVq5cCQBob2+HyWRCcXExMjIycPbsWcTGxuL48eNISkoCAOzfvx+zZ8/G1atXYTabPR3CjYOMieTtdmHi0qqh7nZh51Q1/pnWc8I5eHAwpoVNg8VsweiA0QjzDYNOo7ujK+vHjwNf+R0abzSipr0GVQ1VqLhagcvtl93HW/CZCr85fAvQaYFb3YpaUuJn9/0SCBIkfHW6ElGfr8aful+GzdmzsnqzFIDhoZGwjA7ClDFBmBwxDP6DdL2L1nobUPQE8HJFz5w0ALq6nbjQ1IEzDXacutqO0jNNaLR/ByOuI1jVhiF6DV4Ybcesy2vunLCPV0cpxiM5k3FNTQ0aGxuRnp7u3ubv74+UlBRUVlYiIyMDlZWVCAgIcBc3AJCeng61Wo1jx45h3rx5fb53V1cXurq63I/tdnv//SFE9FB+WqjUb9yAhQWbEeUfhYKEZjTfaMau87uw6/wuAIBGpYHZ14zIsZFI+9U4TM7fiKZNBdB0u1D1y9H4aEQpaj/4G266bvY6jlalRYIpAYsqtQg7/J87CiNAmXPZ9LvvCwoVgCiogM+BPy5dgJ1XA7H75Ne41ujAtQY7zjbYseVIDQBgiF6DCUO/xdghnQgaokfYdxcwH8C23R/jgvo0rt+4iZOtBjS4AnodytegRVrsRMyeFIqp0cPhc+0UULTmhwn7aECTTYHT2NjT12oymXptN5lM7ucaGxsRHBzc63mtVovAwED3Pn2xWq146623vJyYiLytrwHF5t8vh06jQ3L+Rjw18lVcmjcZh+oO4YtrX+CK/QpudN9AnaMOdY46HJkAfPAvQPf92ld/mXQFaOt5b51ahwi/CMQGxWJa+DRMMU9B15Z/oGXHxgE3Yd/Pzd9Hh5enjcbL00bjmqMLRy9/g88vteCzi9+gtvUGOm86MaVtD3I6dvd6XWbLX93316t/jWKfRRgfMhTjQ4cidXRQT1Gjk+fcOyTeAxU4q1atwrp1HhYnA3D27FnExMQ8VChvW716NXJzc92P7XY7wsPDBSYioj7dZYLAH0+gZxlhgWWEBUBP13bLty34yv4VrtivIGB7KXTOw3BpNdB1O7HhqzQYfvs8RvqPRMjgEGjUvb8Mr93H8egh9DGBntHPgDnxZsyJ7xlScONmNxrbv0NLQxT+fW0RvunsgqnjHKaffxvHJr2JG4ET4WvQIiMyCsvN95i/hhP20Y88UIGzYsUKLFmyxOM+o0aN+r+ChIT0fCCbmpoQGhrq3t7U1ITHHnvMvU9zc3Ov13V3d6O1tdX9+r4YDAYYDJy7gkjuPE3i19eZFJVKBeNgI4yDjRi5+zhadhzu1dWE/I0YbpwE46sWrxyPHpBfyD1X5B6s12KU0RejjLEAYns21ocD599GSuovHqyr6T6ORwPHAxU4RqMRRqOxX4JERUUhJCQEZWVl7oLGbrfj2LFjWLZsGQAgNTUVbW1tqK6uRmJiIgDg4MGDcLlcSElJ6ZdcRCR/fXVtsauJaGDrtzE4tbW1aG1tRW1tLZxOJ2w2GwBgzJgx8PX1BQDExMTAarVi3rx5UKlUyMnJwTvvvIPo6Gj3ZeJmsxlz584FAIwfPx5PP/00XnrpJWzevBm3bt1CdnY2MjIy7vsKKiJSIHY1KQu7msgL+u0y8SVLlmDbtm13bC8vL8f06dN7Dq5SYevWre5uL0mSkJeXh6KiIrS1tSEtLQ2bNm3C2LFj3a9vbW1FdnY29u7dC7Vajeeeew75+fnuoul+8DJxIiKiR8+DfH9zsU0WOERERI8ELrZJREREAxoLHCIiIlIcFjhERESkOCxwiIiISHFY4BAREZHisMAhIiIixWGBQ0RERIrDAoeIiIgUhwUOERERKU6/rUUlZ7cnb7bb7YKTEBER0f26/b19P4swDMgCx+FwAADCw8MFJyEiIqIH5XA44O/v73GfAbkWlcvlQn19Pfz8/KBSqbz63na7HeHh4airq+M6Vz/BtvGM7eMZ28czts/dsW08e5TaR5IkOBwOmM1mqNWeR9kMyDM4arUaYWFh/XqMoUOHyv6DIgrbxjO2j2dsH8/YPnfHtvHsUWmfe525uY2DjImIiEhxWOAQERGR4rDA8TKDwYC8vDwYDAbRUWSHbeMZ28czto9nbJ+7Y9t4ptT2GZCDjImIiEjZeAaHiIiIFIcFDhERESkOCxwiIiJSHBY4REREpDgscLyooKAAI0eOhI+PD1JSUlBVVSU6kmwcPnwYc+bMgdlshkqlwkcffSQ6kmxYrVY8/vjj8PPzQ3BwMObOnYtz586JjiUbhYWFiIuLc09Clpqain379omOJUtr166FSqVCTk6O6Ciy8Oabb0KlUvW6xcTEiI4lK19//TWef/55BAUFYdCgQZg0aRJOnDghOpZXsMDxkp07dyI3Nxd5eXk4efIk4uPj8dRTT6G5uVl0NFno7OxEfHw8CgoKREeRnYqKCmRlZeHo0aMoLS3FrVu3MHPmTHR2doqOJgthYWFYu3YtqqurceLECTz55JN49tln8eWXX4qOJivHjx/He++9h7i4ONFRZGXChAloaGhw344cOSI6kmxcv34dFosFOp0O+/btw5kzZ/Duu+9i2LBhoqN5h0RekZycLGVlZbkfO51OyWw2S1arVWAqeQIglZSUiI4hW83NzRIAqaKiQnQU2Ro2bJi0ZcsW0TFkw+FwSNHR0VJpaan0xBNPSMuXLxcdSRby8vKk+Ph40TFk64033pDS0tJEx+g3PIPjBTdv3kR1dTXS09Pd29RqNdLT01FZWSkwGT2K2tvbAQCBgYGCk8iP0+nEjh070NnZidTUVNFxZCMrKwvPPPNMr/9B1OPChQswm80YNWoUFi9ejNraWtGRZGPPnj1ISkrC/PnzERwcjISEBLz//vuiY3kNCxwvaGlpgdPphMlk6rXdZDKhsbFRUCp6FLlcLuTk5MBisWDixImi48jGqVOn4OvrC4PBgFdeeQUlJSWIjY0VHUsWduzYgZMnT8JqtYqOIjspKSkoLi7G/v37UVhYiJqaGkydOhUOh0N0NFm4fPkyCgsLER0djQMHDmDZsmV47bXXsG3bNtHRvGJAriZOJFdZWVk4ffo0xwn8xLhx42Cz2dDe3o5du3YhMzMTFRUVA77Iqaurw/Lly1FaWgofHx/RcWRn1qxZ7vtxcXFISUlBZGQkPvzwQ7z44osCk8mDy+VCUlIS1qxZAwBISEjA6dOnsXnzZmRmZgpO9/B4BscLhg8fDo1Gg6ampl7bm5qaEBISIigVPWqys7PxySefoLy8HGFhYaLjyIper8eYMWOQmJgIq9WK+Ph4bNiwQXQs4aqrq9Hc3IzJkydDq9VCq9WioqIC+fn50Gq1cDqdoiPKSkBAAMaOHYuLFy+KjiILoaGhd/xIGD9+vGK68VjgeIFer0diYiLKysrc21wuF8rKyjhOgO5JkiRkZ2ejpKQEBw8eRFRUlOhIsudyudDV1SU6hnAzZszAqVOnYLPZ3LekpCQsXrwYNpsNGo1GdERZ6ejowKVLlxAaGio6iixYLJY7pqQ4f/48IiMjBSXyLnZReUlubi4yMzORlJSE5ORkrF+/Hp2dnXjhhRdER5OFjo6OXr+aampqYLPZEBgYiIiICIHJxMvKysL27dvx8ccfw8/Pzz1uy9/fH4MGDRKcTrzVq1dj1qxZiIiIgMPhwPbt23Ho0CEcOHBAdDTh/Pz87hirNWTIEAQFBXEMF4CVK1dizpw5iIyMRH19PfLy8qDRaLBo0SLR0WTh9ddfx5QpU7BmzRosWLAAVVVVKCoqQlFRkeho3iH6Mi4l2bhxoxQRESHp9XopOTlZOnr0qOhIslFeXi4BuOOWmZkpOppwfbULAGnr1q2io8nC0qVLpcjISEmv10tGo1GaMWOG9Omnn4qOJVu8TPwHCxculEJDQyW9Xi+NGDFCWrhwoXTx4kXRsWRl79690sSJEyWDwSDFxMRIRUVFoiN5jUqSJElQbUVERETULzgGh4iIiBSHBQ4REREpDgscIiIiUhwWOERERKQ4LHCIiIhIcVjgEBERkeKwwCEiIiLFYYFDREREisMCh4iIiBSHBQ4REREpDgscIiIiUhwWOERERKQ4/wM5rzOaEV7L1gAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "spl=NumbaNaturalCubicSpline(xx,yy)\n",
+    "\n",
+    "x_new = np.linspace(0, 2*np.pi, 33)\n",
+    "y_new = spl(x_new)\n",
+    "y_der = spl.derivative(x_new)\n",
+    "\n",
+    "plt.plot(xx,np.sin(xx),'-')\n",
+    "plt.plot(x_new,y_new,'+')\n",
+    "plt.plot(xx,np.cos(xx),'-')\n",
+    "plt.plot(x_new,y_der,'x')\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "07c44b10",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([-9.01808748e-08, -3.61131530e-07, -8.16514769e-07, -1.05347279e-06,\n",
+       "       -8.68221946e-07, -2.56088616e-07,  6.18383030e-07,  1.47649559e-06,\n",
+       "        1.99846874e-06,  1.90557548e-06,  1.04140781e-06, -4.53878964e-07,\n",
