diff --git a/Course.jl b/Course.jl deleted file mode 100644 index 776a683fb47bcdc77f9b7baa06a8f9ca529d0309..0000000000000000000000000000000000000000 --- a/Course.jl +++ /dev/null @@ -1,370 +0,0 @@ -### A Pluto.jl notebook ### -# v0.20.4 - -using Markdown -using InteractiveUtils - -# ╔═╡ ad6879b3-ad9d-4d7c-9122-f034949ae0cf -using PlutoUI - -# ╔═╡ 14ef8e22-f10f-472a-b512-5cd62781b082 -md""" -**What is this?** - - -*This jupyter notebook is part of a collection of notebooks on various topics discussed during the Time Domain Astrophysics course delivered by Stefano Covino at the [Università dell'Insubria](https://www.uninsubria.eu/) in Como (Italy). Please direct questions and suggestions to [stefano.covino@inaf.it](mailto:stefano.covino@inaf.it).* -""" - -# ╔═╡ bfe2b83c-dba1-4c64-a35f-83264822c9d7 -md""" -**This is a `pluto` notebook** -""" - -# ╔═╡ 9b05aaa6-d44f-4081-8749-ab5408a492b9 -md""" -$(LocalResource("Lectures/Pics/TimeDomainBanner.jpg")) -""" - -# ╔═╡ 270dc9c6-5eb3-4838-bf4a-62cbf2339a53 -md""" -# Time-Domain Astrophysics -*** -""" - -# ╔═╡ aec92f06-df81-4c51-99cb-ac3ebc91c7fc -md""" -## Academic Year 2024-2025 -*** -""" - -# ╔═╡ 78f7f381-9d3e-4715-87d4-b4165025aded -md""" -### Lecture list: -*** - -1. [Lecture: Introduction](./open?path=Lectures/Lecture - Introduction/Lecture-Introduction.jl) -2. [Lecture: Statistics Reminder](Lectures/Lecture%20-%20Statistics%20Reminder/Lecture-StatisticsReminder.ipynb) -3. [Lecture: Spectral Analysis](Lectures/Lecture%20-%20Spectral%20Analysis/Lecture-SpectralAnalysis.ipynb) -4. [Science case: Sunspot number](Lectures/Science%20Case%20-%20Sunspot%20Number/Lecture-SunspotNumber.ipynb) -5. [Science case: X-ray binaries](Lectures/Science%20Case%20-%20X-Ray%20Binaries/Lecture-X-RayBinaries.ipynb) -6. [Lecture: Irregular sampling](Lectures/Lecture%20-%20Lomb-Scargle/Lecture-Lomb-Scargle.ipynb) -7. [Science case: Variable stars](Lectures/Science%20Case%20-%20Variable%20Stars/Lecture-VariableStars.ipynb) -8. [Lecture: Time Domain analysis](Lectures/Lecture%20-%20Time%20Domain%20Analysis/Lecture-Time-Domain.ipynb) -9. [Science case: AGN and Blazars](Lectures/Science%20Case%20-%20AGN%20and%20Blazars/Lecture-AGN-and-Blazars.ipynb) -10. [Lecture: Wavelet Analysis](Lectures/Lecture%20-%20Wavelet%20Analysis/Lecture-Wavelet-Analysis.ipynb) -11. [Lecture: Time of Arrival](Lectures/Lecture%20-%20Time%20of%20Arrival/Lecture-Time-of-Arrival.ipynb) -12. [Science case: FRBs](Lectures/Science%20Case%20-%20FRBs/Lecture-FRBs.ipynb) -13. [Lecture: Non Parametric Analysis](Lectures/Lecture%20-%20Non%20Parametric%20Analysis/Lecture-NonParametricAnalysis.ipynb) -14. [Lecture: Gaussian Processes](Lectures/Lecture%20-%20Gaussian%20Processes/Lecture-GassianProcesses.ipynb) -15. [Science case: GRBs](Lectures/Science%20Case%20-%20GRBs/Lecture-GRBs.ipynb) -16. [Lecture: Astrostatistics Future](Lectures/Lecture%20-%20Astrostatistics%20Future/Lecture-AstrostatisticsFuture.ipynb) -""" - -# ╔═╡ 0fb9db7b-6dd2-4aaf-870d-49f36a5e0f00 -md""" -**Copyright** - -This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the examples, unless obtained from other properly quoted sources, under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Stefano Covino, Time Domain Astrophysics - Lecture notes featuring computational examples, 2025*. -""" - -# ╔═╡ 00000000-0000-0000-0000-000000000001 -PLUTO_PROJECT_TOML_CONTENTS = """ -[deps] -PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" - -[compat] -PlutoUI = "~0.7.61" -""" - -# ╔═╡ 00000000-0000-0000-0000-000000000002 -PLUTO_MANIFEST_TOML_CONTENTS = """ -# This file is machine-generated - editing it directly is not advised - -julia_version = "1.11.3" -manifest_format = "2.0" -project_hash = "6d1b77f27e79835fc27b2d7e99ab8fcaf37aa976" - -[[deps.AbstractPlutoDingetjes]] -deps = ["Pkg"] -git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a" -uuid = "6e696c72-6542-2067-7265-42206c756150" -version = "1.3.2" - -[[deps.ArgTools]] -uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" -version = "1.1.2" - -[[deps.Artifacts]] -uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" -version = "1.11.0" - -[[deps.Base64]] -uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" -version = "1.11.0" - -[[deps.ColorTypes]] -deps = ["FixedPointNumbers", "Random"] -git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" -uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" -version = "0.11.5" - -[[deps.CompilerSupportLibraries_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" -version = "1.1.1+0" - -[[deps.Dates]] -deps = ["Printf"] -uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" -version = "1.11.0" - -[[deps.Downloads]] -deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] -uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" -version = "1.6.0" - -[[deps.FileWatching]] -uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" -version = "1.11.0" - -[[deps.FixedPointNumbers]] -deps = ["Statistics"] -git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172" -uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" -version = "0.8.5" - -[[deps.Hyperscript]] -deps = ["Test"] -git-tree-sha1 = "179267cfa5e712760cd43dcae385d7ea90cc25a4" -uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" -version = "0.0.5" - -[[deps.HypertextLiteral]] -deps = ["Tricks"] -git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653" -uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" -version = "0.9.5" - -[[deps.IOCapture]] -deps = ["Logging", "Random"] -git-tree-sha1 = "b6d6bfdd7ce25b0f9b2f6b3dd56b2673a66c8770" -uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" -version = "0.2.5" - -[[deps.InteractiveUtils]] -deps = ["Markdown"] -uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" -version = "1.11.0" - -[[deps.JSON]] -deps = ["Dates", "Mmap", "Parsers", "Unicode"] -git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" -uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" -version = "0.21.4" - -[[deps.LibCURL]] -deps = ["LibCURL_jll", "MozillaCACerts_jll"] -uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" -version = "0.6.4" - -[[deps.LibCURL_jll]] -deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] -uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" -version = "8.6.0+0" - -[[deps.LibGit2]] -deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] -uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" -version = "1.11.0" - -[[deps.LibGit2_jll]] -deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] -uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" -version = "1.7.2+0" - -[[deps.LibSSH2_jll]] -deps = ["Artifacts", "Libdl", "MbedTLS_jll"] -uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" -version = "1.11.0+1" - -[[deps.Libdl]] -uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" -version = "1.11.0" - -[[deps.LinearAlgebra]] -deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] -uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" -version = "1.11.0" - -[[deps.Logging]] -uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" -version = "1.11.0" - -[[deps.MIMEs]] -git-tree-sha1 = "1833212fd6f580c20d4291da9c1b4e8a655b128e" -uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65" -version = "1.0.0" - -[[deps.Markdown]] -deps = ["Base64"] -uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" -version = "1.11.0" - -[[deps.MbedTLS_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" -version = "2.28.6+0" - -[[deps.Mmap]] -uuid = "a63ad114-7e13-5084-954f-fe012c677804" -version = "1.11.0" - -[[deps.MozillaCACerts_jll]] -uuid = "14a3606d-f60d-562e-9121-12d972cd8159" -version = "2023.12.12" - -[[deps.NetworkOptions]] -uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" -version = "1.2.0" - -[[deps.OpenBLAS_jll]] -deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] -uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" -version = "0.3.27+1" - -[[deps.Parsers]] -deps = ["Dates", "PrecompileTools", "UUIDs"] -git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" -uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" -version = "2.8.1" - -[[deps.Pkg]] -deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "Random", "SHA", "TOML", "Tar", "UUIDs", "p7zip_jll"] -uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" -version = "1.11.0" - - [deps.Pkg.extensions] - REPLExt = "REPL" - - [deps.Pkg.weakdeps] - REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" - -[[deps.PlutoUI]] -deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"] -git-tree-sha1 = "7e71a55b87222942f0f9337be62e26b1f103d3e4" -uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" -version = "0.7.61" - -[[deps.PrecompileTools]] -deps = ["Preferences"] -git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" -uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" -version = "1.2.1" - -[[deps.Preferences]] -deps = ["TOML"] -git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" -uuid = "21216c6a-2e73-6563-6e65-726566657250" -version = "1.4.3" - -[[deps.Printf]] -deps = ["Unicode"] -uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" -version = "1.11.0" - -[[deps.Random]] -deps = ["SHA"] -uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" -version = "1.11.0" - -[[deps.Reexport]] -git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" -uuid = "189a3867-3050-52da-a836-e630ba90ab69" -version = "1.2.2" - -[[deps.SHA]] -uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" -version = "0.7.0" - -[[deps.Serialization]] -uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" -version = "1.11.0" - -[[deps.Statistics]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0" -uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" -version = "1.11.1" - - [deps.Statistics.extensions] - SparseArraysExt = ["SparseArrays"] - - [deps.Statistics.weakdeps] - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - -[[deps.TOML]] -deps = ["Dates"] -uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" -version = "1.0.3" - -[[deps.Tar]] -deps = ["ArgTools", "SHA"] -uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" -version = "1.10.0" - -[[deps.Test]] -deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] -uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" -version = "1.11.0" - -[[deps.Tricks]] -git-tree-sha1 = "6cae795a5a9313bbb4f60683f7263318fc7d1505" -uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" -version = "0.1.10" - -[[deps.URIs]] -git-tree-sha1 = "67db6cc7b3821e19ebe75791a9dd19c9b1188f2b" -uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" -version = "1.5.1" - -[[deps.UUIDs]] -deps = ["Random", "SHA"] -uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" -version = "1.11.0" - -[[deps.Unicode]] -uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" -version = "1.11.0" - -[[deps.Zlib_jll]] -deps = ["Libdl"] -uuid = "83775a58-1f1d-513f-b197-d71354ab007a" -version = "1.2.13+1" - -[[deps.libblastrampoline_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" -version = "5.11.0+0" - -[[deps.nghttp2_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" -version = "1.59.0+0" - -[[deps.p7zip_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" -version = "17.4.0+2" -""" - -# ╔═╡ Cell order: -# ╟─14ef8e22-f10f-472a-b512-5cd62781b082 -# ╟─bfe2b83c-dba1-4c64-a35f-83264822c9d7 -# ╠═ad6879b3-ad9d-4d7c-9122-f034949ae0cf -# ╟─9b05aaa6-d44f-4081-8749-ab5408a492b9 -# ╟─270dc9c6-5eb3-4838-bf4a-62cbf2339a53 -# ╟─aec92f06-df81-4c51-99cb-ac3ebc91c7fc -# ╟─78f7f381-9d3e-4715-87d4-b4165025aded -# ╟─0fb9db7b-6dd2-4aaf-870d-49f36a5e0f00 -# ╟─00000000-0000-0000-0000-000000000001 -# ╟─00000000-0000-0000-0000-000000000002 diff --git a/Lectures/Lecture - Introduction/Lecture-Introduction.ipynb b/Lectures/Lecture - Introduction/Lecture-Introduction.ipynb index feb89a71e3269362d83494d0332e28a944017a96..a87b81c737bdfa46fc477dcd474bed93e5c0d488 100644 --- a/Lectures/Lecture - Introduction/Lecture-Introduction.ipynb +++ b/Lectures/Lecture - Introduction/Lecture-Introduction.ipynb @@ -108,7 +108,7 @@ "16. Case studies: spatial variability (CMB, large scale structure)\n", "17. Final topics: forecasting\n", "\n", - "> In reality these are just topics that can be covered. We can stress diffefent aspects depending on the interests of the *students*.\n" + "> In reality these are just topics that can be covered. We can stress different aspects depending on the interests of the *students*.\n" ] }, { diff --git a/Lectures/Lecture - Introduction/Lecture-Introduction.jl b/Lectures/Lecture - Introduction/Lecture-Introduction.jl deleted file mode 100644 index 6148d1b07d67eb7b67a9ee4f388326d5d6f4b1d7..0000000000000000000000000000000000000000 --- a/Lectures/Lecture - Introduction/Lecture-Introduction.jl +++ /dev/null @@ -1,612 +0,0 @@ -### A Pluto.jl notebook ### -# v0.20.4 - -using Markdown -using InteractiveUtils - -# ╔═╡ a9389fd0-72fd-4d3c-94a7-37d856ccf58b -using PlutoUI - -# ╔═╡ b8bbafd8-25bd-4681-96bd-607baabfa138 -md""" -**What is this?** - - -*This jupyter notebook is part of a collection of notebooks on various topics discussed during the Time Domain Astrophysics course delivered by Stefano Covino at the [Università dell'Insubria](https://www.uninsubria.eu/) in Como (Italy). Please direct questions and suggestions to [stefano.covino@inaf.it](mailto:stefano.covino@inaf.it).* -""" - -# ╔═╡ 0ad7e253-35e7-4683-ba47-e2bef62bc491 -md""" -**This is a `pluto` notebook** -""" - -# ╔═╡ 0d0c5ef4-0e29-44cb-8d9b-91a0b62f0a58 -md""" -$(LocalResource("Pics/TimeDomainBanner.jpg")) -""" - -# ╔═╡ 28b9ac44-044b-41bd-af41-a21ad5fe0b5e -md""" -# Introduction -*** -""" - -# ╔═╡ f7af2d56-3d0a-46d7-8859-a200189fd159 -md""" -## Contacts -*** - -$(LocalResource("Pics/Stefano.png")) - -- Stefano Covino -- INAF / Brera Astronomical Observatory -- +39 02 72320475 -- +39 3316748534 (if urgent…) -- Emails: [stefano.covino@inaf.it](mailto:stefano.covino@inaf.it) - [stefano.covino@uninsubria.it](mailto:stefano.covino@uninsubria.it) -- Web: [https://sites.google.com/a/inaf.it/stefano-s-site/](https://sites.google.com/a/inaf.it/stefano-s-site/) - -$(LocalResource("Pics/Banner.png")) -""" - -# ╔═╡ 26bd7a49-bdda-415f-8220-211016784c75 -md""" -## Main Goal of the course: Have fun! -*** - -$(LocalResource("Pics/data.jpg", :width => 400)) $(LocalResource("Pics/regression.jpg", :width => 400)) - -""" - -# ╔═╡ 7d83b80c-4721-4454-997a-d981ccb3eca1 -md""" -## Program (for 6 or 7 courses, roughly…) -*** - -1. Introduction to time series -2. Time (and spatial) variability in astrophysics -3. Fourier analysis and noise characterization -4. Case study: stellar variability -5. Case study: exo-planet transits -6. Case study: pulsars -7. Time-domain analysis and auto-regressive processe -8. Irregular sampling, Lomb-Scargle periodograms -9. Case studies: AGN variability -10. Advanced topics: non-parametric analysis -11. Matching filters -12. Case study: LIGO/Virgo gravitational wave signals -13. Data exploration -14. Case study: SETI data analysis -15. Big-data, machine learning and “intelligent” systems for time-series analysis -16. Case studies: spatial variability (CMB, large scale structure) -17. Final topics: forecasting - -> In reality these are just topics that can be covered. We can stress diffefent aspects depending on the interests of the *students*. - -""" - -# ╔═╡ 1ef75ad8-5f7f-4146-af0f-66982f2e7d62 -md""" -## Time-Series are ubiquitous -*** - -- Anytime we have a measurement repetated multiple times we have a time-series. - -$(LocalResource("Pics/CO2T.png")) - -$(LocalResource("Pics/CO2.png")) - -$(LocalResource("Pics/Neptune.png")) - -- As a matter of fact, a time-series does not need to have "time" as index! - -$(LocalResource("Pics/PAMELA.png")) - -$(LocalResource("Pics/satellite.png")) -""" - -# ╔═╡ d3443a4d-62b5-4ca9-84dc-66e19c284ac2 -md""" -## Temptative schedule (don’t trust it too much…) -*** - -1. 26/2 - Introduction -2. 27/2 - Statistics reminder - part I -3. 5/3 - Statistics reminder - part II -4. 6/3 - Spectral analysis - part I -5. 12/3 - Spectral analysis - part II -6. 13/3 - Science cases: Sunspots Number - X-ray Binaries -7. 19/3 - Irregularly sampled time series - part I -8. 20/3 - Irregularly sampled time series - part II -9. 26/3 - Science Cases - Variable Stars - AGN and blazars -10. 27/3 - Time domain analysis - part I -11. 2/4 - Time domain analysis - part II -12. 3/4 - Guest lecture - Spectral analysis in Cosmology -13. 9/4 - Guest lecture - X-ray pulsators -14. 10/4 - Time domain analysis - ARIMA models -15. 16/4 - Time domain analysis - Advanced tools -16. 30/4 - Wavelet analysis -17. 7/5 - Guest lecture - Exoplanets -18. 8/5 - Time of arrival analysis -19. 14/5 - Non-parametric methods -20. 15/5 - Gaussian processes -21. 21/5 - Science case: GRBs -22. 22/5 - Astrostatistics final considerations -""" - -# ╔═╡ 482cfb39-4f17-4138-b68e-317bad0b325a -md""" -## How is the course managed? -*** - -### Frontal lectures - -- These are the traditional university lectures. - -- Although this increases the organizational complexity substantially, I am availbale to stream and record my lectures, if needed. - -- There are contraindications. As a matter of fact, this is one of few cases where a remote access is not even close as effective as being in presence. - -$(LocalResource("Pics/FrontalLectures.jpg")) - -### Real research life examples… - -- Scientists working in the field will deliver "didactic lectures", allowing one to see most of ideas deveooped during the course applied in a real research environment. - -$(LocalResource("Pics/Paperino.jpg")) - -### (Optional) papers to deepen our knowledge… - -- Most of the topics discussd during the course can be investigated thoroughly and papers from astrophysical (mainly) literature are presented for particularly concerned readers. - -$(LocalResource("Pics/Papersetal.jpg")) - -### Question time - -- The course is divided in several main sections. At the end of each of them, some time will be devoted to open discussions and questions. - -$(LocalResource("Pics/Questions.gif")) - -### Lectures from specialists in the field - -- Together with regular lectures, a few specialists in the field, i.e. scientist carrying out researches by time-domain tools and techniques, are invited to describe their works. - -$(LocalResource("Pics/Nilus.jpg")) - -### Language - -- According to university guidelines, lectures will be delivered in English. Of course, a fair evaluation of the context might ask some flexibility. - -$(LocalResource("Pics/language.jpg")) - -### Statistical framework - -- During this course we are going to work in a Bayesian framework. - -- Bayesian statistics is an approach to inferential statistics based on Bayes' theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. - -- Nevertheless, we are not dogmatic and mentions or applications based on familiar "frequentist" approaches are presenetd and discussed, when we deem it opportune. - -$(LocalResource("Pics/Bayesians.png")) - -### Programming languages - -- Most of the examples we are going to analyze during the course are based on some sort of computer analysis. - -- `Python` is *de-facto* the standard language in data science. - - Yet, while this language is definitely truly amazing, well designed and worth mastering, for the specific needs of scientific computing there are alternatives of growing popularity. - -- We threfore will also provide examples with `Julia`, and encourage the students to get some confidence with this programming language too. - -- Notebooks are written by the [markdown language](https://www.markdownguide.org/basic-syntax/), a simple language integrating features of the HTML and latex languages. - - - $(LocalResource("Pics/python.png")) $(LocalResource("Pics/julia.png")) - -""" - -# ╔═╡ 6827c9f6-b98a-4a88-a192-5c61f375f1d5 -md""" -## Warning! The course is not only for astrophysicists! - -- It is indeed part of the set of courses for future astrophysocsts. Nevertheles, almost nothing we are going to discuss is truly only for astrophysics. In reality, several applications and ideas are taken from other fields, i.e. economics, social sciences, climatology, etc. - -$(LocalResource("Pics/astrophysics.jpg")) -""" - -# ╔═╡ d5e83a80-2c3a-48a5-937f-95b50e745bc4 -md""" -## Final assessment - -- The final examination is an oral one. - -- *Students* must interact with the teacher in advance of the examination and a science case obtained by the modern literature will be selected. - -- The *student* will be asked to properly describe the main formal aspects of the study and discuss critically the reliability and limits of the presented results. - - -""" - -# ╔═╡ c5257f84-999b-4655-9ade-2bcbc7eb324c -md""" -## Gitlab repository - -- Slides, notebooks, papers, etc. are available on [gitlab](https://www.ict.inaf.it/gitlab/stefano.covino/TimeDomainAstrophysics.git) -- Check the repository frequently since is (rather often) updated during the course. - - -$(LocalResource("Pics/gitlab.jpg", :width => 200)) $(LocalResource("Pics/gitlabcourse.png", :width => 100)) - -""" - -# ╔═╡ 6bce4cd0-67bc-408b-94c0-6c8de26755c0 -md""" -## Relaxing time(-series...) - -$(LocalResource("Pics/relaxing.png")) -""" - -# ╔═╡ 87f81f95-2f33-496a-a9df-cbc711e51e3c -md""" -## Reference & Material - -- The course is based on published scientific papers distributed by the teacher before any main topic is addressed. - -- Science cases are based on actual scientific papers as well. - -- Slides prepared by the teacher will also be distributed. - - - A general introductory text to time series analysis as: [“Introduction to Time Series and Forecasting”, by P.J. Brockwell and R.A Davis](https://link.springer.com/book/10.1007/978-3-319-29854-2) might be useful. However, any other analogous text easily obtainable by the student will be fine as well. - -- Two textbooks more strictly related to the topics discussed during the course mainly, but not only, for astrophysical applications are: - - [“Modern Statistical Methods for Astronomy”, by E.D. Feigelson and G.J. Babu](https://www.cambridge.org/core/books/modern-statistical-methods-for-astronomy/941AE392A553D68DD7B02491BB66DDEC) - - [“Statistics, data Mining and Machine Learning in Astronomy”, by Ivezić et al.](https://press.princeton.edu/books/hardcover/9780691198309/statistics-data-mining-and-machine-learning-in-astronomy) -""" - -# ╔═╡ 2b826fbe-9dda-483f-9af6-8b89d7a6837d -md""" -## Further Material - -Papers for examining more closely some of the discussed topics. - -- [Voughan et al. (2013) - "Random Time Series in Astronomy"](https://royalsocietypublishing.org/doi/10.1098/rsta.2011.0549) -""" - -# ╔═╡ c99cc57a-d012-4d11-a3e6-1e2ba35ce92e -md""" -## Course Flow -""" - -# ╔═╡ 59bfe64e-000e-467f-859e-07249d0c9273 -html""" -<table> - <tr> - <td>Previous lecture</td> - <td>Next lecture</td> - </tr> - <tr> - <td><a href="./open?path=Course.jl">Course Summary</a></td> - <td><a href="../Lecture%20-%20Statistics%20Reminder/Lecture-StatisticsReminder.ipynb">Statistics Reminder</a></td> - </tr> - </table> -""" - -# ╔═╡ 0fc5c982-e5e1-4a43-a0d6-86fe706e2601 -md""" -**Copyright** - -This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the examples, unless obtained from other properly quoted sources, under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Stefano Covino, Time Domain Astrophysics - Lecture notes featuring computational examples, 2025*. -""" - -# ╔═╡ 00000000-0000-0000-0000-000000000001 -PLUTO_PROJECT_TOML_CONTENTS = """ -[deps] -PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" - -[compat] -PlutoUI = "~0.7.61" -""" - -# ╔═╡ 00000000-0000-0000-0000-000000000002 -PLUTO_MANIFEST_TOML_CONTENTS = """ -# This file is machine-generated - editing it directly is not advised - -julia_version = "1.11.3" -manifest_format = "2.0" -project_hash = "6d1b77f27e79835fc27b2d7e99ab8fcaf37aa976" - -[[deps.AbstractPlutoDingetjes]] -deps = ["Pkg"] -git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a" -uuid = "6e696c72-6542-2067-7265-42206c756150" -version = "1.3.2" - -[[deps.ArgTools]] -uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" -version = "1.1.2" - -[[deps.Artifacts]] -uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" -version = "1.11.0" - -[[deps.Base64]] -uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" -version = "1.11.0" - -[[deps.ColorTypes]] -deps = ["FixedPointNumbers", "Random"] -git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" -uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" -version = "0.11.5" - -[[deps.CompilerSupportLibraries_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" -version = "1.1.1+0" - -[[deps.Dates]] -deps = ["Printf"] -uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" -version = "1.11.0" - -[[deps.Downloads]] -deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] -uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" -version = "1.6.0" - -[[deps.FileWatching]] -uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" -version = "1.11.0" - -[[deps.FixedPointNumbers]] -deps = ["Statistics"] -git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172" -uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" -version = "0.8.5" - -[[deps.Hyperscript]] -deps = ["Test"] -git-tree-sha1 = "179267cfa5e712760cd43dcae385d7ea90cc25a4" -uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" -version = "0.0.5" - -[[deps.HypertextLiteral]] -deps = ["Tricks"] -git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653" -uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" -version = "0.9.5" - -[[deps.IOCapture]] -deps = ["Logging", "Random"] -git-tree-sha1 = "b6d6bfdd7ce25b0f9b2f6b3dd56b2673a66c8770" -uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" -version = "0.2.5" - -[[deps.InteractiveUtils]] -deps = ["Markdown"] -uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" -version = "1.11.0" - -[[deps.JSON]] -deps = ["Dates", "Mmap", "Parsers", "Unicode"] -git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" -uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" -version = "0.21.4" - -[[deps.LibCURL]] -deps = ["LibCURL_jll", "MozillaCACerts_jll"] -uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" -version = "0.6.4" - -[[deps.LibCURL_jll]] -deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] -uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" -version = "8.6.0+0" - -[[deps.LibGit2]] -deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] -uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" -version = "1.11.0" - -[[deps.LibGit2_jll]] -deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] -uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" -version = "1.7.2+0" - -[[deps.LibSSH2_jll]] -deps = ["Artifacts", "Libdl", "MbedTLS_jll"] -uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" -version = "1.11.0+1" - -[[deps.Libdl]] -uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" -version = "1.11.0" - -[[deps.LinearAlgebra]] -deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] -uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" -version = "1.11.0" - -[[deps.Logging]] -uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" -version = "1.11.0" - -[[deps.MIMEs]] -git-tree-sha1 = "1833212fd6f580c20d4291da9c1b4e8a655b128e" -uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65" -version = "1.0.0" - -[[deps.Markdown]] -deps = ["Base64"] -uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" -version = "1.11.0" - -[[deps.MbedTLS_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" -version = "2.28.6+0" - -[[deps.Mmap]] -uuid = "a63ad114-7e13-5084-954f-fe012c677804" -version = "1.11.0" - -[[deps.MozillaCACerts_jll]] -uuid = "14a3606d-f60d-562e-9121-12d972cd8159" -version = "2023.12.12" - -[[deps.NetworkOptions]] -uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" -version = "1.2.0" - -[[deps.OpenBLAS_jll]] -deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] -uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" -version = "0.3.27+1" - -[[deps.Parsers]] -deps = ["Dates", "PrecompileTools", "UUIDs"] -git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" -uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" -version = "2.8.1" - -[[deps.Pkg]] -deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "Random", "SHA", "TOML", "Tar", "UUIDs", "p7zip_jll"] -uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" -version = "1.11.0" - - [deps.Pkg.extensions] - REPLExt = "REPL" - - [deps.Pkg.weakdeps] - REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" - -[[deps.PlutoUI]] -deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"] -git-tree-sha1 = "7e71a55b87222942f0f9337be62e26b1f103d3e4" -uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" -version = "0.7.61" - -[[deps.PrecompileTools]] -deps = ["Preferences"] -git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" -uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" -version = "1.2.1" - -[[deps.Preferences]] -deps = ["TOML"] -git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" -uuid = "21216c6a-2e73-6563-6e65-726566657250" -version = "1.4.3" - -[[deps.Printf]] -deps = ["Unicode"] -uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" -version = "1.11.0" - -[[deps.Random]] -deps = ["SHA"] -uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" -version = "1.11.0" - -[[deps.Reexport]] -git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" -uuid = "189a3867-3050-52da-a836-e630ba90ab69" -version = "1.2.2" - -[[deps.SHA]] -uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" -version = "0.7.0" - -[[deps.Serialization]] -uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" -version = "1.11.0" - -[[deps.Statistics]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0" -uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" -version = "1.11.1" - - [deps.Statistics.extensions] - SparseArraysExt = ["SparseArrays"] - - [deps.Statistics.weakdeps] - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - -[[deps.TOML]] -deps = ["Dates"] -uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" -version = "1.0.3" - -[[deps.Tar]] -deps = ["ArgTools", "SHA"] -uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" -version = "1.10.0" - -[[deps.Test]] -deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] -uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" -version = "1.11.0" - -[[deps.Tricks]] -git-tree-sha1 = "6cae795a5a9313bbb4f60683f7263318fc7d1505" -uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" -version = "0.1.10" - -[[deps.URIs]] -git-tree-sha1 = "67db6cc7b3821e19ebe75791a9dd19c9b1188f2b" -uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" -version = "1.5.1" - -[[deps.UUIDs]] -deps = ["Random", "SHA"] -uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" -version = "1.11.0" - -[[deps.Unicode]] -uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" -version = "1.11.0" - -[[deps.Zlib_jll]] -deps = ["Libdl"] -uuid = "83775a58-1f1d-513f-b197-d71354ab007a" -version = "1.2.13+1" - -[[deps.libblastrampoline_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" -version = "5.11.0+0" - -[[deps.nghttp2_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" -version = "1.59.0+0" - -[[deps.p7zip_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" -version = "17.4.0+2" -""" - -# ╔═╡ Cell order: -# ╟─b8bbafd8-25bd-4681-96bd-607baabfa138 -# ╟─0ad7e253-35e7-4683-ba47-e2bef62bc491 -# ╠═a9389fd0-72fd-4d3c-94a7-37d856ccf58b -# ╟─0d0c5ef4-0e29-44cb-8d9b-91a0b62f0a58 -# ╟─28b9ac44-044b-41bd-af41-a21ad5fe0b5e -# ╟─f7af2d56-3d0a-46d7-8859-a200189fd159 -# ╟─26bd7a49-bdda-415f-8220-211016784c75 -# ╟─7d83b80c-4721-4454-997a-d981ccb3eca1 -# ╟─1ef75ad8-5f7f-4146-af0f-66982f2e7d62 -# ╟─d3443a4d-62b5-4ca9-84dc-66e19c284ac2 -# ╟─482cfb39-4f17-4138-b68e-317bad0b325a -# ╟─6827c9f6-b98a-4a88-a192-5c61f375f1d5 -# ╟─d5e83a80-2c3a-48a5-937f-95b50e745bc4 -# ╟─c5257f84-999b-4655-9ade-2bcbc7eb324c -# ╟─6bce4cd0-67bc-408b-94c0-6c8de26755c0 -# ╟─87f81f95-2f33-496a-a9df-cbc711e51e3c -# ╟─2b826fbe-9dda-483f-9af6-8b89d7a6837d -# ╟─c99cc57a-d012-4d11-a3e6-1e2ba35ce92e -# ╟─59bfe64e-000e-467f-859e-07249d0c9273 -# ╟─0fc5c982-e5e1-4a43-a0d6-86fe706e2601 -# ╟─00000000-0000-0000-0000-000000000001 -# ╟─00000000-0000-0000-0000-000000000002 diff --git a/Lectures/Lecture - Statistics Reminder/Lecture-StatisticsReminder.ipynb b/Lectures/Lecture - Statistics Reminder/Lecture-StatisticsReminder.ipynb index 7c22c72a60fdb41a186b1579b02b498a47b1b25f..c6e69a9eced36dd9cbdb0f1392cf9632633b701f 100644 --- a/Lectures/Lecture - Statistics Reminder/Lecture-StatisticsReminder.ipynb +++ b/Lectures/Lecture - Statistics Reminder/Lecture-StatisticsReminder.ipynb @@ -29,7 +29,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m project at `/mnt/chromeos/GoogleDrive/MyDrive/Lab/Teaching/Insubria/Docs_2024_25/Lectures/Lecture 2 - Statistics Reminder`\n" + "\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m project at `/mnt/chromeos/GoogleDrive/MyDrive/Lab/Teaching/Insubria/Docs_2024_25/Lectures/Lecture - Statistics Reminder`\n" ] } ], @@ -794,9 +794,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3wU1fr48bPpJCGUhNBCLwFCTygiHVGkSLHgV+ArfgUVL2LDgohIs16vBUVRFC+IV0EFAWnSgwZIkBoCJIQSEloKhBTSdn9/7O/OnZtkz5ZMZneTz/vFH5M9z848mSx7dp49c47BZDIJAAAAAAAAAABQMR7OTgAAAAAAAAAAgKqAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABL2cnAJTj9OnTu3btMm+HhIQ88MADZWNOnTq1e/du83ZoaOi4ceMcPtyWLVumT59u3n7kkUfmz5+vbjWZTHFxcYmJiXl5eYGBgWPGjPHz83P4WC4rKyvrxx9/NG83atTovvvuM2/LT44+hg8ffubMGfP2/v37Q0JChBCJiYk7duwwP9i5c+c+ffron9i8efNWrlxp3v74449HjBihfw4A4EbUb90Gg2Hy5Mm+vr5lw77++uuioiLz9n333deoUSP9UtSa+iNNt27devXq5fCu4uPjo6OjzdtRUVFRUVHm7XJ7ST1lZWX16NHDvN2qVautW7eat/fs2ZOQkGDeHjZsWPPmzXVOTLjAyQEAd3Hr1q1Vq1aV22QwGOrXr9+mTZvWrVuX23Hbi8soNUv9u9PPEv07UBEU3OGKYmJipk2bZt7u0qVLuQX3ffv2KTGRkZEVKbjn5OScPXvWvH3t2jV10/Xr10ePHh0TE6M8kpKSEhYW5vCxXFZqaqpyPgcMGKAU3CUnRzcXL15UciguLjZvHDhwQEn42WefdUrB/fr160pit27d0j8BAHAv6rduIURmZuasWbPKhj377LO5ubnm7Xbt2rl1wV39keaVV16pSMF9165dzzzzjHl77ty5ygV5ub2knkpKSpQEvLz+c3GxcuXKr7/+2ry9du1ap1yQO/3kAIC7yMjIUPfR5fLx8XnxxRdnz54dEBBQkWNxGaVmqX93+lmifwcqgillAJnZs2erq+1w2LRp01r/26FDh5ydjh2+/fZbJfMlS5Y4Ox0AqDoWLVqUlpbm7Czw/3Xv3t3c2bVr187ZudjHfT9jAIB7KSwsfPvttzt37pydne3sXGAr+nfAKRjhDsgod74LIYYMGdK+ffsKfplfbV2+fFn5Cjo/P9+5ydjlxo0bSuaZmZnOTQYAqpLc3NyXX375u+++c3YiEEKI5OTkmzdvCiE8PT2dnYt93PczBgC4o+Tk5FmzZn322WfOTgQ2oX8HnIKCOyBGjx6dlZVl3i41J92lS5fMGz4+Phs2bKhRo4beyTmb5OToJiYmpqSkxLxdq1Ytp+RQrvfff3/hwoXmbb6JAQAHrFq16umnn3bKtGBVhtN7yeDgYOWjgqtdzDv95ACAmzp9+nRQUJB5Oysr6/Dhw2+88YZS/fz888/nzZvn8MTZXEbZwulnif4dqAgK7qhqsrOzlRvc6tSpY+6Z4uPjk5KS/P39O3To0Lhx41JPKSoqysnJMW97eHioq+rKm3iNGjUk1fYzZ84kJydnZ2fXrl07PDy8WbNmZWMKCgquX79u3vb3969bt64Q4urVq3FxcR07dmzWrFl+fn5GRoY5oGbNmrVq1TKv13rhwoXatWtHRUXVrl1b2dvVq1cPHz5cUFDQtm3bNm3aqKdUs4XRaDx06NDFixeDgoJ69uwp6aIkJ0cJOH/+/NmzZ4uLi1u0aNG8eXN7Pw0o32p4eno2bNhQCJGbmxsbG+vv79+zZ0/zj8q8bOqTYOmXql27dteuXYODg0sF5OXlKUPUg4KClE+QZtevXy8oKDBvN2zY0JaPFLdv31ZmGbb08rh69eqJEycyMjICAgKaNWsWERFhMBjKhqmP3qBBAy8vr5KSktjY2NTU1AYNGnTo0KFOnTpW8wEAdzRjxoyDBw96eNg3z6EmPW+5AampqceOHSsqKmrXrl2rVq0sdQcmk+ny5cvnz59PS0urW7duWFhY8+bNfXx87PotJPLy8g4ePJient6gQYNevXp5e3tbirTaS6anp589e/bSpUv169dv0aJFo0aNyu2JLLF6Go1Go/JRwdfXt2bNmpZ2lZ+fv3///oyMjIYNG0ZFRZX9Ij8rK0vpWOvVq2dpGISXl1eDBg1sSd6WjxAOv5ZsfKkAgDsKDQ1V3jYbNGjQvn37yMjIjh07mt9UTSZTQkJCv379Sj3Lxmsfq5dROTk5ycnJycnJgYGBLVq0aNq0qaQfNBqNqampycnJmZmZTZs2bd68edkrQcfyrIxrNNv7d23PUrnkV+Ia9u+aX4nb0r/b+FcuexJu3boVGxt748aNli1btmvXzs/Pz2o+QDlMgOtZvny58hLt0qVLuTFfffWVEhMZGak8PnfuXOXxxYsXHz16tFu3burXfP/+/U+fPm3pcK+88orJZLp69WpkZGRkZKTyuKenp/mRuLg49XPXrl3bokWLUv+tIiIidu7cWSrhXbt2KQH333+/0WicPXu2+cp85cqVJpNpzZo1SsCzzz574MAB9SRrfn5+L7/8clFRUVZW1sSJE9WFiZYtW27atMn207t161b1tw6+vr6zZ88+cuSI8siAAQMkJ0eRlZX1+uuvl+p3PTw8Hn744RMnTihhCxYsiIyMVPeC4eHhkZGRP/74ozlAeTw4ONhkMq1evbpevXpCiMcff9wcoL70zc/PNz+orNhuPl27d+9Wr9bi4+Mzbdq0wsJCdcLq10yp38VkMqkXsktMTDSZTJs2bYqMjGzSpInyeKNGjSIjI19++WXzUx599FGlafPmzaV2ePz48X79+pXq1OvVq7dkyRKj0VgqeMCAAUrM8ePH16xZoy4lGAyGqVOn3rhxw7a/MAC4KPVbt9pXX32lDlN/cbtr165SO9Gw5y0VkJGR8cADD6h72GbNmpV9ey8pKfn+++/bt29fKofg4OA5c+ZkZWWpgyXdqMS7774bGBio7jtWr169ePFi5ZG5c+cqweX2kmY7duwoe/dAs2bNPv/884KCAiVszJgxkZGR6utb82eepKQkW07juXPnlIBevXopu3388ceVx9euXfvpp5+qPzPUqVPniy++KPWLT5gwQQkodebV95I3btzY/KDVzxiSk2OqwGvJxpcKALgR9Zu5EKJUd2bWoUMHJWDp0qXqJruufSSXUWfOnJkwYUKpr+EDAwNfeeWVa9euldpPUVHR119/XfaL0jvuuMPSBbJzr9Hs6t8rfpbk/bvJ2pW4hv27vVfiFezf7forq09CcXHxnDlz/P39lQcDAgI+/PDDkpISG/68wH+h4A5XpFXB/emnny713anyTpqRkVHu4czv/ikpKWWfZaZc+efk5Dz44IOWwoQQU6ZMKS4uVo5S6lLttddeU34sW3Dv27dvuePEn376afOg71I8PT1LfRNgyd///vdyvzEePny4sm1Lwf3WrVtlaw0KLy8v5WJV3R+rLV682BygPBIcHLx582YlPdsL7gMHDiz3O/+77rrr5s2b5b5mbOnmLRWG7r//fvNTJJ+BFi1aJBlf0K9fv9TUVHW8+sPcq6++Wu6zBg4caMufGABclvp9tU2bNsoX2/Xq1VNfr1oquGve86oD7r333q5du5a72927d6t/i1mzZklyGDRoUFFRkRJsb8E9Pz9//PjxZXdrMBiGDRum/GhLwX3ZsmWSPIcOHaqcq1atWpUbc/z4cVtOoy0X5Ork1V5++WX1pa+9BXernzEsnZyKvJZsf6kAgBuxpeCuvhRdvny58ri91z6WLqOOHTumrnWW0rhx48uXL6v3M3HiRMk7+fz580vl78RrNAf694qfJXn/brJ2Ja5h/27vlbjD/bsDf2X1SZg6dWq5z3rzzTdt+SsDavbdvQu4lyVLlpinlyn13WZGRsabb74peaKPj4+lEe7Kl7cLFixQl8h9fHzatGmjrmUvW7ZsyZIl5e4/KSnp/ffflySwb98+8+1jpTJfsmTJwYMHy8aXlJRY+gSg9scff8ycOVOZJ0eo7k3btGmT1aerzZgxIyEhQfkxPDy8T58+yi11xcXFDz74oPnm6+bNm5f77XRoaGipfRYXFz/zzDPq9Gy0e/du83W4r6+v+nv+7du3T58+3d69KYKDg8sd4W7pg4tiy5Yts2fPLioqMv9oMBhatWqlrh9FR0c/88wzlp7+zjvvKE9UP7579+5ffvnF3t8CAFyTh4fHJ598Yt6+fv36vHnzrD6lUnvezZs3m2/2Knu7sfode8+ePcq7tBAiJCSkU6dOjRo1Uh7ZtWuXushur7///e8//vij+hHzjcwmk2nLli227ycxMfFvf/ub8mPNmjX79u0bERGhPPL7778r57xTp07ljoAr+2W21dNoiZJ8qX2+9957FTldtn/GKKUiryUbXyoAUMXk5eWdOnVK+TE8PNy8UcFrH4XRaBw3blxeXp75R29v76ioKPX8JKmpqQ899JASv2LFCvW66w0bNuzfv7/62m3u3Lk7duxQfnTuNZpW/btdZ8n2/t3hK3FX698r8lfOyMhQvhgo9Vd+55130tLSHPhFUJ1RcEcVN27cuBMnThQWFiYlJQ0dOlR5fM+ePZJnhYaGxsXFxcXFKZ1TYGCg+RFzFf7UqVP/+Mc/lPhZs2bdvHnzzJkzN2/efOKJJ5TH33jjDWXGT7WjR48WFRW1b99+8uTJM2bMKLeA+z//8z8XLlwoKCj45Zdf1HPCGgyGDz74ICsr69atW6+88ory+OHDh62ejZdfflnZ7tWr18mTJ/Py8pKSkgYNGmT1uaVs3LjRvBEcHJycnHzq1Kk//vgjLS3tkUceMT+ekZGxc+dOIcTrr78eFxenHh2wbNmyuLg49acls5s3byYlJYWGho4fP/65554rOyegRO3atdeuXZudnZ2RkaG+y+H7779X1vax17333hsXF/fCCy8oj0ybNi0uLu7dd9+VPKugoEDdhQ8bNuzKlStJSUk3b95cunSp8qf85Zdffv/993L34OHhMWfOnJSUlMLCwn379qmnypG/bgHAvfTp00cZ0fzpp5+qL+PL0qHn7dSp086dO3Nzc9PT02fOnKk8fvz4cWXRsJ9//tn078FQixYtunr16rFjx1JTUz///HMl/sCBA1Z/93Klp6ery9lTp069cuVKTk5OdHS0uoJgi23btinTob700ktZWVnR0dEnTpyIiYlRhsUpFee1a9fGxcUpN7mbb5uLi4sre5ZsOY2WRERE/PXXX7m5uRcuXBg1apTy+FtvveXAFb6Z7Z8x1Cr4WhK2vVQAoCq5efPmk08+qSyW5unpab7dueLXPoqEhISkpCTzdr9+/bKysmJjY2NjYy9cuKDcWh0dHX316lXz9oYNG5Tnrl+/Pi0tbc+ePRcuXFC+zjeZTD/99JN527nXaBr273adJdv794pcibtO/17xv3JwcPA///nPzMzMnJycVatWKU+5ffu2w5/uUH05d4A9UC6tppTp3r27+nZgZTUMIUSNGjWUW5wkt3srBXfzEqaKKVOmKE+ZMGFCqdzU9esFCxaYH1TfjCyEeOmll0pNBKYeadW0aVP15Kr3339/uYczGo3qb32zs7MlZ/XPP/9UIoODg2/duqU03b59OywsTGm1OqVMamqq8mDjxo3V93CdOHHizn9bsmSJ8vjo0aOVp0RHR6sTU5+WQYMGqSeBMbM6pYwQYsOGDeqnPPnkk0rTtGnTzA/aeyOb2Ycfflj2r2lW7l1+6nEWzZs3LzWPvHoI55AhQ5TH1R8mZsyYoX6Keof33HOPCQDclvqtOzw83GQyXbp0SRl2pLzFlTulTGX0vOqAgICAlJQUpcloNLZt21ZpjYmJMT8+evToZs2aNWvWrG3btup3+OTkZCW4f//+yuN2TSnz1ltvWXrDP378uHqwldUpZdT3RH/yySfqXb3wwgvmbrpfv355eXnK48oK6p6enpbOUrmn0ZZbzv39/a9cuaI0FRcXqycCVqZktXdKGTPJZ4xyT04FX0s2vlQAwL2UmlKmd+/eymVdREREqfHLyhWWY9c+5V5GrVq1SnlQmcPTbOXKlUoyyttsmzZtlPhjx44pwUajcciQIebgqVOnViRPra7RHOvfNTlLJsv9u8nalbiG/btjV+L29u+O/ZXVJ+GXX35RP0X9geHtt982AfZghDuqslGjRqnvn2rcuLGyXnl+fr4y8ssBe/fuVbZffPHFUq3PP/+8sh0dHV326fXr11+0aFGpRU7U+vTpox7VHhISomwPHDhQ2TYYDOoV2OVfIB87dkzZfvLJJ9Wrtfj6+j711FOS55aiXnY8NTW1RYsWTz311Pr163NyciIiIvb927Rp02zfp9lHH31U7rT7cm3bth05cqT6EfVws7i4OHt3WBHq18aMGTNKzR/3zDPPKK/JmJiYcv9kY8eOVf/YpUsXZfvGjRta5goAzta4cWNlSvStW7eqR6uVUtk9b1RUlPq7Z4PB0KlTJ+VH5e133bp158+fP3/+/OnTp83v8Ldv3z506JB6ZnOHx3Ope+pSv2PHjh2HDBli+67UPfVzzz03aNCgDz74wDwX3AcffGDupvfu3VvuCigSVk+jJRMmTKhfv77yo6enp/pP5sSe2oHXko0vFQBwa/v37//j3+Lj49XfetapU2f+/Pnm7Ypf+yjUPdfPP//csWPH2bNn79u3r6SkZOLEico1Zu/evcvG9+7d+8EHH/z222+vXLliMBi2b99uDv7yyy+1yrMi12iV1L/bcpZs59iVuMv27w78lb29vUeMGKF+hCtxVAQFd1Rl6jq1mXmitIpTVlX18PBQz4hq1rFjR2X74sWLZZ/esWNHyToeQgjlW+iy1EPa7XL69Gllu3PnzqVayz4iERwcrP62/8qVK0uXLh09enRwcPDQoUM//PBD9c0EtvPx8Sl7Mm2hvtA1a926tTJAUrnnTh/qFXfLntU6deo0btzYvJ2Xl5eenl52D6Vet1q9aAHANc2cObNFixbm7eeff76wsLDcsMruee36zJCYmPjxxx+PHTvWPDFoVFTUDz/8INm5jTTsqceNG6dsG43G3bt3z5w5s0OHDs2bN3/66ac3b95sNBodyNDqabSkbPLqdUed1VM79lqqvI+XAOD6evXqdfDgQeWdsOLXPoohQ4aor4Lj4+Pfeuutfv361atX7+GHH16xYkVOTo46Xn0XeF5e3k8//fTYY4+Z19yaM2fOX3/9pQ527jWahv27vWfJRg5fibtm/y4c+isHBQWpRz0K+ndUDAV3wG4lJSXKN/x16tQp9aYshGjYsKGyffPmzbJ7cLhoXhHqIrj6W2gzdc62+Omnn0oNKhdCFBYWbt++/YUXXmjRosWMGTOKi4vt2mfNmjXVdyTYrl69emUfbNCggXnDPN+9A7t1jPpYZc+zsOHlAQDViq+vrzKh9tmzZ9UTeSlcp+fNz8+fNm1aeHj4c889t27duuTkZHPl2rEydClKT20wGMp2bXb11IMGDVq5cmXZnVy4cOHzzz8fPnx427Zty12GXc7h01g2E6WbNmfl2G4dUPHXEgBUBwMGDBiiMnr06Ndff/2XX37Zt29f69atlTANr31q1669c+dO9YQkZllZWT/++OOjjz7apEmTb775Rnn89ddfnzlzpnrEtxDCZDL99ddfCxcujIyMvOuuu65du6Z5ng7QsH+39yzZSMMrcWf178LZf2WgFArucEXqG5yVhVlKUT+uLP+lD09PT+WImZmZt2/fLhWgnuK8Zs2a+mUmpXydK4S4fPlyqdYrV67YtbeQkJANGzacPn36tddeK9vfFxcXL168+I033nAsVXuVu2K48jsGBASo58+pbOob8cpNzDVfHgDgRGPGjFHup164cGHZQe6u0/O+/vrrX3zxhclkEkL4+fmNGDFi/vz5GzZsiI+Pr/jOlZ7aZDIpi8Ip7O2pJ06ceOnSpX/961/jxo1TT4tvdvbs2aFDh1paFFRzZTtE9Z9MfXFe2VzntQQArmzdunXbVdatW7dgwYKxY8d6eXmpw7S99unevXt8fPzu3bufeOKJsl3DjRs3Hn/88W3btpl/9PLyev/991NTUz/66KP+/fuXrRfv2LFjzJgxlZGnvbTt3+06S5XNdfp34ey/MlAKBXe4olJfiubm5paNUV/Z6vw+LoRQbn43mUyHDx8u1Xro0CFlW72ah3OpRyKoMzQrdc+djdq2bbto0aL4+PjExMT333//zjvvVLeql0apVEeOHCk1BduJEyfy8vLM2+Hh4eqFaMyUVoW6960I5bUhyjvPV65cUQ7k7+9f7th8AKiGPv74Y/Olck5OTlFRUdkAV+h5i4qKFi9ebN6uW7fuqVOnNm7cOGfOnJEjRzp2B3cpmvfUPj4+Dz/88M8//5yenr5hw4YpU6ao74jPzs5evXq1w9napeyvExsbq2y3a9eu7FNK9dRaddPCNV5LAFA1VMa1z4ABA5YuXZqWlhYTE/Pqq6+qF0cVZa4xg4ODn3322T179ly9enX58uVjxoxRj3mPiYkx1w2ce41WGVfidp2lylPx/l1wJY4qioI7XFFUVJQyW5bRaJw7d26pgISEBPXy3H379tUvOSHEf69c+vbbb6ubjEbjO++8o/w4ePBg3bKS69atm7L91Vdfqecsu3Xr1meffWb7rt56663e/7Z//34hROvWrWfOnLlv375Dhw4pd2dnZGSUWzTR3MWLF0tNnrto0SJlW5mNrm7dusqDpdZv2bt3r2Pzzpelfm188sknpb4ueuedd0z/Xgm9X79+pUaIAEC1FRERIV9q2xV63uTkZKVf69y5s7oa+8svv1R8/+qe+t1331VPs37gwIFdu3bZuJ9r164p3fSUKVOEEH5+fiNHjvzqq69SUlImTpyoRNo7qs5hq1evPnfunPJjfn6+Mo+QsK2nVn/wqyBXeC0BQNWg4bXPAw88YO65+vXrl5eXZzAYevfu/fbbb58+fVp9rWruubZs2aL0dEuWLBFCBAcHT548ee3atRcuXFBPR26Od+41mlb9u7DzLOmg4v07V+Koqii4wxUFBAQ8+OCDyo8ffPDB3Xff/fXXX//+++9r1qx59dVXe/ToUVBQYG4NCQkZP368zhm+9NJLyv3IGzZsmDx5snmBjrNnz44aNUoZLVW/fv2nnnpK59ws6dOnT58+fczb2dnZffv23bFjR2Zm5t69e/v166dMb2eLkJCQA/82c+ZM9Q3p2dnZytTt7dq1U+a09fD4z7uNXcey0ZQpU7744ou0tLSEhISpU6cq9XeDwfDcc8+Zt8PDw5X4mJiYmTNnJiQknDlzZunSpeold0qxN/OxY8cqK7RcuXJl4MCBR48eNRqN169fnz179scff6wkptuUOwDgFubPnx8cHGyp1RV6XvUUdnFxcdu2bSssLMzPz1+2bNnf//73iu//qaeeUm5w3rdv37hx4w4fPnz9+vUff/xx+PDhtu8nNDQ0JSXF3E0vX778+++/V64wi4uL1TOcqlcdV/q7kpKSzMzMiv4y/62oqGjgwIGbNm3KyMiIiYkZPHiwcn3eqFEj5YOcuqf++OOPly1bdv78+SNHjsyaNWvBggWWdm5vT+0KryUAqBo0vPbx8fEx91z79u2bNWuWMuWX0WhUT7dt7rlatmypXJDOnz9ffbtSfn6+slaH+PdS2M69RtOqfxd2niUzV+vfuRJHdWECXFJKSoot9/gYDIbffvtN/UT1cPjFixeX2q16HvP8/Hzzg8uXL1cefOWVV9TxykxwtWrVKrUr9Rhqs7JTyX/33XdKvPqL6/vvv7/sr7xmzRol4Mknn1Q3Pfnkk0rTmjVr1E2tWrVSmrKysuRn9ffff7d6SoUQAwYMUJ5S7slJSUlRL5vm5eXVunXriIiIUn+y5557TtnP9OnTlcfr168/duzY9evXm5uUx4ODg8tNWz2EUPmrrVy50pbfZdKkScp+CgsL1XeZSSQmJirP+umnn5THfX1977vvvrffftvc9OijjypNmzdvVp6yb9++UpPYqJclMJsyZYr6dxwwYIDSdPz4cXVTYmKi0tSrVy/5nxgAXJn6rTs8PLxsgHmQmtquXbuUVs17XnnAhAkTyr7Jl+rp/Pz8yk4ae8cddyg7kXzGKNfs2bOFDebOnas8pdxecubMmer44ODgiIiI1q1bqxd39ff3T01NVfZjLkmYRUREjB079vz587acRvXQNnU/9fjjj9vyu3z99dfKUxISEmwZcda4cWN1ApLPGOWeHJPWr6VyXyoA4F7Ub+bChktLhQPXPuVeRq1fv169n4CAgHbt2rVr167Uclxr1641x0dFRakfb9KkSceOHZs2bap+sGvXrhXJU8NrNAf6d03Oksly/26ydiWuYf/u2JW4A/27A39lyUlQz8xjy6c4QI0R7nBRYWFhv//+e/v27SUxfn5+77//vr3fCWtl5syZ06dPV3/pqp6MzMfHZ/78+eoLMFdw1113LV68uI5RLK8AACAASURBVNz1x5X1ZGwRFha2du1aZeqY4uLipKSk+Ph49VD3O+64Q32b9r333qtsX7161Xyvn92/gAX9+vVT36SmGDx4sPqONm9v708++aTcPQwcOLBr167lNt15553K6isFBQXr168vdRNcuU9ZunSpehkW9SALIcT48eM1GQsJAFXME088oQxNKssVet53331X/ePt27fNi4jMmjVLucA7c+ZM2aU4bfTGG2+oL7AVfn5+99xzj+37eeedd9Q9b0ZGRnx8fFJSkjIljoeHx6pVqxo1aqTEqD9QxcfHr127Vj0WvoJGjhyp/sMpnn322cmTJys/tmvXTrkvrZTnn3/e0s4d+IzhCq8lAKgatLr2GTVq1MKFC5Ufc3NzT506derUKfUqKc8//7xy3bp+/Xp1eT0lJeXEiRMXL15UHgkJCVGPnXLuNZpW/bu9Z0m4Rv/u2JW4A/07V+JwHRTc4bq6dOly/Pjxb775ptQCIEKIgICAKVOmJCUlvfjii07JTQjh4+OzePHi6OjoO+64Q93HeHt733333UeOHJkzZ46zcpOYPn365s2b1bd01alT58svv5TcqV2ugQMHnjp16oUXXihb6Q4PD//ss8+2b9+uTMQvhBg+fPjixYsbNmxYkeQt6d69e0xMjHpqvKCgoNdff33btm3q1eGEECNHjtyxY4f6169Zs+bMmTM3b96sXl1HrUGDBmvXru3SpYtdKU2dOjU+Pv6BBx4o9Y16p06dNmzY8MMPP9SqVcuuHQJAdeDp6anc8FuWK/S8jz322Jdffqlerb1Lly6bNm166623lJ4iIyPDxoFsZfn4+Hz77bcffPCBeih969atd+3aNXLkSNv34+npuX79+h9//PHOO+8sdSXs6+s7adKkuLi4Ut+1z5s3729/+1vZgd6aePzxx9etW6f+GNCkSZPVq1d/9NFHpdJ77733Pv300zp16iiPhIWFLVu27K233rK0cwc+Y7jCawkAqgytrn1ee+21P/7446GHHip1aWYwGAYOHPjrr79+8MEHyoMNGzY8duzYP/7xD/WSpGYhISGzZs06evSo+nZwDfN0gFb9u7DzLAmX6d8duBJ3rIbAlThchMGkuoECcFl5eXlnz549f/58nTp1WrVqVUl1W4fduHHj3Llzt27dqlWrVqtWrUrdz+WakpOT09LSgoKC2rdvr77B3AE3btxITU3NzMwMDQ1t0qSJvC+/detWdnZ2UFBQYGBgqbu9Ku78+fOXLl0KDAxs3769pW7bLCMj48yZMzVq1GjXrp36iwGJgoKC9PR0f3//oKCgcu8SsPSsxMTEzMxMf3//pk2bhoaG2vhEAICEc3vekpKS8+fPX758uUmTJuqbmjVUXFx8+vTpzMzMBg0alB15YO+uLl++nJqa6unpGRYWVr9+/XIHoynS09OLi4uDgoI0vzg3Go2nTp3KyMgIDQ1t27at/GNASkrKhQsXQkJCwsPDbfzA4NhnDHf8FAcArkmrax+TyXT9+vXU1NT8/PxGjRo1btxYfsWan5+fmpp65cqVoKCgsLCwcu9+row8HaBh/27vWXKR/t2BK3HH+neuxOFcFNwBAAAAAAAAANAAU8oAAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAa8HJ2AhowGAzOTgEAAAeZTCZnp+A09OAAAHdXPftxenAAgLur1B6cEe4AAAAAAAAAAGigKoxwN9NhZEF2dvaNGzeCgoJq165d2ceCEOLatWu3b98ODQ318/Nzdi7VwsWLF4UQTZs2dXYi1cLt27evXbvm5+cXGhrq7FyqhRs3bmRnZ9euXTsoKMjZufwHo8PMXHBsYEZGRm5ubnBwcEBAgLNzqZr4TFXZ8vLy0tPT/f39Q0JCnJ1L1VRUVHT58mVvb++GDRs6O5cqy/U/mtKPu2APro9Lly4ZjcawsDAPD4YwwlYFBQVXr1719fWtX7++s3OBO3HNK1l3p0MPTvcAAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAS9nJwDA9eTmiuXLhYeHePppZ6cCAADsUVQkjh/3vHAhIDnZ79Yt0aKFiIgQ7duLgABnZwYAQLV05YpITPRITq6ZlOQZGCiGDBFdughvb2enBaASUXAH8B+e6enim2/Ep5+KjAxhMIiaNcWkSc5OCgAAWGM0iuho8cMP4qefRHq6rxC+6laDQXTuLJ56SkycKAIDnZUjAADViMkkdu0Sn30mfv1VlJR4C1FHafLzEwMHijffFL16OTFBAJWHKWUACCGEOHas7qxZjfr0EfPmiYwMIYQwmcSUKWL7dmdnBgAApPbsEV26iIEDxRdfiPT0cgJMJnH0qJg2TYSFiZkzRXa27ikCAFCdnD4tevQQQ4aIX34RJSWlW2/fFlu2iN69xZgx4vRpZ+QHoHJRcAeqvX37xKhRomvXwO+/NxQU/FdTYaG4/35x7JiTMgMAAFJXroiJE8WgQeLECZvib94UH3wgOncWO3ZUcmYAAFRXK1aIqChx6JD1yF9/FVFRYv36ys8JgK4ouAPVVWGhWLFCdOok+vUTGzcKk6n8sOxsMXy4SEnRNzkAAGDNwYOiWzexapXFTtySCxfE0KHimWdEUVHlZAYAQHX14ovi0UdFTo6t8Tk5Ytw48eGHlZkTAL0xhztQjZy8mhOXkuWTc6vVxjURK77wv37Fpqelpt4YNHTLVz8X1gyy8UBRTep0qM8UsQAAVJqffxb/+78iL8/Bp5tM4tNPxblzYs0aUaOGppkBAFBdzZkj/vEPu59VUiJeeEGUlIiZMyshJwBOQMEdqEYS//gr4IN/jIjb6ld4264n1j57usVTk5+d+m6xp01vGjP6CQruAABUls8+EzNmCKOxovv57Tdxzz1iwwZRq5YWaQEAUI29955YuNDxp7/yimjeXDzwgHYJAXAappQBqod9+8RDD9334OD7//zV3mq7Wa8zcfP+9ZbB3pvWAQCAtv71L22q7WbR0WLoUJGbq83eAAConnbuFLNmVWgPRqP43/8VBw5olBAAZ6LgDlQD27aJfv3EmjUGY5nl0e1xz187nty6XKukAACA3X7/XUyerFm13Sw2VkyapPE+AQCoPq5dExMnatCT5ueLiRP5FhyoAii4A9XAm29qtacp2/45dv9GrfYGAADscOyYGDdOFBZqv+e1a8Wrr2q/WwAAqjyTSTz6qLh8WZu9JSWJl17SZlcAnIeCO1DVbd0qYmI03N+rP/2j70ktdwgAAKzLzRXjx4ucHFtiTXXq5A0ffvt//kdERdm6//ffFytWOJ4eAADV06pVYssWq1GmRo1yx40z1q1rfYdffCG2bdMgMQDOQ8EdqOq0G95u5mkseWvlvA4pp7XdLQAAkJk+XZw6ZT2sdm3x6af5ycnpn3+e88knIjZWHDkiBg609RDJyRXLEgCA6uTmTZsGpE+YUHjsWMaHH6bHxIh77rESbDKJ6dMr5YY2AHqh4A5UaZs3i/37bQ9Prdvg+wEPGT2svDP4F+R/tOyVRpka3TQHAADkvvtOfPut9bCuXcWJE+JvfxM+Pv95sEsXsXOneO89Ya1/F7duiUmTREmFVnwBAKAaeeMNceWKlZjJk8WKFSIwUAhhqlVLbNwoRo608pTERLF4sUYpAnACCu5AlTZvno2Bp8Lazn7o5ZEzv/3H6L+9/cCLVuPr3spa8vkLdXOyKpYfAACwJi1NTJ9uPWzYMBEdLRo3LqfJYBAvvSRWrBDe3lZ28uef4u23HUkSAIDq5vRpsWSJlZjBg8WyZf/1nbeXl/jhB9G9u5UnLlworl+vaIYAnISCO1B1/fabOHBAHmI0eOzs3P/xZz6d+MJXG7oPLfHwFEKs7T3y2yETrO4+LCPt/eVzfIsKtMkWAACU69lnxc2bVmL69BE//2wePWfRhAli5UphMFjZ1fz5Ij7evgwBAKiG5s0TxcWygNBQ8d13wtOz9OMBAeKHH4S/v+y5N26I+fMrmiEAJ6HgDlRRJpPV4e2/Rd0z7rVVL09ecLRFp1JNnw2fujlyqNWDdDl3fMGqhR4mo+N5AgAAiY0bxU8/WYnp0EFs2GDlut1s/HixYIGVmKIiMX26MJlszRAAgGooPl78+KOVmKVLRcOG5Te1aSPee8/K05ctE2lpjuQGwNkouANV1G+/idhYSXta3YYLxr98KbhRua0mg2H+w6/EtrF2m5sQg4/tfWHdpw4mCQAAJHJzrU8mExAgfv5Z1K1r6z5fe0088oiVmN27xb/+ZesOAQCoht58UxilI89GjBBjxsgCnn5a9OkjC7h9W/z9747kBsDZKLgDVZHJJN58Ux7y9dBJxZ5ekoAiT++XHluY1LCl1aM9HP3zA3/+aleCAADAurffFhcuWIn59FPRrp0d+zQYxOefixYtrIS99JK4dcuO3QIAUH2cPCl+/lkW4OcnPvnEyk4MBvHhh1amelu6VFy7Znd6AJyNgjtQFW3YIA4dkrRfrlN/U9TdVneT4xfwzJPvX6lT32rkoztWMbEMAABaSksTH35oJWbCBDF5st17DgoSK1aUM6VsqaMvXGj3ngEAqA4++sjK3GszZoiW1seuiZ49xcSJsoC8PPHRR/blBsAFUHAHqhyTyeoV8lf3PFbk6W3Lzq4HhcyY+u6tGtJF2IRomHU1KvGwrRkCAACr5s4VeXmygJAQ8fHHDu68b1/x8stWYhYvFqmpDu4fAICq6vp18d13soCaNcVLL9m6t4ULhY+PLGDpUiufBwC4HtmEEgDc0vr18tnbLwU3+s2G4e2K5AYtXpk8/+MvX/EuKZKEjT7428G2kbbvFgAAWBQfL5YvtxLzwQciONjxQ8yZI374QZw7ZzEgP18sWCC++MLxQwAA4KqOXc4+dTXHgSd2+PLDjvn5koCE8Y8dv1QoLv3/9U47NazZvn5Ni9FNm4pJk8TXX1sMyMwU338vpkxxIFUAzkLBHahabBjevuzuR0s8pHeRl3GwTeTcR2Yt+m6BwfJ9c4OORQfl38quYfmTBAAAsNFrr4mSElnA4MFi0qQKHaJGDfHRR2L0aFnMN9+ImTNF69YVOhAAAK5nZ2L6d4cu2fssn+Kijd9ZLo4Lkefr/7cWd2fvSlIemdanuazgLoR49VXxz3+K4mKLAYsXU3AH3AtTygBVy7p1Ii5O0p4S0nhz5FAHdryt25DP75X18T7FhcMObXdgzwAA4L8cPiw2bJAFeHmJxYutLLNmi/vuEyNGyAKKisTcuRU9CgAAVcXAE9F1b2VJAn7tNdzuUWitW4vx42UBx46JPXvs2ycAp6LgDlQhJpOYN08e4sDwdsW3gx+5VitEEnDfwU2O7RkAAPzHokVWlmJ77DHRoYM2x/rwQ+EtXdblhx/EqVPaHAsAADc3Zv9GSavRw+Nf/R9wZL/PP28l4PPPHdktACeh4A5UIb/8Io4elbTfatJ8S/e7HN690cPjt6hhkoB2l860TU2SBAAAACsSEsTatbKAGjXEG29odrg2bcRjj8kCjEbx/vuaHQ4AALfVKPNyVOJhScCuTv3T6jZ0ZNeRkeKOO2QBa9eK9HRH9gzAGSi4A1WFySQWLJCHHJv6vMPD283W9R5hkt7AziB3AAAqZNEiYTTKAl58UYSFaXnEOXNEjRqygO++E5fsnuUWAIAqZmzMRg+TrI92cHi72TPPyFoLC8WPPzq+cwD6ouAOVBU//SQf3i7atDl3930VPEhqcKPDLTtLAoYf+t2nuKiCRwEAoJo6e9bK5XTduuKllzQ+aFiYePppWUBhofjwQ40PCgCAW/E0loyK3SwJSG7Q4kiLTo4f4P77RUPp6Pjlyx3fOQB9UXAHqgSTSSxcaCXmzTdNnl4VP9SGnvdKWoPysgec2FfxowAAUB198okoLpYFzJghgoK0P+6rr4qa0hXevvxSZGZqf1wAANxEzzOHQrIzJAHrekvXIbfKx0f83//JAg4dEseOVegQAPRCwR2oEtassdL1tmljZd1zm23vMijXL0ASwKwyAAA44uZNK4PXgoLEjBmVcuiQEPHEE7KAnByWawMAVGfD/touaS308vkt8p6KHmPyZCGdwVX8858VPQQAXVBwB9yf0Wh9ePu8ecKzQrO3K/J9/H7vOkgS0Ot0XMCVVE2OBQBANfL11+LWLVnA3/4m6tSprKM//7zw8ZEFLFkiipg1DgBQHfkUFw6U3sm9q3O/mwEVvgWtdWvRt68s4IcfrCz0AsA1UHAH3N/q1eL4cVlA+/ZaDW83W99zuKTVw2RstfEnDQ8HAEDVV1IiPvtMFuDvL557rhITaNxYTJokC0hLE7/+WokJAADgqgae2BdwO1cS8GvPis0no3jsMVlrWprYxwyugBug4A64OaNRLFpkJWbuXOGh5X/2Y80jkus3lwS03rCaL94BALDD+vUiOVkWMHmyCA2t3BxeesnKB4ZPP63cBAAAcEnDDsnmk0kPCo5r3U2bIz34oAgMlAX88IM2BwJQmSi4A27uhx/EiROygA4dxIMPan7YjT2HSVoD01LEnj2aHxQAgCpLXss2GMQzz1R6DuHh4r77ZAF79rBcGwCgugnKv3XHqYOSgG3dhhi1GuIWGCjGjJEF/PSTlfXVAbgAL2cnAKACSkqsz96u9fB2s41Rw57etMyrxHJP/803YpBsqncAAPD/nT0rdu2SBQwbtjSrxtcf7bVxf0ajsbi42MPDw8vLvk/7UY0GLBHrZBGffiq+/NKufQIA4Nb6xf/pXSJbxWRL97u0PN7DD4vvvrPYev262LlT3H23lkcEoDVGuAPubP16kZAgC+jYUTzwQGUcObNmnX0d7pBF/PyzuHGjMg4NAEBVs3SpMJlkATNmlBhNRpOo7H+xrbpltmgry+T770V2tra/PQAArmzwMdkX3hdCm55sEq7l8YYOFXXrygJWr9bycAAqAQV3wJ2tXWsloHKGt5ut73mvrDk/n9nlAACwrrBQ/POfsoD27cU99+iTi8lgOH7//8oicnPp3wEA1Yd/Qb58Ppmt3QZrfEgfHzFunCxgwwZRUqLxQQFoioI74LZKSsSWLbKATp2s9NMV80f73ulBwbKIb76pvKMDAFBFrFsnrl2TBTz9tDAY9MpGnLlnrKhVSxbx9dd65QIAgJP1PfmnT3GhJGBH54HaH3X8eFnrtWvizz+1PygA7VBwB9zW/v3i+nVZQGUObxdClHh4/hYlHXAXGyuOH6+8BAAAqAq++krW6u8vJk7UKxUhhCiq4S8ee0wWcfAg/TsAoJoYdDxa0nqxXpOzDVtUwlEHiXr1ZAFWb3YH4FQU3AG3tXGjrLVBAzF2bGWnYGVWGcEgdwAApJKTxY4dsoAHHxS1a+uVzb9NnWolgP4dAFAN+BQX3ZlwQBKws3P/Sjmwp6cYNUoWsE66wjkAZ6PgDrit9etlrSNHVurwdrMLoU2Ptugki1i5UhQUVHYaAAC4qxUrrCyX+sQTeqWi0qGDuEO6NDr9OwCgGuh+9oh/QZ4kYGfnAZV17DFjZK3nzomjRyvr0AAqjII74J6Sk8XJk7IA+ffh2rEyyD0jQ2zYoE8mAAC4GZNJfPedLCAiQvTpo1c2/23KFFlrRoaVL/4BAHB//U7Kpkq/XKd+Qljbyjr20KEiMFAW8OuvlXVoABVGwR1wT/Iqtp+fGDJEn0R+7zo4z9dfFrF8uT6ZAADgZv78U5w9KwuwOrVL5XnoIVGzpixA/lUBAADur198jKR1V6f+pspb1dzPTwwbJgvYtKmyDg2gwii4A+5JPoH74MEiIECfRPJ8a2zvOlAWsWWLSEnRJxkAANzJihWyVh8fMWGCXqmUERgoxo+XBWzZIjIy9MoGAAC9tbp8rlHmZUlAdEQl34Umn1UmNlZcu1a5CQBwFAV3wA1lZ4u9e2UBes0nY7a+53BZs9EoVq7UKxcAANzE7dti9WpZwL33ipAQvbIpz//9n6y1sNBK/gAAuDP5fDI5fgGHW3au3AxGjBBeXhZbjUaxdWvlJgDAUZb/6wJwWVu3isJCi60Ggxg5UsdsxJEWnc6HNm1+7aLFiGXLxKxZovLutgMAwEl+Opq27cx1B54YGfP7kzduSAK+aN3/rzX/WQ/Nu/LXQi/tjjtEmzYiMdFiwHffiWnTdEwIAAD99D0pm09mf3iPYs9KLqnVri369JENttu0SUyaVLk5AHAIBXfADcnnk+naVYSF6ZXK/7exx7Dpv31psfncObF3rxhQaQu4AwDgJJdu3v7r0k0HnvjIdtmio9n+QSvqdylU7bldqHTltEryyCNi3jyLrTExIjlZtGypY0IAAOihZn5OpwsnJQF7I+7UI4/hw2UF961bRXGxbBQ8ACdhShnA3ZSUWFkdRd/5ZMw29LzXytf7LJ0KAMC/BdzO7ZNwQBKwreugQi9v3fKxaOJE2Q1qJpNYtUrHbAAA0EmPxEOexhJLrUYPjz/b99Ijj+HS6VuzssT+/XqkAcBOFNwBd7N/v0hPlwXoO5+MWUbNun+26ymLWL1aSG+cBwCg+hh0PNqn2PLscEL81mOYbsnItG4tekkLCt9/r1cqAADop/fpWEnriaYdbgTU0iOPTp1E06ayAKZxB1wSBXfA3WzYIGutX19ERuqVyn/ZIF86NT+fpdUAADC76+huSWtKSOPjzTrolYs1EyfKWk+dEvHxeqUCAIBO7jh1UNIaIx9tpi35IPdt2/TKA4AdKLgD7kZecB81Sui/qJoQQoi9EX0yataVRTCrDAAAQgTl3+p1Ok4SsLX7XbolY91DDwlv6eQ2a9bolQoAAHpofu1iw6yrkoD94T10S0bce6+s9dAhkZmpVyoAbMXSCoBbOXdOnJSt3CJGjNArldJKPDw3Rd09adcPFiP27xcJCaJ9ex2TAgDA5Qw+use7pEgS8HuXQbolY129emLoUNn6MWvWiDff1C8fAAAqmXx4e3aNmvFN2tm+t0s38388klZUVHTz5k1vb+9aly1ODV8ur+B2Y728PIqLy28uKfnzm59T7hohhOhQP7BTwyC7dg6gklBwB9yKfHi7r6+4y5lj4tb1GiEruAshNm2i4A4AqObuPrxT0no+tOnZhi10S8YmDz0kK7ifPClOnBAdO+qYEAAAlUg+gfuB8CijPbeVJ17P3RB/1WQyFRUVGQwGb+/r9ubTollE97NHLbVe/Xn9+57hQoj/69mUgjvgIphSBnArGzfKWgcPFoGBeqVSjguhTa3MObtjh165AADgimrlZkeePSIJ2OJS88mYjR4tfH1lAcwqAwCoKrxKirslW6xuCyFiwnWcwF0IIcSBtlGS1l5nZPPUAXAKCu6A+7h1S+zZIwsYNUqvVCyysnRqdLQokt1EDwBA1TYg/g9Po+xe8m3dBuuWjK1q17ZyCx0FdwBAVdHxYoJ/Qb4kQNcJ3IUQ1grujTKvNL1+SbdkANiCgjvgPrZsEYWFsgD58uW6iI64Q9ackyMOyqbDAwCgaht0bK+k9XTjNhfrNdEtGTs89JCsNSFBxMfrlQoAAJWoR+JfktZz9Ztdq11Pt2TMTjZpl12jpiSgR+Ih3ZIBYAsK7oD7kM8n07WraNZMr1Qsuh4UciG0qSyCWWUAANWVf0Ge/L7v7V0H6pWLne67z8qsMuvW6ZUKAACVSF5wj23TXbdMFEYPj9i2kZKAqKTDuiUDwBYU3AE3YTSKLVtkAS4wn4zZQflHEAruAIDqql98jE+x7Ga1XZ3665aMfWrXFnffLQug4A4AcH9+hbc7XpDdsxXbRlb4rjwHpAX3yKQjBpNJt2QAWEXBHXATMTHi2jVZgMsU3K18BNm/X+Tm6pULAAAuZOCJaElrcv3m5+V3iTnX/ffLWg8dEikpeqUCAECl6JZ8zKfY4qpjRg+PQ6266JmPIq61bFhb3ZysllfO65ULAOsouANuQj6fTGioiHTON+1lxbbpbvLwtNhcWCj27dMxHQAAXIJPceGdCQckATu7DNAtGUeMGiW8vCy2mkzi1191zAYAAO3J52Y53ahNtn+QbsmoXawXJp87PipJNhMOAJ1RcAfcxIYNstZRo4SHq/x3vlUjMKtte1nEzp165QIAgKvodSbOvyBPErC7Y1/dknFE3bqiv3TGG2aVAQC4OXnBPbatEyZwV8S17iZpZRp3wKW4SoUOgMyFCyJeNpGc68wnY3a5h7RkwDTuAIDqp/+JPyStaXUbnAprq1syDhozRta6Z4/IzNQrFQAANOZfkN/u0hlJQKx0XpfKJp9VJvLsUYPRqFsyAOQouAPuQH6Ptq+vGDJEr1RscrnHnbLmw4dFerpeuQAA4HwGk6nfyRhJwG6XXS5VbfRoYTBYbC0uFr/9pmM2AABoqfP5E57GEkutRZ7eR1p21jOfUuQj3IPysoOTEnRLBoAcBXfAHcjnkxkyRAQG6pWKTa516yl8fS02G41i714d0wEAwMnap5wOyc6QBOzq1E+3ZBzXtKnoLh3cJ//EAgCAC+t+9oikNaFJeL6Pn27JlJVWt0Fa3YaSgEZHCZH7BAAAIABJREFUD+qWDAA5Cu6Ay8vJEdHRsoCRI/VKxVbFfjVEr16yCGaVAQBUJ/1P/ilpvRFQ62jzjrolUyHyWWW2bhVFRXqlAgCAlrqfPSpp/atVF90ysSSujWyQe8OjsbplAkCOgjvg8rZsEQUFsoDhw/VKxR6DB8taWTcVAFCd9I+XTeD+R/veRpdZ/NwKecE9O5ub2AAA7si3qKBDyilJwF+tuuqWjMUcWsqK/o2OHBAmk27JAJBwk0/2QHUmvzu7a1fRrJleqdhDPq38qVPi0iW9UgEAwJkaZF1tk3ZWErCno3TtE5fSsaNo1UoWwDTuAAA31Pl8vE+xxZu0Sjw8jzaP0DOfcslH2de4kSnOyBZ9BaAbCu6AazMaxZYtsoBRo/RKxU69e4uaNWUBu3bplQoAAM7UP/5Pg+URZ0We3vvDe+iZT0XJb61bv16vPAAA0Ey3ZNl8MqfD2uT6BeiWjCVpdRterR0qi+A+M8A1eDk7AQDij3OZX8RcKLep7Zkjc65dkzz3Te82Z78/bOOBavrq+F/ey0v07Ss2b7YYsGOHmDRJv3wAAHCSvgkxktZDrbvm+frrlowGRowQixdbbD17Vpw+LcLDdUwIAICK6pp8XNIqn8tFT4dbdh7213aLzdHRYupUHdMBUD4K7oDz3bxdnHD1VrlNQ/bJFhfNDKyzKaCJ0cJzy2oXGmh3chUxZIis4L7d8qcEAACqCt+igsikI5KAvRF9dEtGGwMHisBAkZNjMeC33yi4AwDciKexpNOFeEmAK6yYavZXqy6ygjsj3AHXwJQygEvrH/+npDU6oo/R4ML/i+XrpqamMsEcAKDKi0o67FskW/x8Xwd3K7j7+oqhQ2UBGzfqlQoAABoIT02qUXjbUqvJYDjSopOe+UgcadlZ1nzhgrh4Ua9cAFjkwqU6oNprmHW15ZVzkgBXHxPXpYsICZEF7NypVyoAADjHnQkHJK1nG7RIq9tAt2Q0M2KErHXfPpGdrVcqAABUVNdzxySt50KbZfsH6ZaM3LnQZjcCaski/vhDr1wAWETBHXBdA07sk7QWennHtonULRlHeHiIgQNlATtkE+YAAFAF9EnYL2n9o31v3TLR0vDhwmCw2FpUxHfqAAA30uXcCUnrkZauMrxdmIfbywe5/ym7Sx6APii4A66rn3Q+mbg23fN8a+iWjIOGDJG17toljEa9UgEAQG9Nr6eEZaRJAty14N6woYiUfuu/ZYteqQAAUFFdzslWTD3SQlrg1t3R5h1lzYxwB1wABXfARfkX5HdLPioJ2Btxp27JOE5ecM/IEEdlvyMAAG5NPp9Mrl/AsRYRuiWjsWHDZK2bNumVBwAAFdIkPTUkO0MS4FIj3IUQR+UTyh87xsRugNNRcAdc1B2nDvgUF0kC3GNMXJs2olkzWQCzygAAqq4+p2QF9wNtI4s8vXVLRmPygntKikhI0CsVAAAc1/m8bD6Z9KDgtLoNdUvGFqfC2hZ6+VhsLikRBw/qmA6AclBwB1xU35OyKV/PNGp9uU593ZKpkEGDZK0U3AEAVZRf4e3IpCOSgD/b9dItGe316iXq1JEFbN6sVyoAADhOPoH7YfmE6c5Q6OWd0CRcFsE07oCzUXAHXFTPxEOS1uiIPrplUlGDB8tao6NFYaFeqQAAoJ/uZ4/6FMv6uJh2PXVLRnteXuKuu2QBW7fqlQoAAI7rdCFe0mpl/hYnOdqCadwBl+bl7AQAlCP0xvX6N65JAqI73KFbMhUln8Y9N1ccOCD69dMrGwAAdNL7dKykNbFRq6u1Q3VLxnanr+fMXC8rPSh6Nuj8kFhjqbV41+43VscV+llc4H1g65CRHdzkdj0AQBXlX5DX6so5ScAx+QqlTmJl3dT9+4XRKDwYYgs4DQV3wBV1kc4idyOg1smm7XRLpqIaNRLt28smct25k4I7AKDq6X0mTtLqssPbM3ILT13LsSUyPrjDgwaDwWQqt9WrqDB3+07JkjNhtS3W4gEA0EfExVMeRqOl1ts+fmcatdIzHxsda97RZLkLFtnZ4uRJ0dEVvyoAqgm+7wJcUZdzxyWtR1t0Mhrc6j+vfFYZpnEHAFQ5oTfTW0pHzO0P76FbMpXkelBIYkNZGaLXadlXDgAAOJ18PpmEsLbFnq44UDUrsHZKSJgs4oBs2XYAlc2tanZAtSFftsXK7WMuSF5wP3BA5ObqlQoAAHqQzydz28fviEvOCWsv+Th9+Rh/AACcTn7p7ZrzyZhZn1UGgPNQcAdcTo3C223TkiQBVhZIcUGDBwtPT4uthYVi3z4dswEAoNLJC+5/tepS6OWjWzKV50B4lKS15ZVzoTeu65YMAAB2MZhMERctz30qxLHmEbolY68TzdrLmim4A05FwR1wOREXEzyNJZZaC728E5qE65mPBmrXFl27ygKYVQYAUIV4mIw9Eg9JAva3ldWp3ciRFp3zffwkAT2S/tItGQAA7NL0ekrt3JuSgBPNOuiWjL2ON5N+GXDypLgp+9UAVCoK7oDLkU/gfiqsrVuOiRsyRNZKwR0AUIW0u5RYJ+eGJKAKTOBuVujlfaRlZ0kA07gDAFxWR+nw9rS6DTNq1tUtGXslNWyZ52t5+XGjUcTRBQNOQ8EdcDldzksncHfTKV/lBfcjR0R6ul6pAABQuXpK5y6/VivkXP3meuVS6Q5IR+v3OhNnMJl0SwYAANt1vHBS0urK88kIIYweHlbufWdWGcB5KLgDrsVgMnW8IJ9Fzt0mcDfr21f4+lpsNRrFnj06ZgMAQCXqKZ1P5kDbHiaDQbdkKpu84B58K7P15WTdkgEAwHbyCdyPu/B8MmZWZpWh4A44DwV3wLW0vHI+KC9bEuDiX7Nb5O8veveWBezcqVcqAABUIp/iwi7nZDerVZn5ZMySGraU33HfSzreHwAAp/AqLGiTJvtK2JUncDc70VS6buqBA3olAqA0Cu6Aa5HPJ3MpuJErzyJnxeDBslamcQcAVAldzp3wLSqw1GoyGGLbdNczn8pmMhgOto2UBPRIZN1UAIDLqZd40rukyFJroZd3YqPWeubjgOPy0XjXr4tkbjIDnIOCO+BaOlfJCdzN5NO4nz4tLl3SKxUAACqLvL6c1LBlZs06uiWjD/msMt2Sj3qVFOuWDAAAtmiQcFTSmtiodaGXt27JOCajZt3LderLImJj9coFwH+h4A64li7njktaj7ZwzwnczXr1EkFBsgBmlQEAuL8e0gncY9vIBoO7qQPhsoK7f0G+fJJcAAD01+DkEUmr60/gbhYvn1Xm4EG9EgHwXyi4Ay6kdu7NsIw0ScDR5u48wt3LS/TtKwtgVhkAgJsLvJ3bIeW0JOCAdPYVN3U9KOR8aFNJALPKAABcTYMEWcH9ZNN2umVSEVbypOAOOAkFd8CFdE0+ZjCZLLXm+gWca9BMz3y0J59VZvt2vfIAAKBSdD97xNNYYqm1xMPziFvPDmeZlWnckyi4AwBcSUZGrcuyGU1PNHWPEe5W1k396y9RzKxugBNQcAdcSOfz8ZLWo80jjAY3/z8rXzc1LU2cOaNXKgAAaK/nGdl8Mieadcj1C9AtGT3Fte4mae10Pl6ykCwAAHo7eFBYHuuWXaNmSkhjPdNx2KmwcKOH5SpBXp6IlxUZAFQSNy/eAVVLV+kE7seau/ME7mZduoh69WQBzCoDAHBn8rlTDrbprlsmOotr3U0yLMCnuKjLOdmy8AAA6CouTtJ4smk7k8GgWy4Vkedb41yo9D54ZpUBnIGCO+AqfIqL2l2Sje8+WgVuQjcYxMCBsgAK7gAAt1U3J6vl1fOSgCq5YqpZtn/QmcatJQFM4w4AcCGxsZJGKyuRupj4ZtJspb8pgEpCwR1wFe0unfYpLrTUavTwcK9e3yL5NO67dgmjUa9UAADQUvezRyVrseT7+B1v7h4TwjomVjp+n2ncAQAuRDrCPd5NVkw1i28izZaCO+AMFNwBVyGfT+ZMo9Z5vjV0S6YSyQvumZniiGyxeAAAXFaUdBD30Radijy9dUtGf7Gt/x97dx4c2V3fe//Xm1r7SBrtau27NKs9xuBL7g1kqRDAJL5gF5gUPDihqCSPE1JhC9TzT0ISO6RYknqKlOHJTVJAcIq6QAIksW+4F8fLjGc0kkZq7fu+z2jtbnX3ef4QNmNb59taun/dp8/7VfwxzPdY+o40I6k/53e+Xylw75gZzAnsaGsGAABTc3NqYUGoD1S3auvl9GKczOvvV4GArl4A/BSBO5AqYmxMrbf+APcDTU2qVpwxx1QZAIA13Tsm3TO+0XRJWydJ0d1wIexym1Wd0ejl8V6d/QAAcDjxePtKfvFKfrG2Xk5vtKIh6PGalvf3VU+PxnYAKEXgDqSOC5PSMrHe2nQJ3JVSb3+7VH3uOV19AAAQN2e31uuWp4ULrosHwNPArjdLPmR3zxgv+AEAKUAe4C6PRE89YZd7uLJRukK8wQAgEbQG7pFIpLu7+5//+Z9ffPHFzc1Nne8aSHG+tfmirQ3hgt60OeGuYgXubFEHAFjQvaM3hQHuu96sAV+Lzn6S4kajdIpffgIAAABNxMDdb6l5MgcG5DHuN27oagTAT2kK3A3D+MpXvlJTU3P58uUHH3zwgQceKCgo+MhHPrKysqKnASDFXRQHuC+fKV4oLNPWTMK97W1SdWlJTU3pagUAgPi4MnpTqMrjVtKGPDanfXYolzHuAIDkMgw5gB7wWTFwF2/qc8Id0E5H4G4YxqOPPvp7v/d78/PzSqmysrKMjAzDMP72b//2LW95C0fdARUrcO+uv6CtEx2qqpTPJ13AIXcAgNVcGZWOb19vvKytkyTqqTsnLIZ1RqPyDzwAACTcxIRaWxPq1tqYesDvE0+4+/1qd1dXLwCU0hO4f+ELX/jWt76llPrwhz88PDy8uLi4vb395JNPOhyOsbGx3/3d39XQA5DiLk2IA9zTaZ7Mgfvvl6oE7gAASynZXK1ZmREuSPuNqQcCGZn9NdJr/nvF2xIAACSceLx9vqjids4Zbb3Ey0RZ7V5Gpmk5ElE3pefwAMRdwgP3jY2Nz3/+80qphx9++Otf/3pzc7NSyuPxfOITn3j88ceVUt/+9rc55A6b82zdqVuShqj0pF/gft99UvXqVV19AAAQB/eMSutAd73ZgzYY4H6gizHuAIBU1tUlFK04wF0pFXU6h6qapSsY4w7olfDA/Rvf+MadO3ccDscTTzzhdL7m3f3O7/xOZ2dnc3PzDf7lw94Kuq87jahZdS8jc7iySWc/Osgn3G/cUOGwrlYAADite8alwL2r8WLE6dLWTHIxxh0AkNLEAMq6N8hjTMJhjDugV8J3N33/+99XSr31rW+tq6t7Xam5ubmvTxqjAdhE4U1pSXp/TbvlXqW/MLn+L/4l4YLMgPN/OJ3OqMltht3dT/z5P03ViLfolVJK/e5/qf+vjWdP1iQAAPFyeUwK3G+Ih77TzMEYd09k/9DqwRj359vfrLkrAAB+SjzhbsUB7gdidM45V0CvhAfu165dU0r94i/+YqLfEWBdhTelkeU99ee1dRIvW8HI+FqMrSwTpbWNixNm1YJbN3+cUxXzHW2HIsduDgCAuCrcvl2/LI2G62q8qK2ZpDsY437JfDnqPWM9BO4AgOSYnJQ3pg5WWfWEu79a3Js6NKR2dlROjq52ALtL7EiZ+fn5O3fuKKUqKir29/e//vWvv+c977nnnnve+c53/tEf/dE19iICSqlwuOCWNM+0py7tBrgrpZTqr20Xqp3TA9o6AQDgNC6P9zgMw6xqqwHuB+Qx7pfF8TsAACSQOFllvqjiTk6+tl7ia7rEt59tnqdHIqqH77+APok94T4/P3/wi2g0euXKld7e3oP/e/PmzR/+8IdPPPHE448//md/9meZmebLlJVSSv3SL/1SzPe1vLx8ym5j2tra2tzcDAaDoVAo0e8LSqnV1dVgMOhwOLxeb7J7SSB3T0/RrukwU8Ph6KlqCcdpoHkgEBTe1EHpdbsWTvqOAjF77q1qfVD90KzaMeU/yp/69u3bif+nnxDBYHBtbS29/26nlDt37mxvb+/v7wcCgWT3AiDd3CPOk+mpP2e50XCndKPp0kee/QezavvMcGYoEMiI8fM/AADxl6bzZJRSUYdztam9otf8jkJXl3rgAY0dAbaW2MB9a2vr4Bef/OQnNzc3L168+O53v7uurm50dPTpp58eHx//0pe+pJT64he/KL+dZ599Nub70pChBIPBYDDo8XjIa/Q4+IAHAgHD/NRYGsh74QWhOl5au5GZo8xmnR9TJBKJmr+pg4+zcMHRRcV3dKBXPO7XtDSZGdjZzciS34h189ODv95Ky9cuqFc+4Adfw5PdC4B0IwfuNxtsNE/mwK3azrDL7Y4cfuPcE9k/P+V/ufkezV0BABBrY2rsLWKpbKX1XIzAHYAuiQ3cXw2SNjc3//AP//DP//zPXa6fHvD53Oc+9973vvdf//Vfv/KVrzz66KNXrlwR3s4zzzwjVA/Ov5eWlsapa1OZmZkejyc/P//MmTOJfl9QSjkcjkAgUFJSEvMZCEvziKuDe+rPud1x+3eamZnpdpseGz8I3OPy7ryZmW53jOnqE77mvYzMrNDhcbMzGj2/MH4j1tDbM2fOlJYWn7DLpDr48piZmVlSUpLsXmzB6/V6vd4zZ87k51v1KVEAqcm7s9W0OC5cEPN7WfrZ9WYNVTUL0+Euj/cQuAMAkuDmTaE44LPwCXel1Gpzp1QmcAc0SmzgnpX109Oply5dujttV0rl5OR89atfbWlpCYVC3/nOd+TA/Sg7VzVksqFQKBAIeL3e9M5/U4fX6zUMIzMzM80/4FevCsXe+vNxmfFywOVyCm/N4XCoOI2UcblcMd+O4XQOVTULS9XOzw7ebL4sv5GMjAzr/vU4iICt27+1vPrVmw84gPiq6rnmNH+oK+jxDshLzNJUV+NFMXDv1dkMAABKKTUzo1ZWhPpQldVPuJ+Xyn6/CgQUr4YALRK7NDUvL+/gF+985zvvTtsP1NbWtrW1KaVene0O2M7cnJqZEeq9abox9UB/jbw3dVBbJwAAnExVz8tC9VZtR8htx0lW8iCd81N+T2RfWzMAACgV43j7YmHZRm6Btl4SYaOuUWWZD2Xd31e3TI+7AYivxAbujY2NB7+orq4+9ILa2lp1125VwHaee04o3s45M1Ncpa0X/fpr5cDd9GQcAAApoqpXCty77DdP5kB3w/mow/SFRmYo0D4zpLMfAABizZORdoxZQtTlVufFQ+5MlQF0SWzgXlBQ4PP5lFIjIyOHXjAxMaGUam+XQjcgnYkbU7sbLhgOh7Ze9OsTT7iXbywVb65pawYAgGPb2Skdlnax2HBj6oHNrLyxinrhAnnTLAAA8ScG7lafJ/NT94grUsSPAIA4SmzgrpR6xzveoZT6/ve/HwqFXlcaHR0dHBxUSl28aNOXIoAcuPfWiTtPrG++qGI9r1C4oGOGqTIAgBR29aozbLqNPOxy99V26Gwnpcg3GxjjDgDQTQ7cfQTuAOIm4YH7Y489ppQaGRn55Cc/Gb1ro9TW1tZjjz0WDofz8vI+8IEPJLoNIBXt7Kge6XhXT1oPcD/QXy0dcj83xVQZAEAKE0fDDfpa9jLsu5pMHqdzYbLPYb5sFgCAOFtbU9PTQn2o0gaB+61byvygAIA4Snjgfv/993/wgx9USn35y1/+uZ/7ub/6q7/6l3/5lyeeeOLChQs/+clPlFJPPPGE2YR3IM1dvSp8twu5PQPVrTrbSQp/TZtQZYw7ACCl/ed/CsWbDRe0NZKC5D9+3t722Ylhbc0AAOxOHF++nlu4XFCirZcEOn9eZWSYVvf21BA7VAAd3Brex1NPPbW+vv7DH/7whRdeeOGuARrZ2dl/8id/8rGPfUxDD0AqEufJDPpaQ27z75TpQh7j3jk94DSiwtY1AACSJhxWL70k1LvrxcVl6W4tr2imuKp6dc7sgqpb15X6VZ0tAQDsyw7zZJRSGRmqrU31ms9tu3lTdab56FogFeiIsTIzM3/wgx985zvfeeihh1pbW2tra9/xjnd8+tOfvnXr1sc//nFHWu+EBCTyxlR7vErvr2kTFsPmBnZqVmZ19gMAwFHdvKm2t82KhsPRa4PRcLLueumQe8WtG9o6AQDYnR02ph64fFmqdnfr6gOwNR0n3A889NBDDz30kLZ3B6Q6w1BXrwr1tN+YemAzO3+muEpI1TunByZLa3S2BADAkYgD3CdKazdyC7T1kpq6G86/++UfmVV9Pdd0NgMAsDVbBe5/93emVfamAlowqAFIkv5+tb4u1G/ZI3BXSvXHmiqjrRMAAI5BHODebe8B7gfkx/VyVxbV1JS2ZoB04vf7P/axjz377LPyZbu7u9/61rc+97nP/cEf/MGXvvSl0dFRPe0BKWdnR4l//4eqmrT1knCXLklVTrgDWhC4A0kizpOZKa5ayyvS1ktyyYH7OQJ3AEAKMgz1/PNC3Saj4WTTJdXruYXSFeJNCwBmnnrqqb/5m7/pFoOz7373u9XV1R/4wAc+//nPf/GLX/z4xz/e3Nz80Y9+NBAIaOsTSBW3bqlIxKy4682eLa7S2U5iXbqkhNHN6+vc7QY0IHAHkkR8ld5jp1fpcuDePDeWEd7X1gwAAEcyOqqWl4U6J9yVUobD0d0g/khD4A4c39zc3D/8wz/I1/zbv/3be9/73vX1dafT+aY3venBBx/Mz89XSj311FMf+tCHtLQJpBLx7tRwZWPUkUbh2Jkzqr5euoCpMkDipdHXFMBaxBPutlqzNlTVHHJ7zKqeyH7L3IjOfgD74IF04OTEG+fLBSXzReXaekllMc4QELgDx2EYxg9+8IN3vOMda2trwmXBYPCxxx6LRCIFBQV9fX1Xr1793ve+t7q6+q53vUsp9fTTT3/ve9/T1TKQGnp6hOJwOs2TOcDeVCDZCNyBZFhelkfI9dgpcA+5PaOVjcIFTJUBEoQH0oGTizFPhuPtPxVjtI7fL6+0AXDgmWeeeetb31pQUPCud73r1q1b8sXf+MY35ubmDn7R3v7TZ0k9Hs+3vvWt+vp6pdRf/MVfJLphILXEOOFO4A4gzgjcgWQQX6VvZeVOlNdq6yUV9IlTZTqmB7V1AtgHD6QDpxIjcLfRjXPZUFXzXkamaTkaVS++qLEdwKrGxsaef/75zc3No1z83e9+VynV1tb2q7/6q3f/fm5u7vve9z6l1IsvvriyspKIPoFUFIko8TbVcFWztl40uXhRqhK4A4lH4A4kgzhP5lZdZ1qNkDuCWHtT/do6AeyAB9KB01pbU4PSzWBb7WKRhV3uvtoO6QrxhyIABx599NGJu8gXP/fcc0qpX/iFX3hj6cEHH1RKRaPR/2SgE+xjeFjt7JgVI07XaIU48dyKLl2SqtPTamNDVyuATdkr1ANShfja0lbzZA7IgXv16tyZnSMd5wEg44F0ID5eeEEZhllx15s9UiGNSrObGLcfxGcFABzIy8uru4tw5dLS0u3bt5VS584d8privvvuczgcSqnh4eHEdAqkHvFA92RpTcidoa0XTXw+VVxsWjUM1dursRvAjgjcAe2CQdXVJdRv1XVq6yVFTJVUb2XlmlUdhtExw1QZIA54IB2IDzEjvlXbEXXyM/bPxFgFf+2aCoV09QKkv5mZmYNf+Hy+N1YzMjJKSkqUUtPT01rbApJI3Jg6lH7zZA5cENfJMFUGSDB3shsA7OfWLWW+bDDidPXViE9epyPD4Riobn3T8A2zCzqnB15se5POloC09Oijj/7Kr/zKq//34KC6GfmB9CeffPLggfRf//Vfj3ufQKoTA3fmybxOT11n1Ol0RqOHl/f2VE+Puu8+vU0BaWt7e/vgF7m5hx9nyc3NXV5e3trakt9OUVFRzPc1Ozt73PbSw8LCQjQaVUo5ub1qBcUvvWS+S0QNltWFEnzfd3d3LxQKGYYRDocdDodh/pDcKd2+ffvVf5VnGhvz/uM/zK7ceeGFjf/+3xPUBuJrc3Nza2trd3f3iKemkCII3AHtxOPtI5WNu94sbb2kjr6aDjFw54Q7EAd5eXl5eXlHufIoD6QbhsED6bCjYFBdvy7UuxsI3F9jJzNnvKyuaWHc9IrnnydwB+Jlb2/v4Bder/fQCw5+f3d3V347G0cY8Rw1u5GW7qLRqGEYtv3jW45nYECoDlU0JLyDhCXsrxONRl/9axlql6a2evx+/gJbxatfcPiUWQuBO6Cd+Cq9T5xmnsb6atmbCqSQozyQvry8zAPpsKOuLuFJtajTadtv5YLeunNS4P7CC+r3f19jO0A6y8z86Vles0O7wWBQKZWREWNo9fr6ulA9OP9+6A8JNhGNRn0+HyfcLWB52bm8LNTHa9tj/nM4pezs7IydaDQadTgcDofD4/Ek6B0VFhb+7F/lz/+8cGXGyIivrEwlrBPE0e3btzc3NwsKCvLz85PdC46BwB3Q7obpOW6l1EB1q7ZGUoq8N7Vw+3bl+sJ8UYW2fgCbi9cD6Qeb2WQpmNpvbGzs7e3t7u5mZ2cnu5f0tL29vfmKZPdybPk//GGBeXW4vOG2w52IoeS7O7tHf+Y9Go1GIhGHw3GCw1A7Oztxf7j+RnX7Qy9+36waee65udT7OiALh8PLy8tut3t/fz/ZvaSt+fn5ZLdgSTk5OQe/2NnZOfSCg7PtZt/fX1VYWBjzfdk2bj74gzudTtt+BKykr08oLp8p3sgVvqvHiUOpo/1UfNr343D87O9kZ6fKyDD9gSQYdI6MqMOeZEWqcd4l2b3gGPhsAXqFQqq/X6gP+GwauK/lFS0WlgkXnJuWngQEEF/xeiAdSD8Z4pNqN+23+fwoumul/TSuxUW3XSdBA3FXVVV18ItD71gc3CtSSlVWVmptC0gWcWPqaGWjtkZ0y8hQHeJyOPamAonECXdAr1u3VDBoVgwaOKn/AAAgAElEQVS5PRPltTrbSSn9Ne3lG0tm1c6pgX+/9Had/QB2Fq8H0uWtUAcnfWpqak7SYiLl5OTs7OycPXv21XOCiK/Nzc3bt2/n5+cXFCT+WFnciS/d+xouJujJ9Oyc7Iydox5Xj0aj4XDY6XS63cf+aT8nJydjJ87TZpcq6tbyis5umU6oqJycVA88EN93mlD7+/tut9vj8VRU8PhdYqXg94gUV1VVlZubu729PTQ09Mbq6OjowYMv7eJ8ZyB9iN+1hyubtDWSBBcvSql6b6/GVgDb4YQ7oJe4MXW0snHfZd8xav01bUK1kxPugEbxeiAdSDfj42phQaj31vN09uF65I/Miy/qagRIfw888IBS6rnnnntj6dXffMBSt7iAkxNj5ZGK9D3hrpS6eFGqErgDiUTgDuglDnAfrGrR1kgKkrfMtc8OuyNhbc0ANscD6cDhxFx4Jb94QRyPZme9dWLg/sILuhoB0t973vMepdTVq1cHBl5/YOXv/u7vlFJXrlyprq5OQmeAZqGQesO/grsNV6X7CXcBgTuQSATugF5sTDU3UN0WcbrMqt79YMPipMZ2AFs7eCBdKcUD6cBrvPSSULzFAHdzPfXnpXJvrzJ5ngbAcX3oQx8qKSlRSn3sYx8LBAKv/v5Xv/rV559/Xin1iU98ImnNAToNDAhrzMPezOkSn852dJMD94UFtbysqxXAdgjcAY329+Ul6QM+W59w38vIHC+vEy44N+3X1QsAHkgHDvP880IxxtQUexuqag65zafbh8Pq5Zc1tgOks5ycnL/+679WSv3kJz85f/78Jz7xiSeffPKXf/mXf/u3f1sp9e53v/t973tfsnsEtBAHuK/VNQvnvdLB2bPqlYdWD8chdyBhCNwBjfr61F1nTF5n3+UZL6/X2U4K6henynROD2rrBAAPpAOvt7Ojbt0S6jGmpthbyO0ZlA8WMMYdiJ+HH374a1/7WnZ29ujo6Be+8IVPfepTzzzzjGEYjzzyyDe/+c2DpeVA+hMD5dUmGzypeeGCVCVwBxKGwB3QSJwnM1rREHLbd2PqATlwPzfFCXdAHx5IB17v6lUVNt0mEnJ7hqqadbZjOb3yyB0Cd+DIfvzjH//4xz9+5JFHhGsee+yx8fHxL3/5yx/96Ed/4zd+47Of/ey1a9f+8R//kYXnsBE5cG+wwUBXAncgSdzJbgCwk64uoThQbet5Mgf6a9qEav3SVE5gZyczR1s/gJ0dPJD+yCOPHDyQ/mu/9mslJSXPPvvss88+q3ggHfYkLvYcqG7jxrksRuD+wgvKMBQHb4Ej+Pmf//mjXFZWVvb4448nuBcghYmB8kpTu4poayVJ5DHu4sgdAKdB4A5oJJ5wj/GctT2MljfsZWRmhQ4fvOM0om2zIzeaLmnuCrCthx9+eGtr6/HHHz94IP3V33/kkUe+9rWv8UA6bEfemFrboa0Ri4qxVHZtTY2OqmaeEgAAxMPSklpaEuqrDa1qZFtbO8khn3AfGFD7+8rDcQEg/gjcAV3CYXnw66DPBk+0xRJ1Ogd9LZfHTU8idE4PELgD8fLjH/9YKdXY2Chc89hjj73rXe/69re/3d/fv7e3V1NT8573vOe+++7T1SOQMgxDXb0q1BngHtNKfvFCYVnFhnn88cILBO4AgPiQj29XVwfyC5RK98C9tVVlZppukgsG1dCQOscPMED8EbgDuvT3q709s2LY5R6tsPvG1AN9tR1C4H5u+vXLGwGcGA+kA8cwOqpWV4V6jHkpUEop1Vt/TgrcX3xRfehDGtsBAKSvvj6papOU2e1W7e3q5k3TC3p77fKhAPRiaSqgizhPZqy8PuTO0NZLKvNXS2PcOwncAQBJIc6TmS8qX80/q60X6+qtZW8qAEALeSOoPGslnchj3NmbCiQGgTugixi4D1QzT+an+sQZuGW3l0s2pQOGAAAkhJgF98k5Ml5xSx6809+vtrZ09QIASGviQFd1/ryuPpJN/pPKHyUAJ0XgDugiB+5sTH3FQmHZel6hcEHnFIfcAQDasTE1HoYrGwMZmablSES9/LLGdgAAaSocVn6/dIF87judyGf5OeEOJAaBO6BFJBJrYyqB+8/01bQL1Y6ZQW2dAACglFI7O/L38R42ph5N2OWOcchAvLEBAMCRDA2ZbgpVSmVkqBbbvACXby3Mzqq1NV2tADZC4A5o4fer3V2zouFyj1Y06GwnxfWLgfs5TrgDADS7dk2Fw2bFkDtjpKpRZzuWdksev3P1qq5GAADpSz643dGhMmyzQa2kRJWVSRf09+tqBbARAndAC3GezFZTa9Dj1dZL6osRuE8POI2otmYAAJCPXQ9Ut+67PNp6sTp5WQsn3AEAcSCPJrfPxtQD8hh3psoACUDgDmghBu6bnbaZH3c0/TXtUYfpV6fs4G7t8ozOfgAAdiemwL11bEw9hhgfruVlNTamqxcAQJqSA/dzNhsEJ99gYG8qkAAE7oAWYuB+p9NmN9hj2crKnSnxCRecmxYX4AAAEF/inBM2ph7Lav7ZxULx2XYOuQMATokT7neTT7gTuAMJQOAOJF4kIj+ldYcT7m/QX9MmVDum2ZsKANBlfFwtLQn1PnkoOd4gxi0KxrgDAE7jzh01PS1dIAfQ6Sdm4G4YuloB7ILAHUi8gQG1s2Nadbm2WqSR5fbUx95UAECKEPPfrdKK5TPF2npJDzEC9xdf1NUIACAd9fVJCXJRkaqs1NhNCujsVC6XaXV7W01MaOwGsAUCdyDxurqkakdHJDNLVyuWIe9NbVoY90T2tTUDALA1MXBf7LikrZG0EeOZgJ4etbenqxcAQNphnszrZGaq5mbpAvamAvFG4A4knhy433uvrj6sZKSyKeT2mFU9kf3GBW7CAwC0EEeKE7ifwKCvRfgur/b3Y/zsBACAoK9PqtptnswB+TaD/BEDcHwE7kDiiRtT1T336OrDSkJuz2hFg3BB69yItmYAAPYVDKrubqG+QOB+fCG3Z7hKPGrHGHcAwInJ57XtGbh3is+WEbgD8UbgDiRYNCq/UFdXruhqxWKGxJfiBO4AAB26u1UwaFr1eJZbzmnsJn2wNxUAkCj9/VLVnoF7zL2pAOKKwB1IsMFBtb1tWnW57DhC7miGfC1CtW2WwB0AkHjyAs+LF8PeTF2tpJW+GjFwF8f4AABganZWra+bVh0O1SF+A0pXcuA+PCwdLwBwfATuQILJ82Ta21VOjq5WLEY+4d48P+qMRrU1AwCwKfmo9f336+oj3fTVStvR1fS0mp/X1QsAII3Ih7Xr6lR+vq5WUklDg5Q8hMNqcFBjN0D6I3AHEkwO3NmYam6koiHidJlVs0KBmtVZnf0AAOyIwD0x5s5W7hYWS1dcu6arFwBAGpEDd3vOk1FKOZ2qXbzVzRh3IK4I3IEE6+qSqmxMNRfIyJwqqRYuaGWqDAAgoZaX1cSEdMGb36yrlTS01C5O1WOMOwDgBOTg2LaBu1Ixhtkyxh2IKwJ3IJFibkzlhLtoyMfeVABA8siZb1GRamrS1UoaWmi/JJUJ3AEAJyBvTD1n41Xn8p+dwB2IKwJ3IJGGh9XWlmnV6VQXL2rsxnrkMe5tc8PaOgEA2JG8uvPNb1YOh65W0tBipxi4X7+uIhFdvQAA0kIkogYGpAvkU97pTQ7cGSkDxBWBO5BI8gD3tjaVm6urFUuSA3dOuAMAEuvll6Xqm96kq4/0tNR2QTnNX4xsbSm/X2M7AADrGx1Ve3um1YwM1Sy9wExz8jidmRl1546uVoD0R+AOJBIbU09n0NdimB8ePLOzmbUwp7MfAICNGEaMwJ0B7qcTzMlTbW3SFUyVAQAci3xMu61NeTy6Wkk95eWqpMS0ahgccgfiiMAdSCQC99PZyspdKCwTLsgfYNIcACAxhobU7dumVYdD3Xefxm7S1P33S1UCdwDAsciRsZ0HuB+QD7kTuAPxQ+AOJIxhqJ4e6QIC9yOQp8oQuAMAEkVOe5uaVFGRrlbSF4E7ACCOCNxlnZ1SVd43C+A4CNyBhBkZkYagsTH1aOTA/Yy/V1snAAB7uXZNqjLAPS7kwN3vV9vbuloBAFjfLfE8FoE7e1MBXdzJbgBIX/I8mZYWlZenqxULG/S1CNV8Pz8TAAAS46WXpCoD3OPi/HmVk6N2dg6vRiLqxg313/6b3p4AANYUDKqxMemCdA/cX5ra+EbXrHDB+YnoV82rd651/epf/edR3tEH7vH9zn+pO15zgM1wwh1IGAa4x8OQTzrhnrk0r1ZWtDUDALCLQCDGKTlOuMeFy6UuX5YuYKoMAOCI/H4VDptWc3NVXZ2+ZpIhahjBcFT430BJreFwmP3nZ3bu5GysyW/h4H/7kajOPxdgRQTuQMIQuMfDSn7xWp44JPfmTV29AABso6tL7e+bVr1e5sLFjTxVRh7sAwDAq2IOcDfPmm1iJzNnqaBUuKBpcVxbM0B6I3AHEsMwVHe3dAGB+5ENVTVJZQJ3AEDcyQerL11SXq+uVtKd/KwAJ9wBAEckB+7yvlDbGK1oEKpNCwTuQHwQuAOJMTqqbt82rTocnIw7uqEqaYw7gTsAIP7kg9XyoWwcixy4z86q+XldrQAArCzmCXcoNVZeL1QbFya0dQKkNwJ3IDFibkw9c0ZXK5Ynj3EncAcAxJ8cuDPAPY7q6lRZmXQBU2UAAEdB4H4EcuDesEjgDsQHgTuQGF1dUpV5MscxVCUG7iMjanNTVy8AABtYXVUT4gvO++7T1Yo9yDcwCNwBADFtbqqZGekCRsoopWKNlGlcnHQYhrZmgDRG4A4khnzC/Z57dPWRDmbPVm5n5piWDUP19mpsBwCQ7l5+WQmvNouKVLN4JxjHxRh3AMAp9fdL37vPnlUVFRq7SV2TZTVRp2kSmB3crdhY1NkPkK4I3IEEYGNqXBkOxzB7UwEA2shHqu+7TzkculqxBzlwv35dRaO6WgEAWFN/v1TlePsrQu6MmWKfcEEjU2WAeCBwBxJgfFytr5tWHQ516ZLGbtJBjKkyBO4AgDh6+WWpygD3uJPvYWxuqsFBjd0AACxIHuB+/ryuPixgrLxOqLI3FYgLAncgAeR5Mk1NqqBAVytpgsAdAKAPG1M1KyxULS3SBYxxBwDI5MCdE+53ibU3dVJXI0A6I3AHEkAO3Jknc3yDPvF1eH+/CgR09QIASGvj42plRbqAjamJIN/GkJ85AABADtzPndPVhwWMi4E7I2WAuCBwBxKgq0uqErgf30RZbcidYVre31d+v8Z2AADpSz5MXVenysp0tWIn8m0MTrgDAASrq2ppSbqAE+53GauQAvf6pSknq1OAUyNwB+LNMGJMOLnnHl2tpI+I0zUq/ljAVBkAQHzI2e799+vqw2bkE+49PWpvT1crAACrkY+3V1aqoiJdrVjAVEl1yO0xq2aEQ761OZ39AGmJwB2It8lJtbZmWmVj6knFmCpD4A4AiAs5cGeeTIJcuqS8XtPq/r7q6dHYDQDAUvr7pSrH218r4nRNl1QLFzSxNxU4NQJ3IN7kAe4NDdxdP5kYe1PlMT4AABxFOKy6u6UL2JiaIF6vOn9euoCpMgAAM3LgzgD3N2CMO5BoBO5AvLExNTFiBO49PSoS0dULACBN9fWpnR3TqsvFXLgEYm8qAOBkCNyPaay8Tqg2ELgDp0bgDsQbgXtijFQ2Rpwu0/Lurhoe1tgOACAdyaluZ6fKydHViv3IgTsn3AEAZvx+qUrg/gZjMU64T+pqBEhbBO5AvMnDxAncTyro8U6V1khXMMYdAHBKDHBPIvnDOzKiNjZ0tQIAsI7FRbW6alp1OFR7u8ZurGGsokGo1qzMeCL72poB0hKBOxBXk5Mxvtlfvqyxm3QzKE+VIXAHAJySfMKdwD2h2tpUfr5p1TDU9esauwEAWIQ8T6amRuXl6WrFMubOVgQyMs2q7ki4emVWZz9A+iFwB+JKXt1ZV8fG1NMY8hG4AwASZnc3xot2NqYmlNOprlyRLmCMOwDgjfr6pCrzZA4TdTgnxcfHmSoDnBKBOxBXcubLprXTibE3lcAdAHAaXV0qHDatZmXxoj3h2JsKADgu+WZ5Z6euPixmnL2pQCIRuANx1d0tVRngfjrDVU2Gw2FaXl9XU1Ma2wEApBd5gPs99yiPR1crdiUP7bl6VVcfAADrIHA/EfamAglF4A7ElXzImgHup7OZlbdQWC5dwSF3AMCJMcA96eQT7gsLan5eVysAAIvw+6UqgbsJTrgDCUXgDsTP2pqam5MuuHRJVytpa5Ax7gCABJFPuBO4a+DzqcpK6QL5cwQAsJvZWXX7tmnV6VRtbRq7sZKx8gahWr06lxHe19YMkH4I3IH4kTemlpaqcvF0No6AMe4AgIRYX1cT4mEuNqbqwd5UAMDRyfNk6utVTo6uVixmobBs15tlVnVFI7XL0zr7AdIMgTsQP2xMTbwYgbt8zwMAADPXrinDMK0WFanGRo3d2Jj8JAGBOwDgbsyTOSnD4ZgoqxMuaGCMO3AKBO5A/PT0SFUGuMfDoK9FKs/NqaUlXb0AANKInOTee68StnYjjuTA/fp16b4IAMBu2Jh6CmPiGPdGxrgDp0DgDsSPfML94kVdfaSz1fyza3lF0hXybQ8AAA51/bpUZZ6MNvfdJ93b2NhQo6MauwEApLa+Pql67pyuPiwpxgn3pUlNfQDpiMAdiJO9PTU8LF3AxtQ4GZL3pjJVBgBwAvIJdzamahNzeg97UwEABwxDDQxIF3R06GrFksYqpL2pDZxwB06BwB2Ik95eFYmYVnNyVLMYE+PIBtmbCgCIr9lZtbAgXUDgrhNj3AEARzEzozY3Tasul2pr09iN9cgjZXxr8979oK5egHRD4A7ESXe3VL14UTn55xYfMfamErgDAI5LznCrqlRlpa5WQOAOADgaeYB7Y6PKzNTViiUtnynZzswxqzqj0drlGZ39AOmEBBCIEzlwZ55M/AzJe1NHR6VjDgAAvBHzZFKKPDG/u1uFw7paAQCkMDamno7hcEyU1QoXsDcVODECdyBOCNx1mSuq2MrKNS0bBntTAQDHI48FZ2OqZpcvK7fbtLq7GyNhAQDYBIH7qY2X1wvVhsVJXY0A6YbAHYiHaDTGenQC9/gxHI6RyibpCqbKAACOzjDUjRvSBZxw1yw7O8aaO6bKAAAUgXscyGPcOeEOnBiBOxAPw8Nqe9u06nLxzT6+2JsKAIib4WF1+7Zp1eFQV65o7AZKKca4AwBiMQw1OChdwGvwI4h1wp3AHTghAncgHuSEt61NZWfrasUWhnwE7gCAOJHT2+ZmVVCgqxW8gsAdACCbmlJbW6ZVt1u1iKu/oJSKFbhXri9mhgLamgHSCYE7EA/y0PDLl3X1YRdD8gl3v18F+LEAAHA0bExNQfLc/L4+tbenqxUAQEqS58k0NSmvV1crFrZ8plhYkOY0onXL0zr7AdKG+T4iAEcnH6m+eFFXH3YxUVYb9Hi9+8HDy/v7qr9f3Xuv3qYAAClkdz8S2I8e5cr8ay8LPxDvXrgc2N0X/vNw1DhmaziCc+dUZqbp7fP9fdXdrd7yFr09AQBSid8vVZknc2QTZXUXJk030jUsTg76eFYAODYCdyAeOOGuV8TpGquo75g2n9l38yaBOwDY2V8/N/F0z3zMy9yR8P+50SX8QPx/z2b2/M2LwltoLTU9F4aT83jUpUvqpZdML3j5ZQJ3ALA1NqbGyXi5FLizNxU4GUbKAKc2P6+WlqQLOOGeAOxNBQCcXsPipOnzUkpFnK4YQ8yQOPIwn+vXdfUBAEhJ8gn3jg5dfVjeWIy9qZO6GgHSCoE7cGrd3VK1uloVF+tqxUZiJCBdXboaAQBY2LnpAaE6Vl4fyMjU1gxeQw7cr13T1QcAIPVEo4yUiRc5cOeEO3AyBO7AqcmHqS9d0tWHvcQYJNfbqyIRXb0AAKyqfcZ8OplSA9Wt2jrB68mB+8iIunNHVysAgBQzNaV2dkyrHo9qYez4UU2U1wrV8o2lrJDJShUA5gjcgVNjgHsyjFY0RJwu0/Lurhoe1tgOAMCSOmaGhKqfwD2JWlpUfr5pNRplqgwA2Jc8wL2pSWVk6GrF8lbyizez8syqTiNatzylsx8gPRC4A6cmn3BngHtiBD3eqdIa6QqmygAARN79oPygtL+mTVszeD2nM8b+cwJ3ALAtNqbG1WSZdMidMe7ACRC4A6ezva3Gx6ULGCmTMIM+9qYCAE6udW7EHQmbVUPujNGKBp394PWuXJGqL7+sqw8AQIphgHtcjZXXCVUCd+AECNyB0+nuVtGoaTU/X9VLG0hwGoPy3lQCdwCASJ4nM1zVtO/yaGsGh5DHuBO4A4BtySfcOzp09ZEmJgjcgXgjcAdOp7tbql6+rBwOXa3YzlCVuAnn5k1lGLp6AQBYT8e0tDHVX808mWSTA/fpabW0pKsVAEDKiEbVoPQdnBPuxzVWLh0TlOfvATgUgTtwOvLGVAa4J9JwVZN0P2NjQ02x3QUAYKpzRnq53s8A96Srq1OlpdIFjHEHABuanFQ7O6ZVj0c1i09C4w3GxRPu5RtLWaGArl6ANOFOdgNA6pq9vfeDgWX5mof+81qJefV/51UPvRg7813f3T9ma1BKqa2s3F1fTfaM+Ue4u1vV1elrCABgHbmBneqVWeECTrinhHvvVT/6kWn15ZfVO9+psRsAQAqQ58k0N6uMDF2tpImV/OKtrNy8ve1Dq04jWr805a9u1dwVYGkE7oCp2TuBp16S4nJXNPJ/jUqH454KFA6Jb+FAS0nusZuDUkqpzfbzMQL3X/s1je0AACyjbXbYaZhuYdn1Zk+VVuvsB4e7ckUK3DnhDgA2xAD3BJgoq7sw2WdWrV+aJHAHjoWRMsDJ1S9NZYRDZtV9l0d+Mgunt9l2TirLE/YBADYmD3Af9LVEHfycnALYmwoAeB2/X6oSuJ/ImJhdMMYdOC5eSAAn1zo3IlQnymv3XR5tzdhTjMD95k1djQAALKaDAe6WIAfuy8vsawEA2yFwT4AJMXCvX+S7LXA8BO7AybXMjQrVwSpWtSTcZrsYuE9Pq9VVXb0AAKxEDtwZ4J4qysuVzyddwFQZALCVaFQNDEgXdHbqaiWtjJXXC1VOuAPHReAOnJx8wn2ksklbJ7YVKKtQpaXSFb29unoBAFhG4fbtyvVF4QIGlaYQ+ZA7gTsA2MrkpNrdNa263aqZc28nMVFWJ1TLN5ayQgFdvQDpgKWpwMm1zI8J1SFOuOtx8aJ65hnTane3evvbNXYDALCA9pkhoXonJ3++qEJbM4jhvvvU//yfplXGuANAevlm1+z/GjF9TPnijf/zuPl/u1BW/bnviuff7+JxcQL1Z5bPFG9m5eXvbR1adRrRuuWpAR/HEYCjInAHTqhiYyl/d9OsajgcI5WNOvuxr0uXYgTuAAC8Vqc8wL26zXA4tDWDGGKecI9GlZPQBADSxOztQM+86QvtS+I8mYGzNcJ/+zqtpbnH6yzdTZbVXpjsM6s2LE4SuANHx8+mwAm1iPNk5osqtrL4/q3FpUtSlcAdAPAGHdPiAPeadm2dILb77lPC/Y87d9SotFMHAJBOGhYnheqYuPkTsnHxoyd/5AG8DoE7cELyAPehKga46yIH7gMDKsCwOQDAa7TPSiNlGOCeWs6cUY3iU4NMlQEA25Bj3wkC91MgcAfiiMAdOCF5gPswG1O1aW1V2dmm1XBY9Zk+FgcAsKGy28vFm2vCBQME7qmGvakAgFcmiQsXjIubPyEbK68Xqo2LE9o6AdIAgTtwQq2zw0J1mI2p2rhc6tw56QKmygAA7tIhbkxdPlO8kl+srRkcyZUrUpUT7gBgD+UbS1kh08eXI07XdEm1zn7SzIR4u0L+4AN4HQJ34CTy9rbLby8LFzBSRqvLl6UqgTsA4C7t4sbUgeo2bZ3gqOQT7jdvqnBYVysAgKSRD1nPFFeF3B5tzaSf5TPFwiI6pxGtX5IeLwBwNwJ34CRa50YchmFWvZOTv1RQqrMfu7t4UaoSuAMA7tIpb0xlnkwKunxZuVym1d1d5fdr7AYAkBzyGPFxcSIKjkI+5F6/NKmpD8D63MluALCklhgbU5kno5d8wr2nR0Wjysn9RQCAchhGuzgUzs8Jd12C4ejcnSM+nO4ubWnzDPSblTeee3G3tsWsmut1n8nkVQ8AWF6swL1OUx/pa6y87sKk6Qo09qYCR8ePnsBJtM6NClUCd90uXFAul4pEDq9ub6uxMdXMJwUAoHxr8/m7m2ZVw+EgcNfm1sLme/6/a0e8+P/Jq3lQmQbu//HNH/1ZqN2s+vClyk++jVl/AGB58gnr8bJaXY2krQnxpgWBO3B0HPkETqJlXgrchyt5UadXdnaMPJ2pMgAApZRSHeI8mbmiijs5+dqawdHJs/XlufwAgDQQc4Y4I2VOb1wcKdPASBngyAjcgWPLCO/L3+nZmJoEly5JVQJ3AIBSSqkOMZn115iekkZy9YuBe/P8eEZ4X1szAAD9yjeWskKmg8giTtd0SbXOftKSfNOiYn1R+BQAuBuBO3BsDYsT7kjYrBpyZ0yV1ujsB0oRuAMAjiRG4M7G1FQ1UtUYcnvMqp7IftP8mM5+AACaNS5OCNWZ4irh2wSOaPlM8VZWrlnVaUTrlqWjhwBeReAOHFuruDF1tLIh4nRpawY/JQfuN2/q6gMAkLqcRlTewsIA95S17/KMlTcIF3QyVQYA0lqsjanMk4mPCXEUfv0igTtwJATuwLHJA9wH2ZiaFJcvS9WFBbW0pKsVAECKql+cyg7umlWjDuegj2/iqctfwxh3ALCvWIF7naY+0p1864Ix7sAREbgDx9Y6K51wH2FjalKUlqrKSukCpsoAgO3Jh6AnS2t2vdnamsFxyWPcO8V1uAAAq6sXo95x8Vw2jk6+ddG4IA32AfAqAnfgeByG0bwwLlwwxAn