+       "       -1.18976568e-06, -1.11274057e-06, -6.60453420e-07, -2.15422938e-07,\n",
+       "       -3.66177375e-08, -2.15422938e-07, -6.60453421e-07, -1.11274057e-06,\n",
+       "       -1.18976568e-06, -4.53878964e-07,  1.04140781e-06,  1.90557548e-06,\n",
+       "        1.99846874e-06,  1.47649559e-06,  6.18383031e-07, -2.56088615e-07,\n",
+       "       -8.68221948e-07, -1.05347279e-06, -8.16514770e-07, -3.61131530e-07,\n",
+       "       -9.01808749e-08])"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "y_der-np.cos(x_new)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7daec340",
+   "metadata": {},
+   "source": [
+    "# Appendix\n",
+    "\n",
+    "Generated with chat gpt\n",
+    "\n",
+    "```\n",
+    "\n",
+    "```\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4ef193cf",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/src/yapsut/numba_cubic_spline.py b/src/yapsut/numba_cubic_spline.py
new file mode 100644
index 0000000..172a7d3
--- /dev/null
+++ b/src/yapsut/numba_cubic_spline.py
@@ -0,0 +1,307 @@
+__description__=""" 
+   cubic spline with numba
+   as produced by chat gpt
+"""
+
+import numpy as np
+from numba import njit
+
+@njit
+def cubic_spline_natural_coeffs(x, y):
+    n = len(x) - 1
+    h = np.diff(x)
+    alpha = np.zeros(n)
+    for i in range(1, n):
+        alpha[i] = (3/h[i]) * (y[i+1] - y[i]) - (3/h[i-1]) * (y[i] - y[i-1])
+    
+    l = np.ones(n+1)
+    mu = np.zeros(n+1)
+    z = np.zeros(n+1)
+    
+    for i in range(1, n):
+        l[i] = 2*(x[i+1] - x[i-1]) - h[i-1]*mu[i-1]
+        mu[i] = h[i]/l[i]
+        z[i] = (alpha[i] - h[i-1]*z[i-1])/l[i]
+    
+    b = np.zeros(n)
+    c = np.zeros(n+1)
+    d = np.zeros(n)
+    
+    for j in range(n-1, -1, -1):
+        c[j] = z[j] - mu[j]*c[j+1]
+        b[j] = (y[j+1] - y[j])/h[j] - h[j]*(c[j+1] + 2*c[j])/3
+        d[j] = (c[j+1] - c[j])/(3*h[j])
+    
+    return b, c[:-1], d  # a = y[:-1]
+
+@njit
+def evaluate_spline(x, y, b, c, d, x_eval):
+    n = len(x) - 1
+    y_eval = np.zeros_like(x_eval)
+    for j in range(len(x_eval)):
+        xi = x_eval[j]
+        for i in range(n):
+            if x[i] <= xi <= x[i+1]:
+                dx = xi - x[i]
+                y_eval[j] = y[i] + b[i]*dx + c[i]*dx**2 + d[i]*dx**3
+                break
+    return y_eval
+
+@njit
+def evaluate_spline_derivative(x, b, c, d, x_eval):
+    n = len(x) - 1