3ZGGMOwwEGXwAACAASURBVABAJB+Clg9QI+kGxAn79ctT2cE9bc0AAHRyGtH6JWmYyURZna5e0ty4+JHkhDtwRATuwPH41uZzAjtm1ajDOVohDRhFAhG4AwBE8gl3NqamuLHy+r2MTLOqMxqVt+wAAKyrfGMpKxQwq0acrqnSGp39pDF5pEzF+mKm+ScCwKsI3IHjaRFfy82U+Ha9WdqawWsQuAMAzHki+03z0jNqA2xMTW1Rp3NYfI6QMe4AkK4aF6VJJjPFVSG3R1sz6W35TPFWVq5Z1WlE65andfYDWBSBO3A8rXPSxtQhBrgnkRy4Dw+r7W1drQAAUk7TwnhGOGRWDbvcw5WNOvvBCcQY407gDgBpqn5RmifDxtT4kufzyNtrARwgcAeOp2VeCtyHqwjck6epSeXnm1ajUdXXp7EbAEBqaZ8ZEqpj5fVBj1dbMzgZeYy7/CkGAFiXPDqcAe7xFWNvqvi0AYADBO7A8bTOSiNl5CedkVgOhzp/Xrrg5k1drQAAUk7nNAPcLa9fXGxbvTqXv7elrRkAgDYNYsg7xgn3uBovqxWq9exNBY6AwB04hsLt2yWbq8IFQ5xwT67Ll6VqT4+uPgAAKUc+/uyvadfWCU5sptgnDJZ1GEbbzLDOfgAAGjiNaP2SPFJG2vOJ42KkDHB6BO7AMbSKG1PX8wrX8oq0NYNDXLwoVTnhDgB2lRkKyE9Ac8LdEgyHY9DXIlzQOTOgrRkAgB7lG0tZoYBZNeJ0TZdU6+wn7Y2JNzAq1xc9gV1tzQAWReAOHEOLuDFVfgUIHeQT7rduqXBYVysAgBTSNjfiikbMqiF3hvzaEqnDL+5N7RAHBwEArEi+ZT5TXBVye7Q1YwfLBSXC82ROI1o4zRh3IAYCd+AYWuelE+5DlQxwT7Zz55TH/IetvT01zJPmAGBHHTNSDjvoawm73NqawWnIY9w7xU80AMCK6hfleTJ1uhqxkQlxjHvRpBSMAFAE7sCxyCfchxngnnRer2qTXoer7m5drQAAUoh88Jl5MhYin3Avvb1SvLmmrRkAgAbyCXcGuCeCPMb9LIE7EAuBO3BU3v1g7cqMcAEbU1PCpUtSlcAdAGxJPuHuFw9NI6UsFpat5xYKF7TPSttxAQCWU78snnAXz2LjZMbE5wbOThC4AzEQuANH1Tw/5oxGzap7GZmzxVU6+8HhCNwBAK+VG9ipXp0TLugXD00j1QyITyQwxh0A0onDMOoXJ4UL5LPYOBlOuAOnROAOHFXrnPRNZaSyKergH1QKkAP3ri5dfQAAUkX7zJDDMMyqO5k5MyU+nf3glBjjDgD2UbGxmBUKmFUjTtdUaY3OfmxCXiafvzirdne1NQNYEfkgcFQt82NCdbiyUVsnkMiB+9qamp3V1QoAICW0z0gzRgZ9zdwytxZ5jLv86QYAWEuDeLx9trgq5Pbo6sVGlgtKtjNzzKqOaFQN8d0WkPDqAjiqFvGE+5CvRVsnkBQVqRrxjANTZQDAZuQjz/017do6QVzIgXvh9u3K9UVtzQAAEkoO3OVR4ziNcflj29+vqQ/AmgjcgSNxRqPNC+PCBUOVbExNGZcvS1UCdwCwmc7pAaHaR+BuNet5hYuFZcIF8o5cAICFNCxNClUGuCdOjI+t36+pD8CaCNyBI6lbnsoUJ8eNVjbo7AcS9qYCAF5RtL1RvrEkXDDAxlQLkg+5E7gDQNpoWJwQqpxwT5wYH1tOuAMiAnfgSNrEeTITZbUhd4a2ZhADgTsA4BXyRO/13MIF8aw0UpO/ulWoMsYdANKDwzDqlqeFC8bF3Z44jRgfW064AyICd+BIWmelwH2QAe4pRQ7cx8fVnTu6WgEAJFnntHTYeUDMbZGy5Mn77TNDTiOqrRkAQIJUbCxmB/fMqhGna7qkWmc/thIjcB8fV7u7unoBrCc5gfvGxsab3/zmtra2pSXpCV8gdbTNDQvVoapmbZ0gttpaVVhoWjUM1dursRsAQDLJA9zZmGpRA9WtUYfpC5ncwE7NyqzOfgAAiSBvTJ0trgq5Pbp6sZ3lM8VbWbmm5WhUDfE8GWAqOYH7b/3Wb129enVoaGh/fz8pDQDH4jCM5rkx4QIC99TicKiLF6ULbt7U1QoAIMnk6SL9NQxwt6TtzJyZEp9wQYf4ZAMAwBLkwJ0B7okWY28qY9wBc0kI3J966qnvfOc7+t8vcGIVG4v5e1tmVcPhGK5q0tkPYrt8War29OjqAwCQTBUbS0XbG8IFjJSxrn5xb2rnjPRkAwDAEhqWJoVqjDgYp8beVODEdAfug4ODv//7v6/5nQKn1CYOcJ8rqtjOzNHWDI6EE+4AAKU6xHkyC4Vl67nmI8iQ2vzi0wmccAeANCAH7pxwT7QYY9wJ3AFzWgP3YDD4/ve/f3d3t7mZ+RuwktY5NqZajbw3tb9fhUK6WgEAJE3njJS6+hngbmV+8YR769yoOxLW1gwAIO4chlG3NCVcECMOxqmNc8IdOCmtgfunPvWp7u7ue++99zOf+YzO9wucUtusuDHVxw2k1NPRoTIzTauhkBrgSXMASH/yAHc/82SsbKiqKexym1UzwqHGxQmd/QAA4qtiYzE7uGdWjThd0yXVOvuxoRiB++Sk2tnR1ApgNfoC9x/96Edf+cpXcnJyvvnNb3o8LJKGlcgn3IeqOOGeejwe1dEhXdDdrasVAEByOI2oHLgzwN3Sgh6vHAR0MlUGAKxMvm86XeILuUmWEmslv3gzK8+0HI2qQb7VAofTFLgvLi5++MMfNgzjS1/6UksL6SSspGh7o3hzTbhgiI2pqUmeKkPgDgDprmZlNjdgevDKcDgGfATu1ibvTe0QBwoBAFJc/aI0T4aNqXpMMFUGOBHTxzDjyDCMD33oQ8vLyw899NBv/uZvnuAt/NM//VPMa3Z3d0/wlo9lb29vb2/P4/FkZGQk+n1BKbW3txcIBHZ3d6PRaFIaCAQC0Wi0ZVo6HLeaf3Ylp0CdrsNwOKLnzyi/o4NSXDqJhMN6/kTBYNDs3767o0P4hxq5cSOY+C8agkAgsLe3ZxiGhq9dUK98Afd6vW63jm98AFKBvDZzuqR6KytXWzNIBH9N+6+/9C9mVfamAoClySfc2Ziqx1h53cWJW6ZlAnfAhI7c4S//8i///d//3efzPfXUUyd7Cw8//HDMa1ZXV0/2xo9ue3t7c3Nzf39/f38/0e8LSqn19fVgMOh0Or1eb1IauHNnNxwOt8jjXyubwuHTruQKBoOnfyOnf0eRSEQpFZdOtP2JNjc3V1eNQ0ve2toy8//Q0dOzurKiHI4ENRZTMBjc2Njwer2O5PVgK5ubm9vb25FIJBgMJrsXAJp0zkjrOuTD0bAE+ZPYuDiRGQoEMsx3ugAAUliMwL2iQVsndhbjSQK/X1MfgNUkPHDv6ur67Gc/63Q6//7v/76oqOhkb+R973ufUD04/56dnX2yN350kUgkFAplZWVpeF9QSu3u7jocjuzs7GQF7l5vxOl0ts+PCtcMVTU7nacdzeR2u07/Rk7/jg6S37h04tL1J/J6vWb/Hh333qscDmUcHsc7Nzfz1tcj1Ulbs+NyuXZ2djIzM/l6osf+/n44HOYLOGAr8gFnfw2Bu+WNVdQHPV7v/uF3Ul3RSOvcSE/9ec1dAQBOz2lEa5enhQvGy2q1NWNnY+X1UrmvT1cjgMUkNnDf2dl5//vfHwqFPvWpT73tbW878dt5+umnhepBSlhcXHzit39EGRkZLpcrPz+/oKAg0e8LSqloNBoIBM6ePZuZmZyjSQU7LrfbLQfuI9Wtp59Q4fV63W4dj03I7+hgCExcBm54vZlut44T7vn5+ab/9ouLVUODGhsz+28LJyfV5cuJ6iyWQCAQiUQyMzM1fO2CUsrtdns8noKCgvz8/GT3AkAHZzjcMm/6LUAp1V/Trq0ZJEjE6Rqqarowafo8e+fMIIE7AFhR5fpiVihgVg273DMlPp392Ja8n1xNTamtLZVnvlgVsKvEHkH9zGc+Mzw8fOXKlT/+4z9O6DsCEiQnsFO1viBcMOhr1tYMjk3O03t6dPUBANCtdHzQ7OCzUirscg9XNursBwki3zhhjDsAWFSDOE9muti37/Joa8bOVvPPbmabn1gyDDXIt1rgEIkN3IeHh5VS3d3deXl5mXf5yEc+cnBBU1PTwe/s7OwktBPgZFrnRh0mM0mUUltZuQuF5Tr7wfFcvChVb97U1QcAQLfyIfMFX0qNVjQEPckZWIf48otj3DtmSAEAwJLkAe4xjl0jrmJM72FvKnAYHUOWw+Fw8LVeXTr66u8Y5pkmkERtc8NCdaiq2WDjZSqTT7h3d+vqAwCgW8VQr1CVU1pYSL84i796de7Mzqa2ZgAA8VK/OCVUx+XB4oirGPtpCdyBwyR2hvuTTz756U9/+o2//8wzz/zpn/6pUurpp58uKSlRSmVlZSW0E+BkWmdHhOpQFfNkUtulS1J1elqtripGqANAOioflE64yyktLGSm2LeVlZu3t31o1WEYbXPDSvHpBgCLkU+4j3HCXaMYH20Cd+AwiQ3cL1y4cOjvz87OHvziLW95i8/HpgukrtY5MXBngHuKq6pSpaVqedn0gt5e9fa3a2wIAKDFzs7ZaWnn+UB1q7ZekFCGwzFQ3fqm4RtmF3ROD26rB3W2BAA4JWc0Wrc8LVzACXedYny0CdyBw+gYKQNYlDMUlL/ND3LCPfUxxh0AbKiryxmJmBUDGZljvFBPI/3V4t5UxrgDgNX41uaFzef7Ls9McZXOfmwuxsT8mRm1yfQ24PUI3AFTWYN+dyRsVg16vFOlNTr7wUnIU2V6enT1AQDQ6OWXheJQVXPE6dLWCxLNLw4I6pge0NYJACAuGsR5MtMlvrArsdMacLf13MKN3ALTsmEov19jO4A1ELgDpnL6pH1rI5WNvFy3ADlwZ28qAKQlMXDvZ2NqepE/oaV3VnPXzIfLAQBST8PSpFDlMTX9JsrqpDJTZYA3SE7g/sEPftAwDMMwGOCOVJbTLwXubEy1BjlwHxhQgYCuVgAAuly7JhTlA9GwnOWCktX8s8IFFQM80AYAVtK0IG5MrSBw1429qcBx8RgOYIrAPfVtB8Pzm2JiXlFbkZXt2Ns9vBoOr1zt2r98T8x3dDY7w+vmkSAAsILVVTUhvVDvr5FGfsOK/NVt/7X/ebNqxdAtnc0AAE5JHinDxlT92JsKHBeBO2AiEskekiaRDVU1aesFZr7bt/jkj0fla/5Had25KdNP5d/8v9/97ptNJ/W/6q8fOv/m2sJj9wcA0O/aNWUYZsXN7PzZs5U624EG/upWKXAf5IQ7AFiGMxKpWZkRLohx2hoJwAl34Lg4sAmYGBpy7u2ZFSNO12hFg852cGLDldKtkda5EW2dAAB0EAe499W0GQ6Htl6gh/zUQvngLRWNamsGAHAahXNTGeF9s2rInTF7tkpnP1BKjZWL6cfcnFpf19ULYA0E7oCJmzeF4mRpTdDj1dYLTkN+FqF9dlhbJwAAHcTA3c88mXTUL95H8e5sqRHurwOANRRPSi/QJstqok6CLN3u5OSv54kPfA8M6OoFsAa+TgEmurqE4qCvRVsjOCV52n7L3Kg7EnukDADAMuTAvZqNqWko9qQgcY8uACB1FE9Kt0jHy+p0NYLXGJUPuff16WoEsAYCd8CEeMJ9yMfGVMsYrmoKu0z3VWSEQ3XL0zr7AQAk0OSkWl4W6v7qVm29QKcYu3DF2zAAgNQRI3BnY2qSjDPGHTgOAnfgMIaheqT9WoPioWmklJA7Y6KsVrigfXZIWzMAgMQSc9WlgtLV/LPaeoFO/hrx2QUCdwCwiOIJaaTMaAWBe3LEuNVB4A68FoE7cJipKWHph+FwjIh7OJFqBqukEUBtjHEHgLQh5qoxDkHDyvrkT253twqFdPUCADipUKhwblKoc8I9WcY44Q4cB4E7cBhxgPtcUcVWVq62XnB6A9VS4N4+Q+AOAOlCHNXdLx+ChpUNVTULE+RUIKB6ezW2AwA4kaEhZyRiVgxkZM4XletsB6+KcatjaUmtrOjqBbAAAnfgMDEGuLMx1WLkJbct86POaFRbMwCARIlE1I0bQr2vpkNbL9As6PGOyVkAU2UAIPWJuzfHy2qjDlKs5NjKyl0+UyxdwSF34C58qQIOIwfuDHC3muHKpojTZVbNDAXqVtibCgDW5/er7W2zYtThlB94gtXFeIKBwB0AUp8Y2o6VN2hrBG8U45C7eLMEsBsCd+AwYuDOxlTLCWRkTpXWCBe0MVUGANKAmKhOltXuerO19QL9YszoF8cNAQBSgnzCXR4jjgSL8SQZJ9yBuxC4A2+wvKzm54X6kI/A3XoGxc8ae1MBIB2IiWofA9zTXYzAfWBAbW7q6gUAcCJi4B4j8EWCxfj4c8IduAuBO/AG4sbU9bzCtbwibb0gXuQx7m1zBO4AYH1XrwrFGGksrG+8vE56iCEalUf8AwCSbHdXTUwI9bEKAvdkivHx54Q7cBcCd+ANxHkyA75WbY0gjuRPXNvssNNgbyoAWNnurny0isA97UUdTvn+unxLBgCQZH6/ipq+KNvJzFk+U6KzHbzORFmd4XCYljc21NycxnaAlEbgDrwBG1PT0VBVs7DRPju4V70yq7MfAECcdXWpcNisGHJnjFawaS399dWKt1XYmwoAqczvF4pj5WLai8Tb9WYtFJZLVzBVBngFgTvwBvLGVAa4W9OuN2umxCdc0DY7oq0ZAED8iQPcB30tYZdbWy9Ilv5qcVI/e1MBIJUxwD3ljcpTZQjcgVcQuAOvtbmpxseFOifcrWuAMe4AkMbEw8v9bEy1hxiDg2Zn1fy8rl4AAMckB+48qZYCxuXbHuIzCoCtELgDr9XdLYyN287MmS+q0NkO4kie69o+M6StEwBA/ImHlxngbhOLhWWr+WelKxjjDgApixPuKW+8vE4qc8IdeAWBO/Ba8gB3XzNj46xLDtzbZocdhqGtGQBAPK2syA+o9dV2aOsFyRXj5gpj3AEgNd25o2alrVpj8jATaBFjI47fr3hNDSilCNyB14uxMVVKbJHiBn0twv2S3MBO1fqCzn4AAHEjHm/fzM6f4wE124gxPogT7gCQmvr7hax2PbdwPbdQZzs41GRpTcTpMi1vb6uJCY3tAKmLwB14LXljKgPcrWw7M2f2bKVwAVNlAMCqxBS1r6aNB9Tso69GfJrh+nVheCAAIGlu3RKKHG9PESF3xnSJT7qiv19XL0BKI3AH7hIMqoEBoc7GVKsb8LUK1bZZ9qYCgDUxwB2vGKhule6vbG7KP+wBAJJDDGoZ4J46YnwuGOMOKKUI3IHXuHVL7e+bFUPujKnSap3tIO5i7E2d5YQ7AFiQYciDuRngbitbWbnTJeIPbEyVAYAUJG9MlUeHQ6NxAnfgCAjcgbuI82RGKhvDLre2XpAIMfamzrA3FQAsaHhYra+bFQ2HgxPudtMnf8bF5yEAAMkhB+6ccE8Zo/J4HwJ3QClF4A68RoyNqcyTsbzBamlvav7eVsXGks5+AABxIOanc0UVt3POaOsFqSDGLRZOuANAqllaUisrZkXD4Rgvr9PYDSQxbn4MDgpjAwD7IHAH7iJvTPURuFveZlbeQmG5cEEbU2UAwHLkjanMk7GfGJ/0W7fUzo6uXgAARyAei14qKN3OzNHWC2Qzxb6wN9O0HAqpkRGN7QApisAdeEUkIi9G54R7eogxVYa9qQBgOWxMxWsNVzYGPV7TciSiuro0tgMAiEV8Jc48mZQSdTrXaxulK5gqAxC4Az8zNCQcd4o6nXybTw8E7gCQVoJB1dsr1DnhbkNhl3uoqkm6gqkyAJBS+vuF4pg8NBzardVLr6kJ3AFF4A78jDhPZqK0NpBh/tgUrGNADNw7ZhgpAwCWcvOmCgbNimGXe7hSPISFNNVXI95oIXAHgJQinnAfLW/Q1giOgsAdiInAHXiFvDGVAe7pYqC6VagW7Nwpu72srRkAwGmJ82RijBZB+ooxSkj8awMA0MowOOFuLasN0mtq+fYJYBME7sAr5I2pDHBPF7dzziwVlAoXMFUGAKyEjak4TF+tGLhPT6uFBV29AABEExNqe9usGHU6J8pqdbaDmNbqxHhkfJzl5ACBO6CUUsowVHe3UB+qEp+ZgqXIh9wJ3AHASl56SSjGmCuC9DV3tnIjt0C6gkPuAJAixAkk08W+kDtDWy84iq3SClVg/k02GlV+v8Z2gFRE4A4opZSamlLr62ZFw+EYqWICbPqQn1doJ3AHAKtYWVHj40I9xjFnpLUYU2UY4w4AKUIe4F7BAPfU43CoDvFMA1NlYHsE7oBSKsY8mfmiis2sPG29INEGY+xNHdTWCQDgVMTMdDM7f6bYp60XpJo+OXAXn40AAOgjnnAfI3BPTefPS1X2psL2CNwBpVSsjakMcE8v/uo2oVq0tVGyuaqtGQDAycnzZGrbDYdDWy9INbfqOqXy9esqEtHVCwDAnBy4l7MxNSXJgTsn3GF7BO6AUirWxlQfgXtaWc8rXMkvFi5gjDsAWIO8MZUB7vbWX9MedZi/2NnaYsIsACTf/r4all58MVImRZ07J1UJ3GF7BO6AUkrJG1OHK5u0NQI95KkybbMj2joBAJyQYajr14X6rVoCd1vbzsyZKq2WrmCqDAAk3eCgCoXMikGPd/Zspc52/n/27js6zuu69/6ZwcyggyDAIhJEJwCCqCRIsEoUpciyVW3JtixZcoqvE9l5nTf2tb3e6+VkJblxEq8U21mJ7diKm2w1qlOFquwdIDrAAhAkQRAkAAIgOqa+fyCWVfjsQZk5U57vZ+WPmHsT8yMJgcSe8+yDmZJPuF+5ovr6dEUBwhEDd0Cpy5fVxYtC/RQn3KNOW6Y0cC/uOqUtCQBgjtra1NCQYdVikReIwQz8vOnCvakAEHKNjULx7NIcr5WxVVhKS1MZGVIDh9xhbnzlApQ6flwoXk1Ok9ePIBL5OeHezUoZAAh7x44JxYGMnGuJKdqyIDw1ywN3TrgDQMiJY1n2yYQ1easM96bC3Bi4A36+Y2/J4nxcFDq5okioLhnqSx8Z0BYGADAX4rS0p7hCWxCELT97/Nva1PCwriwAgOsRx7Jnb8jRlQOzx72pgDEG7oCfE+48kB6VehcsupqcJjQUscYdAMLc4cNC8VJxpbYgCFvty/LGY+MNy16v/I9AAEDQiWPZM8vztQXBrHFvKmCMgTtMz9+Vay1ZxdqyQCd5NT9bZQAgrI2OqpYWoc4JdyilvFar/Ewba9wBIJSGhlRXl1BnpUxYKy+Xqi0tyuvVFQUIOwzcYXpnz6qrV42KPq5ci15t4nfgqy4ycAeAMHb8uPJ4DKvx8b15/PUNpZRqzhZPTrDGHQBCqKlJ+XxGxaHEBf0p6TrjYHZWr1Y2m2F1dFR1dmpMA4QXBu4wPfFR4ktpy7hyLVrJ96YWd53SlgQAMGvynHTdOq/wHSDMpCm7RCozcAeAEGKfTESLjVUF0lPjbJWBmTFwh+mJA/cWjrdHL3ngvmzwysLRIW1hAACzI28C2bBBVw6EOz8n3Pv6VEeHriwAgA8SB7Lsk4kA8r2pjY26cgBhh4E7TE++MTWLgXvU6lm4dDApVWgo6ubeVAAIV/LB5E2bdOVAuOtLWTS8NEPqEG/fBQAEkTiQZeAeAeSBOyfcYWIM3GFuHo+qqxPqLHCPbqcyxHtTWeMOAOHp7Fl15YrUwAl3vM+l1ZVSmXtTASAkfD7V2irUGbhHAPneVAbuMDEG7jC31lY1OmpYtVpPrhBXkiHCyVtlGLgDQJiSj7dnZakM8UQzTMbPwJ0T7gAQEl1dashwh6fXYu1cmqMxDeZEPuHe3q4mJnRFAcILA3eYm7hPZrygaDw2QVsW6Ofn3lQG7gAQnuSB+8aNunIgMlwqFgfujY1qfFxXFgDA74j7ZC6l3TAeG68tC+YoJ0clJxtWPR7V0qIxDRBGGLjD3MSB+1j5Wm1BEBJt4sB9+UBPyviwtjAAgJnixlTMxpWC1So21rDscqnaWo1xAABKKaUaGoTi6YyV2oJg7iwW1rgD18XAHeYmDtxHK9ZoC4KQuJS2bDghxahq8fmKutt15gEA+Dc5qerrpQZOuOODPHaHWiP+o05+ZgIAEAzNzUKRBe4RQx64i88xAFGMgTtMbGpK/jt+tJyBe5TzWSwnxXtTiy+e0hYGADAjtbXK6TSsOhxqLQ+o4SM2bZKqDNwBQD9xFMvAPWIwcAeuh4E7TKyhQU1NGVYdjolVqzWmQWj4uzf1jLYkAIAZka+4XLNGxcXpioLIIT/3wL2pAKDZ1JQ6Ld2Y1b4sX1sWzAsrZYDrYeAOEzt2TKpWVnodxus+ES1OrpBOuK/i3lQACDfybJR9Mrgu+ROjp0edO6cpCQBAKdXSotxuo+KEI+7iouU642DuysuVxWJY7etTPT0a0wDhgoE7TExc4K7Wr9eVA6F0ckWRUM3sv5g0OaYtDADAP3n7x+bNunIgomRlqYwMqYFD7gCgk7hppGNZntfCtCpCpKaqzEypga0yMCW+hMHEGLhDqa5FGaNxiUZVi89X2M1WGQAIG+fOqUuXpAZ5VTfMjK0yABA+xE0jZ1jgHlnKy6UqA3eYEgN3mNXIiDol3ofJwN0cfBbLafHeVLbKAEAYkaeiy5f7OWMFM5PfjGHgDgA6cWNqNGHgDnwEA3eYVW2t8noNq0lJqkjaNIJo0ibem1rMwB0Awoc8FWWfDATywL2hQY2P64oCAKbX3CwUuTE1wsj3pjJwhykxcIdZyftkqqpUTIyuKAixk+LAnRPuABBG5IE7+2QgqKpSsbGGVZdL1dRoTAMAJnblirp8Wahzwj3CyCfcT55UTqeuKEC4YOAOs2KBO35HHrhn93YlTHHkDQDCwMSEn0NSDNwhiI1Va9ZIDWyVAQA9xL/NRxctvZaYoi0LAqCwUMXFGVadslp+0wAAIABJREFUTj/rfIFoxMAdZsXAHb9zfknmeGyCUdXq8xZe6tCZBwBwfTU10gkpv+NUgDXuABAO6uuF4pWVxdqCIDBsNrV6tdTQ0KArChAuGLjDlPr61LlzUkN1taYkCANei/X0cmlLIFtlACAsyPPQNWuk01WAYuAOAOGhqUko9uVym1oEkrfKiH/iQFRi4A5Tknd0LlqkcnI0JUF4YI07AESAQ4ek6saNunIgYskD995e1cEzbQAQfOJ55778VdqCIGDkgTsn3GE+DNxhSvI+mXXrdOVAuGjLlI5RrL5wUlsSAMD1+Xx+Bu6bN+uKgoi1YoXKzJQa5M8xAMD8OZ3qpPTtVW++uJwE4amiQqoycIf5MHCHKR07JlXZJ2M+JzOkE+65vedt14a0hQEAXEd7u+rrkxoYuGMm5EPuDNwBINja2qQbWeLjB1Zka0yDAJEH7pcvqytXdEUBwgIDd5iSvFKGE+7m07k0ezw23qhq8fkSG+t05gEAfJg8Cc3OVhkZuqIgkslvzDBwB4Bgkw87l5T4rDG6oiBw0tPV8uVSQ2OjrihAWGDgDvO5cMHPm6sM3M3Ha7XKW2WST4hriAAAwSZPQrds0ZUDEU4euDc3q2vXdEUBAFOSB6/yQWmEM7bKAO/DwB3mI++TycpSy5bpioIw0pRdIlST6mu1JQEAXIc8cJf3hADvqaxUCQmGVa9XHT2qMQ0AmI88cC8r05UDgcbAHXgfBu4wH/nG1PXrdeVAeGnOKhaqSXU1yufTFgYA8AFDQ6q1VWpggTtmyG738489tsoAQFDJg1dOuEcuBu7A+zBwh/kwcMf1NOaWClXb0KA6c0ZbGADABxw5orxew2pioiov15gGEY417gAQKj09qrdXauAv9MglD9xPnlRTU7qiAKFnC3UAQC+fT9WJt18ycDergaSFl9JuWD5w2bDj6FFVWKgxEQDgdw4flqrV1crGv2kxY/LA/ehR5fGoGK7sQ2Srr68/cOCAUXXx4sUPPPCAzjzA/6ivl6rZ2SotTakBXWkQUIWFKiFBjY9fv+pyqbY2VVmpNxMQMnxzApM5dUoNDRlWLRa1dq3GNAgvzdklfgbujzyiMQ4A4HcOHpSqLHDHrGzapCwWw01xw8OquZmdBoh0v/71r7///e8bVSsqKhi4IzTkvSIcb49oMTFq9WpVU2PY0NDAwB3mwUoZmIy8T6awUKWm6oqCsNOcLa1xV0eO6AoChIt//dd/XWRs+/btoQ4Ic3C7/dxjyQJ3zEp6uioqkhrYKoPId4ZdiAhPLHCPbqxxB36HE+4wGXngXl2tKwfCUVN2iVRuaFBjYyoxUVccIPSampquXr1qVB0cHNQZBubV2KhGRw2rFgsn3DFrmzerkycNqwcPqi9/WWMaIPDa29uVUn/7t3/77W9/+6NVi8WiPRGglPI3cuX4c6STB+7yQiEgujBwh8lwYyqMncoocNrsDrfr+mW3W504oW68UW8oIJSmz8dt2bLl5ptv/mh12bJlugPBnOR9MsXFKi1NVxREiy1b1M9/bliVP+WAsOf1es+ePauUKi4utnHFBcLH+Lg6fVpqYOAe6eQ/wbo65fMp3vCDOfC3L8zE5fLzjjoDd3Nz2uynMwpKz7cadhw5wsAdpjJ9Pu7hhx9+9NFHQ50FJmZ8759SSm3dqisHooi8hujcOXXxolqxQlcaIMAuXLjgdDqVUkXy9iRAs6Ym5fEYVpOTVV6exjQIgooK6ZaUoSHV1aWysvRmAkKDHe4wk6YmNTFhWLXb2RmHpuzVUlleIgxEl+Hh4d7eXqVUYWFhqLPA3OSF2lu26MqBKFJUpBYvlhpY445INv2AmsViKSgomP6R6fk7EGLyRpHpWS0iWkqKys2VGtgqA9Ng4A4zkffJlJaq+HhdURCmmrPEgfvhw7qCAKE3fbxdcT4OoTV91ljAwB1zYLGojRulBrbKIJJN/w2elZVVU1Nz++23L1q0KC4uLjc399577925c2eo08HEuDHVDOStMgzcYRqslIGZsMAd/jTliAP3S5dUV5fKzNQVBwil6fNxSUlJGRkZhw8frq2tvXz5ckFBQXl5eXl5eUxMTKgDwhzkuefSpSo/X1cURJctW5QweZQXGQHhbfpv8O7u7ptuuum9Hzx37ty5c+defvnlBx544LHHHktKSpI/yNtvv+33hSYnJ+cZNUJNTU15vd7JyUmrlSOMs+CoqxN+v1zFxZ7JSaWU2+32er0a8ng8Hl0v5PV6vT6fz+fzKaWC96LafkVut9voP39bSYnt+eeNfqLnxAmXWb9uzNnU1NTU1NTk5KTD4Qh1FswCA3eYCQN3+HMpbdnV5LT0kQHDjqNHGbjDJKbPxyUnJ996663vvvvu+0vr16//7//+77KyshBFg5nIA3cWuGPO5E+ehgY1MqKSk3WlAQJp+m9wt9tdWFj41a9+df369TabraGh4R//8R/b29uffvrpRYsW/cd//If8QW677Ta/LzS9es6E+vv7fT6f3W5n4D4LXm9mU5NQv5qZ6eztVUqNjo663W4NiaYmJ3W+kM/nc7vdlmCuzZnU9SsaGRkx+s8/PjtbWNnmq6837deNORseHh4dHXW5XKZ9jzNCMXCHaYyPq1bjyzAVA3f8j+bs1duajc+1HT2qPv1pjXGAkJk+H9fT09PT05Oenj797XpjY+OFCxeOHz9eVVW1a9euW265Rf4g69at8/tCly9fDkziwBkcHBwfH3e73QkJCaHOEp1GRkaGh4cnJyf9fuewaN8+4V+rI2VlYwafPyMjIy6Xax4ZZ2pyYkLPC01MTM78hbxer8fjsVqtPqOLy4xNzuaF5kPbC42MjHz064wlM3OJw2ExWmzt8Qy8/rrzfaeDP8TlcvX19dlstqCOTkyur69PKcWBvjno6uqKjY3dsGHDa6+9lpiYOP2DVVVVDz744B133LFnz54f//jHjzzyyIYNG4QP8gd/8AdCdfr8e1xcXABjR5DY2FifzxcXF8fAfeZizpyxjI0Zl2NiKiqmP6NsNpue31hrTIyeF4qJibFarV6v12KxWCyW4L1ojK5fkd1uN/rP37pmjfATbRcuxDudvpSU4OSKTlNTUy6XKzY21rRfciMUA3eYxokTSnizNyFBlZRoTIPw1ZxdLA3cjxzRmAUIpemBu81m+9GPfvSlL33pvR//2c9+9rWvfW1sbOxP//RPm5qa4sXbL2pra/2+UBje5OZ0Ol0ul9PptNn4l1JQuFyu6d9h+U/fOjpqO3lSaBhbs8boI3g8njnMmudg+iFxDS/km80LTT+37vV65/CNt8er6bfOo+u3zuPxXPfzxFleHltTY/SzYg4fdhrveXe73S6Xy+fzheFXsKgx/X4Mv8NzUFdXd90fj4+P/9GPflRaWur1enfu3CkP3N966y2hOv1W05IlS+aTM3I5nU6v17tkyRIG7rOwe7dULSxcnJ09/f8mJQ3bbMMaEsXFxdlsOs6Dx8bF2myu6b/yLBZL8P55qe1XlJSUZPif/5IlauFCNTh4/arPt7inR61cGbxs0cfhcMTGxqampqbwRkVE4dtImIa8T2bNGsVUBUoppZqyxbdeamqU06k4bAUTeOSRR+6+++61a9d+7GMfe/+Pf+lLXxodHf3617/e0dHxi1/84itf+YrwQWqMh1nqd+ffb7jhhoAEDiC73T4+Pp6WlvbewUAE1vDwcGxsbHJycmpqqtBmfeMN5fEYluPj0265xegLcnLyhN1ufJIucOLi4+yjOvalxsXH2UeNfzc+aPoYndVqncN39fFx8Xa7jl9R/Gx+RfORnJx83a8zMTffrIy/RiU3NsYbf3Wanrbb7fYw/AoWNaYH7vwOB1ZxcXFeXl57e3uTuNwDCDz5tkz5pk1ElspK6f2V+np1440a0wChwYQRpsECd8xMS1axxxoT4zUYAUxOqsZGNYMtGUCke/TRR41KX/3qV//u7/5uaGjI6Azde6qqqvy+UBiuC3A4HC6Xy+FwhGG26OBwOOx2u//fYfmhoupqh/GlfzExMXp2fVit2l7IOvMXsrzPrF8oZhYvNB+z+hXNR0xMzPU/0268Uf3Lvxj9LOvx4w6r1ehAhsVisdvt05/GgcqJD7Hb7Sos/46IdIWFhe3t7efPnw91EJiMPHAX95AgwlRUSAN3f98+ANGBB6BgGgzcMTMTjrizN+RIHWyVgenZbLZVq1YppTgfh+Dav1+qcjwK87R1qxLWQYyMqMZGjWmAwBgdHb18+bJwLeHg4KBSqqCgQGMowN+YlYF7NJH/NBm4wxwYuMMcBgdVR4fUwMAd79OUvVoqHz2qKwgQvtLT05VSsbGxoQ6C6DU15efN8i1bdEVBlEpLU0VFUoP8lg8Qlnbt2rVs2bKlS5e2tLR8tOpyudra2pRSZWVl2qPBxC5dUleuSA2slIkm8sC9tVVxOQdMgIE7zKGmRgm3ci1YwK0deL/mLHHgzgl3mMDu3bsfffTRr3zlKxMTE9dtOH36tFKqtLRUby6YSU2Nmpw0rMbEqE2bNKZBlNq6VaoycEcEuuuuu5KTk5VS3/3udz9a/bd/+7ehoSGLxfLxj39cezSYmLxPZsUKtWiRrigIvuJiFRdnWHU6VWurxjRAaDBwhzkcOyZVq6uVlhWiiBTNOeLAvaND9fXpygKExvLly//rv/7rxz/+8TPPPPPRanNzc0dHh1KqoqJCezSYxoEDUrW8XC1YoCsKopc8cJc/CYGwFBcX98UvflEp9eSTT37ta18bGRmZ/nGn0/nd7373r//6r5VSf/Znf1ZdXR3KlDAb9smYis2m5EM5bJWBCTBwhzmwwB2z0bkkezg+2bDs8/l5CweIfEVFRWvWrFFKfetb3/rQvWoDAwP/63/9L6/Xm5ub+/DDD4coIExAnnXKc1JghuSbAK5cUWfO6IoCBMz3vve9LVu2KKV+8IMfLF26tKKiorS0NDk5+Tvf+Y7T6ayurv6nf/qnUGeEyTQ0SFUOcEQfeUcQA3eYAAN3mAMDd8yGz2JpzVoldbDGHSbwn//5nw6Ho7e3t6Ki4jvf+c4LL7zw7LPP/s3f/E1xcfHRo0eVUj/5yU8SEhJCHRNRyudThw5JDQzcERC5uSozU2pgqwwikMPheOWVV771rW8lJiZOTEw0Nja2tLQ4nc7ExMTvfe97hw4dWsATQtBMHrCywD36cG8qTM8W6gBA8PX0qEuXpAYG7viIpuzVG08Zv0/DGneYwKZNm37+858/+uij165d+9Ae2OXLl//kJz/52Mc+FqpsiH4tLWpgQGrgxlQEytat6sknDav796s/+RONaYDASE1N/d73vvd//s//aW1tPXfuXExMTHl5eWFhYUxMTKijwXyuXVMdHVIDK2Wij/xn2tCgvF5l5QQwohkDd5iAvP3jhhtURoauKIgYzdniGvejR/knAszg85///O233/6DH/zg2LFj7327vmbNmkcffTQ1NTXU6RCRjncNdfSPTUxMjI2NJSRMJSSMXbdt5Y6d64w/yGhG1iu9SvV2Cy/UP+acX1KYxpYt0sCdNe6IZKmpqZs3b968eXOog8Dc6uuVz2dYTU1Vubka00CL8nIVE6M8nutXR0ZUR4cqKNCbCdCKgTtMQN4nw31BuJ6m7NU+i8Vi9E/D4WHV1qZKSvSGAkJg0aJFf//3fx/qFIgeb5zsfbH5ssfj8Xg8MTExRmctv/vGO8IH2bus+F/2iGfllCpanDT3lDAVeY17e7vq6VHLlulKAwBRx+8+GYtFVxTokpioCgrUyZOGDSdOMHBHdON4JkyABe6YveGElK5F4qMPbJUBgKBZc7ZRqNbllWtLguhXWqoWLpQaOOQOAPNx4oRUXbtWVw7oxRp3mBsDd0Q7n0/V1koNnHCHAf9bZQAAQZBx9dKSoT6hgYE7Aslq9XMlwL59uqIAQDRi4G5O8sBd/qwAIh8Dd0S7jg519aph1WJRVVUa0yCSNGWLG2M44Q4AwbH2bINQHUheeGFxprYwMAV54L5/v64cABB1JibUqVNSAzemRiv5rRQG7oh2DNwR7eSngHNzVXq6riiIMM3ZxVK5tVWNjOjKAgAm4m+fTIWPZa8IrJtukqpNTWpgQFcUAIguDQ3K7TasJiSooiKNaaDR2rXSdv6rV9X58xrTALoxcEe0kwfuLHCHsTPL8icdcYZlj8fP9QAAgDlZ0yGdcD/BPhkE3Lp1KiHBsOr1ssYdAOaovl6qlpcrg+vTEfEWLlQ5OVIDa9wR1Ri4I9rJTwHLTxDD3NwxtrYVhVIHW2UAINDSRwYy+7uFhrr8Cm1hYBYOh9qwQWpgqwwAzI28OYR9MtGNrTIwMQbuiGp9ferMGalh61ZdURCR/Kxx595UAAi0qg7pKNxoXGL7DXnawsBE5K0y3JsKAHNTWytVuTE1unFvKkyMgTui2v79yuczrKakqHIeS4fEzxp3TrgDQKBVigvc6/PKvVb++YogkAfuJ05wcQsAzJrTqZqbpYaqKl1REAryGyqslEFU4zsWRDV54ebmzSyMg6wpRzzh3turzp7VlQUATKGqXTrhfiKPfTIIjo0blcNhWHW71aFDGtMAQFRoalJOp2HV4VAl4ndbiHTywP3SJdXToysKoBsDd0Q1eeEm+2TgT1/Kot7UxVIHh9wBIHAWjA3nXjkvNLDAHcGSkKDWrZMaWOMOALMl7wwpK5Pe6UQUWLpUZWRIDWyVQfSyhToAEDRjY36uRGfgjhloyi65dWiPYfnoUfXQQ/rSAEBUW3u2werzGlUnHXEnVxTozIPoMOr0HLsw6Lcts7J6mfEx9pG33m37099/ELfb3d8/ZrPZuly//8ElSbE5aQnzTAsA0YMF7li7VnV3G1Zra9Wdd2pMA+jDwB3R6/Bh5XYbVh0OtX69xjSIVM1Zxbc27DEsc8IdAAJnrXhjamNOiSvGri0MokZH/9hXnmvy27bZtfzfjauxJ2q+9lTNlD12+n/6fD6Xy2WxWOz23z8O/8nSG75zW+F84wJA1JAH7vJzRYgOa9eqnTsNq/JnCBDJWCmD6CUvcF+3TiVwBAn++VnjXlenJiZ0ZQGAKFclDtxr8yu1JYEJNeSWClfyOtyu8nMtOvMAQGRzubgxFX7+lBm4I3pxwh3RiwXuCIS2FYWuGLvd47p+2eVS9fVq0ya9oQAgCqVMjKy8JN1EfYKBO4JpLC7x1PKC4ounjBrWnG04XsACBACYmeZmNTlpWHU4VGmpxjQIpLqL1278j4Mz6UwbVi8J5e7ue/9h50BKmlH9vrJlX9uWN+t8QBhg4I7IM+n2nu4dlXssbnfJ0aPCExznVq8dvjQsf5BLw8b/PoBpTNljzyzPW91l+O23OnKEgTsAzF/l2UZhgbvT5mjJWqUzD0yodmWlMHBf117/09t1xgGAMHJlZOrapPHK1o9YsPfwUuPqVFHx+WG3Utf5gBMuz+zTQSuPzzfDP6bu+AX9KemLhq8aNeR2tnavNvxu2uU1/JchEOYYuCPydA1O/MnT4m2oSpVcaPvV2JhR1WexfLEr8Zq/D5K9MH4u+RB1mrNLpIH70aMaswBA1Kpql/5ebspZ7bQ5tIWBOZ3Ir3x4z9NG1dLzLbGuqffWuAOAqfzsyPkXmy/PvP//e/bNTxtXdyWs+L+/uf46kaLFSbOMhrDWtqLoxlbDO8lXXTx9wHjgDkQudrgjOlV2SldjnV2acy0xRVsYRLrm7GKpzL2pABAIazsahCoL3KHBifwKeY176fk2nXkAIHKtNn5gSCnVllmkLQlCqy1Tuk68+OJpbUkAnRi4IzpVnm0UqvV55dqSIAo0ZYv3pp4/ry5d0pUFAKJT0uRY0aUzQgML3KHBaFzi6eUrhYaqjjptYQAgctk9rpWXOoSGthXSEBbR5OQK6c0VYZMbENEYuCMKWXy+ik7pPvT63DJtYRAFLqYvd6elSx1slQGA+Vnb0WA1XtPptNmbslfrzAPTkp+lqOrws5AQAKCUyu/pdLhdRlV3jO2M+O4moslJ8c2VJUN96SMD2sIA2jBwRxTK7utKGx0UGuo44Y7Z8Fkso5VVUgcDdwCYn6p26eBwS1Yxi7OhR+1KaeBedq7V4XZqCwMAEUq6AUup9mV5TptdWxiEVu+CRVeT04SG1V0ntYUBtGHgjigk75PpTV18eaFwXzpwHSPywJ017gAwP+vEgXvNyjXaksDk6vLkNe7O0vOtOvMAQCQqFkeorZmrtCVBOJD/xIvFt2eACMXAHVFIvjH1RF6FtiSIGqNr1kvl48eV260rCwBEm5SJkQJx02stA3foMhKfdGZZvtCw/swJbWEAIELJJ9y5MdVs5D/xkguccEcUYuCOKLSGG1MRaKNrqpTxeTc1Pq6apWsDAACCte31Vp+wwN3BAnfoJL/BIz+NAQBwuJ35lzuFBm5MNZtWceDOShlEJQbuiDbpIwMZVy8JDdyYijnwJCWr4mKpg60yADBX8gSzKWc1C9yhU424xr30fFu8c1JbGACIOAWXOmwew8d/nTZ7x7JcnXkQcvJKmYWjQ8sGr2gLA+jBwB3RZm1Hg1Adjk8+e0OOriyILhs3SlXuTQWAufK3wH2ttiSAUupEfqWwxt3ucZWda9GZBwAii58bU5fnu2K4MdVcBpIXyhfpscYd0YeBO6JNZae0T6Yht8xr4dMec7Jhg1TlhDsAzMmCseG8y+eEhtp86bgxEHCjcYknMwqEhnXtrHEHAEOrxZXcrStY4G5GbJWB2TB5RLSpPCvdmNqQW6otCaKNfML91CnV16crCgBEj6qOOmGB+5Q9tpkF7tCupkB6roJ7UwFAUCIOT+XtIohW8r2pDNwRfRi4I6okTY4V9HQIDXXcmIo5W71aJScbVn0+tXevxjQAECXk2WVDTqnTxoPn0E1eZLS661TC1Li2MAAQQRKmxnN6zwsNLVnizViIUvIbLcVdpyw+n7YwgAYM3BFVys+1WL2Gp+ScNkcbb6djzmJi/GyV2b1bVxQAiB7V4sC9pmCNtiTAe+pzy9wxNqNqjNez5qy0wxAATKu467TwLfl4bHzn0mydeRAm2jKLfBaLUTV5YjSrr0tnHiDYGLgjqlSK3/w0ZxdzSg7zsm2bVN2zR1MMAIgWS671Z/deEBpqVjJwRwiMx8bLZ/GqxZt+AcC0Si60CdWTK4qEW6kRxYbjky+mLxcaSsTV/0DE4Ssdoop8Y2p9bpm2JIhO27dL1bY2dfmyrigAEA3Wicfbx2MT2PSKUJHf7Fl/plZbEgCIIPIC95Ys/lo3L3mbUEmX9FYNEHEYuCN62D2u1V2nhIb6XBa4Y36qq1ViomGVNe4AMEvV4tSyLq9cWOsBBJW8zqjg0tnUsWvawgBApFgtnnDnfXQzaxXfbuGEO6IMA3dEj+KuU3HOSaOq12JtyinRmQdRyG5XW7ZIDaxxB4DZqBL3chwrrNKWBPiQ+tyyKXusUdXq81afbdCZBwDC38LRoWWDV4SG1swibWEQbprFE+6F3e12j0tbGCDYGLgjesi3V7UvzxuJT9IWBlFL3irDwB0AZiy776L8bfnxgrXawgAf4rQ5GsWzGhtY4w4AHyQvcB9KXNAtbvFGdDuVUSA8uehwOwsundWZBwgqBu6IHpVnm4Qq+2QQGPLA/fRp1d2tKwoARLb14rzyWmJK+7I8bWGAjzpeID1jsaFduoEAAEyo7HyrUJVXeCPqTdljO27IFRrkN2yAyMLAHVHC4vNVnGsWGurzuDEVgVBVpVJSpIY9ezQlAYAIVy3OK4+vXOu18C9VhNIx8RmLrKuX5Ec0AMBsVos3prJPBvKbLqtZ444owrcxiBJ5l8+ljA8LDfU5DNwRCDab2rpVamCrDADMgNXnqxZPuLNPBiHXmrlqNM74snS2ygDA+1h8vpLz0gnl5uzV2sIgPMlr3DnhjmjCwB1RYk2ntMC9O315b+pibWEQ5VjjDgDzVtx9ZoH4Trm8zQPQwGu1nsivFBrYKgMA78nq60qZGDGq+iwWVsqgNWuVUM3tPZ88MaotDBBUDNwRJSrFG1PrcznejsCRB+5nz6rz53VFAYBItVGcVF5JXXJh8QptYQAjRwvlNe51Fp9PWxgACGcl4j6Q7rRlQ4kLtIVBeDq7NGc8NsGoavH5irtO6cwDBA8Dd0SJyk7xxtQ8bkxF4FRWqoULpQbWuAOAP/LAXZ5yAtocFz8V00cHV/ac1RYGAMJZ6QXpxlT2yUAp5bVa5VX+8mcREEEYuCMaLBnqu0G8tKqOgTsCKCZG3Xij1MBWGQAQxbqmKs+1CA3HCtdpCwMIOpdk96ekCw0bTtdoCwMA4az0vDQqZZ8MpslvvcifRUAEYeCOaFDVUS9UhxIXnF+cqS0MTEHeKvPuu7pyAEBEWtvZFOt2GlV9Fgs3piJM+CyWY+J1AgzcAUAp5XC7Ci5JT/wwcMc0+d7UUvHeXSCCMHBHNPC7T8ZnsWgLA1OQB+5dXeosD5gDgKENZ2qF6pll+VeT07SFAWRHi6TnLdZ2NMS6prSFAYDwtOriabvHZVR1xdhPrijQmQdhSz7hnjY6mHH1krYwQPAwcEc04MZU6FZerhYtkhrYKgMAxjacERe4i/NNQLMjReuFoxuxrqlycT8SAJhB6XnpK+GZ5XlOm0NbGISz/pT0ywuXCg0cckd0YOCOiJcyMZJ75bzQwAJ3BJ7Fom66SWpg4A4ABhaODhVeahcajosbPADNriannV2aIzSwVQYAysTV283ZJdqSIPz52SrDvamICgzcEfEqzzZZfV6j6qQj7nTGSp15YBascQeAOak+XWv1+YyqTpv9BO+UI8wcLVovVDecYuAOwOzkZ32axC0iMBt5q4z85g0QKRi4I+JVdkr7ZJqyV7ti7NrCwETkgXtPjzp9WlcUAIgkG08dF6qNOaWTjjhtYYCZOFIorTkq6j6TOnZNWxgACDdLrvUvHeoVGpozD8LUAAAgAElEQVRyOOGO35MH7kUXzzjcTm1hgCCxaXul3t7eI0eOnD59uqenZ+XKlaWlpRs3brTbmYRivirPSjemsk8GwbJ6tVq6VF25Ytiwe7cqLNQYCAAigc8nD9yPiEeJgZCoy69w2uwO9/XvA7T6vNVnat+svEVzKgAIE2XnmoXqQNLCi+nLtYVB+GtbUeiKsRvdsmv3uFZdPN2YU6o5FRBYOk64ezye73//+ytXrrz33nu/+c1v/tu//dtXvvKVm266qaKiYjdrjjE/Drdz1cVTQkN9LgN3BIfForZtkxr4+gYAH7Hk3JnFw/1CAwN3hKEJR5x8PHNT2zFtYQAg3Mg7QDjejg+ZsseeycgXGriNHFFAx8D9L//yL7/+9a+PjIwsXLjwjjvu+OIXv7hp0yaLxdLW1nbLLbfs2LFDQwZEq9LzrUanjZRSHmtMc7Z0HQcwL/JWmd27lfGSYgAwp7zaA0J1IGkhN68gPB0tlN4K2njquIW/9AGYFQvcMVuN4j26DNwRBYI+cK+rq/vxj3+slLr11ltPnTr16quvPvbYY4cOHTp06FBmZqZS6s/+7M+6u7uDHQPRqrJT2idzKmPleGyCtjAwHXng3tur2tp0RQGAyJBXIw3cjxat81q4YQjh6PAqaeC+eLg//3KntjAAED7sHldR9xmhQV7YDXNqFJ97KGPgjsgX9G9p/uEf/sHj8cTHx//yl79cvHjxez++cePG3/zmN0qpwcHBp59+OtgxEK0qz0o3ptbnVWhLAjMqKlIZGVIDW2UA4P0mJ7NaaoU6+2QQtk5lFAwkLRQaNp1kqwwAMyq6eCbWNWVU9VqtrZmrdOZBRGgSV7QvHu5fNmh8WRoQCYI+cN+7d69S6q677lqxYsWHSjfddFNWVpZSqrZW+tYLMGL1eeVHjepzy7SFgUmxxh0AZm7vXtvUpFHRZ7EcLVynMw4wc16L9WiR9Pm56RQDdwBmVC7emNq+LG88Nl5bGESKnoVL+1IWCQ3yTbxA+AvuwH1iYqKvr08pVVZ2/bnn9FaZnp6eoMZAtFp56WzS5JjQ0JDLxdYIMnmrzJ49yuvVFQUAwt4bbwjF9mV5/Snp2rIAsyU/gVF5ttE+OaEtDACEiQrxDFyDeJAZZibfplvBwB0RLrgDd6vVunPnzp07d/7RH/3RR6tTU1NtbW1KqZUruR0Lc1HVUS9ULyzOvJqcpi0MTEoeuF+9qpr5hwIA/M6uXUKRfTIIc0eK1vssFqOqw+3KbuSQOwDTKe+Uvt9pZOAOA/JtuuWdrHFHZAvuwD02Nvauu+666667pk+yf8i//Mu/DAwMKKXuv//+oMZAtJIf3a3PY58Mgi8/X2VlSQ1slQGAaefOyVdJHy6q1pYFmIOryWmnl0vnhPLFO4EBIPosH7i8eLhfaOChcxiR700tvNSeMMVzY4hgtpC8qs/n++EPf/hXf/VXSqnt27fffvvtcn9amv9zyhcvXgxMOGOjo6PXrl0bHR0dHR0N9mtBKdXf3z81NeVyuWJjY9//45cHp5xOZ6xrqqpdOuF+PKvE6XTOJ8DEhJrnR5ih8fFxTS80Jr2Qy+UK2Atp+xXpeqHe3t6LMdffX5RWXZ1w4YLRT5x47bWr13tPcWpqqr+/PzY2Vk9+DA8Pj4yMjI+PDw8PhzoLYFbi8fYJR1x9Xrm2LMDcHF5VXdR9xqiaf3yvzjAAEHIVnU1CtS9l0aW0ZdrCILK0Za5y2hwO9/W/HY7xekoutKkN+ZpTAYESgoF7fX39X/7lX05fplpWVvbcc8/5/SmDg4N+e7zBX5Ts9Xp9Pp/X69XwWlBK+Xy+6/6GT//PdZ2NwmXoSqlj+ZXBzRc4Pp+uF9L0Ovp+Sdp+RdOfitctTWzcmPDss0Y/MfbIEa/LpWJiPvTj019PhA+LwOILOBB6r78uFI8XrHXa7NqyAHNzpGj9H73zW6NqWvd51d6u2JYJwDTKzkt7Pxo53g5jTpv95IpC4dLdis6mYXWXzkhAAGkduF+5cuXb3/72L3/5y+l5xx//8R9///vfX7Bggd+fOL15xsj0+fcVK1YEKqeR4eHhhISElJSU1NTUYL8WlFIOh2NycnLJkiVxcXHv//GJ2DGHo+fG9jrh53bckHt1yQrH/ALExcU5Juf3IWYmISHBMa5jCJiQkOAY8/NCDsc8f9veeyEdw/CEeP+/ooBYvHjxihULr1+7/371jW8Y/UTr8PCKq1fV2rUf+vHJyUm73R4XF7dkyZIA5oSRoaGh4eHh1NTUlJSUUGcBTMnpVO++K9QPr9qgLQswZw25peOxCQlT44Ydr72m/uIvNCYCgFCq8LPAXdoZAjTklgoD9/JzzWxqQ+TSN3B/7LHHvvnNbw4NDSml1qxZ88///M+33nrrDH/uwoUGc673sVqDu49++iXeE+zXgjL+DZ/+n5tPHhV+7qHiAHzfbjG+FyuwdL2OvhfS9krafkXSf/g5OSo3V3V2Gv7cvXvVunXX/YB8PdGG33AgxPbvV+JGvsOrWOCOCOCKsR8rrLq5ab9hx65dDNwBmETC1HhBT4fQwI2pkDXklD5iXC0733rQx9PJiFQ65g5er/cLX/jCl770paGhoaysrN/+9re1tbUzn7YDH7V84HJOr+HWbMX37dBs+3apyr2pACDukzm/JOti+nJtWYD5OCQ/jbF7txo3Pv8OAFGk/FyL1Xhbo9PmOLmiQGceRBx56VDyxOiiTsN7U4Awp2Pg/ud//uePP/64UurLX/5yS0vLQw89pO3gMKLVJvF4+4Qjrj6Xi9egkTxw37dPud26ogBAWBJvTD3E2+SIHAflxygnJ9WePZqiAEBIyTemtmStcsVwOwskA0kLuxZlCA0ZLdImYSCcBX3g/sQTT/zkJz9RSv3whz/80Y9+lJSUFOxXhBlsPnlMqHLxGnS75RapOjKi6viHAgAT6+xULdKlan6ODAPh5ErqkvZleVKH+DwHAESNSnHgzhk4zERDbplQzWiu0ZYECKygD9x/8IMfKKU++clP/gXbDBEgFpdrnXhj6pEiDspBr+XLVYH4vCRbZQCY2auvCsVJR9yJ/AptWYD583NXEAN3ACZg87hLz7cKDQ3ithBgmjxwz2xk4I5IFdxLU1tbW48fP66U2rp1a3Oz4dXDqampK1asCGoSRJO4o4cTJ8eEhoDcmArMzvbt6ozxgrndu9W3vqUxDQCEk9deE4o1K9dM2WO1ZQHm7+CqjV9490nDckeHamtTxcUaEwGAbqsuno53ThpVvRZrY06JzjyIUPXiwD3lSrfq6lKZmdryAIES3IF7W1vb9P/zjW984xvf+IZR2wMPPPDUU08FNQmiSeK7bwnVC4szuXgNIbB9u/rpTw2rBw4ol0vZ2XQEwHzGxuSnfA6s3qQtCxAQDbmlo3GJScL5j1deYeAOILrJ+