+    y_deriv = np.zeros_like(x_eval)
+    for j in range(len(x_eval)):
+        xi = x_eval[j]
+        for i in range(n):
+            if x[i] <= xi <= x[i+1]:
+                dx = xi - x[i]
+                y_deriv[j] = b[i] + 2 * c[i] * dx + 3 * d[i] * dx**2
+                break
+    return y_deriv
+ 
+ 
+""" =====================   """
+
+@njit
+def _compute_coeffs(x, y):
+    n = len(x) - 1
+    h = np.diff(x)
+    alpha = np.zeros(n)
+    for i in range(1, n):
+        alpha[i] = (3/h[i]) * (y[i+1] - y[i]) - (3/h[i-1]) * (y[i] - y[i-1])
+    
+    l = np.ones(n+1)
+    mu = np.zeros(n+1)
+    z = np.zeros(n+1)
+    
+    for i in range(1, n):
+        l[i] = 2*(x[i+1] - x[i-1]) - h[i-1]*mu[i-1]
+        mu[i] = h[i]/l[i]
+        z[i] = (alpha[i] - h[i-1]*z[i-1])/l[i]
+    
+    b = np.zeros(n)
+    c = np.zeros(n+1)
+    d = np.zeros(n)
+    
+    for j in range(n-1, -1, -1):
+        c[j] = z[j] - mu[j]*c[j+1]
+        b[j] = (y[j+1] - y[j])/h[j] - h[j]*(c[j+1] + 2*c[j])/3
+        d[j] = (c[j+1] - c[j])/(3*h[j])
+    
+    return b, c[:-1], d  # a = y[:-1]
+
+@njit
+def _evaluate(x, y, b, c, d, x_eval):
+    n = len(x) - 1
+    y_eval = np.zeros_like(x_eval)
+    for j in range(len(x_eval)):
+        xi = x_eval[j]
+        for i in range(n):
+            if x[i] <= xi <= x[i+1]:
+                dx = xi - x[i]
+                y_eval[j] = y[i] + b[i]*dx + c[i]*dx**2 + d[i]*dx**3
+                break
+    return y_eval
+
+@njit
+def _evaluate_derivative(x, b, c, d, x_eval):
+    n = len(x) - 1
+    y_deriv = np.zeros_like(x_eval)
+    for j in range(len(x_eval)):
+        xi = x_eval[j]
+        for i in range(n):
+            if x[i] <= xi <= x[i+1]:
+                dx = xi - x[i]
+                y_deriv[j] = b[i] + 2 * c[i] * dx + 3 * d[i] * dx**2
+                break
+    return y_deriv
+
+# Classe wrapper
+class NumbaNaturalCubicSpline:
+    """ natural cubic spline with numba """
+    def __init__(self, x, y):
+        self.x = np.asarray(x)
+        self.y = np.asarray(y)
+        self.b, self.c, self.d = _compute_coeffs(self.x, self.y)
+    
+    def __call__(self, x_eval):
+        x_eval = np.asarray(x_eval)
+        return _evaluate(self.x, self.y, self.b, self.c, self.d, x_eval)
+    
+    def derivative(self, x_eval):
+        x_eval = np.asarray(x_eval)
+        return _evaluate_derivative(self.x, self.b, self.c, self.d, x_eval)
+
+""" =====================   """