2Q6luUOJ6RoC4PIdW5J1kDSwrTRQcOOAwfUgw9qTAQERnBXynR0dAT148OcEsSBOxevITRuuUUJ10GPjqoanoYDYErvvqsmDU/AKaUOFm/UlgUICHeM7WhhldQhrlECgChQfs5wh4FSqiGHfTKYEZ/F0ihvH9q/X1cWIJCCe8L9/vvvr672P/1csmRJUGMgqvT0xLZJF68dZuCOkFiyRK1apX73WM917N6tNnGKE4D5vPKKUGxfltezcKm2LECgHCjedGvjPuPyAXX1qkpP15gIAPSx+HxrzjYKDfJibuD96vLKb24ynqozcEdkCu7APT8/Pz8/P6gvAdN5/XXl8xkVnTZHbX6lzjjA723f7mfg/u1va0wDAOFh1y6hyD4ZRKgDqzd6LRar0T9KPR715ps8Ag8gWuX2nl84OiQ01OWVawuDSCevcVctLWpgQKWl6YoDBEZwV8oAgffGG0LxRH7FpCNOWxbgA26+WaoeOqSmpjQlAYAwUV+vLlwQ6uyTQYQaSFrYsqJI6mCrDIDoVSkeb7+SuuQyj69hxk5lFEwIYxyfTx08qDEOEBjBPeEOBJjHo95+W6izwB1Bsqej/9A544tclFJKxTtyv2yxGD6BMT7+9E9f7C5fP/2/3G73yMiI3W5PShp9f9cjVRmLk2IDERkAwsDOnULxWkJyY06JtixAYO1btaGs66Rhedcu5fGomBiNiQBAk7UdDUL1RH6FtiSIAu4YW1N2SfWZWsOOvXvV3XdrTAQEAAN3RJQjR9TAgFA/vGqDtiwwlZoL184Njvtt+9jSnPzLnUbVodfefMK9bPr/93q9brfbarXabB94GPOu1UsYuAOIHi+/LBQPF633WBlHIlLtLd7452/9yrB89ao6fFht3aoxEQBosvasNHCvy2PgjtmpzyuXBu77jC9NAcIVK2UQUcR9MldSl3QuzdaWBfiomoI1QnVd+wltSQAg9C5dUrXG3zsptX8V+2QQwU4ty+9dsEjqeOklXVkAQJ8VVy8tGeoTGjjhjtnys/S/rk4ND+vKAgQGA3dEFPHiNfbAIuRqVq4VqmXnWmJdrHEHYBovvyzcc+6xxhwo5rk0RDCfxbJPfrbyxRd1ZQEAfeR9MoNJqecXZ2oLg+jQmFPitNkNy263OnRIYxwgABi4I3L09ckH5Q6zwB2hVptf4bUYfl11uF1rxPuFACCqvPKKUDyRUzocn6wtCxAM++TTHu3t6qTxkncAiEyV4j6ZE/mVPotFWxhEhyl7bGvmKqlj715dWYDAYOCOyPHmm8rrNSq6Y2zHCqTDxYAGwwkpZ5bnCw03tXDBOgBzGBtT77wj1Hev3qwtCxAkR1aunXDESR1slQEQdarEE+5+doMABvxsImLgjkjDwB2RQ9wn05hTOhaXqC0LYKRmpbTGfVvzQYvxggUAiB5vvaUmJ4W6n6PBQCSYssceK1wndYj3BgNAxLlh8ErG1UtCwwluTMWcnMivlMo1NWpsTFcWIAAYuCNCeL3qzTeF+iH2ySA8yHcJLB3qLeo+oy0MAISMeLC3Y2nOhfTl2rIAwbO3ZItUPnJEXb6sKwsABF1VR71QHU5IaV+epy0MokljTqk7xmZYdrlY447IwsAdEeLECdXbK9QPcfEawsOJ/Ap5K/G25gPawgBAaLjd8gL3fas3acsCBNWBkk3C9S3K61WvvaYxDgAEV1V7nVA9Id5oBQjGY+NPriiUOnbv1pUFCAC+FCJCiPtkriannVkmLc4GtHHH2A4XS89bbGtmjTuAaHfggOrvF+p7WeCOaDGQtLApp0TqYI07gCiyrl064V4rbwUBRH7WuDNwR0Rh4I4IIQ7cDxZv4CZ0hI+9pVuFauGl9uUDPdrCAEAIvPiiUBxIXtiUvVpbFiDY/GyVefNNNTqqKwsABNENg1fkb2RqVzJwx9zV5EvXoamaGjUyoisLMF8M3BEJhobU0aNC/QgL3BFODhRvdNrsQgOH3AFEOfGiyD2lW728TY4osqfsRqk8Oalef11XFgAIovXtJ4TqcEJK+zIWuGPu6vPKpTXubrc6yPfRiBgM3BEJ3npLud1GRa/VerRgnc44gGw8NkG+Y5017gCi2YkTqrNTqO8pFaeTQKS5sHjFuSVZUscLL+jKAgBBtO6MtMC9lgXumJ/x2Pg2eY37u+/qygLMF18NEQneeEMoNmcVX0tM0ZYFmAl5q8zasw0Lxoe1hQEArcTZojM+saZgrbYsgB67y26Syq+8oqamdGUBgGCRT7jXrhT3gQAzULNS/Fcia9wRORi4IxK8+aZQPLxqg7YgwAztLd0q3Ctg9Xq3tElbkgAggokL3Nurt8lLt4BItFveKjMywqE8AJEu/WLnkqE+oYEbUzF/NQXi2zZ1dWpoSFcWYF4YuCPcWZqaVFeX0HCIBe4IP70LFslPw93cwvo5ANHo1CnV3CzVt/yBtiyANm2ZRVdSl0gdbJUBEOFy6o4I1cGkVBa4Y/4ac0pdMcYnMzwetXevxjjA3DFwR7iLeestoTqUuKAts0hbGGDm5K0ym08di3U7tYUBAE2ee06qxsa2V2/TFQXQx2ex7CmT/t5XL72kPB5dcQAg8HLqDwvV4yvXCg/4AjM04YhrzVoldbzzjq4swLwwcEe4s4oD9yNF67mYBeFJHrgnTE1Ud9RrCwMAmsgD91tumUpI0hUF0MrPGvfeXrV/v64sABBoXm924zGhzgUtCJRj8ucSA3dECCaVCGuW8XHrYemN9EMscEe4al+W152+XGjY3nJIWxgA0OHsWXVCuk5N3X+/riiAbnV55eMLFkodzz6rKwsABFpDQ8K1QaF+nIE7AuR4QZVUbm1V3d26sgBzx8AdYS3u4EE1NWVU9VksxwrFr8VASO0t2SJUt7cesvp82sIAQNDJx9ttNnXvvbqiALp5rDFnNt4idTz/vPJ6dcUBgIASjxVfXri0a1GGtiyIbk05qycccVIH95AjEjBwR1iLFy/EOJlR2J+Sri0MMFvyVpn00cGSrpPawgBA0MkHeG++WS1apCsKEAJtWz8mlXt61EGuTAcQmcRFr8dXcrwdAeOKsdflV0gdbJVBJGDgjrAWJw7cD6+q1pYEmIO6vPKhxAVCw81slQEQNbq61PHjUgP7ZBDtOqu2qNRUqYOtMgAi0eSkfAsF+2QQWMfkrTIM3BEJGLgjfMW0t9suXBAaDhWzwB1hzWu1yp+l21s56QYgWjzzjBLWZFmt7JNB1PPY7Oqee6SO555jqwyAyHPwoJqYMCr6LJbjhQzcEUh+Bu4XL6rWVl1ZgDli4I7wFbt7t1Adi0tszirWFgaYmz3iVpm8K+ez+rq0hQGAINqxQ6pu3aqWLdMVBQidT39aqnZ3qyNHdEUBgAB5802heHZpTl8KK+MQSGeW5w8miU+MiZ+TQDhg4I7w5RCvwjhStN4dY9MWBpibI0XVTptDaLiJrTIAokBnpzp2TGpgnwxM4rbbVEqK1PD007qiAECAvP22UDxatF5bEJiEz2LxczEAA3eEPQbuCFeTk/bDh4X6Yf5eRyQYj40/Vig9ELet+YC2MAAQLDt2+NknIx/7BaJGXJy6+26pYccO5fHoSgMA89bfr+rrhfqRwnXassA8jhaJn1d796qpKV1ZgLlg4I5wtWePxXhPnFLqCAN3RIi94laZis7mtJFBbWEAICjkQ7s33qiWL9cVBQg1+e2lnh61b5+uKAAwb2+9JVw+4bTZ6/IrdMaBSfgZ+IyPq4Nch4awxsAd4er114Vixw25lxcu1ZYFmI99JZu9FsMvtlafd2sb61wBRLKODnXihNTwwAO6ogBh4OMfVwsWSA1slQEQQd54Qyg25pROOOK0ZYF5XEld0rk0W+pgqwzCGwN3hCWvVz33nFA/WLxRWxZgnq4mp7VkrRIa2CoDILI99ZRUjYlR992nKwoQBuLi1L33Sg3PPadcLl1pAGAefD554O5n7wcwD34OuTNwR3hj4I6wtGeP6u4W6kdWsU8GkUTeKrPhdE2cc1JbGAAIsCeflKrbt6ulPJQGk5Gf6ujvV++8oysKAMxDQ4O6fFmos+gVwePns6u+Xv7kBEKLgTvC0hNPCEVvUlJ9brm2LMD8yQP3OOdk9ZlabWEAIJDq61VLi9Tw2c/qigKEjdtuU+npUoP8XAgAhIldu4TiYFLqqYwCbVlgNifyKz12h2HZ5+OQO8IZA3eEH6dTvfCCUB+94x6nza4tDjB/nUuzLyzOFBpuZqsMgAglH2+329WnPqUrChA27HY/m5Sef15NTOhKAwBzJe6TOVxULVxVBczThCPuYpm4s0i8+Q8ILb44Ivy8+qoaGBDqI/d9RlsWIFD2lm4RqltbDlu9Xm1hACAwvF4/A/fbblOLFulKA4QTeavMyIh6+WVdUQBgTkZG1KFDQp1Frwi2zuobpfKbbyqPR1cWYHYYuCP8iPtk1OLFEzdt1xUFCBh5q0za6GDZeXEnAwCEof37VVeX1PDgg7qiAGHm5pvVDTdIDb/9ra4oADAnb7+tnE6jotdiZYE7gu3s+puk8sCAOnZMVxZgdhi4I8wMD6tXX5UaHnjAZ7PpSgMETGNOydXkNKFhW/NBbWEAIDDk98gTEtQnP6krChBmYmL8XGCwa5fq79eVBgBm77XXhOKpjIKBpIXassCc+nMLVaa0mpWtMghbDNwRZvxutHzoIV1RgEDyWqwHV28UGrY37dMWBgACYGpKPfus1HDvvSopSVcaIPw8/LBUdbnUjh26ogDALPl88sD98KpqbVlgah//uFRl4I5wxcAdYUZeBZudrTZKI0sgnO0Rt8pk9nfnXjmvLQwAzNcrr8h3rrBPBma3fr0qLJQa2CoDIGzV16tLl4T6weIN2rLA1D7xCalaW6t6enRFAWaBgTvCSW+vevddqeHhh5XFoisNEGBHC9dNOOKEhm3NB7SFAYD5evxxqZqerm6/XVcUIFx9/vNS9dAh1dGhKwoAzIa46HU4IaUpu0RbFpjarbcqu92w6vP5WUoMhAgDd4STp55SbrfU8LnP6YoCBN6UPfZY4TqhgYE7gIjR3y8/aa4+8xnlcOhKA4Srhx6SDov4fH7euAKAUBGHmAeLN3itTJOgRUqK2io9Kc7AHeGJL5EIJ/I+mYoKVVqqKwoQFHvFrTIlF07arlzWFgYA5u6JJ5TLJTU88oiuKEAYW7lSVYtrjn/1K+Xz6UoDADPT16eOHxfqB4tZ9AqN7rpLqr79tpqa0hUFmCkG7ggbHR3q6FGpgVWwiHx7S7YIh0GsPm/im7t05gGAOfrNb6TqypVq0yZdUYDwJl+deu6c2set6QDCzGuvKY/HqOi1Wg9xYyp0uvNOqTo6qvbs0ZQEmDFbqAMAv/PEE9IBH4tFPfCAxjRAUFxLTGnMLqnsbDJqSNr1ivr6/6MzEgAopa6MTA1Pilvd3sdx+lS2ePDt6n0PDPSPX7c05fbOOhwQ0R58UP3v/62cTsOGX/1KbdumMRAA+PPyy0KxMbtkOCFFWxZAFRWpggJ15oxhwyuvcHUQwg0Dd4SNp5+WqjfeqHJyNCUBgmlv6VZh4J6wd48aGVHJyTojAcB/Hjz3WtuVGTb/xc6ffMG46rNY/sRe2v2b2utWCxcnzj4dEMnS09Wdd6oXXjBs2LFD/fu/q6QkjZkAwNjkpHrzTaG+v2SztizA/7jrLvX97xtWd+5U//7v0qUpgHaslEF4qK9XLS1SA9elIlrIa9wtzin1xhvawgDAbMV4PXfWSF+m6nPLutOXa8sDRIA//EOpOjoqjeMBQLN331Wjo0J9X8kWbVmA/yFvlTl/XjU06IoCzAgDd4SHJ56Qqna7+sxndEUBguvC4hVnl+ZIHb/6laYoADB7W1sPp48MCA2vruORXuCD7rxTLV0qNfz857qiAIA/O3cKxa5FGZ1Ls7VlAf7HjTeqBQukhpde0hUFmBEG7ggDXq966imp4fbb1aJFutIAQScfclevv64uXtSVBQBm555jrwvVSUfcW5XbtYUBIoPN5udhzb17VXu7rjQAYMznkwfuHG9HaDgc6hOfkBoYuCPMsMMdYWD/ftXVJTU8+KCuKIAOe0u3/PE7vzEsezzqF79Qf/VXGhMBwIykjwxsaTsiNLxTvm0sji3tMKm+MedPj5y/bmnR2o/dp35o+DN9vvr/+/1jX/7WDF+oYFHi9pUcRgEQBMeOqe5uob63lIE7QuTee6WTmnV16tw5bv5D+GDgjjAg75NJTFT33KMrCqBDS1bxhUUrsvqNj7E/9pj69rdVTIzGUADg3501b9g8bqHhpQ13aAsDhJu+0amfHjZauJRUklFQ1H3G6OdmvPjMf5d/2mOd0V/9dxQvZeAOIChefFEoDiekNOSWacsCfMAnPqEcDuV0Gjbs3Km++lWNgQAJK2UQai6Xeu45oe65+26VlKQtDqCBz2J5qVp8IO7CBfXOO7riAMCMWHy+Tx55VWi4lLasLq9CWx4gsshvRy0e7t988qi2MABwfeIdzgeKN87wfUEg8BYsUNu2SQ3cQI5wwsAdofb66+rqVaHu+exntWUBtHl5/SfcMeIzRo89pisLAMxIVUd9Vp+0Au7FjXf6LBZteYDIsqvqNqfNITR86vAr2sIAwHW0tqpTp4T6njLxJiog2O69V6ru26f6+nRFAfxg4I5Qe/JJoehNTfXeequ2LIA2V5MX7l21Qep46SXV26srDgD4d9+hl4Wq12J9dd3t2sIAEWc4Pvnd8puEhq1th28YvKItDwB8mHhA2B0bd1j+/gUItnvuUcLZDo+Hq1MRPhi4I6TGxuQ70Mfvvls5pKNAQOR6vlrcdOx0ql//WlcWAPBj4ejQzc37hYbDq6qvpC7RlgeIRC9uvEuoWr3ee469pi0MAHzY888LxbNVWyYccdqyANeRmanWr5caxM9hQCcG7gipF15QY2NCfYzrUhG9Dhau71m4VOp47DHl8+mKAwCSu4+/7nC7hIbnN92tLQwQoWrzK7sWZQgN9x3eKd9LDADB0tmp6uqE+sktH9OWBTD0qU9J1bffVoODuqIAEgbuCKknnhCKnoyMqXXrtGUBNPNaLC/J6xdOnVIHDuiKAwCGLD7fJ49I26X7UhYdWL1JWx4gQvkslpfFq1MXDV/d2npYWx4A+L1nnpHO+thsZzbcrC8MYOT++6Wqy6VefVVXFEDCwB2h09en3n5bqE/df7+y8imKaPbi+ju88ic5V6cCCAMbTx3P6rsoNLy08U6PNUZbHiByvVR9pyvGLjTcd1i6LAEAguXZZ6Xqtm0TKam6ogDGCgpUWZnU8MwzuqIAEqaZCJ1nnlEu6eH0SflZISDyXU5dfKRQfIxjxw6eiQMQcp85+KJQ9VqsL224U1sYIKINJC/cU7ZVaNh4qmbF1Uva8gCAUkp1dqraWqnhM5/RFQXw5777pOobb/AdNMIBA3eEzpNPStXiYvfq1bqiACEj35+mJibkzUsAEGw3DF7Z2ibtuDi8qtrPjRQA3ucF8cIDq8/7mQMvaAsDAGZWAIwAACAASURBVEoptWOHtE8mJkZ98pMa0wAieauM06le5lkxhB4Dd4TIhQvq0CGp4eGHdUUBQmlv6db+lHSp46c/1ZUFAK7j04desnq9QgPXpQKzcnzl2guLM4WGe469Fu+c1JYHANSOHVL1ppvUUt5ZR9goK1OrVkkNbJVBGGDgjhD57W+lt9AtFvXggxrTACHjsca8tu5jUkdjo6qp0RUHAD7A4Xbee1S6e6pn4dL9qzdrywNEAZ/F8tzme4SG5InRT9S+qS0PALM7c8bPtxvsk0G4+exnperbb6uBAV1RgOtj4I4QkffJbNqkcnN1RQFC7PlN9/gsFqnjZz/TlQUAPuD2uncWjg4JDc9vvsfP5c8APmLn+o9POuKEhgf2P68tDACzk783t1rZJ4OwIx/QdDrVCyxnQ4jxDRJCobFRNTVJDQ89pCsKEHoX05fX5VVIHU88oUZGdMUBgN97cN+zQtVps7+4QbyIAsD1DCek7Fr7B0JD/uXOde112vIAMLWnnpKq27apZct0RQFmZtUqVVIiNXARGkKNgTtCQf4b3WbjmTWYzQvy1amjo+yhA6Dfuva6wu52oeHtyu2DSana8gDR5MkbPy03PLRXXKkMAAFRX6/a2qQGdr0iPMlToz17VHe3rijAddhCHQDRY2jC9bnHa/222d2uX/3oZ2nGDTVF677z4lmlzjqdTq/X63BctH7wWfX0hNh5hwXCyzsV2775wr+njA8bdjz2mPriFzUmAgA/x9uVUju2fEpPEiD6dCzLrcsrX3O20ahha+vhrL4u+XpVAJgv+TCc3a7uu09XFGA2Pvc59Td/Y1j1etXTT6uvf11fHuCDOOGOgPH6VP+Y0+//Ve97Je1av/BxXq64dbpzYMI9MOH+6EcYmnBq+0UBejhtjteqbpM6jhxRzc264gCAWj7Qc2PrIaGhNbOoKXu1tjxA9HlmqzTGsvq8ft/0AoB58Xr9bN64/XaVnq4rDTAbRUWqqkpqkC8nAIKMgTu0svh8n98jbcZw2hx7S7doywOEjxflrTJKqcce0xIEAJRS6qG9O6xer9Dw220PaAsDRKXdZTf2LlgkNNx1fJf09BsAzNOePaqrS2r43Od0RQFmT953VFPjZ10SEEwM3KHVja2H8q6cExr2lG4di0vUFQcII+3L8prls6KPP64mJ3XFAWBqKePD9x59VWjoXbDonYpt2vIAUckdY9uxVdrLFO+cvO/wTm15AJjO449L1YQEdc89uqIAs/e5zymrONX89a91RQE+jIE7tPrDd/081PP0jWyIg3m9uOFOqTwwoF54QVcWAKb2mYMvxjuld/h2bP2UO4argID5em7TPROOOKHhgf3PO9wubXkAmMj4uHruOanhnntUcrKuNMDsZWSobeL5j8cfVx6PrjTAB/CdEvQpudBW0dkkNLRkFTfklmnLA4SbN9fc+u3Xf2IdGTHs+NnP/Dw3BwDzFuuaemD/80LDpCPu+Y0ceQMCYDgh5ZX1H//MwReNGhYP999R84b/vXMAMFsvvqiE7zuUUo88oisKcH2dV8f/3xelm8w2FW/73O7dhuXu7h/9/S9OVWz0+0Kbc9IeqFw+h4SAEQbu0OeP3/mt3PCLWz+vJwkQnsZj40c+ef+Cx39p2LFnjzpzRhUU6MsEwHzuOr4rbXRQaHh13e3XElO05QGi25M3ffr+Qy9bfYZXJnxh91Mvb7jDa+HRZAAB9YtfSNUlS9Rtt+mKAlzf8JT7VNeo0NCwovpT9thY15RRQ84rO36eUuj3hRYnOuaSDzDGv9ugSVZf103NB4WGC4sz93FdKkzv2uf/SCr7fOrnP9cUBYApWb3eh/c8LTR4LdbfbvustjxA1LuwOPPAaunwXVZf181N+7XlAWAK58+rd9+VGh58UNntutIAczQal7i3RJojbW/clzA1ri0P8B4G7tDkkd1PCSd3lFKPb/8cJ3eAybVVqrJS6vjFL5SLXa4AguW2+t2Z/d1Cw56yrRcWr9CWBzCDx7f72Rfn9xokAJidX/5SeaVvz9UXvqArCjAvr66/XajGOydvrxPfWwKCg/kmdEgbHbyj9i2hYSBp4WtVPLAGKKWU+uIXpeqVK+qVV3RFAWAuFp/vT95+XO7xOxkEMFt1eeWNOaVCQ8mFtg2na7TlARDlvF71q19JDSUlau1aXWmAeTlStP5qcprQcO/RV7WFAd7DwB06fG7fs8JSLaXUUzd9esoeqy0PENYeeUQlJEgNjz2mKwoAc/n/2bvvsKbO9g/gdwZh76ECCoo4cOC24t4txb0nWrV1trZ1VftqW20dVavVarXOOjrco26teyI4cYCooCB7QxIyfn/EH0WFcxI4OVnfz/Ve70WTOydfYjhPcp9znqf9vYsBr54yFEQGBN/1C+ItD4Dl2NJ5KHPB2BOM3TEAAO2dPUtPmYZ7+ugjvqIAVJRSKDrKePpm/efRAUmMb3gAPUDDHfTOVi7td+UgQ0GhxGZPq5685QEwds7O1LcvU8GxY/T8OV9pAMCCaHF6+2B+kgBYmgtBIXGV/BkKGsfdaRp7i684AGDWfvuN6V6xmIayHAIEMCoHW3zAXNDr+hF+kgAUQ8Md9K731cPO+TkMBfvfC8u2d+ItD4AJGDeO6V6ViuVTMgCA7kIeXAtKeMRQEOMdcLFuK97yAFgUtUCwrRPLAa2xJ3GSOwBUWGoq7dvHVBAWRpUr85UGgANxlaszX4IZGnFcosBCaMArNNxBv0Qq5dBzfzMUKIWine0H8pYHwDS0a0d16zIVrFxJKSl8pQEAi/DJ8c3MBZu7DFcLBPyEAbBAR5t0feVaiaGgeUxk8NO7vOUBAPO0ZQvJmKZ7xXwyYIoOtvyQ4V6X/OzOt8/ylQWACA130Leut/6tkpnMUHCyUcckxq8WABaK+ZNuXh4tWcJXFAAwf7Wvna0X/4Ch4LlXtVMNO/AVB8ASKUTirZ1YpnEYf2wTP2EAwDyp1SzLQXl70wcss3MAGKHjjTsVWNsyFPS7fIC3MACEhjvo24h//2QuwGywAKUbNYqsGVcS/uUXevGCrzQAYNbU6o47VjGXbOk8VCXE50YA/TrQMjTF2YOhoHlMZLPYKN7yAIC5OXOGHj9mKvjoIxKL+UoDwJkCa7tTwR0YCho9vYulU4FP+OIEetTycUTtlzEMBddqNXvkE8hbHgBT4uFBvXoxFUil9P33fKUBALN28KB3zH2G+xPdqhxt0pW3OAAWSy6WbOs4hLlmwtGN/IQBADO0ejXTvUIhjR3LVxQAju1t1ZO5oN8VnOQO/EHDHfQo/MxO5gLWy2YBLNrcucR8PunGjfTkCV9pAMBMqVQ0bx5zycauIxQinO8GwIc9IT3TnNwZCoKf3g2MuMBbHgAwH/HxdOgQU0H37uTnx1caAI7d8wtiPqEz7MZxe2k+b3nAwqHhDvpSKzG2eUwkQ8Fj75o3ApvwlgfA9NSrR0MYT3MrKqJvv+UrDQCYqe3b6fZthvtfunv/06w7b3EALJxcLGGdcbHL1p9IpeInDwCYj7VrSalkKvj4Y76iAOjFnhCmk9ztZAU9rx/lLQxYODTcQV/Cz+wUqNUMBVs7DVULBLzlATBJ8+eTRMJUsGMH3bnDVxoAMDsymRant4/E6e0AfNod0ivViWkm9yqx0fQnyzpJAABvkEppI+OEVL6+FBbGVxoAvTjWpGu+jT1DwYBL+4RqHLEGPqDhDnrhnfGqy62zDAWJbpVPNerAUxoA01W9Oo0axVSgUuEkdwAov19/pWfPGO5P8PD5p1k3vtIAABGRzMp6c5fhLEVff01yOS9xAMAs7NhBqalMBZ98guVSwdQVWNseacq07FC11BetHl7nLQ9YMjTcQS+GnvtbpGK6Wm1n+4FKoYi3PAAmbN48srVlKti3j65d4ysNAJiR7GzWtZd/6zYK4zUA//a1CktyrcRU8fQprV3LVxwAMHFqNf30E1OBtTWNG8dXGgA92tWmD/NUCkPP7eItDFgyNNyBe04FOT2vH2EoyLFzOtgilLc8AKbN25vGj2cqUKtZZ4QAACjFDz8wn+wWW6XGsaZdeIsDAMWKRFYbuoWzFC1YQFlZvMQBABN3/Djdv89UMHAgVWI8yAdgIuIq+V8PbMpQ0PJxRK2XsbzlAYuFK4aAewMu7beTFTIU7Grdu8Ca8YxdAChp9mzasIFyc8ssOH6czp6lDh34iwQApu7pU1q5krlkTeg4lQAnZwAYxuHm74/490//lPgyK9LSaMECWrqUx1AAYHTWXHp28WkGc82sJd81ZCyYW6Nz7PZI5o3YiPGRAEzDX237tXwcwVAw7Nzf84bO5i0PWCY03IFjEkXRwIv7GArkYqu/2/ThLQ+AOfDwoM8+owULmGq+/pouXuQrEACYvlmzSCZjuP929Qbn64XwFgcA3qIUin758OMfN3/NVLRqFX3yCQUG8hUKAIzOq1zZ49Q8hoLAxCcN7l1lKLjjX++Ic3Vi3AgR1fJkWosSwHhcCGoV71m1WmpCWQXdo06vCR2b7OLFZyqwNDhECRwLu3HUPZfpAPvh5h+kO7rxlgfATEybRm6MfziXLtHRo3ylAQATd/Ei7WKZv3JV2Cf8ZAGAsvzboO0d//pMFXI5TZ/OVxwAMEnhZ3YK1GqGgp3tB/IWBoAHaoFgV+veDAVipWLwhT285QHLhIY7cEmikIef+YOhQCUQbu+A4RxAd87O7N+ov/6aGD9MAwAQESmVNHky8+7ibIO2t6o34C0RAJTl5x6M67gQ0YEDdOoUL1kAwPR4ZyR1vfUvQ0GSa6V/G7TlLQ8AP/a/F5Zj58RQ0P/Sfuf8HN7ygAVCwx24NObkNp/0RIaCsw3axHtW5S0PgFmZMoUqV2YqiIykPThQDwBsfv2Vbt9muL9IZPVzGFuPDwB4cat6A/Ze2JQpJJfzEgcATMzws3+JVEqGgj/b9VcKRbzlAeBHocRm33thDAW2cunAS0yTIQNUEBruwBnRo4cjGU9vJ6LtHQbzEwbADNnb02y2pV3mziUl00dqALB0aWn0v/8xl+xq3Tve05efOADAamXPiXKxFVPFw4e0fDlfcQDAZLjnZvS6doShIM/G/kDLD3nLA8CnP9v1KxIxjZ5Dzu+2kxXylgcsDRruwBG12u7zz6yURQwlUTUa3vGvx1siADP0ySdUvTpTwYMHtH07X2kAwATNnEmZmQz359g5begezlscAGD1wt37z7b9WYoWLKCEMleHAwDLFH56p3UR0wLpf7fpk2eDpVDBPKU6eZxo3ImhwKkgp9/lA7zlAUuDhjtwZPNmq3NMc8MR0baOQ/jJAmC2JBKaM4elZt48kjF9sAYAy3XuHG3ezFzy6/ujc2wd+YkDAFra2HVEhoMrU0V+Pn36KV9xAMAEuOVm9r16iKFALpb81bYfb3kA+Lel8zCVgKntGX5mJ05yBz1Bwx24kJpKM2Ywl9yu3uBCUCt+4gCYs/Bwql2bqeD5c9qwga80AGA6ZDIaP555rdQY74A9Ib14SwQAWsq3sV8TOpalaP9+2ruXlzgAYALCz+y0kUsZCg62+CDd0Y23PAD8e1rJ71z91gwFLvnZ/S/v5y0PWBQ03IEL06ZRejrD/UqhaHG/qWqBgLdEAGZLLKZvv2Wp+f57KijgJQ0AmI7Fi+nhQ4b71QLBj30+w8ppAMbpYMvQ+9XqshRNmULZ2bzEAQCj5pmT1p9xrgyFSPx7J1yADuZvc5cRzAUj/v0TJ7mDPqDhDhV27hxt28Zc8nvHIY+9a/ITB8D8DRxIjRszFSQl0S+/8JUGAEzBvXv0ww/MJScad4oMCOYnDgDoSiUQLur/uUrI+PUtMZFmzuQrEQAYrzEnfmeevf1I066JblV4ywNgKNFVa1+p04KhwDUva8j5XbzlAcuBhjtUjFxOEyYwX5+e5FppU1eWg4oAoAOBgL77jqVm4ULKyuIlDQAYPYWCRo9mXt1BZuewoudE3hIBQDk88K29970eLEXr19Pp07zEAQAj5Z3xqte1IwwFKqFwS+dhvOUBMKz13UczF4Sf+cM+i2nOBoByQMMdKmbhQnrwgKVkwLRCiQ0/cQAsRVgYhYQwFWRm0sKFfKUBAOO2dClFRDCXnAr/PNXJg584AFBua0LHsqyeqlbTmDGUk8NXIgAwOhOObrBSFjEUHG3SNd6zKm95AAzrrl/QZcaT3O1kBa3+xipowDGxoQOAKYuJoUWLmEtONOrEvGsDgJK+PvowLZ/p83GxBu+NWHn5MkOB+sel02RVo2o3LfXe3eFN3ewk5YkIAKbl7l365huWmhYtrvcYQg9T+cgDABWQY+e0vPfkBdvnMxU9f07TptH69XyFAgAjUvfFo+6RTJe5KETiDd3CecsDYAzWdx8d8vA6Q0Gzgzvo2f/I35+vRGD+cIY7VMCECSRlWvc838Z+Ra9JvMUBMAMFRcocaZE2/7vkG3S9VunNdA2BWjVz63eC9PRSH840DxQAmA2ZjIYPZ55MhsRiWrdOLcBnQgDTcKxJl5hmbVmKNmygI0wTSgCAufrs4FqhWsVQcKj5+wkePrzlATAG9/yCLga1YigQy2X01Ve85QFLgC9XUF7btrFOELkq7JMUZ1yfDqAvv4SOUwsEDAVeWalzdv3IWx4AMDpz5tCdOyw1X35JjRrxkgYAuHFo8jdkb89UoVbT6NGUnMxXIgAwCu3uX24WG8VQIBdLfus2iq84AEZkTehYFfP5JX/9RVeu8BUHzB8a7lAuGRk0bRpzSXS1OuzLOgFABdyvVvd8vdbMNZ3unO9z9TA/eQDAuJw+TT/9xFJTpw77hDMAYGSyKvnQ99+zFKWk0OjRpMYlbQCWQqIo+vzAauaa3SG9Ulw8+ckDYFQee9c83qQzU4VaTV98gXETuIKGO5TLjBmUksJwv1IoWjBwukqINxiAfq35YKxSKGKu+XL/qurJz/nJAwDGIjmZRowgFdNF5SQS0ebNZIOFzQFM0JQp1K4dS83Ro/Tzz7ykAQDDG3bur6ppLxkK8mzsN3UdwVseAGPz6/sfFYmsmCquXqWtW/mKA2YO/VDQ3cWLtGkTc8mO9gMfe9fkJw6AJXtSpfq690cz19jIpYu2zpMo5PxEAgDDU6loxAhKSmIpmzqV3nuPl0AAwDWhkDZvJgcHlrIZM+g60zJxAGAevLLTRp/azlyzucvwLHtnfvIAGKGX7t57Q9imYZg1i7KzeYkDZg4Nd9CRXE6ffMJ8lc0r10pY9xyAN1s6D7sR2IS5JuDV08n//MZPHgAwvIUL6eRJlpp69WjBAl7SAIB+1KhBixez1MjlNGgQZWTwEggADGbavp/tZIUMBa9cK/3Rrj9veQCM0/puo3NsHZkqkpNp7ly+4oA5Q8MddPTjjxQdzVyypO9nBda2/MQBAJVAOG/onGx7J+ayIed3tY2+zE8kADCkEydo3jyWGmtr2rEDk8kAmLwJE+iDD1hqnj2j8HCWCaYAwJS1ib7S6c455ppfQsfJxRJ+8gAYrWx7J/aJlX75hW7c4CUOmDM03EEXz57RwoXMJWcatmddxREAuJXi7LFg4AzmGoFaPffPxe65OMcNwKw9f07DhpFSyVK2YAEFB/MSCAD0SSCgLVuocmWWssOH6dtveQkEAHyTSAtn7F3BXHO7eoNjTbrwkwfAyP3Vtm+Chw9ThVJJH39MCgVficA8oeEOWpPLadQoys9nKMm3sV/a51PeEgFAsX8btN3bimVCOte8rHl/LBRg4XUAc5WfT336UFoaS1mnTvTFF7wEAgD98/KijRtJIGApmz+f9u/nJRAA8KrL5mXeGa8YClQC4Y99PlWz7iUALEORyIq9bXXrFi1bxkscMFtouIN21Gr6+GM6x3Kd2poPxqQ4e/CTCADesrTPp7FVajDXhDy8PuT8Ln7yAACvVCoaOZKioljKKlWi7dtJiE+AAGYkNJQ+ZesdqNU0ciTducNLIADgy8WLLQ/tZC7Z/96HD31r8RMHwCRcqvse+8QM8+bR/fu8xAHzJDZ0ADARX39NW7cylygaN9nVug8/cQDgXXKxZM7wudt++liikDOUTf5n/c2ajYne4y0YAPBhzhzau5elRiik33+nKlV4CQQA+pJZWLTpenzJW4QDPw09c8HrbiTTw3JzCzp3O7T5QL6XtjsBf1e7ToE4mQbAWOXn00cfCdRMKzRkOrj8Evoxb4kATMXSPlNaPo6wLpKVWSGT0ahRdOUKidE4hfLA+wa0sH49/fADS41IVLB6reqalJdAAFC6J1Wqrwr75Mv9qxhqJIqi77d9J5jZl+ywbhKAudi4kRYtYi/76ivq1k3/aQBAv9Lz5WsuPXvrxr29Zm6PHetUmMvwQLu05AYTwz+Z9HOhRKs1kzsHeqDhDmC8vvySYmKYS1b2mJBt78RPHAATkuhWZUO3kZP++Y2pKCKCfviB5s7lKxSYFVxQDGyOHKFJk9jLpkxRNGqs/zQAwOLPtv0uBIUw1/inxNvNnM5PHgDQu3/+ofHj2cu6dcOqiQBmLNGt8jdDZ6sELN/vghIeLdo6T6zEWnAAJu7wYVq/nrnkZs1G/zTrzk8cAJOzrcNg1hlZaf58unKFlzhgbtBwB0Y3b9KgQeyrM1epQt98w0ceAGCjFgi+Gzwzzcmducxm80b66y9+IgGAHl27ptVI7e9PO3eSSMRLJgAwjPP1QjZ0C2cta/3g6v/+WoJF1AFM2MuX9NFHxPhXLLOy/n7AdKyVClAWhUi8YOB0lgPVCgUNH07Z2XyFAvOBhjuU7elTCgujvDyWMpGINm8mZ2deMgEAu0wHl28Hz2L/eD1hAj1/zksiANCPO3coNJTy81nKbG1p715yZzkOBwBm4Ldu4WcbtGUt+zDi+NSDa3jIAwDc0yyTnprKXLUmdGy8py8/iQBM1D2/oD/a9WcpioujkSOZj28BvAsNdyhDejp98AG9esVeuXo1dcd1agDG5UqdFjvbDWApysykTp3o2TM+AgEA5x49om7dKCODpUwgoK1bqTGmfQOwCGqBYO7Q2XGV/Fkrh537e+KRDfpPBABc+/prOnOGueSuX9AfbdnaiABAtCZ07HOvaixFBw/SypW8xAHzgYY7lEYqpd696dEj9srZs7WaNxYAePfLhx8/8glkKYqLo3btWFdbAgCj8+gRde5Mycnsld9+SwPYDr8BgBkpsLabOm5RhoMra+VHp7aNPbGVh0gAwJm9e1mXSS+U2MwbOlslRLcHgJ3MyvqbIV+phWzzLs6YQRcu8JIIzAR2wfAOlYpGjKCLF9krBw+mBQv0HwgAykMutpoV/m2BtR1LXUICtW1L9+7xEgoAuPDgAXXsSC9fslcOHUpff63/QABgXBLdqkz76Hu5WMJaOf7YpvHHNvEQCQA4cP8+jRrFOrXFip4T4z2r8pMIwAzc9Qu6OJTtRNKiIhowgBISeEkE5gANd3jHtGm0ezd7WceOtHUrYQ0WACOW4OGzvNck9rrkZOrcme7c0X8iAKiwW7eoY0dKSmKv7NiRNm3CSA1gme7415s3dDbLWnBERDT2xNZPD/3KQyQAqJCUFOrRg3JzmasuBIXsbdWTn0QAZuPCsEnUqhVLUXIy9e7NvswhABERiQ0dAPhw6L4WU7ETEZH/X1sb/PQTa1luQK1L368tinlj3li5EotIABid/e+FtYiJ7BZ1mqUuJYXat6djx6hlS15yAUC5XLhAPXtSVhZ7ZcOGtG8fWVvrPxMAGKmTjTq652ZM2/cza+XIf/9wLMxd2P9LzEEBYKSkUurTh54+Za5Kcfb4bvBMNY61A+hIJRLR9u3UpAllZzPVRUbS4MF04ACJ2KagAYuHhrtF+PbEY23K2t2/tHQz+4XnqU4eo4cueHU1meiNqWMdra3KmQ8A9Glh/y8aPLtXJZNtruesLOrenY4coZAQXnIBALukHGmuTKH52eHo4SqffCSQFrI+qqiaX8L23Qq5iFK1PQdHplCVPyUAGKs/2/Zzy8346NR21so+Vw+75WXNHjFXZoUDdQBGRqmkIUPo8mXmKpVQ+PXwuZkOLvyEAjA3NWrQxo00YADLrE3//EOTJtGvuDIMWKDhDq81jb218PdvhSqW79v5Nvaffbz4lWslflIBQMXl2jrMGTFv9bppdrICltLsbOrenQ4dog4d+EgGAGxWnI87HZNGREPP/T314FqBmr0tnuLsMW7Eopenkoi0mHbm/9XydCh/SgAwYms/GOtckNvv8gHWyvb3Lq5bM/XLj75Pd3TjIRgAaEWtpgkTaP9+1sK1H4yJDAjmIRGA2erXjz77jFasYClbt448PLCiITDDNYNARNT3yqHV66ZZF8mYyxQi8czwbx971+QnFQBw5Y5/vfETV+TYObGX5uXRhx/S8eP6DwUAWrFSFn21e/kXB34RatFtz3RwmTR++Ut3bx6CAYBJUAsEi/tNPdgyVJvi+s+jt64YXysxVt+pAEBbX3xBv/3GWvVvg7ZbOg3jIQ6AmVuyhNq0YS/7/ntaskT/acCEoeFu6exkhT9s+272rqVWyiLmSrVA8P3AaVdrN+cnGABwK7pq7QkTlmfZO7OXFhRQz560b5/+QwEAC4es9LVrPtfm1FR63W1f9rSSn75TAYBpUQmECwZOP9K0mzbFlTOTN/48iX31FwDgwcyZ7CfbEj2t5Ddv6GxM3Q7AASsr2r2bfH3ZK2fOpGXL9B8ITBUa7hbNLyV+88oJWn6e/vX9jw41/0DfkQBAfx75BI6bvCrVyYO9VC6ngQNpO/uUrwCgRxcufDp1QKOnd7WpzXBwHT9hBa5CA4BSqQTCb4Z8dbj5+9oU28qlP2z77osDv4gUCn0HA4DSqdU0dao2p9AWOLl8MWZhgbUdD6EALEKlSrRvH9nasldOm0aLF+s/EJgkzOFuubrdOvP1X0vsZOxrrxHR/vfCNnYdqe9IAKBvTyv5TZj4E7/lEQAAIABJREFU05q1n3tlp7GUKhQ0ejQR0fDhPAQDgDeoVLR4Mc2d66xdtyvVyWPShGVxlfz1HAsATJhKKPxu8Ey5WNL3ykFt6oee+zsh6QE13E81aug7GwC8QaGg8eNp40b2Sonkz/+tShD56D8TgDkrKFJGvsj+778rB7qsWFdjwihiW+aQZs16lZCcOHMuaXeJiZudlb8bDo9ZBDTcLZFYqfjs0Noh53drWX+5bsuF/b/QayQA4M0zr2ofT161d9tMYXw8S6lCQeHhdOUKLVxITlrM/w4AnHj+nMLD6dw5LcvjPX0nf7Is0a2yXkMBgBlQCYQL+3+RZ2M/8t8/tKmv+vguNWlCK1dSeLi+swHAawUFNHgwHTrEXikQ0MaNzzya04Nk/ccCMGfPMgo+3nX7zdv8hoeNn3pwDetjK//y081r0fMHzVCI2FusoXUrffd+7fLGBFOCKWUsjld22ro1U7Xvtj/0rTVr5LdKoUivqQCATy/cvbNPnKGaWkw9oVLRmjVUpw6mdAfgg1pNmzZRcLD23fZHPoFjJ69Gtx0AtKQWCH7uMX55r0naTvecnU2jRlGfPpSMjh6A/r18Se3aadVtJ6IlS3ApKoD+bO8waGf7gdpUfhhx/Of1M5wKcvQdCUwIGu6WpcmT29uWjwvWbjZYIkp0q/zZuMUF1lrMXQUAJkVVtSpduED162tVnZREffvSwIGUmqrnXAAW7OlT6t6dxoyh7Gz2YiIiulT3vXGTV2U4uuo1FwCYn53tB3497H9ysZW2D9i/n4KCaMsWUqv1mQvAsl29Si1b0s2bWhVPn07Tpuk5EICl+6nnRC3XMmwRc3PrivE1kp/pORGYDDTcLYVArR51eseva6e652Zo+ZDb1RuMnfJLuqObXoMBgMFUrkynTlGDBtrW79pF9erRzp36zARgkWQyWrCA6tWjkye1f9Cu1r0/H7MQB8UBoHyON+k8YcJPmQ4u2j4gI4NGj6ZOnejePX3mArBUq1dT+/b08qVWxZMmYalGAB6oBYIFg6afDu6gTXHVtJdbVox/P/KUnkOBacAc7hahSmby9L0r292/pP1D/mjXf2WPCdpMQQUApig6OdfeSkxkI95xoOawvnZ3b2n1sNRUGjYse9PvCT8sl3trtTpTE1/nCgUFMHv79tGMGRQbq/0jFCLxst5TdrXurb9QAGAJbldvED711+UbZ9dMitP2MWfPUuPGNGkSzZ1LbjgvB4AL6ek0dizt369t/bhxtGqVlis0AkAFKYWiOcP/J1CrOt05z1psJytcsH1+i8cRS/t8htNiLBzaqebuxQv68cc9a36VKORaPqLA2nbBoBknGnXSay4AMKy5Rx/lyhSanx2G/PBz7oyGz7Q9Yc359HHrtk1/6xa+reNglYDlSqmIz9tVKCiAGbt8mb76is6zf3YvKcPBdVb4t5EBwXoKBQAWJdGtyujP1v7vz8Xdbp3R9jEKBa1cSb//Tl99RZMnky0aCgAVcPgwffwxJSVpWz9pErrtADxTiMSzR8ybv2NB11v/alPf8/rRJk9ufzvkq6gaDfWdDYwWppQxXykpNGsW1apFP/+sfbf9uVe10Z+uRbcdwKLk2dhPGr/semBT7R9iI5dOObzut9Wf+qfE6y8YgNmKiKAePah1a1277ZEBwcO/3IBuOwBwqFBiM3vkvOW9JhWJtJ7SnYgyM2nGDAoIoFWrSCrVWzoA85WSQsOHU48eOnTbZ8xAtx3AIBQi8Zzhcw+0/FDLet/0xHW/fDZj7woHab5eg4HRQsPdHL16RZ9/Tv7+tHgxFRZq/7gTjTqN+Hz9kyrV9RcNAIxTocTmizE/XK3dXKdHBT+9u3PpmIlHNnjmpOkpGIC5OXuW3n+fmjenw4d1epxKINzUZfiECT+lOHvoKRoAWLKd7QeOnbLqpbu3bg9LSqJPP6UaNejHHyknRz/RAMyOQkGrV1OdOrRjh7YPEQpp+XJavBjddgBDUQmFCwZO39ppqJb1QrVq4MV9exYOD404IcCS45YHDXfzkppK06ZRQACtWKFTq10hEi/t8+nskfMwyRSAxZJKbD4dt2R5r0lSiY32j5Io5B+d2nZo/qDFW+c1i43SXzwA0yaT0fbt1KwZdexIx4/r+uhXrpUmTli+JnScUijSRzoAACK6X63usC83HGnaTedHJiXRjBlUtSp9/jk9eaKHaABm5OBBatSIpkyhzExtH2JjQzt30uef6zMWALBTCwSrwj5Z1P8LlVDbbqp7bsZ3O7/funJ801jtVk0Dc4GGu7lIT6dvvqGaNWnZMioo0OmhKc4en0xc8WfbfnqKBgCmQiUU7mw/cOCMLddqNdPpgWKlovPts7+umbp34fDwMzudCnP1lBDA9Dx6RDNnUtWqNGIE3bxZjg0cadptyLRNETUbcx4NAOAteTb2c4fNmTHquyx73dc8z8mhFSuoVi16/33at4+KivQQEMCUHTtGISHUqxfdv6/DoypXprNnadAgvcUCAN3sDun16bglObaO2j8kKP7hujWf/fLrl9WiI/UXDIwKFk01cSoVXbtGu3bRhg2UW54O143AJnNGzM1wcOU8GgCYqES3KpM/Wdrj+tGpB9fo2jqvlpow5fC6MSe3/dOs267WveMqY4oqsFTp6bR7N23bRpculX8jvr5bPpq92qUed7EAANidadj+Vo2GX+5f1T3ytM4PVqno+HE6fpw8PWnIEBo+nJrrNmEdgHmYf/Lx+bh0IhKplG0j/x14Ymdg/ENdNxJdo/6CcQtSb6no1pWyaio76HBxKgBw4mrt5qOmrl266esayc+0f1TLxxEtvxxKB9fRl1/Shx+S1qfJgylCw900KRR07hzt3Uv791NiYvm2oRYItnQatvaDMdpfCwMAFkItEBxsGXq5bssZe1d0uqPboo5EZCcrGHBp/4BL+2/WbES+s6l3b7LSZR02ANOVlkYHDtCePXT6NMm1XbG8FCIRTZxI8+c/uPCSYrBGAgDwLcPBdc7wuYk9+o/eupiePSvPJlJT6eef6eefKSCABgygPn2oeXNMPw2WI0+msEpK6nntn75XD3llpZZjC3+36ftTr4lFIisqYLpexNPeurwZAaD84j2rhn++7qtdy0JvntDtkefO0blzVLMmffIJjRpFHlifyTyh4W5SpFI6eZL27qVDhyg9vSJbyrV1mDd09vl6rbmKBgDmJ83Jfcao+Z3unJ+xd4VHTnn2OU1jb9HAgeTtTT16UKdO1LEjeXpynhPAwFQqunWLjh+nf/6hq1dJqazoBkNC6JdfqFEjIiJ6WeF8AADl9LBZO5oZTosW0ZIlJJWWcytPntCiRbRoEXl7U2gohYZSp07krPuUNQCmIj+fDhwY/dO6WpEXhSpVOTaQY+f03aAZZxu05TwaAHCoUGIzd9icmzUbfbl/lZ1Mh2UUiYhiY2n6dJozh8LCaPhw+uADssHVKmYFDXdTkJtLR47Q3r105Ajl5VVwY3Kx1f73wrZ0Hp7ijMNoAMDuTMN2EYGNpx5c0+P60XKurp6YSOvW0bp1JBBQgwbUqRN16kTt25OTE9dhAXiSkitV3Iu2uXzR+tIFm4vnRKnlOXPtXYqq1bLmzc/v058EAsosJKIiVbn+6AAAuFCkVD+XEk2dJe4z2GX+PPt9u6l8nwQ0EhNpwwbasIHEYlnjptJ2HWQhrWXNW6ocHG2thF4OOEsXTFx6Oh09Svv309GjVFBQp7ybuVynxYJBM/FtHcBUHGj5YWRAo293ft/wmS7LM2jI5bR3L+3dS87OFBZGvXtTt274mmwe+G64y+VyqVTqhHcPM4WCoqMpMpIiIykqiiIiyn9GSQlFIqtDLT7Y1GX4K9dKFd8aAFiOHFvH7wbNPNa4y5xdS33SyzmNFRGRWk137tCdO7RiBYnF1LTp6+Z769Zka8tdXtALjOCUnEyRkXTjBl275nj+om1eDofbzrJ33tJ52N9t+shzJLQ1ovj2AHc7Dp8FAEAnidmF/bbceP0fbSYHVesy5Z91zWMqvOCbQmF945r1jWu0jFRCYWzlGi8aNvUa2J2aNaO6dUmMc8I4hhFcj2QyunqVzpyhEyfoxo0KXuWWY+u4sueEgy1C1Zh8CcCkJHj4jJ28evCF3ROPbrSRl6t9l51NO3bQjh1kZUWtW1PXrtSxIzVrhqlZTRdPn2aKioqWLVu2efPmmJgYtVrt7Ozco0ePuXPnBgYG8hPA2MlkdPfu6w57ZCTdvctJh72YQiT+p1n3jV1HJrpV5nCzAGBRrtdqOmj65olHNw6+sLt8l8e+QaGga9fo2jVauJCsrallS6pXj+rWpTp1qFYtqlYN07waCYsdwQUFBcLnz+nZM7p/n+7codu3Sy6awuEBomx7p53tBvzRrn+BNXrrAGDUoqvVmTDhpyZPbo0/tqnJk9ucbFOoUtVKjK2VGEvH/iIisrGh+vWpUSOqV8/G01MREEDVqnHyRBbIYkdwvYuLsz1xwioqShgdTTdukExW8U2qBYJjTbr81HNShqNrxbcGAPxTCYU72w8826DdtH0r292/XP4NFRXR2bN09iwRkb09NW9u06RJUZ06wrZtcea7aeGj4Z6fn9+lS5erV68W35Kdnb19+/Z9+/YdOHCgc+fOPGQwIlIpJSRQQgK9eEHPn1NcHEVFUXQ0FTEthFJ+YjENG9bf9/0X7t562T4AWBKpxGZ5r0lHm3YZcebPTnfPi5UKbrYrk9H583S+xOqsdnZUuzbVrk116lCdOq9/xlnwvLOIEVylolev6Nkzio+np08pLo6ePHF9/Nj9pd4nT09x9tjZfuDeVj0LrPHeBgCTERnQ6ONJPzd6enfU6R2tH1wt53RzZZFKKSKCIiKIyEtzi709BQZSzZoUEEDVq5O/P1WrRn5+ZIeDlEwsYgTngVpNCQkUE0OPHtH9+3T/Pt2+TVlZ7pw+yUPfWkv7fHqregNOtwoABpDoVvmLMQvbRF+ZenCNf0p8RTeXn09nz9qcPft6cncPDwoOpnr1KCjo9Tflyjin1njx0XCfMGGCZqQfOnTo8OHDK1eufPLkyfnz5+fl5Q0YMCA6Orqymb1F5HLKyqLMTEpLe6O3/uIFJSRQSgpPMUQiaf+BeTNnK2sGvthwjacnBQAL8MC39uyR8zxy0vtcPdznykGv7DTun6OggKKiKCrqv1sEAvLxIR8f8vQkLy+qUoW8vMjTk7y9X9+C5d31wBxGcIWCMjIoPZ3S0yk1lZKTKSWFUlLo5UtKTqaEBEpOfveYt1DPoR761trZfsCJRp0UIsycAAAm6Vb1BlPHLqrx6umQ87tDb560LuLgJN/S5efTrVt069bbt7u6ko8P+fpSpUpUpQpVqkSenuThQV5e5O5Obm7k4KCvSKbAHEZwPqWmUkoKJSVRUtLr7+/x8RQXR0+fcnvp+VsS3Sr/+sGYY026qAT6/ugBAPy5GNTqau3mfa4eHnPyd4+cdM62m5ZGp0/T6dP/3WJvT9WrU/Xq5OdHVauSt/d/w6KLC2fPC+Wi96959+7d2759OxENGDBg+/btAoGAiBo3bhwUFNSrV6/MzMwlS5YsX75c3zF0lpNDSiVlZZFKRVlZpFRSTo44O9suJUUiEhER5ee/7qoX/3/xD/n5hs2uEghPNer4W7fwp5X86GwGnUW3HQC4l+bk/lu38E1dhne4e2HApf1Nn9zi+By3t6jV9OIFvXhRZoGV1evOu7MzOTiQvT25uJCDg+ZniURiLxKJNd/DNR8+XFxIICAbm9cnzrviAt63meQIPmIEZWVRdvbr/2VkUG6uoTP9R2ZlfSq4w+7Wve/6BRk6CwAAB+IqV/9+4PTVH34SFnGs75VDfhU/m097mZmUmUn37pVZIJGQqys5O7/+n6srOTrS4sWWcITeJEdwTiiVr7/I5+SQTEYFBZSbS4WFlJdH2dmUl0c5OZSd/fqbu+ZgfHo6paWRgqOrNrWW5Fppc5fhh1p8UCTCBM0AZkghEu9q3ftQ8/f7Xz4w4t8/3XMz9PI0+fl0717pQ6FEQh4e5OFBbm6v/+fiQk5Or78sOzqSoyPZ2r7+WSx+/e1Y8//ABb033Ddv3qxWq21tbdevXy8o8c8WFhbWs2fP/fv3b9u2benSpUKhMR3RtbYmufzdm+2IjPzCRanE5mz9Npu6DI+rXN3QWQDAIiiFotPBHU4Hd6iR/Kz/pf0fRpywlxrooGNRESUmlpxluyRtd+DF/feOHWnPHg7TmSKTHMEPH6asLEOHKMU9v6DDzd8/3rhzrq1Fn3EJAGYp295pR/uBO9sNaBx3JyziWJdbZ+1kBYYORSSXU3IyJSe/cePChQZKwyuTHMG/+Yaio9+4JT//jW/lcvl/Z7ZpmulEVFREeXmlFBux2Co1fu845ERjXOUGYP6kEpvtHQb93aZPr2tHhpzfVS217LPHOCeXM3w7ZmFrSzY2REROTqQ559jB4b/lW+3tSSL5r1giIXt7po2UQ6knwwUG0pgx5dygIeh9F3/s2DEi6tKli8s7lzP06NFj//79aWlpERERLVq00HcSHdjamsporZFj63ixXqt/G7S7XKeFzMra0HEAwBLFVfJf0nfq6g8/Dr15csDFfQGvnho6UblIpa8vHE7Twzw5psYkR3AnJ6NquMdWqXEquMOxpl2xkgoAmD21QBAZEBwZELy479Q20Ve6R51p/eCqHqeaKR9HR0Mn4INJjuDnzr1eJNBMKYWic/Vb72rdJ6JmYzVOIAWwJHKxZFfr3ntCeraJvhJ+43CDu1eFapWhQzEqLKTCQiKizExDRymhWzc03P8jk8kePXpERC1btnz33vfff1/zw507d4xrsLe1pexsQ4dgl+7odq5+mzMN20XUbIzD4wBgDAqs7XaH9Nod0qvJk1v9Lx8MeXDVwVAnvFeQtaUfvDTREbzQ1t7gy4+qhMJ71YLO1ws507BdvGdVQ8cBAOCbzMpac/WbrVza6uG1jncvhDy85pyfY+hcpBSLt9xJHdOymqGD6JeJjuBmPInB00p+/zTrfrj5+2lO3C62CgCmRCUQnq/X+lWH7nmPYsJuHAu7ccw745WhQ4Ee6bdLGxcXp1Qqiah69VJmOPH29ra1tS0sLIyJidFrDJ3ZGvzbOpNEt8pnG7Q707DdHf96WFwFAIxTZECjyIBGQpWq7otHzWMim8dEBj+7ZyPX46pTHLP4hruJjuBJZF3DQE+d4uxxrVbzq7WbX6vdLMve2UApAACMSKHE5kzD9mcatheqVPXjH7R6eK3l45v14h+IVEqD5Mmztot8kT2mlC60WTHREZyMan4bLmRU9j1ct+2Jxp0e+tYydBYAMCKJblXWdx/9W7dRDZ7f7xZ1puPdC5WyUgwdCrin34Z7RsbrZQG8vLxKLfD09IyPj09PZ1m0d9asWazPlcXdJeQKpdDYVtJRCYVPKvmfCwo506DtA5/A/79VTWSYT6ulUigFms92XFEqlSqVSiAQqN9ciVGhUHD7RGWRFxXx9ERyo3gizV2cJCmSy83s36iI6ydSqVRKpVKtVgvePJ2H8ycqi0LBzb81MyXRHZ9ad3xqbewwWKIoahAf3SI2qkVMZP2Eh2Il34tT6eRWasGGXZHv3l7ZQTK5lS//efhnoiN4gQ2vh8xfuHvf9q8XWb1hREBwvEeJNwZ3f1y87RP4253Ki5T/T69PJOdrJOJvyNPl00JZo4w2iozjYwmnT8T9v5FarVYqlQKBoOQs2Gb40nG0Z1ASRVWtE1W1zpqu4faygkZP7zWNu93o2b2gF4/5nHMmX2Ink8k4HHSMk4mO4A5KpTlcsi0Wy5s0lXXtKuvW7bsU+wvPsom4/FRQKp5HcB6eyFxHcM3Q/NbAwS0zHIb4ezMY4KWLqlo3qmrdJT0mBr143O7BlTYPrtV5+Vj4ZvsLismLigpMagTX76CW//+rmtiUMVO+ra1tybKyLF68mPW5cnI4u0rR3kbCXqRnKpEoy8cvOTAoJbBucmBQakCdIhtbImpBZEwX/r1BJCQlp/NQ5eXlFRUVOTg4WFm9sXS7lUhQpORjH2QtFsgUpS3+wDUbsaCNT3lXk9DpiawEId5lPlFmZiYRuZa6PIWuTyQWhnjz0fayEQvalP0bcchaLJApuFw1uaioKC8vz8rKysHhjRUUeXt7c/4Hq5XGlQqo41miizKpd/TtalFXve9HVX54V8jLhxud2NhZ13QSvXu7sw2Xw40xM9ER3Mldv6eW57t5pATUSQkMyqhbP6FmvQJXdyJyJOqot2e0EQulvnws2c7b7tRGLGjtYyuVSgsLC21sbGz1dlmhjZWwtQ8/IxF/Qx7DIP4WuVyen58vkUjsS13GipGtlbAVP28Gxo8lHLIWUWuu/42USmVOTo5IJHJyciq+kcd3HU8fHa3FAhn3uyA3auabTe+fI7qgUHg9eVjp8f0qMdHusQ/c4+OECj0ej5e4OHX2szP7cdxER3CVTOHG1bb4pRYKU2vUflm/SUKj5i/rN5U5OBIRFVKQq7CGIx+/E88jOB9PZKYjuEKhyM3NFYvFjnpbTAIjeLkZeARv2KogtNUJovM5WVVv3/C9E+F7J8It/qnAyKd651dGvkxuUiO4fhvuxScml3VyjaZAwfa5atGiRQz3ao69v7sgTLnZu3O2KR3Y2irr1VMGB6uCg5XBwcqgILFE4kPkY4AoxiI1NVUmk3l4eJT1YRG49eKFFRH5+lrE2bsGJ5VK09LSrK2tPT09DZ3FQDrUJRpMRPnZ2cJHj4SPHgljY0WxscJHj4TPnlFRkWHTBXi7fdSqlAuxLYeJjuC2vqWfzVc+Kjc3da1aqtq1lbVrq+rVU9arp/b0dCfCDKwVl5ubm52d7ejo6OyM6Xf0orCwMD093dbW1t0db1i9KCoqSk5OFovFlStXNnQWE9c2kKiH5sc8uVz08KHwwQNhdLTo0SNVdLTVixcC7o7Ku1Zy+7CB+X/QNdER3M7edL7xCQRFVasW1q0ree89VfPmysaNbRwcAogCDJ0LjJxMJktNTZVIJGVdfQJARNS9MdHHRJSXkyO6cUMUGam6fl18755VYqKhkxmYh4NNAXeDDg/023AvPqdGKi193l6ZTFayrCwzZ85kuFcz2Jc8u6Si3jzhlHseHlS1Kvn6kp8f+fpStWpUvz7VrSsSi0s5ndKCSaVSKysrJycnNNz5oTnVmss/JSibRCKRSqU2NjZ4wcnJiapWpS5d/rulqIji4ujBA3r0iB49ev0DvyukWzk4WFn2P42pjuDl6y3a2b0ekf38yN+fatTI9vDIrVzZtUYNe3t7EZEV+yZAZ0ql0tHREftAPRGLxTKZzM7ODq+wnhQVFeXn52s+qRo6i3lp04batNH8GB8fL1AoqiqVFBtLcXH09Ck9e0bx8ZSQQK/Ks9CcyNXVEv69THUEtzLWwVYiIX9/qlWLatemOnWofn2qXz85K0ulUvn6+upvbhAwPzKZrLCw0Nra2hJ2RMABJyfy9aU+fbKyslJzclyJHJ8/p+jo19+OY2Pp2TPS52VhxkYsFpvW345+G+7FR7yLJ5J7i2bmOA4PjHOjglc3CwTk6kouLuTqSl5e5OPz+ju8pslerZqRL8oKAGBgVlZUuzbVrv3GjRkZlJxMKSn06hUlJ1NqKiUlUUoKpaZSYiKlplJhIZcZLH7RVFMdwUv9EObsTB4e5O5O7u7k4UGenlSlCnl5UeXK5OND3t70zlRaivR0Fdu19gAAoG9qsZhq1KDAwLfvkMspMZESE+nVq9cfAzQfEtLSKD2d0tMpI6OUq+X0No2DUTHVEdywnWtbW/LyIm9v8vKiqlXJx4d8fMjfn/z8yMeHRO+cF2dS8wgDgBlQu7hQtWrUtu1/NykUlJBAz59TfDw9f05JSfTiBSUnU1ISpaZSGcdcgTf6bbgHBARoVrx8/vz5u/dmZmbm5eURUeC7H6EMy9aWHBzIyoqcnEgkIhcXEgrJxUWhVsttbMS2thI3N7K2JheX11314v/X/ICLowEAOOfmRm5uVLdumQW5uZSURLm5lJ1NeXmUn1/yZ3l6uiI9XSKXi2Uyys0lhYJyc18/SqH47z+LSQy/mIdhmeoIPngwNWpEjo6vB2XNuIyzzwAAzIzmpGN/f6aa/HzKyqLMTMrOptxcys0ly5jGwVRHcN1XeC6FUEjOziQQkIsLicXk6Ei2tmRjQ66uZGdHjo7k6EjOzv99hXd1JU9P8vAg3Ze7AAAwMLGYqlen6mXMg5qbS6mpr49AF4+GmZmUm0t5eVRQQFlZVFhIUillZ5NS+fo4Ir+XlZs3/TbcbW1ta9asGRMTc/PmzXfvLb6xfv36eo2hsz//LPXmgpycrKwsJycnibGdDgAAAJovUWUoyMrKyclxcXFhuQytuP/+7qlMFsZUR/A6dahOHUOHAAAAI2BvT/b25GNxS2KZ6gg+axaNHPnGLZpeeTGR6L/r2Ip/1nTYiUgiQdMcAOA/mm/HNWqU57E5OaRUklr939U82dmk+v8VXDVfmYtJpaVfa15QQDJZeZ6dyuj7l3VowVjpt+FORN27d4+JiTl58qRcLpe8ecLg4cOHicjZ2TkkJETfMQAAANhZxsXmWsIIDgAAYIpMcgRv3drQCQAAgIhKzNLp5mbQHKZN7xdZjxw5kojS09PXr19f8vakpKQtW7YQ0dChQ62MdoEUAAAAS4URHAAAwBRhBAcAADAsvTfcmzdv3rt3byKaPn36xo0bs7OzlUrl5cuXw8LCsrOzHR0dZ8+ere8MAAAAoCuM4AAAAKYIIzgAAIBh8bGM2KZNm+rWrSuVSseOHevh4eHq6tq6devIyEiJRLJz505fX18eMgAAAICuMIIDAACYIozgAAAABsRHw93V1fX69etffPGFu7u7QqHIzc0Vi8WhoaHXrl0LCwvjIQAAAACUA0ZwAAAAU4QRHAAAwIAmnT7IAAAgAElEQVT0vmiqhoODw7Jly3788cfk5OTCwkJvb2+bkguOAwAAgFHCCA4AAGCKMIIDAAAYCk8Ndw2hUFilShU+nxEAAAAqDiM4AACAKcIIDgAAwD8+ppQBAAAAAAAAAAAAADB7aLgDAAAAAAAAAAAAAHAADXcAAAAAAAAAAAAAAA6g4Q4AAAAAAAAAAAAAwAE03AEAAAAAAAAAAAAAOICGOwAAAAAAAAAAAAAAB9BwBwAAAAAAAAAAAADgABruAAAAAAAAAAAAAAAcQMMdAAAAAAAAAAAAAIADaLgDAAAAAAAAAAAAAHAADXcAAAAAAAAAAAAAAA6g4Q4AAAAAAAAAAAAAwAE03AEAAAAAAAAAAAAAOICGOwAAAAAAAAAAAAAAB9BwBwAAAAAAAAAAAADgABruAAAAAAAAAAAAAAAcEBs6AGcEAoGhIwAAAIDOMIIDAACYIozgAAAApcIZ7gAAAAAAAAAAAAAAHDCHhruaL4sXLyaiGTNm8PaMFq5bt25EdPz4cUMHsRSaU1RUKpWhg1iEU6dOEVHnzp0NHcRSzJo1i4gWLlxo6CClMOgQamCGfu3LNGrUKCLavHmzoYOYrR9++IGIvvrqK0MHMVt79+4loj59+hg6iNm6f/8+EQUFBRk6iNlSKpVEJBQKDR2EnSHHUcMx9KtuYB4eHkSUmppq6CBgSi5dukREISEhhg4CJsaYv8maOr0OlObQcAcAAAAAAAAAAAAAMDg03AEAAAAAAAAAAAAAOICGOwAAAAAAAAAAAAAAB9BwBwAAAAAAAAAAAADgABruAAAAAAAAAAAAAAAcQMMdAAAAAAAAAAAAAIADaLgDAAAAAAAAAAAAAHAADXcAAAAAAAAAAAAAAA6g4Q4AAAAAAAAAAAAAwAGBWq02dAYAAAAAAAAAAAAAAJOHM9wBAAAAAAAAAAAAADiAhjsAAAAAAAAAAAAAAAfQcAcAAAAAAAAAAAAA4AAa7gAAAAAAAAAAAAAAHEDDHQAAAAAAAAAAAACAA2i4AwAAAAAAAAAAAABwAA13AAAAAAAAAAAAAAAOoOEOAAAAAAAAAAAAAMABNNwBAAAAAAAAAAAAADiAhjsAAAAAAAAAAAAAAAdE33zzjaEzGF5hYeGDBw+uX7+el5fn6OhobW1dvu1kZmZGRkbev39fLBY7OzsLBAJuc5qNzMzM27dv37p1S6lUOjs7i0Si8m0nMTHx0qVLcXFxAoHA1dWV25Dm6ujRozdv3gwICLCystLpgQqF4ubNmxEREUlJSQ4ODvb29npKaE5kMtmePXueP39eq1at8m0hLS3t4MGDVlZWHh4e3GYzSwkJCUePHi0sLPTx8dH1scnJyVFRUQ8ePJBIJM7OzvqIB0ZCM+LHxcUJhcIKjh3a/4Vy+KTG7+XLl9evX793715hYWGlSpXK93EoJyfn+vXrUVFRGRkZHh4euo5Z5sEgryTeq7rCByQG3P4h79q1KyMjw8/Pj88nBUvDyW5BpVLFxMRcunQpKSnJ3t4euwXLcfbs2Zs3bwYFBZXv4dh9WSwtBzhmFXz7AffUlu358+c9e/Z8axzt3r37vXv3dNrO1atX33vvvZIbcXV1XbFiRVFRkZ6Sm6iLFy82aNCg5AslFosnTZqUmpqq/UZUKtXatWsrVapUcjvBwcFnzpzRX3LzsG/fPs3LlZCQoNMDV61a5eXlVfJfbcCAASkpKXrKaTY+++wzIgoICCj3FhYuXEhEP/74I4epzJVcLm/evDkRjRkzRqcH/vHHH2816F1dXZcsWSKXy/UUFQzl9OnTb30GbdGixc2bN8u9QW3+Qjl/UmP29OnT7t27l/xYVa1atR07dui0kfz8/IkTJ9ra2hZvxMnJafbs2aX+SS5dutS9bB06dODoN+Mb/6+kGu9V3V9htS4fkMz1vVoWXd9+rK5cuUJEH374IZ9PChaFk91CXl7elClTSnbYRSJRWFhYXFycnmKD8ZBKpc7Ozvb29uV4LHZflkybAY5VRd5+oCcW3XC/efOmg4ODZndmY2MTGBhoZ2dXPC6ePXtWy+1s27ateGB2cHCoUqVK8V6yc+fOSqVSr7+FCfn111+LXygXF5eaNWuKxWLNf1apUkXLnrtUKu3cuXPxK+zn51f8jygQCMrxTclyvHjxws3NTfNa6dRw13SNNTw8PITC11NR+fv7o+fO4MiRI5o3fLkb7lKptHbt2oSGu3ZmzJiheWfq1HAPDw8vfnt7enpWrVq1+D+Dg4Nzc3P1Fxh4tmfPnuLdl6Ojo42NjeZna2vrixcvlmOD2vyFcv6kxiw2Ntbd3V3zC4rF4pInR2u/E5NKpS1btiz5V1n8c48ePd79TFXyT/hdwcHBXP+WfDDIK4n3qq6vsFrHD0hm+V4ti65vP21oXkCGfoQ+nhQsBye7hcePH1evXr14IzVq1Cg+Q9nV1fX+/ft6/RXA4DZv3kxE5eh4Yvdl4VgHOG2U++0H+mO5DXeVSqU5J93Nze3vv//W7MVUKtWff/6pmUzAz89Pm1ZLbGyspuFbq1at8+fPa25MTk4ePXq0Zhf5/fff6/c3MRGvXr1ycnIiogYNGhSfLVVYWDhv3jzNC9W3b19ttjN79mxN/dixY9PS0tRqtVKpPHXqlL+/PxFZW1s/f/5cj7+GyVIqlR06dCgeubVvuP/zzz+ah4SEhNy5c0etVqempn777beaG/v06aPP1CYsKSmp+JS38jXcU1NThwwZousHfYt18uTJ4uN52jfcjx07pnlImzZtYmJiNDcmJSWNGjVKc/tHH32kt8jAq+TkZM1g7eHhcfr0ablcXlBQsHv3bs2ZRN7e3oWFhTptUJu/UM6f1Mi1aNGCiIRC4a+//pqdna1UKq9duxYYGKi5MSoqSpuNFB85Gz9+/IsXL9RqdUxMTJ8+fTQ3rly58q36kJAQImrduvWc0qxevZr731P/+H8l8V4txyus6wcks3yvlkXXP2RmUqn0xx9/1DyWoR/B7ZOCpan4bkGlUrVt25aIbG1tV65cqdltSqXStWvXak54r1+/PjqnZuzYsWOOjo7l63hi92WxtBzgWFXk7Qf6Y7kN95MnT2re1ps3b37rrt9++01z19GjR1m3o7mcXCgURkdHl7y9eMStWbMmh7FN15w5c4hILBY/fvz4rbuGDRumeQ3z8vKYNxIbG6s5KT48PPytuxISEjTfFSdMmMBhbLOxYMECIiruSGrfcNccbK9Wrdpb52pNnDhRs8G7d+/qIa9pU6lU3bp1K37BdWq437t3b86cOWFhYcVnF6Lhzio1NVVzaZHmBde+4V6vXj0i8vLyevfw6qBBgzQvfnEjHkzazJkzNWPQW+fq/v3335p/aC27XTr9hXL1pCbh6NGjml9q0aJFJW9//Pix5jyG/v37s24kLS1Nc61haGhoya5EQUFB06ZNNZ3ft66t1hzaXLt2LVe/iMEZ5JXEe1Wt4yus1v0Dkvm9V8tSjj/kUmVmZi5YsGDIkCElJ+0pqx/B1ZOCZeJkt7B169ay2gvFs3r+9ddfHMYGY7BmzZpx48bVqVOneDela8cTuy8LpNMAx6Dibz/QK8ttuC9fvpyIrK2tFQrFW3elpaWVOuKWql+/fkRUt27dd+8qPlSVkZHBTWhT1rNnTyLq3Lnzu3ft3r1b80JdvXqVeSOay2SIKD4+/t17v/rqK03vDOcOvOXq1atisdjKymrq1KmaF1DLhvuzZ8809e8eV09ISNDcNXfuXD1ENm2av31/f/8BAwaQjg33tWvX0jvQcGcWFhZGRH379g0ICCCtG+7F7+EFCxa8e+/t27c19+7cuZPrvGAAmqugSr0oR/O2adeunTbb0ekvlKsnNQma60K8vLze/U44ZswYIrKxsSkoKGDeyJYtWzQv6e3bt9+6a9u2bZq7Sq7Xkp2drbnx9OnTnPwWxsAgryTeqxrav8K6fkAyy/dqWXR9+5XlwYMH7+5vy+pHcPWkYJk42S1oJoUICAhQqVTv3tuqVSsi6tevH2ehwTi8tbAc6d7xxO7LAuk0wDGo+NsP9Er47j+zhdC8xatXry4Sid66y9nZWXNj8YdjBoWFhUSkVCrfvUulUml+kMlkFUxrBjQvuOa6vLcUTyzO+oJrWmDu7u4l51kupjnVKCUl5eHDhxVMa05ycnKGDh2qUCgWLFigOUiuveILQTQNzZJ8fX0bNWpERKdOneIkp9mIjIycM2eOSCTasWOHZholnXTs2HFzCfpIaGZWr159+PBhHx+f4ouTtFS8oyj176Ju3bqa8+UfPXpU8ZBgWLGxsZru2Lu7MiLq0aMHEV2+fFkzoDPT/i+Uwyc1CZrxonv37sXz1RbT/LJSqfTixYvabKRq1aoNGzZ8667Q0FDNZ7OSg05sbKzmB81k+uaB/1cS79Viur7CpPUHJLN8r5ZF1z/kslSpUqXk/pb5pePqScEycbJb0HxRbdSoUcllV4tpvqieP3+ek8BgPFauXFm8m+rVq1c5toDdlwXSaYBjUPG3H+iV2NABDGbFihVLliwpXrSzpKioKE0DvX79+qzbadmy5ZEjR2JiYqKioho3blx8u1Kp3Lt3LxH5+fm9e9zJAkVERKhUqpLX4Je8i4iEQmFQUBDzRjIyMojI2tq61Hs1V/wR0cOHD1k3ZTkmTJgQFxfXsWPHadOm7dy5U6fHRkdHE5Gzs3ONGjXevbdjx463bt3C4Y2S8vPzhwwZIpfLv/nmm5CQkE2bNum6hdq1a5cccYtXg4BS3b17d/r06UKh8Pfffy8+dKclT0/PL7/8kspouGuuAiEiX19fTqKCAWl2ZURUcpgu1rFjxxUrVigUitjY2AYNGjBvSvu/UA6f1Pjl5ua+fPmSyv5lNT88fPiwa9euDNvRvGilbsTNza1hw4ZRUVElB52YmBgicnBw8PHxuXLlys2bN1+9ehUYGNiwYcOGDRu+e0aF8TPIK4n3ajFdX2HtPyCZ33uVga5/yGVxdnYuXlKFiLZs2cJwCJyrJwULxNVuQZsvqqmpqenp6cWrs4IZKJ6FkoiePXt24MABXbeA3ZcF0mmAY1Dxtx/oleU23O3s7DRTZZWkUChOnjz52WefEVFgYGD//v1ZtzN58uTt27fHxMT07t37559/7tatm42NzaNHj+bMmXPt2jWhULhs2bJSj3JbmlJP9c3Nzd21a5dm3dQRI0awNrY0bfTExMScnJx3N3jr1i3ND0lJSRwkNgu///77zp073dzctm3bJhTqfEVLXFwcEVWrVq3Ue/38/IgoIyMjKyvLxcWlglHNw5QpUx4/fhwSEvL1118bOov5KywsHDJkiFQqnTlzZqdOnXR9eHBwcHBwcFn3rly5koiEQmG7du0qlBKMgGZXRv+/13pL8Y1PnjzhsJ9okCc1lCdPnmh+KPWXdXJycnFxycrKKi4ri+ZFK3UjmtujoqJKbkRz1rCjo2Pnzp3PnDlTsrh58+YbN240udfWIK8k3qvFdH2Ftf+AZH7vVQa6/iGb7pOCeeBqtxAUFBQfH19WY7T4i+qrV6/QcIeSsPsCMFeWO6XMWwYPHlynTh0XF5fQ0NCYmJgOHTqcPn1aIpGwPtDNze3ff/9t3759fHx87969HRwc7Ozs6tatu3fvXg8Pjz179mgmeYeS8vLyGjduHBAQ4O7uPmbMGLlc/vHHH69fv571gcUHfjW9sJJyc3N/+umn4p+5DWyiYmNjJ0+eTES//fabj49PObaQk5NDRGU104tv12byJUvw119/bd682cnJaceOHWZ2tppx+uKLL+7fv9+0adP58+dzu+V169atWrWKiAYNGlTr/9q79+CYzj6A47+VzYUEIW5BlNJEp0R0G5cOtTUVWpeWdujEbdS4ldAOxlTrMqZab9NUtYggZWhpSjvi0iotvQyiIW6tYtw1JXWLEhKyu+8fz/vu7Owtu3GSzW6+n7/Wc07O5efZ5zn7O+c8T2ysthtH5VNNmbhozSqoKfPJTn3F/clay8s8WdV9e74R9dTw5cuXd+3aFRUV1adPn379+qkcaG5ursFgsMtsVn0+iSR11ZaHEfb2Ainw6qob3n6R/XenCAxaNQvqh2peXp7juDEHDx7ctm2b+swPVdih+QICFQn3/zlx4sTJkyeLiopEJDg4ODEx0engJ06ZzeZ69epZPxcXF6vPtWvX9iRlXw2VlpYePnz47NmzDx48EJEGDRo4DljmVK9evbp16yYi8+fPX7RokXWU/GPHjiUlJV28eFH90+mQ+tXNgwcPkpOTb9++PWbMmEGDBpVvI3fv3hURV9+FmjVrqg/qi1PNXbhwYdy4cSKSnp6uZp9Dhdq0adOyZcvCw8PXrVvnOOBmuf31119DhgwZP368xWJJSEhwOkMm/I5qyoKDg52+6FNBTZlPduor6mSlrP7C/ckWFxerbt3zjagkpl6vX758+bVr17777rstW7ZcuHBh+fLl4eHhDx48GDt2rH+NPO6TSFJXbXkSYfH+Ainw6qor5fgi++lOETC0ahamTJmihjdMTk62TvNgsViys7MHDBhQWlqqSvihCls0X0AAI+H+PxkZGdu3b8/IyBg5cqTZbE5NTU1MTLS+Y+vG8ePHDQbDpk2b6tev/9577+3cuXP//v1r1qzp0qXLuXPn+vbtm5aWVgnH718iIiJ27ty5ZcuWRYsW9ezZs6CgYNKkSf3797feq3BFp9OtXLkyMjKypKTkjTfeqF27dkJCQnR0dHx8fE5OTlJSklqtdu3aFX8SVd0777yTm5sbFxf38ccfl3sjapIDV9eF6n6JiDBokslkSk5OvnXr1rBhw5KTk319OIEvPz9/9OjRIrJo0SKtnkAvKiqaM2dOXFzcV199JSL9+vXbsWOHdWYI+DWfNGXVqv20zojj/nzdn2w5NjJ8+PD3339/27ZtY8aMsV1zzJgx6sWXM2fO+Nfs0z6JJHXVlicRFu+DFnh11RWtIlz1d4qAoVX9ady48aeffhoUFJSfn5+UlBQVFdWxY8e6deu+9NJLf//9t3X8d36owhbNFxDAqu8Y7nbUvOEiMnbs2HHjxvXo0ePChQvTp0//+uuv3fyVxWIZPHjw1atXmzVrlpeX16hRI1XeqVOn4cOHT5gwYdmyZdOmTevWrZt1+xARvV7/3HPPqc+TJ0/+8MMPp0+fvmPHjhUrVqSkpLj/27i4uOPHj0+YMCE7O/vu3btqOvjQ0NAZM2YMHDhwx44dYjN7arX1448/pqamBgcHf/HFF45zFXguPDxcRFzdCLGWR0RElHsXgWHevHl79+5t1arVkiVLfH0sgc9sNg8bNuzGjRsvv/yySrs/vOzs7JSUlEuXLolI8+bNFyxYMHToUE22jIpw586dlStXlrlajx491Pvdqikzm80PHjxwfB+igpoyn+xUK+WLsJTVX7g/Wb1eHxIScv/+fc83Mn78eFdbS0lJmTdvXmFh4aFDh8o4jarEJ5H067rqLU0iLN5fIAVeXXWlHF9kP90pAoZWzYKIJCcnt2nTZvTo0b///vuNGzfUNKpNmjT55JNPCgoK1GPv/FCFLZovIICRcHeia9euI0aMyMzMzM7OLi0ttd51dLR79+4//vhDRD744ANrtt1q4cKFX375ZWFh4eLFi0m4uzF16tSMjIzTp09v3LixzIS7iERHR2/atOn69etHjhw5e/Zso0aNjEZjnTp1rO/uPfbYYxV8yFVdWlqaxWJp3779zp07rWERm+l6li5dqmadnTp1qpvhOBo2bCgiBQUFTpdeuXJFRHQ6HTP/pKamiojBYFi6dKlt+dGjR0WksLBwwYIFIhIdHT1y5EifHGEgOXDgwE8//SQijz76qAqsVWFhoYgcPXpUlXfu3PnZZ591vzWTyTRx4sSMjAwRiYyMnDFjxpQpU6yjAaBqKiwsfPPNN8tcbeHChSodrJoyESkoKHCcnVs1ZSLSoEEDDQ/SJzvVysNE2HE1i8Xyzz//iAcn27Bhw/z8fPedjocR0+v1bdu2zcnJOXbsmCfrVxE+iaRf11VvaRhhVxsRLy+Q/LSuuqHhF7mK7xSBQatmQenUqdOxY8fOnz9/9OjRa9eutWrVqnv37nq9/u233xaRsLCwmJgY7Y4dgYDmCwhU1TThXlJSohJkffv2tc7DaUsVmkymy5cvu+kUrbOQd+3a1XFpWFhYx44dd+/e/eeff2pz3H7r1KlTapSG119/XY1tZ0un0yUkJJw+ffqvv/7yfJtRUVE9e/bs2bOntURN3q3T6R5//HEtjtqPqZHg8vLy8vLynK7w/vvvqw+TJk1yk3CPi4sTkUuXLjl96u3cuXMiEhMT8zAP0QcGFfCNGzdu3LjRcen169ffeustETEYDCTcH5518gbVjDvKzc3Nzc0VkalTp5aZcB83blxmZqaIvPLKK0uWLHG8dYoqKDIy0tX/vq1nnnlGfVBNmYicPXvWMZ+omjIRadu2rXbH6JudasXbCLdq1Uo9n+V0LL78/Pz79++LBycbFxeXn5/vakA/FTTPI6ZynaGhoR6uXxX4JJJ+XVe9pWGERbsLJH+sq25o+0WuyjtFYNCqWbDVsmVLuymd1A/Vtm3bOp0tA9UZzRcQqKppwj00NHTx4sUFBQW3b992mnC/efOmiOj1evfJF+tcqaobdqTKeXHMZDLNmjVLRAwGw/PPP++4ggp406ZN3W/n1q1b6n3bJ598Uj2gbSsrK0tEEhMTrf8v1VZ8fLzTt9IKCgrUXaIuXbqo33VBQUFutmMwGETk/v37hw4d6tSpk93S/fv3i8iTTz6p1WH7r2eeecZpI3Dy5MkrV66EhYWpd1ysSQ08jDp16vTo0cPpov379xcXFzdp0kSFunXr1u43lZqampmZqdPp0tLSPHmeF1VERETEtGnTPF8/Pj5er9eXlpbm5ORYc8RWqimLiop65JFHNDxIn+xUK95GOCgoqEOHDrm5uTk5OY5L1cmKB/2FwWDYtWvXgQMHTCaTXfd07do1la2wbmT37t1ZWVk1atRIS0tz+lbKqVOnRKRdu3aen4jP+SSSfl1XvaVhhMXjC6SArKtueFX9/HqnCAxaNQsXLlw4d+5cjRo1HBvSoqKibdu2iYh1yjHAiuYLCFiW6uqFF14QkcTERKdL1awm7dq1c78R6xPuy5Ytc1x68+ZNNdjW9OnTNThif2YymdT8ME5Dcfv2bfXY+6RJk9xv5/r166oT+uijj+wWnTt3Ts0l8sEHH2h23AFn7dq1qsZeunTJk/Xv3r2rfhlOnTrVbtHx48fVpj777LMKONIAoUYYb926dbm3oIKcmpqq4VEFMJVhHz16tCcrl5SUNG7cWERef/31ij4w+JzRaBQRg8FgV15aWqru9Y4YMaIcm3X/Da2gnVZNc+fOFZGQkJBr167ZLRo8eLCItGjRosyNqNGiRGTLli12i6wDdp05c0aVWK/BVq9e7bipY8eOqacIMzIyynVCPlP5kbRQV//P8wh7dYEUqHXVFW+rn4fUvfa+fftW5k5RTWjSLGRnZ6ualpeXZ7do9erVatFvv/2m2UGj6pkzZ46IhIeHe/VXNF9w38F5qHzVDxWq+ibcFy9e7CpXbu0RZ82aZVuelZWVnp6enp5+9+5dVWI2m9XbPfXr1z916pTtyiUlJS+//LKI6HS6n3/+uULPxS+88sorIhIaGnrkyBHb8tLSUuu0hz/88IO1/N69eyraX375pe366pGB6OjoK1euWAtv3LjRoUMHEYmKivr3338r+lz8l5uE+6+//qoCfvr0advyCRMmqIbbtps3m839+/cXkYYNG96+fbsyDt0/uUm4O7YnTrlP58GOq4S70/Zk/fr1Krxnz56t3MOED6hXoETErk+xDpyyb98+u/Uf/hvq7U792sWLF0NCQkRk/PjxtuU5OTnqTvmCBQtsy512OiaT6YknnhCRhISE4uJia/nNmzfVUCd9+vSx3Yh6SbFRo0bnz5+3Lb9+/bp6r6hVq1ZFRUVanmfF80kkqasW1xE+c+aMivAvv/xiW+7VBVJA1lVXvK1+riJsx30+wtudArY0aRaKiorUfbhevXqZTCZr+cGDB9X77klJSRV9IvCtMjOemnTZCDzuOzhXmTE7JNyroOqbcC8tLX3qqafUr4hBgwYtX77822+/zcjIGDhwoCrs0KFDSUmJ7Z+odlBELl++bC08dOiQ6p7DwsKmTJmybt267Ozs//znP23atFErOz75Uj1dvHhRPeQeEhIyefLktWvXbt261TrfmohMmDDBdv2rV6+q8ri4ONvyffv2qWlsmzVrtnDhws2bN8+ePVsNH6HT6bKysir3tPyMm4T7xIkT1aL169fblufn56uphGJiYhYuXHj48OGsrCz1goiIrFixohIP3/+4Sbg7bU8ckXD3iquEu9P2xDpiRpRbTh9IhN8xm83dunUTkdDQ0JkzZ+7du3fHjh2TJk1SD5YOHTrUbn1NvqHe7tTfzZw5UwVk2LBhW7du3b9///z58yMjI0UkNjbWLpnoqtPZvn27is/TTz+9Zs2aI0eOpKenq/+OmjVr2t2z37t3r7oGq1u37ttvv/3NN99s2LBhzpw51vEAv//++8o4c61VfiSpq24ivGHDBrXyuHHjbMu9ukAK1LrqilfVz1WE7ZT5AKBXOwXsaNIsWG9Sdu7cedWqVRs3bkxJSVFvckdGRto9n4fAU2bGU5MuG4HHfQfnKjNmh4R7FVR9E+4Wi+XEiRNOB3AXkaSkJMdnHl39/N6yZUuLFi0cNxIcHPzmm2/aZe2rs82bNzdp0sQxUEFBQRMnTrS7jnHTrGRkZDjOKxUaGup0YB/YKkfC3WKx7NmzR/2ktKXT6d55553KOnB/RcK9knmVcB80aJDT9t9Oenp65Z4EKkpBQYHTTr93796Oj7Fr9Q31aqf+zmQyDR8+3PFkW7du7ZhlcNPpLFmyxHEWyjYrMQ4AAAP6SURBVIiIiOzsbMedfv7552r4PjtNmzbdvHlzRZ1qBfNJJKmrriLsJh3s1QVSQNZVNzyvflol3L3aKWBHk2bBbDa/9tprTr/me/bsqcSzgW+UO+Fuofmq3ki4B6ogNWBZ9dSgQYMxY8a0aNGiVq1aYWFhQUFBCQkJvXv3nj179rvvvut04s3ExESj0Wg0GtVTKkpsbOz48eOjoqLq1asXFBQUHh7euXPnAQMGZGZmDh061P2klNVKXFzc2LFja9WqVadOHb1eHxER0aVLl/79+6enp48aNcqxgwkODlbRtpuNymAwvPrqqyUlJXq9XqfTxcbGDhkyJDMzs3fv3pV4Nv6qcePGKqqONy0ee+wxtchuruCYmJgRI0aEhYXdu3dPp9M1b968T58+S5cuHTlyZCUeuL+Ki4szGo3qhXE7TtsTR2qdmJiYCjvGgNK5c2ej0eg4P61je3Lnzp2OHTsaPVDmfM7wC+Hh4aNGjYqOjr53757FYomKiuratevcuXMXLFjg2AGJRt9Qb3fq13Q63cCBAw0GQ3FxsdlsrlWrVvv27VNSUjIzM6Ojox3Xd9XpJCYmDhgwwGw2q46+TZs2ycnJq1at6tKli+NG4uPjx44dGxISoi7kGjVq1LNnz2HDhq1atUqNNeePfBJJ6qqbCDds2FBFODY21rbcqwukgKyrbnhV/VxF2E5CQoLRaGzfvr0mOwVsadIs6HS6F198sXv37vfv39fpdDVr1oyPj584ceLKlSvd120EjJYtWxqNxu7du7taQZMuG4HHfQfnKjNmp8zqh0qms/z/+SwAAAAAAAAAAFBuNXx9AAAAAAAAAAAABAIS7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGjgvy0WE63Z46Z+AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3wU1drA8bNJCCGBQAgl9BoIhJ4oSC9WQBAEvV68V3wFFURsWBDLFUXAdkEUG4hXRUUQEJTeCYYSioRIC6GEhFCSkEJ6dt8/9jrO3WTPbnZnZ3eT3/fjH8ucszNPJmvOnmfOPGMwmUwCAAAAAAAAAAA4x8fdAQAAAAAAAAAAUBmQcAcAAAAAAAAAQAMk3AEAAAAAAAAA0AAJdwAAAAAAAAAANEDCHQAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADRAwh0AAAAAAAAAAA2QcAcAAAAAAAAAQAMk3AEAAAAAAAAA0AAJdwAAAAAAAAAANEDCHQAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADRAwh0AAAAAAAAAAA2QcAcAAAAAAAAAQAMk3AEAAAAAAAAA0AAJdwAAAAAAAAAANEDCHQAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADTg5+4AgHKcPHly+/bt5tf16tUbM2ZM2T4nTpzYsWOH+XWDBg1Gjx7t8OE2bNgwZcoU8+u///3vM2fOVLeaTKa4uLjTp0/n5eXVrFnznnvuCQgIcPhYHiszM3PZsmXm140bNx4xYoT5tfzk6GPo0KGnTp0yv967d2+9evWEEKdPn966dat5Y5cuXXr37q1/YG+88cY333xjfj1//vxhw4bpHwMAeBH1n26DwTB+/Pjq1auX7bZ48eLi4mLz6xEjRjRu3Fi/ELWm/krTvXv3nj17OryrhISE3bt3m19HR0dHR0ebX5c7SuopMzPzpptuMr9u06bNxo0bza937tx5/Phx8+s777yzZcuWOgcmPODkAIC3yMnJWbp0ablNBoOhYcOG4eHhbdu2LXfgriimUWrWxne3nyXGd8AZJNzhiWJjYydNmmR+3bVr13IT7jExMUqfqKgoZxLuubm5Z86cMb++cuWKuunq1asjR46MjY1VtiQnJzdt2tThY3mslJQU5XwOGDBASbhLTo5uLly4oMRQUlJifrFv3z4l4KeeesotCferV68qgeXk5OgfAAB4F/WfbiFERkbG9OnTy3Z76qmnbty4YX4dERHh1Ql39VeaF1980ZmE+/bt25988knz69dff12ZkJc7SuqptLRUCcDP76/JxTfffLN48WLz61WrVrllQu72kwMA3iI9PV09RpfL39//ueeemzFjRlBQkDPHYhqlZm18d/tZYnwHnEFJGUBmxowZ6mw7HDZp0qS2fzp48KC7w6mAr776Sol84cKF7g4HACqPWbNmpaamujsK/FePHj3Mg11ERIS7Y6kY7/2OAQDepaioaPbs2V26dMnOznZ3LLAX4zvgFqxwB2SUO9+FEEOGDOnQoYOTF/OrrEuXLimXoPPz890bTIVcv35diTwjI8O9wQBAZXLjxo0XXnjh22+/dXcgEEKIpKSkrKwsIYSvr6+7Y6kY7/2OAQDeKCkpafr06R9//LG7A4FdGN8BtyDhDoiRI0dmZmaaX1vUpLt48aL5hb+//9q1a2vUqKF3cO4mOTm6iY2NLS0tNb+uXbu2W2Io17vvvvvWW2+ZX3MlBgAcsHTp0smTJ7ulLFil4fZRMjQ0VPmq4GmTebefHADwUidPngwODja/zszMPHz48GuvvaZkPz/55JM33njD4cLZTKPs4fazxPgOOIOEOyqb7Oxs5Qa3kJAQ88iUkJCQmJgYGBjYsWPHJk2aWLyluLg4NzfX/NrHx0edVVf+iNeoUUOSbT916lRSUlJ2dnadOnXat2/fokWLsn0KCwuvXr1qfh0YGFi3bl0hxOXLl+Pi4jp16tSiRYv8/Pz09HRzh1q1atWuXdv8vNbz58/XqVMnOjq6Tp06yt4uX758+PDhwsLCdu3ahYeHq0uq2cNoNB48ePDChQvBwcE333yzZIiSnBylw7lz586cOVNSUtKqVauWLVtW9NuAclXD19e3UaNGQogbN24cOHAgMDDw5ptvNv9TqcumPgnWfqg6dep069YtNDTUokNeXp6yRD04OFj5Bml29erVwsJC8+tGjRrZ85WioKBAqTJs7eNx+fLlY8eOpaenBwUFtWjRIjIy0mAwlO2mPnpYWJifn19paemBAwdSUlLCwsI6duwYEhJiMx4A8EZTp07dv3+/j0/F6hxqMvKW2yElJeXo0aPFxcURERFt2rSxNhyYTKZLly6dO3cuNTW1bt26TZs2bdmypb+/f4V+Com8vLz9+/dfu3YtLCysZ8+e1apVs9bT5ih57dq1M2fOXLx4sWHDhq1atWrcuHG5I5E1Nk+j0WhUvipUr169Vq1a1naVn5+/d+/e9PT0Ro0aRUdHl72Qn5mZqQys9evXt7YMws/PLywszJ7g7fkK4fBnyc6PCgB4owYNGih/NsPCwjp06BAVFdWpUyfzH1WTyXT8+PF+/fpZvMvOuY/NaVRubm5SUlJSUlLNmjVbtWrVvHlzyThoNBpTUlKSkpIyMjKaN2/esmXLsjNBx+J0xRzN/vFd27NULvlMXMPxXfOZuD3ju52/5bInIScn58CBA9evX2/dunVERERAQIDNeIBymADPs2TJEuUj2rVr13L7fPHFF0qfqKgoZfvrr7+ubF+wYMHvv//evXt39We+f//+J0+etHa4F1980WQyXb58OSoqKioqStnu6+tr3hIXF6d+76pVq1q1amXxv1VkZOS2bdssAt6+fbvS4d577zUajTNmzDDPzL/55huTybR8+XKlw1NPPbVv3z51kbWAgIAXXnihuLg4MzPzwQcfVCcmWrduvW7dOvtP78aNG9VXHapXrz5jxowjR44oWwYMGCA5OYrMzMxXXnnFYtz18fH529/+duzYMaXbm2++GRUVpR4F27dvHxUVtWzZMnMHZXtoaKjJZPrxxx/r168vhHjkkUfMHdRT3/z8fPNG5Ynt5tO1Y8cO9dNa/P39J02aVFRUpA5Y/Zmx+FlMJpP6QXanT582mUzr1q2Liopq1qyZsr1x48ZRUVEvvPCC+S0PPfSQ0rR+/XqLHcbHx/fr189iUK9fv/7ChQuNRqNF5wEDBih94uPjly9frk4lGAyGiRMnXr9+3b7fMAB4KPWfbrUvvvhC3U194Xb79u0WO9Fw5LXokJ6ePmbMGPUI26JFi7J/3ktLS7/77rsOHTpYxBAaGvrqq69mZmaqO0uGUYm5c+fWrFlTPXb8+OOPCxYsULa8/vrrSudyR0mzrVu3lr17oEWLFp988klhYaHS7Z577omKilLPb83feRITE+05jWfPnlU69OzZU9ntI488omxftWrVRx99pP7OEBIS8umnn1r84OPGjVM6WJx59b3kTZo0MW+0+R1DcnJMTnyW7PyoAIAXUf8xF0JYDGdmHTt2VDp89tln6qYKzX0k06hTp06NGzfO4jJ8zZo1X3zxxStXrljsp7i4ePHixWUvlN5yyy3WJsjunaNVaHx3/izJx3eTrZm4huN7RWfiTo7vFfotq09CSUnJq6++GhgYqGwMCgr697//XVpaasevF/gfJNzhibRKuE+ePNni2qnylzQ9Pb3cw5n/+icnJ5d9l5ky88/NzR07dqy1bkKICRMmlJSUKEexmKq9/PLLyj/LJtz79u1b7jrxyZMnmxd9W/D19bW4EmDNe++9V+4V46FDhyqv7Um45+TklM01KPz8/JTJqno8VluwYIG5g7IlNDR0/fr1Snj2J9wHDhxY7jX/W2+9NSsrq9zPjD3DvLXE0L333mt+i+Q70KxZsyTrC/r165eSkqLur/4y99JLL5X7roEDB9rzKwYAj6X+uxoeHq5c2K5fv756vmot4a75yKvucNddd3Xr1q3c3e7YsUP9U0yfPl0Sw6BBg4qLi5XOFU245+fn33///WV3azAY7rzzTuWf9iTcFy1aJInztttuU85VmzZtyu0THx9vz2m0Z0KuDl7thRdeUE99K5pwt/kdw9rJceazZP9HBQC8iD0Jd/VUdMmSJcr2is59rE2jjh49qs51WmjSpMmlS5fU+3nwwQclf8lnzpxpEb8b52gOjO/OnyX5+G6yNRPXcHyv6Ezc4fHdgd+y+iRMnDix3Hf961//sue3DKhV7O5dwLssXLjQXF7G4tpmenr6v/71L8kb/f39ra1wVy7evvnmm+oUub+/f3h4uDqXvWjRooULF5a7/8TExHfffVcSQExMjPn2MYvIFy5cuH///rL9S0tLrX0DUNuzZ8+0adOUOjlCdW/aunXrbL5dberUqcePH1f+2b59+969eyu31JWUlIwdO9Z883XLli3LvTrdoEEDi32WlJQ8+eST6vDstGPHDvM8vHr16urr/Fu2bJkyZUpF96YIDQ0td4W7tS8uig0bNsyYMaO4uNj8T4PB0KZNG3X+aPfu3U8++aS1t8+ZM0d5o3r7jh07Vq5cWdGfAgA8k4+Pz4cffmh+ffXq1TfeeMPmW1w68q5fv958s1fZ243Vf7F37typ/JUWQtSrV69z586NGzdWtmzfvl2dZK+o9957b9myZeot5huZTSbThg0b7N/P6dOnn3jiCeWftWrV6tu3b2RkpLJl8+bNyjnv3LlzuSvgyl7MtnkarVGCt9jnO++848zpsv87hgVnPkt2flQAoJLJy8s7ceKE8s/27dubXzg591EYjcbRo0fn5eWZ/1mtWrXo6Gh1fZKUlJT77rtP6f/111+rn7veqFGj/v37q+dur7/++tatW5V/uneOptX4XqGzZP/47vBM3NPGd2d+y+np6cqFAYvf8pw5c1JTUx34QVCVkXBHJTd69Ohjx44VFRUlJibedtttyvadO3dK3tWgQYO4uLi4uDhlcKpZs6Z5izkLf+LEiQ8++EDpP3369KysrFOnTmVlZT366KPK9tdee02p+Kn2+++/FxcXd+jQYfz48VOnTi03gfvAAw+cP3++sLBw5cqV6pqwBoPh/fffz8zMzMnJefHFF5Xthw8ftnk2XnjhBeV1z549//jjj7y8vMTExEGDBtl8r4VffvnF/CI0NDQpKenEiRN79uxJTU39+9//bt6enp6+bds2IcQrr7wSFxenXh2waNGiuLg49bcls6ysrMTExAYNGtx///1PP/102ZqAEnXq1Fm1alV2dnZ6err6LofvvvtOebZPRd11111xcXHPPvussmXSpElxcXFz586VvKuwsFA9hN95551paWmJiYlZWVmfffaZ8qtcuXLl5s2by92Dj4/Pq6++mpycXFRUFBMToy6VI//cAoB36d27t7Ki+aOPPlJP48vSYeTt3Lnztm3bbty4ce3atWnTpinb4+PjlYeG/fTTT6Y/F0PNmjXr8uXLR48eTUlJ+eSTT5T++/bts/mzl+vatWvqdPbEiRPT0tJyc3N3796tziDYY9OmTUo51Oeffz4zM3P37t3Hjh2LjY1VlsUpGedVq1bFxcUpN7mbb5uLi4sre5bsOY3WREZGHjp06MaNG+fPn7/77ruV7W+//bYDM3wz+79jqDn5WRL2fVQAoDLJysp67LHHlIel+fr6mm93dn7uozh+/HhiYqL5db9+/TIzMw8cOHDgwIHz588rt1bv3r378uXL5tdr165V3rtmzZrU1NSdO3eeP39euZxvMplWrFhhfu3eOZqG43uFzpL947szM3HPGd+d/y2Hhob+5z//ycjIyM3NXbp0qfKWgoICh7/doepy7wJ7oFxalZTp0aOH+nZg5WkYQogaNWootzhJbvdWEu7mR5gqJkyYoLxl3LhxFrGp89dvvvmmeaP6ZmQhxPPPP29RCEy90qp58+bq4qr33ntvuYczGo3qq77Z2dmSs/rbb78pPUNDQ3NycpSmgoKCpk2bKq02S8qkpKQoG5s0aaK+h+vYsWN9/rRw4UJl+8iRI5W37N69Wx2Y+rQMGjRIXQTGzGZJGSHE2rVr1W957LHHlKZJkyaZN1b0Rjazf//732V/m2bl3uWnXmfRsmVLizry6iWcQ4YMUbarv0xMnTpV/Rb1Du+44w4TAHgt9Z/u9u3bm0ymixcvKsuOlD9x5ZaUccXIq+4QFBSUnJysNBmNxnbt2imtsbGx5u0jR45s0aJFixYt2rVrp/4Ln5SUpHTu37+/sr1CJWXefvtta3/w4+Pj1YutbJaUUd8T/eGHH6p39eyzz5qH6X79+uXl5SnblSeo+/r6WjtL5Z5Ge245DwwMTEtLU5pKSkrUhYCVkqwVLSljJvmOUe7JcfKzZOdHBQC8i0VJmV69einTusjISIv1y8oMy7G5T7nTqKVLlyoblRqeZt98840SjPJnNjw8XOl/9OhRpbPRaBwyZIi588SJE52JU6s5mmPjuyZnyWR9fDfZmolrOL47NhOv6Pju2G9ZfRJWrlypfov6C8Ps2bNNQEWwwh2V2d13362+f6pJkybK88rz8/OVlV8O2LVrl/L6ueees2h95plnlNe7d+8u+/aGDRvOmjXL4iEnar1791avaq9Xr57yeuDAgcprg8GgfgK7/ALy0aNHldePPfaY+mkt1atXf/zxxyXvtaB+7HhKSkqrVq0ef/zxNWvW5ObmRkZGxvxp0qRJ9u/TbN68eeWW3Zdr167d8OHD1VvUy83i4uIqukNnqD8bU6dOtagf9+STTyqfydjY2HJ/ZaNGjVL/s2vXrsrr69evaxkrALhbkyZNlJLoGzduVK9Ws+DqkTc6Olp97dlgMHTu3Fn5p/Lnd/Xq1efOnTt37tzJkyfNf+ELCgoOHjyormzu8Hou9Uht8TN26tRpyJAh9u9KPVI//fTTgwYNev/998214N5//33zML1r165yn4AiYfM0WjNu3LiGDRsq//T19VX/ytw4UjvwWbLzowIAXm3v3r17/pSQkKC+6hkSEjJz5kzza+fnPgr1yPXTTz916tRpxowZMTExpaWlDz74oDLH7NWrV9n+vXr1Gjt27FdffZWWlmYwGLZs2WLu/Pnnn2sVpzNzNBeN7/acJfs5NhP32PHdgd9ytWrVhg0bpt7CTBzOIOGOykydpzYzF0pznvJUVR8fH3VFVLNOnTopry9cuFD27Z06dZI8x0MIoVyFLku9pL1CTp48qbzu0qWLRWvZLRKhoaHqq/1paWmfffbZyJEjQ0NDb7vttn//+9/qmwns5+/vX/Zk2kM90TVr27atskBSuedOH+on7pY9qyEhIU2aNDG/zsvLu3btWtk9WHxutfrQAoBnmjZtWqtWrcyvn3nmmaKionK7uXrkrdB3htOnT8+fP3/UqFHmwqDR0dE//PCDZOd20nCkHj16tPLaaDTu2LFj2rRpHTt2bNmy5eTJk9evX280Gh2I0OZptKZs8OrnjrprpHbss+S6r5cA4Pl69uy5f/9+5S+h83MfxZAhQ9Sz4ISEhLfffrtfv37169f/29/+9vXXX+fm5qr7q+8Cz8vLW7FixcMPP2x+5tarr7566NAhdWf3ztE0HN8repbs5PBM3DPHd+HQbzk4OFi96lEwvsM5JNyBCistLVWu8IeEhFj8URZCNGrUSHmdlZVVdg8OJ82doU6Cq69Cm6ljtseKFSssFpULIYqKirZs2fLss8+2atVq6tSpJSUlFdpnrVq11Hck2K9+/fplN4aFhZlfmOvdO7Bbx6iPVfY8Czs+HgBQpVSvXl0pqH3mzBl1IS+F54y8+fn5kyZNat++/dNPP7169eqkpCRz5tqxNLQFZaQ2GAxlh7YKjdSDBg365ptvyu7k/Pnzn3zyydChQ9u1a1fuY9jlHD6NZSNRhmlzVI7t1gHOf5YAoCoYMGDAEJWRI0e+8sorK1eujImJadu2rdJNw7lPnTp1tm3bpi5IYpaZmbls2bKHHnqoWbNmX375pbL9lVdemTZtmnrFtxDCZDIdOnTorbfeioqKuvXWW69cuaJ5nA7QcHyv6Fmyk4YzcXeN78Ldv2XAAgl3eCL1Dc7Kg1ksqLcrj//Sh6+vr3LEjIyMgoICiw7qEue1atXSLzIp5XKuEOLSpUsWrWlpaRXaW7169dauXXvy5MmXX3657HhfUlKyYMGC1157zbFQK6rcJ4YrP2NQUJC6fo6rqW/EKzcwz/x4AIAb3XPPPcr91G+99VbZRe6eM/K+8sorn376qclkEkIEBAQMGzZs5syZa9euTUhIcH7nykhtMpmUh8IpKjpSP/jggxcvXvz+++9Hjx6tLotvdubMmdtuu83aQ0E1V3ZAVP/K1JNzV/OczxIAeLLVq1dvUVm9evWbb745atQoPz8/dTdt5z49evRISEjYsWPHo48+WnZouH79+iOPPLJp0ybzP/38/N59992UlJR58+b179+/bL5469at99xzjyvirChtx/cKnSVX85zxXbj7twxYIOEOT2RxUfTGjRtl+6hntjr/HRdCKDe/m0ymw4cPW7QePHhQea1+mod7qVciqCM0s7jnzk7t2rWbNWtWQkLC6dOn33333T59+qhb1Y9GcakjR45YlGA7duxYXl6e+XX79u3VD6IxU1oV6tHXGcpnQ5R3ntPS0pQDBQYGlrs2HwCqoPnz55unyrm5ucXFxWU7eMLIW1xcvGDBAvPrunXrnjhx4pdffnn11VeHDx/u2B3cFjQfqf39/f/2t7/99NNP165dW7t27YQJE9R3xGdnZ//4448OR1shZX+cAwcOKK8jIiLKvsVipNZqmBae8VkCgMrBFXOfAQMGfPbZZ6mpqbGxsS+99JL64aiizBwzNDT0qaee2rlz5+XLl5csWXLPPfeo17zHxsaa8wbunaO5YiZeobPkOs6P74KZOCopEu7wRNHR0Uq1LKPR+Prrr1t0OH78uPrx3H379tUvOCHE/z65dPbs2eomo9E4Z84c5Z+DBw/WLSq57t27K6+/+OILdc2ynJycjz/+2P5dvf32273+tHfvXiFE27Ztp02bFhMTc/DgQeXu7PT09HKTJpq7cOGCRfHcWbNmKa+VanR169ZVNlo8v2XXrl2O1Z0vS/3Z+PDDDy0uF82ZM8f055PQ+/XrZ7FCBACqrMjISPmjtj1h5E1KSlLGtS5duqizsStXrnR+/+qReu7cueoy6/v27du+fbud+7ly5YoyTE+YMEEIERAQMHz48C+++CI5OfnBBx9UelZ0VZ3Dfvzxx7Nnzyr/zM/PV+oICftGavUXPyd5wmcJACoHDec+Y8aMMY9c/fr1y8vLMxgMvXr1mj179smTJ9VzVfPItWHDBmWkW7hwoRAiNDR0/Pjxq1atOn/+vLocubm/e+doWo3vooJnSQfOj+/MxFFZkXCHJwoKCho7dqzyz/fff//2229fvHjx5s2bly9f/tJLL910