+
+@njit
+def _xt_compute_clamped_coeffs(x, y, fp0, fpn):
+    n = len(x) - 1
+    h = np.diff(x)
+    alpha = np.zeros(n+1)
+
+    alpha[0] = 3 * (y[1] - y[0]) / h[0] - 3 * fp0
+    alpha[n] = 3 * fpn - 3 * (y[n] - y[n-1]) / h[n-1]
+
+    for i in range(1, n):
+        alpha[i] = (3/h[i]) * (y[i+1] - y[i]) - (3/h[i-1]) * (y[i] - y[i-1])
+
+    l = np.ones(n+1)
+    mu = np.zeros(n+1)
+    z = np.zeros(n+1)
+
+    l[0] = 2 * h[0]
+    mu[0] = 0.5
+    z[0] = alpha[0] / l[0]
+
+    for i in range(1, n):
+        l[i] = 2*(x[i+1] - x[i-1]) - h[i-1]*mu[i-1]
+        mu[i] = h[i]/l[i]
+        z[i] = (alpha[i] - h[i-1]*z[i-1])/l[i]
+
+    l[n] = h[n-1]*(2 - mu[n-1])
+    z[n] = (alpha[n] - h[n-1]*z[n-1])/l[n]
+
+    c = np.zeros(n+1)
+    b = np.zeros(n)
+    d = np.zeros(n)
+
+    c[n] = z[n]
+    for j in range(n-1, -1, -1):
+        c[j] = z[j] - mu[j]*c[j+1]
+        b[j] = (y[j+1] - y[j])/h[j] - h[j]*(c[j+1] + 2*c[j])/3
+        d[j] = (c[j+1] - c[j])/(3*h[j])
+
+    return b, c[:-1], d
+
+@njit
+def _xt_evaluate(x, y, b, c, d, x_eval):
+    n = len(x) - 1
+    y_eval = np.zeros_like(x_eval)
+    for j in range(len(x_eval)):
+        xi = x_eval[j]
+        for i in range(n):
+            if x[i] <= xi <= x[i+1]:
+                dx = xi - x[i]
+                y_eval[j] = y[i] + b[i]*dx + c[i]*dx**2 + d[i]*dx**3
+                break
+    return y_eval
+
+@njit
+def _xt_evaluate_derivative(x, b, c, d, x_eval):
+    n = len(x) - 1
+    y_deriv = np.zeros_like(x_eval)
+    for j in range(len(x_eval)):
+        xi = x_eval[j]
+        for i in range(n):
+            if x[i] <= xi <= x[i+1]:
+                dx = xi - x[i]
+                y_deriv[j] = b[i] + 2*c[i]*dx + 3*d[i]*dx**2
+                break
+    return y_deriv
+
+@njit
+def _xt_evaluate_second_derivative(x, c, d, x_eval):
+    n = len(x) - 1
+    y_sec = np.zeros_like(x_eval)
+    for j in range(len(x_eval)):
+        xi = x_eval[j]
+        for i in range(n):
+            if x[i] <= xi <= x[i+1]:
+                dx = xi - x[i]
+                y_sec[j] = 2*c[i] + 6*d[i]*dx
+                break
+    return y_sec
+
+class NumbaCubicSpline:
+    def __init__(self, x, y, bc_type='natural', fp0=0.0, fpn=0.0):
+        self.x = np.asarray(x)
+        self.y = np.asarray(y)
+
+        if bc_type == 'natural':
+            self.b, self.c, self.d = _xt_compute_clamped_coeffs(self.x, self.y, 0.0, 0.0)
+        elif bc_type == 'clamped':
+            self.b, self.c, self.d = _xt_compute_clamped_coeffs(self.x, self.y, fp0, fpn)
+        else:
+            raise ValueError("bc_type must be 'natural' or 'clamped'")
+
+    def __call__(self, x_eval):
+        x_eval = np.asarray(x_eval)
+        return _xt_evaluate(self.x, self.y, self.b, self.c, self.d, x_eval)
+
+    def derivative(self, x_eval):
+        x_eval = np.asarray(x_eval)
+        return _xt_evaluate_derivative(self.x, self.b, self.c, self.d, x_eval)
+
+    def second_derivative(self, x_eval):
+        x_eval = np.asarray(x_eval)
+        return _xt_evaluate_second_derivative(self.x, self.c, self.d, x_eval)
+
+    def coefficients(self):
+        return self.b.copy(), self.c.copy(), self.d.copy()
+
+    def as_derivative(self):
+        x_new = self.x.copy()
+        y_new = self.derivative(self.x)
+        return NumbaCubicSpline(x_new, y_new, bc_type='natural')
+
+    def antiderivative(self):
+        n = len(self.x) - 1
+        x_new = self.x.copy()
+        y_new = np.zeros_like(self.x)
+
+        for i in range(n):
+            h = self.x[i+1] - self.x[i]
+            a = self.y[i]
+            b = self.b[i]
+            c = self.c[i]
+            d = self.d[i]
+
+            integral = (
+                a * h +
+                b * h**2 / 2 +
+                c * h**3 / 3 +
+                d * h**4 / 4
+            )
+            y_new[i+1] = y_new[i] + integral
+
+        return NumbaCubicSpline(x_new, y_new, bc_type='natural')
+
+    def integrate(self, a, b):
+        if a == b:
+            return 0.0
+        if a > b:
+            return -self.integrate(b, a)
+
+        a = max(self.x[0], a)
+        b = min(self.x[-1], b)
+
+        total = 0.0
+        n = len(self.x) - 1
+
+        for i in range(n):
+            x0 = self.x[i]
+            x1 = self.x[i+1]
+            if b <= x0 or a >= x1:
+                continue
+            xl = max(a, x0)
+            xr = min(b, x1)
+            dxl = xl - x0
+            dxr = xr - x0
+
+            a0 = self.y[i]
+            b0 = self.b[i]
+            c0 = self.c[i]
+            d0 = self.d[i]
+
+            def F(x):
+                return (
+                    a0 * x +
+                    b0 * x**2 / 2 +
+                    c0 * x**3 / 3 +
+                    d0 * x**4 / 4
+                )
+            total += F(dxr) - F(dxl)
+
+        return total
-- 
GitLab