002FhYXm1nr16t1///06R/j8888r9yOvXbt2/Pjx5gd0nDlz5u6771ZWSzVs2PDxxx/XOTZrevfu3bt3b/Pr7Ozsvn37bt26NSMjY9euXf369VPK29mjXr16+/40bdo09Q3p2dnZSun2iIgIpaatj89ff20qdCw7TZgw4dNPP01NTT1+/PjEiROV/LvBYHj66afNr9u3b6/0j42NnTZt2vHjx0+dOvXZZ5+pH7ljoaKRjxo1SnlCS1pa2sCBA3///Xej0Xj16tUZM2bMnz9fCUy3kjsA4BVmzpwZGhpqrdUTRl51Cbu4uLhNmzYVFRXl5+cvWrTovffec37/jz/+uHKDc0xMzOjRow8fPnz16tVly5YNHTrU/v00aNAgOTnZPEwvWbLku+++U2aYJSUl6gqn6qeOK+NdaWlpRkaGsz/M/youLh44cOC6devS09NjY2MHDx6szM8bN26sfJFTj9Tz589ftGjRuXPnjhw5Mn369DfffNPazis6UnvCZwkAKgcN5z7+/v7mkSsmJmb69OlKyS+j0agut20euVq3bq1MSGfOnKm+XSk/P195Vof481HY7p2jaTW+iwqeJTNPG9+ZiaOqMAEeKTk52Z57fAwGw6+//qp+o3o5/IIFCyx2q65jnp+fb964ZMkSZeOLL76o7q9Ugqtdu7bFrtRrqM3KlpL/9ttvlf7qC9f33ntv2R95+fLlSofHHntM3fTYY48pTcuXL1c3tWnTRmnKzMyUn9XNmzfbPKVCiAEDBihvKffkJCcnqx+b5ufn17Zt28jISItf2dNPP63sZ8qUKcr2hg0bjho1as2aNeYmZXtoaGi5YauXECq/tW+++caen+Uf//iHsp+ioiL1XWYSp0+fVt61YsUKZXv16tVHjBgxe/Zsc9NDDz2kNK1fv155S0xMjEURG/VjCcwmTJig/hkHDBigNMXHx6ubTp8+rTT17NlT/isGAE+m/tPdvn37sh3Mi9TUtm/frrRqPvLKO4wbN67sH3mLkS4gIKBs0dhbbrlF2YnkO0a5ZsyYIezw+uuvK28pd5ScNm2aun9oaGhkZGTbtm3VD3cNDAxMSUlR9mNOSZhFRkaOGjXq3Llz9pxG9dI29Tj1yCOP2POzLF68WHnL8ePH7Vlx1qRJE3UAku8Y5Z4ck9afpXI/KgDgXdR/zIUdU0uFA3OfcqdRa9asUe8nKCgoIiIiIiLC4nFcq1atMvePjo5Wb2/WrFmnTp2aN2+u3titWzdn4tRwjubA+K7JWTJZH99NtmbiGo7vjs3EHRjfHfgtS06CujKPPd/iADVWuMNDNW3adPPmzR06dJD0CQgIePfddyt6TVgr06ZNmzJlivqiq7oYmb+//8yZM9UTME9w6623LliwoNznjyvPk7UA4/8AACAASURBVLFH06ZNV61apZSOKSkpSUxMTEhIUC91v+WWW9S3ad91113K68uXL5vv9avwD2BFv3791DepKQYPHqy+o61atWoffvhhuXsYOHBgt27dym3q06eP8vSVwsLCNWvWWNwEV+5bPvvsM/VjWNSLLIQQ999/vyZrIQGgknn00UeVpUllecLIO3fuXPU/CwoKzA8RmT59ujLBO3XqVNlHcdrptddeU0+wFQEBAXfccYf9+5kzZ4565E1PT09ISEhMTFRK4vj4+CxdurRx48ZKH/UXqoSEhFWrVqnXwjtp+PDh6l+c4qmnnho/frzyz4iICOW+NAvPPPOMtZ078B3DEz5LAFA5aDX3ufvuu9966y3lnzdu3Dhx4sSJEyfUT0l55plnlHnrmjVr1On15OTkY8eOXbhwQdlSr1499dop987RtBrfK3qWhGeM747NxB0Y35mJw3OQcIfn6tq1a3x8/JdffmnxABAhRFBQ0IQJExITE5977jm3xCaE8Pf3X7Bgwe7du2+55Rb1GFOtWrXbb7/9yJEjr776qrtik5gyZcr69evVt3SFhIR8/vnnkju1yzVw4MATJ048++yzZTPd7du3//jjj7ds2aIU4hdCDB06dMGCBY0aNXImeGt69OgRGxurLo0XHBz8yiuvbNq0Sf10OCHE8OHDt27dqv7xa9WqNW3atPXr16ufrqMWFha2atWqrl27ViikiRMnJiQkjBkzxuKKeufOndeuXfvDDz/Url27QjsEgKrA19dXueG3LE8YeR9++OHPP/9c/bT2rl27rlu37u2331ZGivT0dDsXspXl7+//1Vdfvf/+++ql9G3btt2+ffvw4cPt34+vr++aNWuWLVvWp08fi5lw9erV//GPf8TFxVlca3/jjTeeeOKJsgu9NfHII4+sXr1a/TWgWbNmP/7447x58yzCe+eddz766KOQkBBlS9OmTRctWvT2229b27kD3zE84bMEAJWGVnOfl19+ec+ePffdd5/F1MxgMAwcOPDnn39+//33lY2NGjU6evToBx98oH4kqVm9evWmT5/++++/q28H1zBOB2g1vosKniXhMeO7AzNxx3IIzMThIQwm1Q0UgMfKy8s7c+bMuXPnQkJC2rRp46K8rcOuX79+9uzZnJyc2rVrt2nTxuJ+Ls+UlJSUmpoaHBzcoUMH9Q3mDrh+/XpKSkpGRkaDBg2aNWsmH8tzcnKys7ODg4Nr1qxpcbeX886dO3fx4sWaNWt26NDB2rBtlp6efurUqRo1akRERKgvDEgUFhZeu3YtMDAwODi43LsErL3r9OnTGRkZgYGBzZs3b9CggZ1vBABIuHfkLS0tPXfu3KVLl5o1a6a+qVlDJSUlJ0+ezMjICAsLK7vyoKK7unTpUkpKiq+vb9OmTRs2bFjuYjTFtWvXSkpKgoODNZ+cG43GEydOpKenN2jQoF27dvKvAcnJyefPn69Xr1779u3t/MLg2HcMb/wWBwCeSau5j8lkunr1akpKSn5+fuPGjZs0aSKfsebn56ekpKSlpQUHBzdt2rTcu59dEacDNBzfK3qWPGR8d2Am7tj4zkwc7kXCHQAAAAAAAAAADVBSBgAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADRAwh0AAAAAAAAAAA2QcAcAAAAAAAAAQAMk3AEAAAAAAAAA0ICfuwPQgMFgcHcIAAA4yGQyuTsEt2EEBwB4u6o5jjOCAwC8nUtHcFa4AwAAAAAAAACggcqwwt3MvSsLMjIycnNz69atW7NmTTeGUeklJyebTKZmzZqxpMJ18vPzr169WqNGjfr167s7lsrs2rVreXl59erVCwwMdHcsldmFCxeEEM2bN3d3IOXjT5lZVVsbmJKSUlpa2qRJE19fX3fH4pWys7OvX78eHBxcp04dd8firTz8b6Pnu379enZ2dp06dYKDg90di1cqLS1NSUnx9fVt0qSJu2NxCuN4pRnB+avojKKiorS0NH9//7CwMHfH4pVyc3MzMjJq1qxZt25dd8filUjHOSktLa2oqCgsLMzf39/dsehHhxGcFe4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAa8HN3AAA8Q2amKCoSN274pKf7X77sX1goqlcX+fkiO1sUFYnsbJGfLwoKxIQJom1bd8cKAAAqLjlZHDsmMjJqnTkjSkrEoEEiKkoEB7s7LAAAAKBSIeEOVFWTJ4tffxU5OSIvTxQWKpurCxEmedfevWL7dmEwuD4+AACghfR08eOP4vvvxZ49wmgUQoSYt7/5pvDxEe3aiQkTxOOPi6Agt0YJAAAAVBKUlAGqpF27xKefigsXRGamOttu286d4osvXBYWAADQjtEoFi4UbdqIyZPF7t3mbLtlhxMnxLRpolUrMXu2KChwR5QAAABApULCHah6iorE448Lk8nBtz//vLh4UdOAAACA1hISRN++4oknRFaW7c5Xr4qXXxa9e4szZ1wfGQAAAFCZkXAHqp733xfHjzv+9uxsMWmSdtEAAACtbd0qevcWsbEVe9fhwyIqSqxa5ZqYAAAAgCqBGu5AFZJXVJqfeKbuW285W4L9l1+yvvmucNS91tpr+vsF+vs6eRAAAOCIH34QDz0kiooceW9Wlrj3XrF4sXj4Ya3DAgCgKjqSknX0Ura11oKCghs3bgQE5AUF3XDyQF0aBXdrUtvJnQDQBAl3oAr56eilFuMf7p+X5/yuSp548m/JtbNr1Cq3dWq/Vv+Mbub8UQAAQMV8+6146KFyyrXbz2QSEyeKgADxwAPahQUAQBX127nML/dfKLvdv6Qo4uKpyHMJja+l5FUPygqqlRlU50C7qEshDR070P/d3JyEO+AhSLgDVUizHRv7J/ymya5CczKeXrNw5v0varI3AACggZgYMWGCU9l2s9JS8c9/iqAgMWKEFmEBAIC/dDr/x4TNX/c6ecCvtMSiyWQwJDTvsLnboDU3D82pUdMt4QFwHgl3oMq4ceOm91/XcH9371+/ocet+8OjNNwnAABw0JkzYtQoUViozd5KSsQ//iEOHBDt2mmzQwAAqrz2Kaen/Pr5LSf2W+tgMJk6nf+j0/k/Htr23by7J6+Pus1kcLYiLAD98dBUoMqYOTMoLUXD/RlMpleWvVOjqEDDfQIAAEcUFIiRI8W1a1ruMztbjBkjtKhEBwAAxvz285L5kyTZdrW6OZkzv5v16SdPN8jSdHAHoAsS7kDVkJAg/v1veZcbAUEpoY2TGrb4o0n4/rbdf4u4eU+HXvK3NM5Ie3TjEu2iBAAADnn5ZZGQYFfPm2/OfeCBwij7blCLjxdPPOFMXAAAIKCo4M2lb7204gP/kuIKvTEq8ciS+ZPaXDrrosAAuAglZYAqwGQSTz4pimVDe0atkHtf+janRk2j0VhSUuLj4+Pn5yeEeP/LGQOOxUjeOG7nj5u7Df6jWXuNYwYAAHbavl3Mn2+7W5s24osvxKBBGRcuCCGaX7woHnpIJCbaeNdXX4lRoyjmDgCAY3yLCj9Y/PLNpw869vaG168s+mjKtIdnHWzbTdvAALgOK9yBKuDrr8X27fIuH4ycUu4jWeaMeUb+qBYfo/HVZXPLPuwFAADoISdHjB9v+0GpvXqJffvEoEF/bendW8TFiSFDbB/iiSdEdrZTQQIAUDUVFd35ymSHs+1mtfJz5y96seOFE1oFBcDVSLgDlV1mpnjhBXmXQ226bexe/nz7anC9hUMnyt8ennrmwR3LHAwPAAA44803xYULNvr06iW2bhWhoZbba9cWP/8s+vWz8faLF8WMGY5HCABA1WQyiQcfbPHbNuf3FFBUMG/xS40z0pzfFQAdUFIGqOxeeklcuSJpL/atNnvMs5JHn//Ue8Qdh7Z0Oxsv2cmjG5fs7NT3bMMWjscJAACsO3Qx60hqlsXG2ueTRs2bJ19Bk9uo6drXP84/9tcj1zIyMoQQdf+cs1d749MR4++ufSFJtpeFC8U//iFuvtmByAEAqKLeeUcsX67VzurmZM774sVHpn4svwcdgCcg4Q5UagcOiEWL5F2+HvyAPFFuNPi8ef8L37/3iH9JkbU+/iXF01d88NjkeZLEPQAAcNje85lf7rdcyf7hFy/5SJ/RUuRXbeK4maeP5wqR+9fGoiIhhL//X1Vifr3/1a/mTwooKrC6I6NRTJsmdu1yLHgAAKqcnTvFK69ou8vWl8+9vPy96f/8l7a7BaA5SsoAlVdpqXjsMXlR10shDb8aMs7mns43aP7lrQ/K+/Q4c2TU3l8qFiEAAHBU3z9iex/fJ+/zyV0TTjduY3NXiY1avztqqo1Ou3eLNWvsDw8AgKrryhXxwAOixPajzjJr1vmu9z2f3vbP31t1tmfHtx3ZPvTgJqfjA+BaJNyByuujj8Thw/Iu79z7dL5/gD07W3LrgyebhMv7PLX2kwbXr9obHgAAcJTBZJq83sZNbIfadFs68D47d/hzz2H72kXb6DR9uigttXOHAABUXU8+KS5dstlrRe+Rw1/+fs6IJz697aFHnvzouf+blVEzxOa7XvhpXljmZS2iBOAqJNyBSiotTbz+urzLti79d3fsbef+Sn18Z42dZvSR/dEIKrgxfcUH9kYIAAAcNSh+V7uUREmHIr9qb933vNFQgW/7s8c+VyC/DP/HH+Krr+zfIQAAVdGvv4off5R3MRkMs+57fs6YZ9UL4HZ26vt/Ty28UL+p/L01C268uuwdDeIE4DIk3IFK6umnRZblo9XUCvwD5o14okK7/KN5xA/9xsj79PvjtyG/76jQbgEAQIX4mIyPbVgi7/PdgPtsztgtXAxtvOi2f9ro9Pbb9twgDwBAFZWbKyZPlncxGQzvjH56Va/hZZsuhjZ+fPL8K3Xqy/fQ81Tc4KM7HQ8SgIuRcAcqo82bxbJl8i6f3fFwat2wiu544V2PXAxtLO/zwsr5/tmyXD8AAHDGrUe2t0k7K+mQXqvuEjue0VLW0oH3ZTduLuuRlCR++MGBPQMAUCX861/iguVDzi18M+hvy/vcY631Su16T0+Yk1c9UL6TZ37+WPa0cwBuRcIdqHQKC8WTT8q7JIW1+r6/jbXq5SrwD5h13/Mmg0HSJzQnI/rDWQ7sHAAA2GQwmR7Z/I28z0fDH70REOTAzot9q+1/5BkbnebMkT+SHQCAKursWfHRR/Iuh9p0/XjoRHmfU43bzho7Td6nUebl8du+q1h4APRCwh2odObMESdPStpNBsPc0U+X+Po5tvsD4T3WRd0u79Nm7Y8iJcWx/QMAAIlbTh6QL2+/UL+pzZFa4vRtI0SPHrIeCQlizRqH9w8AQKX16quisFDSnhUU/PI/Xi/18bW5p409hmzocau8zz+3fd/g+tWKRQhAFyTcgcrl0iUxZ468y9qb7jzYtpszB/lg5BT5w9MNRqP46SdnDgEAAMo1boeNqnGf3/GwPTN5a0w+PuLNN210mj3b4f0DAFA5HTokvv9e3mXeiMnXgkPt3N/ce5+RF3P3LymasPlre8MDoCMS7kDl8tNPokBWxy0rKPjDuyc5eZCsoOD3RtmoWiNWrHDyKAAAwELbS0k3nz4o6ZDUsOWm7oOdPczQoSIqStZh/34RG+vsUQAAqExeeklecu1AeI9fou+0f385NWq+P3KKvM+I/esaZ1yyf58A9EHCHahcbK0r/2jYY9eDajt/nE3dh+yK7C3rsWePSE11/kAAAEDx4I5lBpNJ0mHR7f80GrT4hv/SSzY62KpRCwBAFbJ3r9i8WdJe7Ftt9pjn5I9DK2tr14H7w2WXwP1KSyZu/E+F9glAByTcgUrkyhWxe7ek/WrnqJ97DtXqaO+Nmir7ukBVGQAANBWSe/32w1slHS6FNNzadaA2Bxs9WkREyDqsWCEusaQOAAAhhBBvvy1vX9Fn5IX6TR3Y8Xujp8ofwDbs4MbmVy86sGcArkPCHahEVq8WpaVWWw2G/S/N0mbVmxBCiNS6jeJbRMp6LF+u1bEAAMDd+9f7lxRLOnzff4wz1dv/h4+PeOEFWYeiIvHZZ9ocCwAArxYfL375RdKeGxC0+LZ/OrbvpIYt19wsWzbnYzSO2/mjYzsH4CIk3IFKRL6iPDo6o500P15xW7oNlDVTVQYAAK2YTKP2rpW05wYEre41XMsjPvCAqC97Vpv4/HNRLLsAAABAlTB7tpAWfPt68N+dqey66LZ/Fvn5SzoMP7AhJPe6w/sHoDkS7kBlkZkptm+XdRgzRvNjbukykKoyAADooFncnmbXUiQdVt4yIq96oJaHDAgQEyfKOly6JF/QBwBA5Xf2rPhRtsA8PyT0u/5OTcav1Km/8pa7JR2qFxeO3bPKmUMA0BYJd6CyWL3axiqze+/V/JhX6tSnqgwAADro+PN3klajwWdFn3u0P+qkScJPVjdWLF6s/UEBAPAiCxfKKrsKcXTswwX+AU4eZMmtD8p3MnbPar/CAiePAkArJNyBykK+lrx7d9GmjSsOa7uqTIpsOR4AALAtLa1VzGZJe2zEzal1w7Q/btOm4h5pHn/DBgZ6AEDVlZdn49pz7drxox2s3q6WXqvu6p7DJB1Ccq+337DS+QMB0AQJd6BSyMkRW7fKOrhgebuZ7aoyKxn1AQBwztKlPiUlkvafeo9w1aGnTJG1lpaK//zHVYcGAMDDffutyMyUdZgypahmLU0O9d2A++SPRu+08htNDgTAeSTcgUrh559FgfT2sdGjXXTkK3Xqx7foKOtBVRkAAJz09deSxst1GsR0uMVVh+7fX7RrJ+uwZIn8SXEAAFRaH30ka61RQzz1lFaHSq0btrXLAEmH0DMnxJ49Wh0OgDNIuAOVgryeTGSk6NDBdQff0nWgrJmqMgAAOOPIEXH0qKT9557DjD4u+1ZvMIiHH5Z1SEwUu3a56ugAAHisnTtFfLyswwMPiPr1NTzgtwPvt9Hj0081PBwAh5FwB7xfXp7YtEnWwWX1ZMy2dB1EVRkAAFxFurzdaPD5uedQ1wbw0EM2Hp26dKlrAwAAwAN98YWNDvKybBX3R/OIw627yHosXy6uXdP2oAAcQMId8H6//CLy8mQdXJxwp6oMAACuUlIivvtO0h4X3v1ynQaujaFRI3HXXbIOK1aIoiLXxgAAgEe5ft3GwrK+fUX37pofdkVv6cPMCwvFV19pflAAFUXCHfB+8noy4eGii/QauBZsV5VJTXV1DAAAVEKbNonLlyXtv0TfqUcY//d/stbMTLF+vR5hAADgIb77TuTnyzpMneqKw27r2j+jZoish8119wBcj4Q74OUKCmxMcV28vN3MdlUZ+VUBAABQrh9+kDTm+wfs6NxPjzCGDROhobIO0mX4AABUNosXy1rDwsQ90qXojir2rbZGXkru1Cmxb58rDg3AfiTcAS+3YYPIyZF10CXhTlUZAAC0V1Ag1qyRtG/tOjCveg09IqlWTYwdK+uwdq2NLyQAAFQaR4+KQ4dkHR56SFSr5qKD/9R7pI2Hpf/nPy46NAA7kXAHvJx85XjLliIqSp9AqCoDAIDGNm4UWVmS9l+j79AtFvH3v8ta8/PFqlV6hQIAgFt9+aWs1WCwUYrNOZdCGu5tFy3rsWyZKCx0XQAAbCLhDniz4mLx66+yDvfeKySVXjRlu6qM/JEyAADAgrSezLXg0INtuukWi+jbV7RsKevA3WwAgKqgtFQsWybr0LevaNfOpSH8crP0YeYZGfI75AC4Ggl3wJtt3iwyM2UddKknY0ZVGQAAtJSXJ375RdK+petAG3eUa8tgEPffL+uwebPIztYrGgAA3GTrVpGWJuvwyCOuDmFHp745NWrKenz9tatjACBBwh3wZvJ6Mk2aiJ499QpFCJtVZWJiqCoDAIC91q0TubmS9s3dBukWy3/Jq8oUFoq1a/UKBQAAN5E/Jzw4WIwZ4+oQivz8N3cbLOuxcaNIT3d1GACsIeEOeK2SEhu3iY0eLfRc+EZVGQAANCS9M+xynQZHW3bSLZb/6tJFdOgg6yBfCgAAgLfLz7cxqx01SgQF6RDILzfdKWsuLmb2DbgRCXfAa23fLq5dk3XQsZ6M2ZU69Y81l87DqSoDAIA9CgvFhg2S9s3dpBe5XUf+7WLDBvmqfAAAvNuaNSInR9Zh3Dh9AjnaMvJcg+ayHvJC8wBciYQ74LXki8jq1xd9+ugVyl+2yG9vp6oMAAD22LpVXg/dDfVkzOQJ9/x8sW6dXqEAAKA76fPMRViYGCyt9KKpDT1ulTXv2GGj1jwAlyHhDngno9F2PRk/P72i+ctmqsoAAOC81asljWkhDf9oFqFbLP+jWzfRtq2sAwM9AKCyys0VGzfKOtx/v/D11Ssasam7NLlfWipWrNArFgD/g4Q74J127xaXLsk66F5PxoyqMgAAOKu0VH5ZfUenvu6pJ2Nms6pMUZFeoQAAoKO1a0V+vqyDXvVkzC7Ub3aySbisB1VlADch4Q54J3k9mZAQMWCAXqFYoqoMAABO+e03cfmypH1bl/66xVIOecI9K0vs3KlXKAAA6Eh+F1d4uLjpJr1C+a+N3YfImn/7jdk34BYk3AEvZDLJ7zQX99wj/P31isbS5q6DBFVlAABwmHSUvx5U+/dWnXWLpRzR0aJFC1kHedU7AAC8UV6ejeeUjBmjVyh/2SJ/iLrRaCN1AMA1SLgDXmjvXpGcLOvgpnoyZlfq1L/aqbusB1VlAACQkCasd3XqU+qjX33YchgMYsQIWYc1a4TJpFc0AADo4tdfRV6erMPYsXqF8pfUumE2arquWqVXLAD+QsId8ELyejK1aokh0tvKXO/8kGGyZqrKAABgzcmTIjFR0r6jU1/dYrHq7rtlrRcuiN9/1ysUAAB0Ib9Ru3Vr0V267MxlNstruu7cKTIy9IoFwH+RcAe8kPwa9YgRIiBAr1DKd/7WYVSVAQDAEb/+KmnM9w/Y1y5at1isGjBA1K4t60BVGQBAZVJYKB+g3bK83WxH5/6yqjLFxWLtWh3DASAECXfA+xw8KJKSZB3cWk/G7EbDxqJnT1kPqsoAAFAu6Xx+X/ubCqtV1y0Wq/z9xZ13yjowtwcAVCY7doicHFmH0aP1CsVSat2wU43bynpQVQbQHQl3wNvI68kEBoo77tArFCn5FX6qygAAUFZWlti9W9Ie06GXbrHYIC/jfuiQuHxZr1AAAHAx+Z1bLVqIm27SK5RybO/cT9a8aZO4cUOvWAAIQcId8D7yYizDh4vAQL1CkRo71kZVGS6zAwBgYeNGUVxsrdFkMPzmOQn3YcOEv7/VVqNRbNyoYzQAALiMyWQj4T5qlGzy63rbuvSXNefni02b9IoFgBBC+Lk7AAAVER8vTp6UdfCAejL/1ayZ6NlT7N1rtcPy5eKJJ3QMCAAAjyetJ3OiSbsrteu5OoTYcxlfxyXb0/PjFpFRpw9ba90y7z+vZLaSvH1cVNMn+8o6AADgEQ4dEhcvyjoMH65XKOVLCmt1oX6z5letD9+//CJGjdIxIqCqY4U74FXk9WQCAsRdd+kVih3kVWV27xZpaXqFAgCAxzMaxYYNkvaYjnosbzcJUWI02fNfTIQsnptPHDCWlEreXmo06fDjAADgLPny9jp1RH/pAnNd2Kgqs26dMBr1igUACXfAu6xYIWu9805Rq5ZeodjBZlWZ7dt1jAYAAM92+LC4ckXSHtPxFt1isceeDrIHpAfn53Q+n6BbMAAAuMrPP8tahw0T1arpFYpVOzv1kTWnpYm4OL1iAUDCHfAiJ0+KBOnE1X0PRi+fuaqMhPS5cAAAVC3Soud5desfb9Zet1jskRTWKi2koaRDn+P7dAsGAACXuHhRHD0q63D33XqFInOseceC2iGyHr/8olcsAEi4A15E/vAxf38PGen/h7xO3K5desUBAIDHkw70F3oNMBo87qv7bxGyK+u9T5BwBwB4ufXrhcl6DTR/f3HnnTpGY5XRx+f8LYNkPUi4AzryuG/tAKyKiZG1Dhki6tTRKxS7DRgga/3jD5GerlcoAAB4sJwcERsraU++2f31YcuSV5Vpn3I6NCdDt2AAANDe+vWy1gEDRO3aeoViw7k+Q2TNR47YePQrAO2QcAe8h7wAi6fVkzHr0UMEBVltNZlsXEUAAKCK2LpVFBdbbfXxSb6pr47R2OtAeFSRn9XCtQaT6eZTB/WMBwAALRUViS1bZB2GDdMrFNuSb+onqyZvMtm4eABAOyTcAS9x+rRIS5N1GCS9fcxdqlUTvXrJOpBwBwBA2CocFx1tozCrm+RVr3GkdRdJh56neEQbAMBrxcSInBxZh6FD9QrFtqKatUR/6f1w8i8bALRDwh3wEvLEdFiYaNNGr1AqqF8/WStl3AEAEEJs2iRr9Yz6sOXa2+4mSWvPk3EGSelbAAA82bp1sta2bUV4uF6h2Gf4cFnrli2ipESvUIAqjYQ74H5FJcbMvGL5f4U7ZInpoj59be4hM6+4qNSo2w/1F3nC/dAhkZurVygAAHikxESRlCTrcPvteoVSYXvbyxLu9bOvtU47p1csAABoSp5w96Tl7f8lDykrS+zdq1coQJXm5+4ACpgpLwAAIABJREFUAIgtp6+9tuGEvM/K9VuaW2+db2y87DPZk9bMIhrUrGBoWujVS/j7i6Ki8ltLSsTeveLWW/WNCQAATyKvD1unjujZU+zz0AednW7cJqNWSN2cTGsdep46cKZRKz1DAgBAA+fPi+PHZR3uukuvUOzWrp1o3Vp2FX/DBtHXE58KA1QyrHAHvEDdnMzmV2XT7MOtu+oWTIUFBooePWQd5A+DBQCg0tu6VdY6ZIjw89xVMiaDYX94lKRDL8q4AwC8kbzaW2CgGDhQp0gqRF6GbsMGveIAqjQS7oAX6J70u6T1RkBQYqPWugXjCHlVGRLuAICqzGgUO3bIOtx2m06ROGpf+2hJa48zv/uXFOsWDAAA2pAn3AcPFgEBeoVSEXfcIWs9fFhcuaJXKEDVRcId8ALdzsZLWn9vGWn08ez/l+UJ9717rRacAQCg0jt0SFy7Juvg8YXX9rW7yWQwWGsNKCrofC5Bz3gAAHBWaanYtk3WQZ7XdqPBg4W/v9VWo9HGhQQAWvDsJB0AIYQQ3ZOOSlqPeHI9GbO+fYXkkkB+vjh4UMdoAADwJPL5fMuWok0bvUJx0JXa9c42bCnpEJ14SK9YAADQQlycyMiQdfDY55nXrCn69JF12LxZr1CAqouEO+DpAgvzw1PPSDocadVZt2AcFBIiOnWSddi1S69QAADwMPInpg4ZolccTtnbTlZV5qbTJNwBAF5FnpVu0UK0a6dXKBUnL+O+ZYswmfQKBaiiSLgDnq7LuWO+xlJrrUV+1RKaR+gZj4Mo4w4AQFkFBSImRtbB4+vJmMWFd5e0drpwPLAwX7dgAABwlrzuiscubzeTl7tJTRV//KFXKEAVRcId8HTyejLHm0UUVquuWzCOkyfcY2JEqdWLCgAAVFqxsSLfeibaYBCDB+sYjeMOtelW6uNrrdWvtET+QBoAADxITo7Yu1fWwcOfZ96liwgLk3WQ310HwGkk3AFP1+2sLOF+uHUX3SJxSv/+stasLHHsmF6hAADgMXbskLV26SIaNNApEufkBgQdb9Ze0oEy7gAAr7Fjhyguttrq6+vpBd8MBjFokKwDCXfAxUi4Ax7Nr7Qk8sIJSQcvKOBu1qiRjWe+UVUGAFAFbd8ua/Xw+fz/imsrqyoTTRl3AIC3kD/PPCpK1K2rVyiOkpek27lTdkUBgNNIuAMerWPyyYCiAmutRoPP0ZaResbjFMq4AwCglpcn9u+XdZAvT/Mw8oR7RMrp4Pwc3YIBAMBx8oS7hxdwN5Mn3HNyxL59eoUCVEUk3AGPJq8nc6ZRq+zAYN2CcZY84b5rl15xAADgGWJjRWGh1VZfXxtDp4c50qpzkV81a60+RmOPxCN6xgMAgCOuXhXx0ueOeMX9Z82bi3btZB2oKgO4Egl3wKN1kz4x1WvqyZjJy7inpYnERL1CAQDAA8gLuHfvLmrX1ikSLRT4BxxrIbvxrseZ33ULBgAAB23bJkwmq62BgeKWW3SMxgnyRe7yVfwAnEPCHfBcBpOp6znZo0SPtPKSJ6aatW0rGjeWdWCROwCgSpEn3AcO1CcKDcmrykSdYYU7AMDjyR+v0ru3qF5dr1CcI0+479sn8vL0CgWocki4A56r1eVztW9kSzocae1VK9yFEH37ylop4w4AqDoqVwF3s4Ntuklaw1PP1MrP1S0YAAAcIV/6PXiwXnE4bdAg4etrtbWoSPz2m47RAFULCXfAc3WX1pNJrRt2uU4D3YLRBs9NBQDAbM8eUVRktdXPz8ZVao8U37JjkZ+/tVYfk1H+3QYAADdLThanT8s6eEUBd7M6dUQ32YVwG3faAXACCXfAc3U7K3tUy5HWXlVPxkyecD9zRqSm6hUKAABuJS+k1qOHCPae56L/qcjP/1iLDpIOPagqAwDwZPLl7bVrix499ApFC/K75SjjDrgMCXfAc8lXgXlZAXezzp1F3bqyDixyBwBUEfKEuxfWkzE7JK0q0yOJ56YCADzYzp2y1v79hZ+fXqFoQf51Ii5O5FLqDXAJEu6Ah2pw/WpY5mVJh8PeuMLdx8fGI91JuAMAqoLCQhsF3AcM0CsUjR1q01XSGnHxVFDBDd2CAQCgYuRVVryogLtZv36yKwTFxWLPHh2jAaoQEu6Ah5IvAbseVPtcg+a6BaMlyrgDALBvnygosNrq6yt699YxGi0dbRFZ7FvNWquP0dj17DE94wEAwF4XLoizZ2UdvO7+s1q1RFSUrANVZQDXIOEOeCh5PZnfW3U2GQy6BaOl/v1lrfHxIiNDr1AAAHAT+QXmrl1F7dp6haKxAv+AP5pHSDpQVQYA4KHk9WTq1hWdO+sVinbkFwl4birgGiTcAQ/VTZpw98p6MmbR0SIw0GqrycRNbQCAyk+ecJffDebxDkqrysiXFAAA4DY2C7j7eGEOTZ5wP3SIMu6AK3jhHwugCgjOz2l1+bykw5FWXnhp3axaNdGzp6wDVWUAAJVbSYn47TdZB/ndYB5P/tzUDskn/EuKdAsGAAB7yRPuXvp4lT59RDWrpd5sfycB4BAS7oAn6pYU72MyWmst8A842TRcz3g0Rhl3AEBVdviwyMmx2mowiL59dYxGe0dbdir18bXW6l9SHHnhhJ7xAABg28WLIjFR1mHgQJ0i0VZQkIiOlnVgAg64AAl3wBN1Oyu72zq+RUfJ48i8gDzhfvCguHFDr1AAANCdfGYbESEaNNArFJfIq17jVOO2kg5UlQEAeBz58vY6dbyygLuZ/M45+Q8OwCEk3AFPVGkLuJvdcovsprbiYrFvn47RAACgr5gYWauX15MxO9JalpWQLywAAMANbBZw97V685ank3+12L9fFBToFQpQVZBwBzxO9eLCDsmnJB2OtPLyhHtQkOjeXdaBm9oAAJWVzceDV46Eu/RhM13OHvMxWi2dBwCAG8gnoV5awN2sTx/Z1YLCQla8AZrz0/NgpaWl8fHxycnJ9erVi4yMDA4O1vPogLfodP54tdJia62lPr7HWnTQMx6X6N9f7N9vtZWEOwCgsjp1Sly5IusgL7zmJQ637ipprVlwo+2lJCGa6xYPAAAW/ricm3jtv7VM/TPT7zx5UtJ5V7PO1xMuO3agK7mFjr1RM7Vri65dxaFDVjvs3OndVxQAz6NTwt1kMi1YsGDu3LmpqanmLQaDYfz48XPnzq1fv74+MQDeQn6f9cmm4XnVA3ULxlX69RPvvWe1NTZWFBUJf38dAwIAQBfyejJNm4pmzfQKxYUyaoVcqN+0+dWL1jp0O3tUiIE6RgQAwP/YdPLKtwf/O04Nit99p8lkreeNgKBpF6oZL8oy8hIRDWo69kYt9e8vS7iz4g3Qmh4Jd5PJNG7cuO+//978z4YNG2ZmZhYVFS1ZsmTXrl2HDh1iqTug1u1svKTVK+rJpOcV7T2fKeng16JTtI+PsHY7eV7esXU7c7tLn6UuhBCibb2gekHk5QEA3iM2Vtbat69ecbjckdZdZAn3pPg/9IwGAADr5E/zPtoy0ujj5QWZ+/cX8+ZZbY2NFSUlwk/XGhhA5abH/07vvfeeOds+fvz4l19+OTw8vLi4eN68eS+++OKZM2emTJny9ddf6xAG4BV8jMbO5xIkHeRFUT1EXHLW0oMp8j7LGrRok3bWWuu2L1d+Pai6zQPNvDNiaIcGFY4PAAB3ka9w79NHrzhc7kirLiP2rbPW2u0cCXcAgKeQ32V+uLUXLHqzoV8/YTAIa6v4b9wQhw+Lm27SNyagMnP5NbrMzMxZs2YJIe67777FixeHh4cLIapVq/b8889PnTpVCLFs2bLs7GxXhwF4i3apiTULblhrNRkMR1p7QcLdHvJvLd2kSwwAAPBKV6+KU7LnoleqFe7SJQINrl+tdTlVt2AAALAmsDC//cXTkg5esejNhnr1RMeOsg7yBQEAKsjlCfelS5dmZWUZDIa5c+f6/O89OE888URkZGR4ePjBgwddHQbgLeT3sl2o3yyjZohuwbiU/HFq3ZLifUxWCs4AAOClYmKsLi4TQgQHi87eP6X/04X6TdNr1ZV0aHzMejFZAAD00vl8gq+x1FprkV+1hOYd9IzHVeRPZd+zR684gCrB5Qn3NWvWCCH69u3bsmVLi6bw8PBjx44dO3Zs0KBBrg4D+H/27jQ4sqw69P3OUalZqtI8VGkeqko1dDc0w7VxQ3dgJmN3GONoAy8cmAgTQZh4NsY2wXv4A/GgwWBM3EsQEHigm9n26+fLaMC3fe0GelJJKg2p1FAqlea5NGUqx/dBdLmqS2cdDZk7zzn5/32q7r2lXCWVdPKss/ZadiE3cHfCWbaXXG2VEu4l4a2WhSldsQAAoMXPfiatvupVyuPRFYoO15rOC6u1g9TcAACyTy56G2ns2vOZNzu1AbltHRXuQFplPOH+3HPPKaUefvjhTL8Q4AyXTCamOqfwbam0Yu5UrbBBft8DAID9yOVjDuons29ATLjXkXAHAFiA3M7UOffg8tuMxUU1JvXVAXAkmU24z83N3bp1SylVW1sbi8W+8pWvvP3tb7/vvvve8pa3fOQjH9nPxQO47czyTMXmqrDBSRXuSqlescidhDsAwFH29tTVq9IGB01M3ScnKSomgmp7W1swAADcy5uIn58eETY45x68qUk1NEgbKHIH0seb0c8+N/fLUUjJZPKBBx4YGPhl+uzq1avf//73H3/88T/6oz/6xCc+EQgE5M/zwAMPmL7WwsLCCaM9iY2NjZ2dnVgsts1tQyYtLy+nUimfz+dyubIdSzqtr9+KxWJKqQvj0n34SvGpqZJKFYsd+4Ui4UjM7MNTqVQ8Hne5XCmhyaz5C4VNX0gp9cLZ8299/odGq/eNXzX9JOvr6wsLtmz1vra2Fg6HE4lEfn5+tmNxsuXlZaWU3+/PdiAAoFRvr4pEDFe9XvXggxqj0SHY0Bn1+vzxg6/m7kRCPfecev3rNUcFAMBtHXMT+VHDq3PS5e53TIW7Uuq//Tf1zW8arj7zjPr939cYDeBkmU24b21t7f/hwx/+8Obm5qVLl972trc1NTWNj49/+9vfnpyc/NznPqeU+uu//mv58xxmqmo0Gj15wMcWjUZjsVg0GvX5fFkMw/H2v8vRaNRhCfd4PL6f3b5yfVDY9mJzz0mS4EqpRDJp+hmSL+05yWslD/FCSqkXmy4IqxVbaw0rszdP1wl74vF4dn/2j+32Lw2Ps9r1Ws3+Mxub/iMB4DRyA/dLl1Rhoa5QNIl6fcGGzotTxm9vnnmGhDsAIIsuX5fOVU/WNG3lF2kLJuNe+1op4U6FO5A+mU24R16q4tnc3PzQhz70yU9+8nZq6aMf/ehv//Zv//CHP/z85z//e7/3e3IN+wsvvCCs7n9sTU1NmqI+Dr/fv7OzU15eXlTkoN/F1rOfmK6pqXFYwr38ltfnW1FK3S/ckSrV33r5hE908vMDvm3D8ev7ksmky+Vyu91e7/F/PwTyA75t88LzudrmlZLTQhedV9wcWag5K3yG8vLympqK44SYbV6vNxwOnz59uqCgINuxONl+wj27FwgA+KVf/EJafdWrdMWhVV9zj5Rwlx9CAACQYRfFojd5GIn9yG3cQyG1vKwqK3VFAzhZZhPut1slXL58+c5su1KqsLDwi1/8YkdHRzQa/ad/+ic54X7//febvlZ2Owb4/f5oNOr3+2lckFE+ny+VSvn9focl3L1er8vlOrW1fmZlRtjW13LxhH9xt9tt+hlcdzjBC3kO+eH9zT1v6H/aaPW+6wPffeWbhA/3er02/aHz+/3xeJxfGpm2/4yKLzIAS/j5z6XVV79aVxxamaQqnn1WpVLKWe/rAAA2Ij0VVspR/WSUUj09qrRU3bp18GoqpX7+c/Ubv6E3JsCZMjs0tbi4eP8Pb3nLW+5tm3D27Nmuri6l1O3e7kAuuzLZL6zuBArHa1u0BaONPIJGnhcPAIBtTE+r2Vlpw2teoysUrQaapfZxan1dBYO6YgEA4C51awtVt1aEDU5LuHs8Jg/4OXkGpElmE+6tra37f2hsbDxww9mzZ9Uds1WBXHb5+jVhtb/5QtKd2R/YrOhtuSSsnlmeERrOAABgG888I61WV6vmZl2haLVWVD4jjmMxKfwHACBjLon34GvFZpcwOyLhDmiR2fxdWVlZQ0ODUmpsbOzADdevX1dKdXd3ZzQMwBauiNXcfc1SJbh9jde1yFNoLtwY1hYMAACZIqeVX/taXXFkwYA4I92ktT0AABkjJ9ydeQ8un6h7/nkVjeoKBXCyjBfMvulNb1JK/cu//Ev0nh/a8fHxYDColLp0SSpxBXJBwd5u+9yEsKHPYWfZXpJ0ueX78O6ZkLZgAADIFDmt7NAG7vsGz56TlqlwBwBkycUbQ8Kq0yam7nvwQXVPw+f/Eomovj6N0QCOldmhqUqp9773vV/+8pfHxsY+/OEPf/azn3W/1BNja2vrve99bzweLy4ufuyxxzIdBmBxPTeGPcmE0WrU6xs869iDIANN5187YpiG6L5Ja1cAgM2Fw6pfmtTi7IS7ScJieFhtbqqSEl3hAACglFL+3Z22+Ulhg+0auE9vhP/HM1Om297Z0lkxZniO/D+/9t3+WJX8Ga7Ul76mqfyo4QE5JeMJ9wcffPBd73rXk08++Td/8zfPP//87/7u7zY3Nw8NDX3xi1+cmppSSj3++ONGHd6B3HF+ekRYHWnsinr92oLRbKShU1ilwh0AYHu9vdIBbb9f3X+/xmh0G6trjfgDgWjk4OVkUj37rHrkEb1BAQByXXVwwJ1MGq1Gvf5gQ7vOeE5uZiP8k9Cy6baqqo53GCfcI//+H3/X9LD8GWL3N5BwB2QZT7grpb785S+vra19//vf/9nPfvazOyYwFBQUfPzjH//DP/xDDTEAFtclppWvtjixedxLgo0dwmr59kbN+uJCebW2eAAASDO5n8yVKyoQ0BVKFiTcnuHGrvsmjI+o/+IXJNwBAJrVDvYKq8ONnTGPT1swOl1rOv+OZ54yWr10fVBnMIBT6Ui4BwKB733ve//8z//8ta99bWhoKBKJnDt37tKlS+973/taWlo0BABY3/lpqXHKNbn5qc2tFZUvlFfXrC8abeieCZFwBwDY2LPPSquvepWuOLLm2tlzUsKdNu4AAO1qh68Kq9cc2cBdKaVUvzhErXJzhYo34OR0JNz3Pfroo48++qi2lwNsxL++Vr2xJGyQm644wEhDh5Rwvzn6v3p+RWc8AACkk5xwf+UrdcWRNSZt3J99VqVSyuXSFQ4AIOelUjXD0nTQa2cdm3CfPV23Wnzq9Naa0YaLN4ZIuAMn5M52AABU6ZB0pV8rKl8qq9QWTFaMNMpt3Ee1RQIAQJrNzanpaWlDTlS4i2mLtTU1Pq4rFgAAlBoby7+1Lqxfa3LyKfP+ZqnI/cKUYYd3AIdEwh3IvtKhAWFVbnHuDCZzU2+ScAcA2JZc3l5VpXKgxeJacfns6Tpph/xVAgAgve6YL3ivuVM1yyUV2mLRb1BsWnthmoQ7cFIk3IHsKxnqF1aHG7u0RZItcoV72c6tWuOGMwAAWJrcoDwHytv3DZ7tlpZJuAMAdBLnmTu4gfs++eRZ10zIH49pCwZwJBLuQPaVDUotZUYanF/hvlFYOi82ieu+KQ2VBQDAuuRU8oMP6oojywbPiGfzSbgDAHQSH4cPOLeB+77hxs64x3Cmoz8e65wd0xkP4Dz6hqYCONjKSmBhTlh3/MTUfSONnUIZe/fN0L9dfJ3OeAAAOIwfBpf+Y3LVaNWdSPxfzz3vN/7wv1W1E98fOcwL7caSR4/OQuTT66q/X0UiKhDQFQ4AIIdtb6uhIWHd5Jplf3u+vLHaVmFY2oUbw9ec/kUAMoqEO5BtL7wgLK4XlTl+Yuq+YEPn6wf+t9Eqc1OBTIjH4ysrKyUlJQUFBaabo9FoJBIpKSnREBhgI8Gl7R+NLhutdsyN+yNho9Wky/0Prpod4w+/U1dV0XHis4zR+raYx+dLGBxRj0ZVX1/uNNgBAGTTCy+oRMJocc+XF6pv0xlOVlxrOifcZffcGP6GzmgAx6GlDJBtL74oLMrNzZ1kWPybnrs56kqltAUD5IivfvWrtbW1X/jCF4Q9sVjsk5/8ZGdnZyAQKC0tLSsre/e73z02xiFT4FDOT0st0a5Xn90JFGoLJruiXv9Yfau0g64yAAA9xCvOSENHzOPTFku2mMxNvSGdAABgioQ7kG1ywj03+skopYYbO1Mul9Fqye4mc1OBtHviiSfkDTs7O7/6q7/6F3/xF6FQKJVKKaVu3br15JNPXrly5ac//amWGAF7u3BjWFh1/Ey2l6GNOwDAEsSJqQNNF7QFkkXy3NS6tYXKzRVtwQDOQ8IdyDaThLvzJ6bu2ywoYW4qoNPnP//5p59+Wt7z/ve//xe/+IVS6rHHHvv+97/f29v7+OOPFxUV7ezsvOMd71hYWNARKGBncsJ96Ey3tkisYPCs+Pcl4Q4A0OO554TFoTNd2gLJopnTdetFZcKG8zcONWMGwIFIuANZtbKipqeF9eHGnLjY7xsR/7LdMyFtkQBOtb6+/pOf/OQzn/nMK17xig9+8IPy5sHBwSeffFIp9Y53vOPJJ59805vedOXKlQ9/+MPf+MY33G73+vr6pz71KS1RA3ZVsBduXrohbBjKpau8Mq1wn5xUy4dqZw8gHo8vLCzs7u4eZnM0Gt3c3Mx0SIBt3Lyp5uaEdcdPTN2Xcrnk6/KFaRLuwPGRcAeyiompd5DL+btvMjcVOKlvfetbjzzyyIc+9KEXxF8++/7u7/4ulUrl5+d/6Utfct3R8emtb33rb/zGbyilnnjiiWQymcFwAZvrmhl1G/+MRPyBidpmnfFk3c2K+s0CcfDy88/rigWwN6awAMcnHqhaLqlYLKvSFkt2XWuSEu7nSbgDJ0DCHcgqJqbeQf77djM3FTixzs7O/+MO8uYf/vCHSqmHH364rOzlp03f9ra3KaVWVlYOk7gHcpZcGhasb0+4PdqCsYKUyzUon9Mn4Q4cDlNYgOMTG7jLOWiHkVvbnZ8OCnUDAGQk3IGsYmLqHUbkuanhrbq1eZ3xAM7z0EMP/f0dhJ17e3ujo6NKqQcffPDe1V//9V/f/8PAwEAGwgQc4oLY/DTXJqbuM2lbLzbVBbCPKSzAiYgV7ibdz5xl6Ex30mWYFSzY220SO+MBEHizHQCQ25iYeofN/OK5U7X1q4YN9bpnQrOn63SGBOSsycnJRCKhlGpuPqDlRV1dXX5+fjgc5mQ6IJDPYufUmJbbhqlwB45lfX39xRdf7O/v/+Y3v2l6vOxlU1j2+8JduXLl3Llzb3/72/ensHz2s5/VETdgNbGY6u0V1k3mezvLdqBwurKhaclwqtyFGyOTNbnV/g5IFxLuQPaYTUzNtZYySqmRhg4p4X5z9CeXfk1jOEDuWltb2/9DVdXBXSwrKyunp6dXV1flz/Pnf/7npq+1sbFx1PBsbXNzM5FIFBYWejy51U4kXba2tjY3N1OWaTIWDof3n069zOmtteqNJeEDBxo6DvxAI9Fo7Ej7Bfufx+izxdL3Qve6VicWEywvb/b3J8+ezdCrp8utW7e2trZcLhdzLI4nkUhsbm56PJ7CwsJsx2Ib3/rWt97//vcfcrM8heWpp5564okn/uqv/srt5rw7cs/goDKeNpx0u4M5dsp86Ey3lHCfHvmXB9+sMx7AMUi4A9ljNjE1d6a13DbS2Plw/9NGq8xNBbTZ2dnZ/0MgEDhwQ35+/p3bjDz++OOmr7W5uXnE6Oxta2srmUzuJ5uyHYstbW9vb29vK6Vcxl3IdIpEIgemp7vFfjJrRWU3SyrVUfLa8Vja8uD7aWKjzxaNRTOXcF8qKJkrr65bXzTaEH3mmd3y8gy9erpsbW1tb2+73W7rPPixl0Qisf8FJOF+ePtTWG7/5z/8wz8Im+UpLE899dT+FJZXvvKVmQgVsDSxd9lETfNuXr62WKxg8Oy5t7zwI6NV5qYCx0bCHcgeJqbeQ/5bd82EXKmU0OcdQLrcziIZ5TT3N8TjcfnzfPKTnxRW9+vf700HONvu7m4ymSwrKyPhfjz7X7fi4uLS0tJsx6KUUvn52x7PAQ+NLs6GhI8abOw+6j8An9/n8cSOFpyB/YS7UQB+f57HY/KjfRLDjV1Cwr1kdNT/rndl7tXTwuVyud3u0tLS4uLibMdiS4lEIhwOu93uXPv9fxIPPfTQQw89dPs/hYT74aewkHBHLhIT7iaDRpxI/iu3zU8GopGI/+D6GwACEu5A9jAx9R7Bho6Uy+UyqBcrCW/Vr83P0MYdyLzbVYeRSOTADXt7e3duM/Jnf/Znwup+wr2kpOQ4IdrW1tZWIpEoKSkh4X5siUSiuLjYIv9yAoHAgd/KCzPSqayhpnNHTrj7fOn6N7NfwG702Xw+b0b/cQ6f6X544N+NVv19fX5rfGcFyWQylUpZ5x+h7SQSia2tLY/HwxcwE5jCAkjEhPtg7iXcQ3Wte768vNjegaueZKJrdqyvuUdzVIADkHAHsoeJqffYzC+ePVXbYNzG/dzNIAl3QIPbVYe3m7m/zH73dooTgQO5UqlzN4PChtycmLrPpH7wxRdVPK683KQAx5SuKSzf+c53TF9r17gXtr2Ew2HloL+OZtFodH+ciQ2+gNvbBSNSj5TBhs5MDOdIxBPCp00mk8lkMi1zQeLiCx0o6nKP1rVdvDFktOHc1HDv2fMv/6ho1Drf7nA4HA6Hd3d3mUtxPOFweP8banp2GUfCe1kgS5iYamCksVNIuHfdDP3r5dfrjAfITa2trS6XK5VK3bhx497V9fX1/Sba7e3t2kMDbKB2faF0RxpOkLNXeaXUSGNH0uV2pwwyAjs7amRE9VBMBxxTuqaw/M7v/I7pa62srBwxOotaX19XL31lcFSxWGx9fT2Nx7AyJ+/ZZwuMh5REfHmjFQ3sL8DwAAAgAElEQVSJDOQc9/b2hFRmMplMJBKpVOrkc0H29iLHyJlea+iQEu7TI/d+zp2dHev8+G9sbOw3bDQ6mAvZ2tpaLBbzer0+ny/bsTgKCXcgS8Ty9o3C0hycmLpvpKHzkb7/ZbTaLZ7QB5Au+fn5bW1tY2NjLx70y+r2/7xw4YLeuAB7OD8tlbfPnardKLREA/qs2M0rmKo+27Jw3XDHCy+QcAeOLV1TWN7xjncIq/v17wUFBccJ0Xr2H0445q+jWTQaDQQCfr/f+l/A/OFhYXWkvj3l9WWiRtrj9cjF18lk0u12n7xA2+v1ut1HHvcyeKZbPfP/Gq2enxm9NzBLfbv39vaSyWRBQYF1QrKX/Px8j8eTn5/v9/uzHYujkHAHsuSFF4TF4TO5e9JcLvrrvjnK3FRAjze+8Y1jY2M//vGPo9Hoy95+ffe731VKlZaWvuY1r8lSdIClyf1khnL4Kr9vqLHLJOH++7+vMRzAUdI1heXb3/62sLqfza+oqDhOiNaz3xzDMX8dzaLRaDwe9/v9NvgCDhnWcSulhprOezPT0CwvL8/rNcyD7zeBcbvdJ391+YWMBJulApqGtfnTe7u3Cu8auVFYWGidb7fb7c7Lyzt16lRRUVG2Y7GleDwejUYrKipIuKcXHY6ALGFiqoGRxk4hn14U2REazgBIo/e85z1KqdXV1S996Ut3/v/5+fm///u/V0o99thjHDwEDnR+WmoRa9LEPAeYdNR5/nldgQAOxBQWwJA4MTVni95mTte9LJ9+J1cqdV4sIwBwIBLuQJYwMdXAdqBQHovazfUe0OIVr3jFb/7mbyql/vRP//QrX/nKrVu3EonEz372s7e+9a23bt0qLi7+yEc+ku0YAStyp5JdM2PChlyemLrPpMa/v1/t7emKBXCa/SksSimmsAB3WVpSB/1Q3DaUq1fnlMslF/ydE8sIAByIhDuQDUxMFY2I73W6Z0LaIgFy3N/+7d92d3dHIpE/+IM/qKioKC8vf+1rX9vb2+v3+7/+9a83NDRkO0DAipoWbxTs7RqtJl3uYEOu57nG6tpiHuPzMdGoGhzUGA7gKPtTWNQdA1fuxBQW5C7x+NRGYencqVptsViNXAogN8oDcCAS7kA2MDFVJBf4d99kbiqQHq973ete97rXNTY2Gm0oLy9/7rnn/viP//j06dPxeHxra8vr9b75zW9+9tln3/rWt+oMFbAR+cHwVNWZ3bxcH+oV9fomapulHeKoGwCyN77xjUqp/SksL1tiCgtyl5hwHz7TlctzwgbPSs3u5FHwAA5Ewh3IBjHhPpzb5e3KdG7qTMidSmoLBnCwp59++umnn37nO98p7CkqKvrMZz6ztLQ0Nzc3MTGxtbX1ve997/Lly9qCBGxHLgTL2RaxL2Pyboc27sAJMIUFOID4KDdn+8nskyvcT2+tVW8saQsGcAYS7kA2iAn3YA5PTN030tCRdBn+diqM7DSszOqMB4Db7a6trW1paQkEAtmOBbA6+SQWj9X3mTSyp8IdOAGmsAAHEB/l5vg885WS00tllcIGityBoyLhDmSDeBuZ4w3clVI7gcKZinphQ/dN2rgDAKzIk0x0zo4LG+Q5JbnDJOE+OKh2DfvgAzDFFBbgLtPTakmq0eYeXK7xP8/cVOCISLgD2plNTKX2TSk10ii2cZ+hjTsAwIpaF67nxfaMVhNuT6iuVWc8ljVR2xzPMz4xk0io/n6N4QA2wxQW4GjE8vbFsqrV4lPaYrEmueUdc9SAo/JmOwAg9zAx9RBGGjrf2PtTo9VzXO8BAJbUJZ7Bmqhp3vPlaQvGyhJuz3Jbd+3QVcMdL7ygXv1qjREBdvL000+b7tmfwvLpT396cXExHA7X1dXRFw65SzxiTsWbUmqoUWqq0z0z6kqlcnmuLHBUVLgD2jEx9RDkr0MXc1MBAJYkT0zlxPqdFjt7pGXauAPpwBQWQCmlnntOWMzxBu77hs90Cfn04vB2I3PUgKMg4Q5ox8TUQwiKc1ML9nYbl2d0xgMAwGF0z0gV7jxWv9Ni10VpWXy/BADAYaVSqrdXWDcZK5IbtgOFN03mqHHKHDgCEu6AduINJLVv+3bzCm5WStOc5IwGAAD6+RKx9jkmph7WUscFaTkYVDs7umIBADhXKKQ2NowWUy5XUJwfljvkXIR8hg/Ay5BwB/RaWVE3bgjrIw1c7H9J/lLwgB0AYDVt85P+eMxoNebxjde26IzH4tbOtqqiIsPlREL19WkMBwDgUGLF28zpus38Ym2xWJlc6d89ww04cAQk3AG9zCamLpRXa4vF4uQH7FzvAQBW0y1OTB2vbYl6fdqCsb6U260uXZJ20FUGAHBy8sTUMxw++6URsb1t10zInWSOGnBYJNwBvZiYemjm13vmpgIArKRLfBg8won1ez3wgLTK3FQAwMnJCXe6vb3EbI5auGlJOqwP4E4k3AG9mJh6aKbX+zPMTQUAWEmXOF+EBu4HuP9+aZUKdwDACSWTcoMyEu637eblT1WdETaco60rcGgk3AG9mJh6aLt5+dPi3FTGtgAArMOXiLXNTwobOMd2ADnhHgyqrS1doQAAnGhkRLiUJF3u0fo2neFYHG1dgXQh4Q5oxMTUI5LLDbrEVrkAAOhkOjF1sqZJYzg20dWlio1H1SWTqr9fYzQAAMfp7RUWb1Q17uYVaIvF+uTigG4q3IFDI+EOaMTE1CMKiu1uecAOALCOrpkxYXW8tiXmYWLqPZibCgDIKLGBO0fMX0Zuf9c5O+5JJrQFA9gaCXdAIyamHpE8N7VzdsyV4HoPALAEswbuHGIzIM9NJeEOADgJuacrQ9TuNlrflnB7jFbzYnstC1MawwFsjIQ7oBETU49otL496ZbmphZOTeiMBwAAI/K5K67yhpibCgDIkERCnpg6dIaJqXfZ8+XJHfC6xfICALeRcAc0YmLqEe3m5U9VSnPSS4do7QoAyD5fItY2Jz0D5hybIdO5qdvbukIBADjL8LDa2TFaTLk9Y3VMTH05ebBcF21dgcMh4Q7osrrKxNRjkNu4k3AHAFhBy8KU2cTUZp3x2ElnpyoqMlxlbioA4NjEBu6rTW1hf0BbLHYhn8ljbipwSCTcAV3Eiz0TU43IbfVKhwa0RQIAgBH5/nO8tiXqZWKqAdO5qb29ukIBADiLeAVZ6jivLRAbkU/ed8xNMDcVOAwS7oAu9JM5FvkMfsnwgGJuKgAg2+SJqcGGdm2R2JLcVYaEOwDgeMQryGJnj7ZAbCRU18rcVODkSLgDujAe/VjkuameSFgFgzrjAQDgXl2zY8Iqj9VN3HeftMrcVADAMSQSclOypS4S7gfY8+VNiH3wmJsKHAYJd0AXKtyPJeIPTFWdlXZwHw4AyCpPMtEuTkwN1jOmRSQn3EdGVDisKxQAgFOMjAgTU5XXu9zarTEaO5HnqHXfpOINMEfCHdCCiaknYPLFIeEOAMiqloWpvNie0Wrc4x2va9EZj/2cO6cKCgxX43E1wMgWAMARyfeJ587F85iYejD5/D0V7sBhkHAHtBAv9tHyU0xMFZiU/4vTaAEAyDT5znOypinq9WsLxpY8HnXxorSBh+sAgKOSR4DIh6tym1zx1j434WaOGmCGhDughZgUvnX+krZA7Eiem6r6+lQ8risWAABerkNs4B6sZ2LqIciJD+amAgCOioT7cYXq2+Ier9FqXmzv1JT0zgeAIuEOaHL1qrC4eU6s6sp5obo2YW6q2t1lbioAIIvkCvcgXeMO4/77pVUS7gCAI0kmVV+ftOGBB3SFYj9Rr3+yuknYUBUa0hULYFck3AEtxKPQt0i4iyL+wHV5bqo4fR4AgMxxJZPtc+PCBhLuhyJXGg4NqWhUVygAAPsLBtX2tuGqaSuznBdskM7nVYcGtUUC2BQJdyDzVlfV9evCOi1lTJm0cZeLFwAAyJjy6cmCvbDRatLtHqtr0xmPXV24oALGw+uiUTXIvT0A4NDk4R/d3aqwUFcotiSXC1SRcAfMkHAHMk8+B11REa5v1BWKXYXqxWwFFe4AgCyR7zmnqs6G/cZ5ZNzm9aqeHmkDXWUAAIcnJ9zlPmZQKtggVbxVjo8wRw2QkXAHMk9s4M60lsMYrRMnzlHhDgDIkqqxYWFVPpGNu8jviOR3UwAA3Il78JMJ1bUKc9S8kbAaHdUZD2A7JNyBzJPTwTxdP4Sx+lZpeXlZzc3pigUAgP8iV7gH60m4H9qVK9KqXKsIAMBtySQJ9xOK+ANT8hw1Tp4BIhLuQObJCffLl3XFYWOb+cXz5dXSDorcAQD6pVKV4yPCOhNTj0BOfwwMcHodAHAoY2Nqa8tw1e3mHvwwRuT3MCTcAREJdyDDwmEVCkkbuNgfjsnQOdq4AwD0m5zM2940Wky5XKNUuB9eT4/y+QxXw2EVDGqMBgBgW/KhqM5OVVSkKxQbMyka4OQZICLhDmTYtWsqkTBcLSxUbWIeGS8ZZW4qAMBqxPKumxX1O4FCbbHYXiCgurulDRTTAQAOQz79LHcww0tMEu59fSqZ1BULYD8k3IEMkxPBPT3KeBQJ7mRS4U5LGQCAfmKL2GA9/WSOiLmpAICTkx/Q0sD9cEbr25Iu42TF1pYaH9cYDmAzZPqADJMT7vSTObSQXOE+Nqa2t3XFAgCAUsokBWxy5cK95CQIFe4AAFOpFAn3tNjNK5iubJB2cF0GjJFwBzJMrry+dElXHLY3e6p2WziYn0yqwUGN4QAAYJJwp4H7kclJEE6vAwBMXb+u1tcNV10uWsoc3khjp7TMyTPAGAl3IJNSKXXtmrSBhPuhpVyu8doWaQdt3AEAOs3NqcVFYX20gYT7EV26JLXa29xUExMaowEA2JBcdt3aqsrKdIVieyalA1S4A8ZIuAOZNDmpNjcNV91u1dOjMRrbC8nXexLuAACdXnxRWFwsq1orKtcWi0MUFal28VpPMR0AQEY/mfQxmZv64osqldIVC2AzJNyBTJL7ybS1qaIiXaE4QaiuVVpmbioAQCf6yWSCfNKfhDsAQCYn3OkncxSj9e0pl8tweX1d3bihMRzATki4A5kk11zTT+aIQnXi9LmBAVq7AgD0EZO/QfrJHI+cCuH0OgBAJj+apcL9KLbyi+ZO1Uo7eBAOGCDhDmQSCfe0Gq9rSbg9hss7O2p8XGM4AIDcRoV7JsipEG7sAQCC2Vm1tCRtIOF+RCZdZXgQDhgg4Q5kktzk5PJlXXE4RNTrv1HZKO2gjTsAQI+1NfkYNQn3Y5LfHS0vq5kZXaEAAOxGzv82NqqKCl2hOARzU4HjIeEOZMzGhrp5U9pAhfvRherFrjIk3AEAeojP1DcKSxfKq7XF4igVFerMGWkDRe4AACNMTE0387mpAA5Cwh3ImL4+aWb36dOqoUFjNA5h0saduakAAD3EW3qTu1PImJsKADge+X6QialHZzKTZnFRzc/rigWwExLuQMbQTyYDTCrcSbgDAPSggXvmkHAHAByPXOFOwv3o1orKl8oqpR10lQEOQsIdyBgmpmaAScJ9dlatrOiKBQCQw8Tby1G5HAwyEu4AgGNYXVXT09IGEu7HEpTLCLguAwch4Q5kDAn3DFgrKl8tPiXtoI07ACDTdnfV2JiwPio3QINMTojcuKHW1nSFAgCwD7nUuqJCNTbqCsVRTM7tkXAHDkLCHciMeFwND0sbaClzXKN0lQEAZNfAgEokjBZ38/JvVjKm5QQaG1WleHqdaz0A4F5ywv3++3XF4TQk3IFjIOEOZMbwsNrbM1z1+1VXl8ZoHCUkX++pcAcAZJp4Sx+qa0u6eI99MnJdAvf2AIB7yVcH+skcl8ko+KkpTp4B9+JmAMgMOe17/rzy+3WF4jShulZpmao3AECmyRNTaeB+crRxBwAcFQn3zFgor94oLDVcTqUoegPuRcIdyAwauGfMmNwYd2RERSK6YgEA5CQ54V4vFoLhMEi4AwCOZHtbjY9LG0i4n0BIvgfnugzcg4Q7kBlynTUJ9xO4UdkY8QcMl+NxNTKiMRwAQI6JxdTQkLBuMmsEhyGnRUZHVTisKxQAgB3096tk0nC1uFi1iuekITLpKkPCHbgHCXcgM+QKdyamnkDS7Z6oaZZ20FUGAJA5waBwlCrm8U3WNGmMxqHa21VRkeFqIqEGBjRGAwCwPDnne/mycpP+Oj6TuanyuFogJ/EbB8iA2Vm1siJt6OnRFYozmRQP0kIOAJA54i39ZE1TzOPTFotjud3q4kVpAw/XAQB3knO+992nKw5nMplPMzqqdnd1xQLYAwl3IAPkm8AzZ9Tp07pCcSaTNu7chAMAMkdMuJucucbh0cYdAHB4TEzNpOnKht28fMNlTp4B9yDhDmSAnPCln8yJherEBnz9/SqV0hULACDHmExMpYF7msjvl0i4AwBui0bV8LC0gXvwk0m63OO14j04RW/A3Ui4AxkgtzRhYuqJjdW1JV3Gv742NtT0tMZwAAA5I5WSa7hMmpzi8ORqxGvXVDyuKxQAgLUND6to1HA1L0+dO6cxGmcKyl1leBAO3I2EO5ABJNwzbDcvf/Z0rbSDB+wAgEyYmlLr60aLSZd7TD6DhcO7cEH5jLvhh8NqdFRjNAAAC5MbuPf0SBcUHI5JSQEJd+BuJNyBdNvZUePj0gaOs6VDSL7ek3AHAGSCeH2ZPV27m1egLRaHy8tT3d3SBu7tAQD7aOCeeSYJ92vXVCymKxbABki4A+k2MKCSScPV4mLV3KwxGscyb+MOAEDamTRwp59MWsk1CjxcBwDsI+GeeRO1zTGP8UGBSISTZ8CdSLgD6Sanei9eVG5+7tJgrE6cSkfCHQCQCXLCXW5viqNibioAwFQyaXL3R8I9HWIe3/Xqs9IOrsvAHUj8AekmX+zpJ5Mmo/Viwv36dXXrlq5YAAA5w6TCvUNbIDlBTpFcvapSKV2hAACsanxcbW8brno8qqdHYzRORht34PBIuAPpJh9wZmJqmiyWVW0Ulhoup1JqYEBjOACAHLCyomZnhXWTh8E4qsuXlctluLq+rm7e1BgNAMCS5DxvR4cqLNQVisOZnOQj4Q7cgYQ7kFbJpBoclDaQcE+fMbmNO61dAQDpJd5JrhafWi0+pS2WnFBWppqapA3c2wMA5Ps++smkj0mFe18fJ8+A20i4A2llepztwgWN0TgcbdwBAFrRwF0/5qYCAGS9vdIqCff0CdW1Jl3GWcSNDTU1pS8awNpIuANpJd/4dXSoggJdoThfSK5wJ+EOAEgvOeFeR8I9A0i4AwBkTEzVZSdQOHu6VtrByTPgJd5sBwA4i3yxp59MWoXkVrnXrqlYTPl8usIBADidmN41uSrhHiOL2+/5usmd+ZXN0v/TeHXlP5/9Y7PPoJR6uKPiPQ80HjE6AIAdzM2pxUVpA/fgaTVa3964YjzP5upV9eijGsMBrIuEO5BWJNw1mqxuSvp87ljs4OW9PRUKqfPn9QYFAHCo3V01NiasmzQ2xT12ovHgknEjPqWUUquF9ULCvWJlfub67GZBifxJLtQWHz06AIAdyCXVjY2qokJXKDlhtKH94f6nDZc5eQa8hJYyQFrJFxj5WDSOKO7xbrd2Sju43gMA0mVgQCUSRou7efkzFXU6w8kRi2VVG4WlwoaOuQltwQAALEdOuN93n644csVofYe0TEsZ4CUk3IH0WV1Vs8anqxQV7um32SUWsNPGHQCQLuJD3PFacYwYTkDu1dMxKx07AAA4nJzhpeIt3YLyiPjZWZMOP0DO4MYASB+5nrqyUtWKA0ZwdFudJNwBAFqIV/lRGrhnjNyrp4uEOwDkMjnhzsTUdFsrKl8pOS3t4B4cUEqRcAfSSU64c7HPgM2uC9IyJ9oAAOkiXlNo4J45oTq5wn1cWyQAAGvZ3FRTU9IG7sEzwGRKPG1dAaUUCXcgnZiYqt3muQvK5TJcXl5W8/MawwEAOFQioQYHhfVR+YQ1TkA+PdC8eMMfj2oLBgBgIVevqlTKcPXUKXXmjMZockVQLjKg6A1QSpFwB9KJhLt2seJS1dgo7eABOwDg5IJBtbtrtJhweyZqmnWGk1Omqs5G/AGjVU8y0bpwXWc8AACroIF7NoTkhDs34IBSioQ7kDbRqAoGpQ1c7zNEfpJBCzkAwMmJV5OpqjNRr19bLLkm6XbLzzPoKgMAOUrO7XIDnhkmbfTGxtTOjq5YAOsi4Q6kydCQihqfaM7LU52dGqPJJfIbKRLuAICTM5mYSj+ZzJK7ynSScAeA3NTbK63SwD0zZk7X7RUWGy4nEmpgQGM4gEWRcAfSRE7s9vQor1dXKDlGrnDnRBsA4OTkhDsN3DNMPr3eMTumLRIAgFXs7ZkcMSfhnhkpl2ultUvaQRt3gIQ7kDY0cM8WucI9FOJEGwDgpMRbx1CdVH+Nk5O/wh1z4+5UUlswAABLGBpSsZjhaiDAEfPMWW7rlpYpegNIuANpI19USLhnTkuLKikxXE0m1eCgxmgAAI4zM6NWVoT1sbpWbbHkprG61qTL8LalYC9cvzqvMx4AQPbJZdQXLnDEPHOWO85Ly1S4AyTcgbSR+5QxsCVzXC7V0yNtoI07AOAkxGfqm9X1G4Wl2mLJTWF/4GZlg7Chk64yAJBr5Io3+slk0nLbOWl5cFDF47piASyKhDuQDjduqLU1w1XTjDBOiLmpAIDMEa8jK/KpaqTJqNxVhoQ7AOQauYyahHsmrTa1K7/fcDkSUSMjGsMBrIiEO5AOckq3qUmVlekKJScxNxUAkDnidcSkjSnSRJ5M2zk7ri0SAED2JZMcMc+ihM+numnjDkhIuAPpIF9OuNhnmmmFe5JZagCA4xJr6JbaxTamSJMxkwp3Eu4AkEvGx9XWluGq280R84yTzxCQcEfOI+EOpINc4c7E1EyTR+Ls7KiJCY3RAAAcZHNTTU4K68vtVLjrEBQr3Cs3V05trWsLBgCQZfINeHu7KirSFUqukovemJuKnEfCHUgHEu7ZlZ+vOjqkDTxgBwAcT3+/SqUMV8vKNqvrNUaTu9aKyldKTgsbOuYocgeAnCHnczliroH8Re7rk94+ATmAhDtwYltbcu0b13sd5KcazE0FAByP6TN1l0tXKLkuVE9XGQCAUsqsoIqJqRrIb4HW19X0tMZoAMsh4Q6cmFntmzp7VmM0uYqEOwAgExjTYhmjdeLc1LkxbZEAALJMrnAn4a5BWZlqbpY20FUGuY2EO3BicjL34kVq33QwPdEGAMAxkHC3DCrcAQBKKbW4qBYWpA30dNWDe3DAGAl34MQGBqRVLvZ6yF/nmRm1uqorFACAU8TjamhI2kANnUajYsL97PLNQDSiLRgAQNbIpdN1daq6WlcouY2EO2CMhDtwYvKFhIS7HjU1qqZG2sD1HgBwVMPDKmKcw/X7VXe3xmhy3UxF/W5evtGqO5lsmxdn6gAAnIHDZxYhlx3QUga5zZvtAACbSyTU4KC0gYS7NpcuSUcL+/vVG96gMRoAgP3J94rnzyu/X1coUEmXe7y29eKU4fuujrnxwbPndIYEAEi7b/fNPT0hnU5+73f//X7j1R8G6v7ln64d7qWMJ7HhMORnG9PTam1NnTqlKxrAWki4AycTCqndXcNVr1dduKAxmtx26ZL60Y8MV6lwBwAclTymhX4y2o3Wt0kJd9q4A4D9Ta3tPje9Lmz485BU8fZvJWfkD7+ts6roaJHhZRoaVGWlWl423NDXp17/eo0BARZCSxngZOQG7p2dKhDQFUrOkw8TyEkTAADuRdc4ixmrk9q4d86OaYsEAJAVBXvhhpU5YUOovl1bMDApcqerDHIYCXfgZLgVtw75qz0yovb2dIUCAHAE+WEtXWK1C4pplPb5SXcyqS0YAIB+7XPj7pThr/qdQOHsqVqd8eQ65qYCBki4AyfDrbh1yOcJYjE1MqIxGgCAzd24odbWDFddLh6r6zdR25xwe4xWA9HImZUZnfEAADSTDzON1relXC5twYCEO2CEhDtwMvIhKRLuOnm96vx5aQPXewDA4clXjeZmVVqqKxT80p4v70bVGWFDB11lAMDROuYmhNWxulZtkUAps4xHMKgiEV2hANZCwh04gaUltbAgbaD2TTP5ek8bdwDA4fFM3ZJG66U27nIiBgBgd/KD1dE6Grjr1dmpCgoMV+NxNShNuAUcjIQ7cAJy7Vtdnaqq0hUKlFLMTQUApI88F51n6lkSYm4qAOQqTzLRNn9d2DDaQMJdL49H9fRIG5ibilxFwh04ASamWo38Nb96VaVSukIBANicfJWnwj1LRsW5qSTcAcDBWham/PGo0WrM47te3aQxHCilaOMOHIyEO3ACTEy1msuXlTAkZ2NDzTBLDQBwCBsbampK2sBVPkvk/rynttYrNle1BQMA0Kld7Bt2vfps1OvTFgx+iYQ7cBAS7sAJyAl3Ktz1KylRTU3SBq73AIDD6OuTDkWdPq3OSKM7kTnrRWVLZZXCho7ZcW3BAAB0ko8xhcQhH8iUK1ek1YEBlUzqCgWwEBLuwHHt7anRUWkDCfesoI07AODkmJhqYfJMvM45usoAgDN1zEmPVEm4Z0dPj/J4DFe3t9UY12XkIhLuwHENDqp43HA1P1+1M7AlG0i4AwBOjompFianVKhwBwBHcqVSneJv+GB9h7Zg8F8KClSH+JXnlDlykjfbAQDWtRmJjy5vG61W/tvPmow/dqfr/PDc1iFfaGErcrTIIJCTIFzsAQCHwcRUCxsVE+5yOgYAYFO164slu5tGqymXSx7ygQy6fFmNjBiu9vWpd75TYzSAJZBwBwwNL2594J+vGa3+6f98usn4Y38UqP1//lEsjrtDR2XR0SKDQE6CTEyozU1VUqIrGgCADUWjanhY2kDCPatC9dIhwoaV2YK98G5evrZ4AAAadIgN3OdO1W7lc1udJZcvq298w3CVojfkJFrKAMckT0gfq6N/XJY0NamyMsPVVAvjiWkAACAASURBVEoNDmqMBgBgQ0NDKho1XM3LU11dGqPBy82eqt0OFBqtulPJtnnpTRoAwI7kBu7y4Sdkljw3tbdXVxyAhZBwB47DlUrJCXeu91njcqmeHmkDbdwBADJ5YmpPj/L5dIWCA5j2DeiaYT4bADiN3DEsRMVbFskn/5aW1Py8rlAAqyDhDhxH7fpCcdiwvXvK5ZqoadYZD+7C3FQAwEnIVwq5jAtayHNT28UqSACAHcktZeRuY8isykpVXy9toKsMcg8Jd+A4OsSn6zOn63aMTzoj45ibCgA4CflKcfGirjhgaLROSqx0ikkZAIDtlOxu1q4vChs4Yp5lcpE79+DIPSTcgeOQ+8fRwD3L5Iv9tWsqkdAVCgDAblIpkwp3JqZagFzh3jZ/3ZPkWg8AziH3k7lVWLJYVqUtGBxAPv9Hwh25h4Q7cBwdYgP3kNhXFBl34YLyeg1Xd3fVOCfNAQAGrl9Xt24ZrrrdJueooMVkTXPcY3it98ejTYvTOuMBAGSUfHQpWN+hLRIcjAp34G4k3IHjkFvK0D8uywIB1SG+5aKNOwDAiDwxta1NFRfrCgWGol7fZHWTsKFzjq4yAOAc8hFz+dgTdJAT7uPjamtLVyiAJZBwB46sMLJTu74gbKDCPfvk6z0JdwCAEbkIi34yliGnV+TaCACAvZhUvNHTNetaWlRJieFqMqkGBjRGA2QfCXfgyDpnx12plNHqVn4R/eOyj7mpAIDjIeFuE3LCnbmpAOAY/ni0efGGsIGJqdnncpncg8snCAHHyVrC/Qc/+ME3v/nNcDicrQCAY2sXj7ON1renXC5tweBg8sWeCncAgBH5GkEDd8sYrZM6+MnNBwAANtI2NymMwt7z5U1VndUZDw7G3FTgDsZzBTPpqaee+q3f+i2l1M2bNxsaGrISA3BsZhNTebpuAfLFfnZWLS2pKg4iAADutrKibt6UNlDhbhmh+raUy2V06LB0Z7NmfXGhvFpzVACAtOsUn6GO1bUm3TRvsAD5PRIV7sgxWfitNDs7+973vlf/6wLpIvePG6ungbsFVFWpavEemxZyAIB7yeVXVVWqrk5XKDCxlV80L+bTKXIHAGfoELuEUfFmFXLCfWhIxWK6QgGyT3fCPZlMvutd71pbW9P8ukC6eJKJ1oXrwgb5gDP0YW4qAOCo5PKr++7TFQcOZbReetPVNUMbdwBwApMj5jRwt4jz55Xfb7i6t6dGRjRGA2SZ7oT7Jz7xiaefftpFh2vY1tmlaX88arQa93inqukfZw20cQcAHBUTU20lJCbcqXAHAAdwp5LtYsJdfvgKffx+de6ctIGuMsglWhPuzz777F/+5V/6fL4PfvCDOl8XSKNOsZ/M9eqzUa9PWzCQkHAHABwVCXdbGRWrGuUWBAAAW2hYmSvY2zVaTbrd47UtOuOBRH6nxNxU5BJ9CffNzc3HHnssHo9//OMfv//++7W9LpBe8tN1+sdZiHyxHx5We3u6QgEA2EE4rEIhaYP8KBfaye+7atcXS8Jb2oIBAGRC16x0aZ6qPBP2B7QFAxNXrkirJNyRS/Ql3N///vdPTk4+9NBDH/rQh7S9KJB28vFk+sdZSGenys83XI3H1fCwxmgAAJY3OKjiccPVwkLVzqF1a1kor75VWGK06kql2melOgkAgPV1iEfMRxu4NFuJaYV7KqUrFCDLNCXcv/rVr379618/derUE0884XbrbhwPpJGccB+ra9UWCUx4POr8eWkDXWUAAHfq7ZVWL11SHo+uUHBY8rD6TrEuEgBgfXJ/MG7AreXSJSWMbNzYUFNT+oIBssqr4TXGx8c/8IEPKKW+/OUv19fXH+MzPPLII6Z7lpaWjvGZ02VjY2NnZyeRSOzuGjYXw8mtrq6mUqm8vDw9c3fX17fjd1e6VWyuntpaFz5kuKopLhTHGYhE9o7xUcdwmBdKJpPxePyED8YikYiev9HGxobwo1/c0ZH/wgtGq7s///n2m9+ckbAOYW1tLRwOp1KpfKEMHye2urqqlAoEOGcK4BDkk87yKWlkSai+7ZVjLxqtyqN3AADW1yUm3IP1HdoigbnSUtXSoiaMj5f19anmZo0BAVmT8YR7LBZ77LHHtra23ve+9z366KPH+yQ/+clPTPdEIpHjffK0iEQie3t7kUjEQ+lTJu1/lyORiJ6EezQaTSaTd/6fdrG8fbG0ci2/WN39IYeRSCSSR/+oYzjMCyWTyVQqlUwmTxJSUtffKBaLCT/7vs5OIZntHhjI4u+N27809Pxjzll7e3sq2xcIALZx9aq0ysRUS5K7+ckHEwEAFmda8UZPV8u5ckVKuF+9qn7rtzRGA2RNxhPuH/3oR59//vnOzs7Pfe5zx/4kP/7xj4XV/fr3qqqqY3/+k/P5fNvb2+Xl5UVFRVkMw/Gi0WgqlaqqqtKToyzfu+X1Ltz5f84tXBf2h+pavd7j/EwFAnler4568EAgYPpCqVTK5XK5XK7j/V325QUCXm/i2B9+eKWlpVVVFUar7te+VvjYvJGRqspK6chbJnk8nt3d3dOnTxcUFGQlgByxn3DP7gUCgD0kEmpwUNrAxFRLCtZLLWWaF2/44zFtwQAA0qtrRuoMtlBevVFYqi0YHMqVK+of/9FwlbmpyBmZTbj/9Kc//fSnP+3z+b72ta+dJKn08MMPm+7JbseAvLy8WCwWCARoXJBReXl5qVQqEAjoSbj7/eGXdVbpnJ8U9o/Vtx+vE4vH49Ez28DjcZu+UDKZdLlcbrf5TvGFNP2N/H6/9EP3ilcol8toMIvr1q3A8rI6cyZTwYny8vISiQS/NDItLy9PZfsCAcAexsbUzo7hqtereno0RoPDulF1Zs+XlxfbO3DVm4i3LFxX6qzmqAAAaSEfVArVUd5uPXILPvk0IeAgmU24f+Yzn0mlUj09PT/+8Y/vrFLve+mh1he+8IWSkhKl1J/8yZ/4fL6MBgOcnNxShuNsllNSopqa1HXjcwn9/dlKuAMArEW+A+zqUjy6s6SE2zNe23J+esRoQ+fsmFK/pjEiAEDadM2IDdwbpENOyI777pNWZ2bU0pLi/DFyQGYT7vtNnHt7e3t7ew/c8IlPfGL/Dx/4wAdIuMPi8mJ7Z5dvChtCTEi3oEuXpIR7X59629s0RgMAsCo54S7fPSKrRuvbxYT7+JTGYAAAaSRXvI1R4W5B1dWqpkYtLBhu6O9XjzyiMSAgOzKbcL948eKBo+oWFxeDwaBS6lWvetX+eX9mjcL62uYn3caDQMP+wExFvc54cCiXLqmnnjJc7e/XGAoAwMKYmGpbo+IRw87ZsSldkQAA0qgostOwOidsGBXHeCBrrlxRP/iB4erVqyTckQsym3D/1Kc+deD/f/LJJ9/97ncrpb7zne80NDRkNAYgXTrmjGdtKzVW15p06ehajqORUyQk3AEA++QpXnJDUmSVnHBpnxv/15RhwQQAwLI6ZsddBuO4lFKb+cXz5dU648FhXb4sJdyZm4rcQH4QOCyOs9nSpUvS6sSE2tzUFQoAwKpmZtTKiuGqy2VyNUFWjde2JI1HtRfshctnb+iMBwCQFl2zIWF1tKE95XJpCwZHwNxUgIQ7cHids/KEdBq4W1JTkyorM1xNpdTgoMZoAACWJN/7nT2ryst1hYIji/gDU5XSCPSqccMO7wAAy+oUJ6bST8a65IR7KKS2t3WFAmQNCXfgUFypVNv8pLAhxPXemlwu1dMjbeBEGwCABu42FxLbuFeNDWuLBACQLu1iT9cQR8wtq6VFlZQYriaTamBAYzRAdmQn4X7x4sWPfexjH/vYx0qEH0LASurX5gsjO0arSZd7oqZZZzw4Atq4AwBkcsL9vvt0xYFjkuscq8dJuAOAzfjjsZbFKWEDFe7W5Xab9OKjqwxyQGaHphq5ePHixYsXs/LSwPF0zErH2WYq6nfz8rUFg6ORL/Yk3AEA8o0fE1MtzyThToU7ANhN68KkNxE3Wt3z5U1VS83EkGWXL6v/+A/DVU6ZIwfQUgY4lA7xONuoeJAZWSYn3AcGVCKhKxQAgPWsr6vpaWkDE1MtT24pU7CxqubmtAUDADi5LrGB+3htS8Lt0RYMjkwuVujt1RUHkDUk3IFD6RAnpo7RP87KenqU1/g0TzisxqVvLgDA4fr6VCpluFpRoRobNUaD49goLF0sq5J2cHodAGylcyYkrNJPxurkhPvgoIpGdYUCZAcJd+BQOuaknGyorlVbJDiyvDzV2Slt4EQbAOQy+sk4gknyhWs9ANhKp9jTNdhAwt3azp1TeXmGq9GoGhnRGA2QBSTcAXPF4e3qjSVhQ4gH7BZHG3cAgBH5XDMJd5sw6e9HhTsA2Ic7lWxduC5soMLd6vx+df68tIHrMpyOhDtgrmN23GV82PxWYclSaYXOeHBkJNwBAEaocHcEk+QL7WIBwD7OLM8U7IWNVpNu93hti854cBzyOygS7nA6477GAF7SOScdZxut4+l61qRSKmncd/c218VLLmG5r8/0k7iljwcA2FY4rEJSl1gS7nYx2tAhLU9NqfV1VV6uKxwAwPF1iQ3cp6rO7vmM25XAIki4I7eRcAfMtc9OCKsh+QgzMulrvTMf+1HQdNup7ci/Cstzc7/+8f9vrUi6Cf/vj/a86ix36QDgONeuqXjccLWwULVxlbeH+fLqzYKSkt3Ng5dTKdXfr37t17TGBAA4Fhq4O4GccO/vV8mkctN1A47FP27AnNnEVG7FrW6tqHy1+JSwoW1uUlswAAALkQusLl5UHo+uUHBSQbmrDMV0AGATcoW7yW97WMSlS1I+fXNTTUh1jYDdkXAHTHiSiebFKWHDWF2rrlhwfPJBBPmZCgDAsWjg7iAmhw5JuAOATZhUvJFwt4XCQtXOg3DkLlrKACZaFqb88ZjRaszjm6o+ozMeHE+oru3VweeMVkm4A0COevFFaZWEu62YzE3lxh4A7KBkcbZ0x6A/mFIpl4uerll3dXbzdf/jGdNt/3dR4xvUqNHq177yP7+0XC9/hkcv1n7wVxiQC1si4Q6YaJ+TDjpN1jTFPD5tweDY5M4/HbMk3AEg98TjanBQ2nDffbpCQRoE5bmpIyNqd1cVFOgKBwBwHNXjw8LqfHnNZn6xtmBwoEQyuRNNmG4bqm17g/qJ0WrrjVHTT7IXTx45OMAaaCkDmKCBuzOM1Uudf5oXb/jjUW3BAAAsYWRERSKGqz6fOndOYzQ4qRuVjWF/wHA5kVBDQxrDAQAcR/WY9Lva5NkqrGRUHG8rd+oH7I6EO2BCrn2W07iwjqnKMxHjm3BPMtG8eENnPACA7JN7jJw7pwLG2VtYT9LtHq8VD5739uqKBQBwTGYJdxq420awXno6UrZzq2pjWVswgGYk3AETcoX7aB3Xe3tIut2T1WeFDZ10lQGAXMPEVMehjTsA2F31mNRSRs7hwlJuFZYslFcLG7pmKXKHY5FwByRVt1bKdm4JG0wKqWAl8jj7duamAkCukeudaeBuQ/K1noQ7AFjd0lLR6pKwLncpgdXID8K7Zsa0RQJoRsIdkHTMSheAhfLqW4Ul2oLBCYXqpP4/8lEGAIDTpFKqv1/aQIW7DZn09h0YULGYrlgAAEcnPhldLT61WnxKWyw4Ofm63CnmWwBbI+EOSDrmJoRVJqbay5j4/eqYHXelUtqCAQBk2cSEumV8iM3lUhcvaowG6TFe2xL3eA2XIxEVDGoMBwBwRGLCnfJ22zGrcKelDByLhDsgaRMT7mNixTSsZqyuNeVyGa0Wh7erN6TTiwAAR+nrk1bb2lQJh9jsJ+r1TVY3STvoKgMAViZ2e6OBu+0ExYR79caS3MIXsC/jAhAASnWKbUbkFiWwmu1A4Xx5Td3avNGGrpmQPNQFAGAXw4tbU2u7wobOH/+ncBWfb+2+OrJ4mBda3YkeMTRk1mh9u9QmrrdXvec9GsMBAByFnHCX+4bBepbKKteKy09trRtt6Jwde7bjAZ0hAXqQcAcMuXd3G1dmhA0mg7lgPcGGdinhPjv2dM+v6IwHAJAh3x1a/Hb/nLDh8//750LC/R+9tf/ww9HDvFBnVdERQ0NmjTa0v+35HxguU+EOAJZ165aanBTWg7SUsaHR+vZXB58zWu2aCZFwhyPRUgYwVBAacSeTRqu7eQWzp2t1xoOTk2siaCEHALmjS5zTRQ2dfZl87/r6lPG7OwBANl29qoynam0WlMyX1+gMB2kht3HvnGFuKpyJhDtgqHCwX1gdr21JuvgJshm56x8JdwDIEVUby8LpZmV2cwgrC9W1Se/QNjfVhDShBwCQNeIhpGB9uzCRC5ZlUvQmFkAA9kW6EDAkJ9xH69u0RYJ0kS/2FZurFZur2oIBAGRL16z0hHW+vHqjsFRbMEiv3bz8mYp6aQddZQDAml58UVjk8JlNyd+4xpWZosiOtmAAbUi4A4YKr0kJ95GGTm2RIF3WisuXSiuEDRS5A0Au6JwVh6JT3m5zJkkZEu4AYE3i72cOn9nU7Knazfxio1VXKtUhvisDbIqEO2AgGi0IBYV1HrDbFG3cAQDyb3su8XYXlJMyvb26AgEAHNrurhqVxpUzMdWmUi5XSGwPIJ87BGyKhDtg4No1VyxqtBj1+iZrmjRGg7ShhRwAoFP8bU8Nnd2ZPDIh4Q4AFtTXpxIJo8XdvPyblQ06w0Eayddl5qbCkUi4AwbE/nHjda1xj1dbLEgjKtwBIMeV7dyqWV8UNow0UuFub8HGDmmw3sqKmp7WGA4A4BDEfjJj8kBsWJtcytDNPTiciF9YgAGx+ilYz624Xcnfu5r1xfLtDW3BAAD0k5+trhWXL5dI0z5gfZv5xfPl1dIOitwBwGrkG3D6ydiZXPTWtHQjEI1oCwbQg4Q7YMDkek/C3a6WyirXisuFDXKfAQCA3cm/503af8MmTPoCMTcVAKxGvAEfpeLNzm5UNob9AaNVdzLZPj+pMx5AAxLuwEFiMXXtmrBOwt3W5GQKXWUAwNm6b8oz2bjEOwFt3AHATvb21NCQsD7C1dnOkm53SO4qI743A+yIhDtwkKEhFTE80xT3eMdrm3WGg/SijTsA5DL59zwTU52BhDsA2Mm1ayoWM1qMev3Xq8/qDAdpJ7+/4pQ5nIeEO3AQ8TZsoqY56vVriwVpR8IdAHJWcXi7fm1e2DDS2KktGGTOSIP4fZybUwsLumIBAJgRb8DH6lrjHq+2WJAJ8j149wwV7nAaEu7AQWjg7mjyd7B+bb4kvKUtGACATl0zIVcqZbS6mV88X16jMx5kiPnwW4rcAcA6uAF3OnnsbcvClD9ueMQBsCMS7sBBuN472nx5zWZBidGqK5XqmB3XGQ8AQBu5hCrY0JFyubQFg4yiqwwA2MaLLwqL3IA7wGR1k9AnwJuItzE3Fc5Cwh24RyKhBgaEda73dpdyueS5qcxsAQCnkpuEjorlV7AXuZiOhDsAWEUspgYHhXUmpjpA3OMdr2sRNnTRVQbOQsIduMfIiNrZMVpMut1jtdJ1ArYgPzVhZgsAOFXXjPQbnlt6JzGpkBCrKQEA+gwOqkjEaDHm8U3WNOsMBxkSrGeUGnIICXfgHmLF02R1U8Qf0BYLMkSueuNiDwCOVLC327g8I2zgEJuTjIqn2dT0tFpe1hULAMCYeAM+Udsc9fq0xYLMkefScw8OhyHhDtyDBu45QP4+nlmeKdjb1RYMAECPrpkxdypptLoTKJypqNcZDzJqobx6vahM2kFXGQCwgqtXhUWTp6ewD7norW1+0pdgbiqcg4Q7cA8GtuSAmxUN24FCo1V3KtkxN6EzHgCABnJ70NH69qSL98aOQlcZALABKt5yw0RNS8xjeFjBH4+1LExpDAfILG4qgLslk6q/X1inu6szpFyuUH2bsIG5qQDgPJ2z48KqPE8bdmTyto0KdwDIukRCvgEfFvuQwEaiXt9ErdSOn3twOAkJd+BuoZDa2jJaTLrcY3VSlhY2Is9sYW4qADhPt9geNNjIM3WnocIdAKxuaEjtGjbzTLg947UtOsNBRsnXZdq4w0lIuAN3E2udblQ17ubla4sFGcXFHgBySn400rR0Q9jAoXXnCTaIdZFTU2p1VVcsAICDiDfgkzVNe748bbEg00zuwSl6g4OQcAfuRv+4nCHPbGlZnApEI9qCAQBkWsfsmDtpODF1Ny9/quqMznigwdypmo3CUmkHXWUAILvEw0Y0dHUY+RvaPjfhSSa0BQNkFAl34G5MTM0ZU1Vnw/6A0ao7mWybn9QZDwAgo+R+MkxMdapRuTU/CXcAyC6TijcauDvKWF1r3OM1Ws2L7bUuXNcZD5A53FcAd0ilVF+fsM4DdidJut1jda3CBjk1AwCwF3kS1wi39A5FG3cAsK5EQr4BZ2Kqw0S9/snqJmFD103uweEQJNyBO0xMqI0No8WUyxWSi6RgN/JNOHNTAcBJ5OEcHGJzqhE5WUPCHQCyaHhYnpgqF0jBjuTrcveMVB4B2AgJd+AO4k3XzYr67UChtligQbCeuakAkBMC0UizycRUnqk7k8mjlOvX1dqarlgAAHcTb8CZmOpIZgl37sHhECTcgTvQPy7HyDfhrfPX/fGYtmAAAJnTaT4x9azOeKDN7KnaSLHx3NRUijbuAJA18g24WB0Fm5L79HbMjnsTcW3BAJlDwh24g8n1nto3p5msaYp6/UarvkSsdYG5qQDgBHLBVKiuLenmXbEzpVyuxY7z0o4XXtAVCwDgbuJv4JFGEu4OJM9N9cejLYtTGsMBMoVbC+AOV68Ki0Gu944T93jHa5uFDV0ztHEHACcwmZjKTDZHW+i4IC3Txh0AsiIeV/39wjrjVRwp6vVP1jQJG5ibCmcg4Q68ZGpKra4aLaZcLircHclkbiot5ADAEZiYmstIuAOAFQ0NCRNTk273WF2bznCgzYjYrZe5qXAGEu7AS8Tbrfnyms2CEm2xQBs5ydI1S4U7ANhevtnEVLmdKOxuoaNHWr5+XSi5AABkingDPlHTHPYHtMUCneSThefEU4mAXZBwB14iNnDnsLlTyaN4mNkCAA4gT0yN+ANMTHW2/5+9+46v+jrzfb92URcqdISQaBIqdCG6MQbsxNgmduJ4kjhxJh4nTplzcmY855XJyZ0zczOTZDKTMncyuQmOHaeQOC44Ju4YY5oAdaGOCiCKQAUh1LW1y/mDG1/b8Hu2EHuvvX/793m/5o8J65H0hShb2s9vrWddnTlbTZkiVbDJHQD0E197uTE1gskbHbLaW3kPjghAwx34M/nG1HTmyUSmFn93tszrkDZFAgDCX97ZBmG1cXYWN6ZGOJtNFRRIBTTcAUA/8bWXHW8RzP+9qZfOaIwDBAXvLoA/k29M5QF7hHI5o07NmCsU5FxgjDsAmFuuOMC9fk6OtiQIGRruABBWxsbkG1NpuEcwlzO6deY8oSDvXKO2MECQ0HAHlFJKnTunOjqEda5Ti2Dy8YVF5xnjDgDmlisOA+VHvCXIDfeyMl05AABKKaVqa9XIiNGi2+FsSlugMw40q2eMOyIdDXdAKeVnnkxHyvQriSnaskAzudUi74sEAIS5+NGhjK7zQkHjHBruFrBqlbTa1qa6unRFAQD4edJ5aubc0agYbVmgn3yCQd4qAZgCDXdAKcWNqZYmN9yzxav2AABhLud8k91n+DI+FBN3ZnqGzjwIjcxMNXWqVMBUGQDQSXzVZdpbxJN7LAsvnop2j2kLAwQDDXdAKeXvxtTZ3JgayZrSFgrX5cW5RjK7zunMAwAIoPyz0hjQxvRFXhu/D1uDvMm9tFRXDgCAn4Y7094iXsus+S5nlNFqlGdsYXurzjxAwPEGA1BK8fPe0kaiY89Mk7Y35jBVBgBMy9+NqRxis4zCQmmVHe4AoM3oqKquFtbr0/npHOHGHFEt4pj+vPNMlYG50XAHlOroUBcvCus03COePMB30QXuTQUAs8o9J+1wb+AtvXXI96aWlOjKAQCWV12tXC6jRY/TTysWkUF+rMIYd5gdDXfAz4UtXUlTu5OmaMuCkJCnBuXydB0AzClxZDD9crtQwDUtFiKPlLl4UbVL3yoAgIARp3h1LcgRho0gYnBvKiIbDXeAeTLw899yzvlm5fNpCwMACJS8s4024xfwgdiEc1Nn68yDUJo9W6WlSQXiDgwAQMCIb8AvZS/WFgQhJF+Nu+DS6ZixUW1hgICj4Q4oVVkpLDamc2Nq5Ds5O0u4NC9hZDC27bTOPACAgMg/1yCsNsxZ5LPZtIVB6Mmb3BnjDgB6iA84Ly1aoi0IQujUzLmjUTFGqw6vh8muMDUa7gA73KEGYxPOT5V2vSXUSrf6AADCU95ZaYC7vLUKEUge4y6OOAAABMbQkKqvF9YvZdNwtwSP3XFSnOyax1QZmBkNd1hed7c6d05Y5zo1i2gU/4tOqKPhDgDmky/emFqXQcPdYuQd7jTcAUCDigrldhuuxsd3z+WIuVXUi2Pc5W0TQJij4Q7LE7e39yYkd6ZM05YFISTfm5pQW6UtCQAgICb3X5ne2yUUyI9aEYEKC6XV7m7V1qYrCgBYlfx0c8UKr8OhKwpCrF7c+iBvmwDCHA13WJ7YcJefuCKSyLODGCkDAKaTJ75Pu5KY0j55prYwCAvTpqnMTKmATe4AEGzyDdXyk1FEljpxuF9G17mYgT5tYYDAouEOy6uoEBbZ+2YdjXOyhavznFd62PUGAOYiN9wbeKZuTUyVAYDQkm+oli/bQGQ5Ny19IDbBaNXm881srtOZBwggGu6wPD8Nd25MtYq+uEkXU2dIFeK3CgAg3Cw+2yCs1mbkakuCMCLvnaThDgBB1durmpqkAvmxKCKL12aXN0DMbKzRFgYILBrusLYrV9SZM8I6DXdL8XOggYY7AJhKzjnpLX29eIoZEUtuuJeVKa9XVxQAsJ6yMuXzGa4mJals3oBbi/z72KyTTHaFWdFwh7WVlws/yxuMHQAAIABJREFU793JKX62PCOyNKZL96bScAcAE0nquDB54IpQwEgZiyooUHbjd0D9/erkSY1pAMBiSkqk1cJC6SUakahOvDeVHe4wL17LYG1iC3VwyTJhqDciT+NscT+FPG0QABBOZp2U3qF1pEy/PGmytjAII8nJfrZPMlUGAIJHfo3lxlTrkXe4J3W2q44ObWGAAKLhDmvz03Bfri0IwkHjHPEdeEeHam/XlQUAcEtmNZ4QVuXtVIhwjHEHgFCRX2MZ4G49l1Jn9CSmShX8XIY5OUMdAAgpueGev0y5tEVB6PUkpnamTJve22VYUVGh0tI0JgJC7PLlyxcvXjRajYuLW7Bggc48wPjNapSGftZxY6qVFRaq3/7WcJU39gAQJO3t6sIFqWD1al1REEbqM3I21h8zXC4pUffeqzEOEBg03GFhfX2qtVVYH1y8VFUMaouDcNA4O9tPw50f9rCSH/3oR9/97neNVpctW1ZVVaUzDzBeXu+M5jphnYa7pck73Kuq1OioionRlQYALEN+ojlzppozR1cUhJH6OYv8NNwBE6LhDgurqFBer+FqcvJI5jxVUasxEEKvMT1rU12R4TL3psJimpubQx0BmJCGhughw0fmXpu9MV2cIYbItny5iopSY2M3Xh0dVbW1qqBAbyYgwDijhnAkd07Z3m5V8hh3VVqqfD7F7XowGxrusDC5ebpyJa/pFuSnBUPDHRZzreH+uc997pFHHrl+ddKkSdoTAeMjvqVvmz5nIDZBWxaEndhYtWSJ9DO9pISGO8yOM2oIR3LDnRtTrcrPucOeHtXaqhYu1BUHCAwa7rCwykppdcUKXTkQRhrTF0nL586pzk41fbquOECItba2KqW2bdu2bdu2UGcBboZ4aN3PRipYQWGhn4b7V76iMQ0QeJxRQ9jx+VR5uVRAw92qriSmtE+eldZjeChHlZTQcIfp0HCHhfnd4Q7r6Uye2jMpdXL/FcOK4mJ1330aEwEh09HR0d/fr5TKzmb4BsymuFhYrM3M0xYEYWr1arVzp+Eq42JhfpxRQ9hpblZXjN9k2Wxq1SqNaRBeajNy/TTcP/MZjXGAAKDhDqsaHFQnT0oFNNytqiF90YaG44bLx4/TcIdFtLS0XPt/Fi0ST34A4WZkRNXUCOt17HCHPCm4oUH19qqUFF1pgMDjjBrCjvwsc/58NWWKrigIO/UZOXdV7Tdclq/bBcKSPdQBgBCprFQej+FqYqKiwWRVfnY+HjfuxQOR5drmuGnTptnt9u9973sPPvjgxo0bv/CFL/z4xz8+f/58qNMBxqqqDO/DVMrljGpJ46pAy8vNVcIOX5+PW1tgapxRQzgSD5+pNWt05UA48jPGvaJC+NUOCE/scIdVyW3T5cuVncdRFlUjN9xLS5XHoxwOXXGAkLnWcHe5XPPnz+/p6bn2h0VFRUqpf/qnf/r+97//+OOP2/xdLn1FODv8Z16v95bDmon3z/z+6+GGvO9zwwJbcbHwL9uStsDljApkIJ8vkJ9N+kKavo62L6TvX87n+/B3i81mW7nSdvCg4YcUF/s2bzZa9ftNCNl7r4H8AwYJZ9QQjuQd7vLBI0S6hvRsj93h8Brsibx2eJEhBDAVGu6wKrnhXlCgKwfCTl1Grtdmt/sM3gH296u6OrV0qd5QQAhce7t+9erVmJiYT3ziE4WFhU6n88SJE88991xfX99XvvIVj8fzta99Tf4kkydP9vuFrLZf/tKlS16v1+fzOXh0NyEDAwN9fX0DAwMDAwM3LJjy7rsJxh9ePTvb5XIFMM/QkC2wn9D4Cw0F6guNidvEBocGTfc3kl29evX615mU3Nwk44b78MGD3Q8/bLR67TtwaGior68vYCmtxOPxdHR02O12n7anLhbzoTNq5eXlly5dysrKWrp06Sc/+cn09PRQB4T1jI6qEyekAhru1jYSHds6c152e4thRUkJDXeYCw13WJXccF+3TlcOhJ3+uMQz0zPmd5wxrDh+nIY7rODa2/WZM2fu3bt3yZIl7/35N77xjXvvvffMmTPf/OY3d+zYMWfOHOGTpKamCqvX9r/bLXai6FqPyW63W+0vHih2u91mswn/gDGVlcKH18wRzyxPgLaTCrq+kM2m6TtT2xGPa98wH/rDsRUrhA+JqawU/hfq95sQMp/Pxz9gUAXkjBoQSCdOqNFRw9WoKCW+JsMK6jNy/DTcv/xljXGAW0XDHZbU1qYuXJAK1q7VFQXhqHZuntRwLy5WX/qSvjRAiDz99NOjo6OZmZmzZs16/5/n5+f/9Kc/veeee/r7+3ft2vXNb35T+CTvvc+/oWvv9q221c5ms3k8ntmzZ7PDfWL6+vri4+OTkpJSbnin5eXL6tw54cMbFiyJjo4OYJ74+PjoAR1jMeLj46IHjK+fuXlG/w4B/0JG4hPiowd1/NMlJyff4HXm7ruFD3F0dqbbbGr27Buu9vb29vX1paSkJCUlBSqkpXg8HpvN5nA4Zhv8C+MWcUbtZl28eFFZbwdAoIyNjXV2dkZHR7vdbqOaxL17hXuoXTk5nd3d7/3Hq1evRthBq6GhYeELeb1ej8djt9tvfcqW/IUCaGgw8P90J9Ky7jdeHTtypMPgBae3t3dwcHB4eDghQTjiCENdXV0ul8vj8URFBXToouXRcIclydvbZ81SmZm6oiAc1Wbk7Sh+3XCZe1NhDSuMtxpt3749LS2tvb29pqZGZyTAv+JiYTR4X9ykc1Ot9YAHhubMUbNmqYsXDQtKStQDD2gMBARMQM6oWeoWlmvTjSLmr6PZtUF58rUWUeJN1KMrVrz/Y/UNm4q4L+QzGosa8C8UhM9ZMydHWI1qaVG9vd4bPecez3cgBPwDBgkNd1gS82Qg8nNvakODunJFiYMygIiXk5PT3t7e0NAQ6iDAB4l3stVn5PiYooD3rF6t9uwxXD1+nIY7TErDGbVr+98j5ozatTZTxPx1NHO5XA6HIzo6eubMmUY19tpa4TMk3nFHwvv+8ZObR6OjhwIZ0UB8fHz0oI5WeHy8dKLr2vZ2u93udN5qgy4hPiEc/kYTc3ZO9lBMfPyowX/1Pt/sS5d8eTd4nx4fHz8wMDB58uTExMTARrIIp9PpcrlmzpwZ2DOgoOEOSzp2TFplnozltc6aNxibkDAyeONln0+Vlqq77tIbCggv145df+idPBB6xcXCYl1GoAe4w9Tkhrv4vQSEs4CcUZNvYbkmYmawXPuLRMxfRzP7+9y44soV1WI8m1sp25o1tvd9rL4LBvR9ITlF4GKY+V/Oa7c3pmevbK0y/KIlJbZt267/c//fgRDxDxgk/GvCekZHVZXhi7hSNNyhvDZ7/ZxFUgVTZRDpdu/enZOTk5eX19HRccOCa3vbFy9erDcXILr2QNSYnwNMsJo1a6TVsjJlPI8YMK+cnBz155/jgA4lJdJMleRktUh85wXLqM0UN0bwIBymQsMd1lNR4eeG9IICjWkQpvw0ZWi4I9Jt2rSptbW1oaHh5z//+fWre/bsuXDhglJqHTO4EFaam9Xly8J6fYY0HhSWs3q1Eu4uHhxUdXUa0wCacEYNusnnywsLFftqoZRSqjaD9+CIHLyuwXrkn/fLlqn4eF1REL5qM/Ol5WPH9N2xA4TCtGnT7r77bqXUv/zLv7z88svvXzp8+PBXv/pVpdQdd9zxAAOOEVbE7e3tk2f1JHL9Bt5n0iSVIz6DYTMdTIgzagg78mupfNgIVlIzV2y4d3aqtjZdWYBbRcMd1iM/F2WeDJRSfne49/aqpiZdWYDQ2LlzZ1pamtvtfuCBBzZu3Pj1r3/9r//6rzdv3nz77be3t7cnJyfv3Lkz1BmBDxLf0tcyTwbXkxs9NNxhQpxRQ3jxN+2Nhjve05U0tTN5qlTBz2WYBw13WA8Nd4zDlcSU81PSpApOtCHSzZo16/XXX1+zZo1Sqqio6D//8z9/+tOfHjx40Ofzbd++vba2NisrK9QZgQ8SX5n9DAaFNdFwR8ThjBrCi79pb2r1al1RYAJ+tkeUlOgKAtwqZ6gDAHq1t6tz56QC9nrgz2rm5qdfbjdcLi5Wn/+8xjhACCxbtuz48eP79u0rKSk5c+aMw+FYunTpihUr1vJsEmFoeFidOCGs18izwmBN8qtZfb3q7VUpKbrSAIGxc+fO8vLy9vb2Bx54YMOGDQUFBR6Pp7a29tChQz6fjzNq0Ep+cjlvnpoxQ1cUmEBdRu6W6kOGy2x6g3nQcIfFHD0qrU6frubP1xUF4a42I/fu8rcNl/lhD8vYtm3btm3bQp0C8Ke8XLlcRosuZ9TJ2ZzJwHXy89WkSaq//8arPp8qK1O8AMJsrp1Re/zxx4uLi4uKioqKit5b2r59+86dO9PT00MYD9bC+XLcDD+TXa/9shcdrSsOMHE03GEx/LzHuPnZC1ldrQYGVGKirjgAAJF4yrhpdpbLGaUtC0zD4VAFBerAAcOC4mIa7jAjzqghXPAGHDejfk6Ox+5weD03Xh4ZUSdOqMJCvaGAiaDhDovh5z3GrWn2wtGomJix0RsvezyqvFzdfrveUAAAA+KPeD8bpmBla9ZIDXcOtMHMOKOGEBseVjU1UgE3puKDRqJjW2bNX3Sh2bDi2DEa7jAFLk2FlYyNqYoKqYAB7ngft8PZmJ4tVfAmHADCBw13TIzc7jl+XPl8uqIAQGQpL1djY4arMTFq+XKNaWAOfn5n4z5zmAQNd1hJZaUaHjZcdTjUqlUa08AE/Pywp+EOAGHC36XotdyYCiPr10ur3d2qpUVXFACILPLbpeXLVUyMrigwjZq54u9svAeHSdBwh5XIL81LljCPGx9SKzfc5Tt4AQDaiC/IPYmp7ZNnassCk5kxQ82dKxUcO6YpCQBEGAa64ub52fR26pTq6NCVBZg4Gu6wEvnnPfNkcJ0T8xZLy52d6swZTVEAAALxfLGfrVKA3PRhMx0ATIz8wFI+YASrOjc1vTchWapgqgzMgEtTYSXyz3sesOM6XUlTO1OmTe/tMqw4ftzPtjgAgAbij3gGuMOPtWvVH/5guErDHQCUqr7Y19YzdP2fu93uK1euOp3O1Msf+PO49vPb2tuFT7gvdf5w3aXr//zKkPHYd1iAz2ary8jd0GD8w/f4cbVjh8ZEwETQcIdl+N2MTMMdN1KTmb+194DhcnGx+tSn9KUBAFzP5VLl5cK6n/lggHzMsaZGDQ6qhARdaQAgHP2p9tLLtTfoj/t8vrGxMZvNFhX1gV1Kd1Xt32b82bqSpv597ZCqbbp+adE0Br1aXU1mntRwZ9QbzICRMrAMedz2lCkqK0tXFJhJbUautMyuNwAIuYoKNTJitOi12+vn5OiMA/NZsULFxRmuut2qtFRjGgCIBEvO1AmrTHuDwM+3R2mpcrt1ZQEmiB3usAy/F7bYbLqiwEz8/LCvrFSjoyomRlccAMB1xI1OTWkLh2KMe6mwgLpL/Vt+5uee8/9My1rcWm20+tR/PPf7huj3/qPb7Xa73U6n0+n8wJupe/Nm/u3t828xLQBEhmVnaoVVP3dlwdpqM3K9drvd673x8uCgOnFCFRToDQXcHHa4wzIY4I4JaUjPHnNEGS6PjqrKSo1xAADXEZ+pM8Adbq+vb8Qt/1/VHOlAW3ZLzfuL+0c9Ay5v/6jnQ59kyMWGOwBQSqmYsdGsC61CAT+dIRiMTTg1Y65UwVQZhD0a7rAGt1ue7krDHUZGo2Ka08TdakyVAYDQkm9M5dA6xkFu/Sxpq7P5fNrCAIDZ5Z5vivIY3n065ohqTM/WmQemUy3//kbDHWGPhjusobpaDQ4artrtqrBQYxqYTG2m+MO+uFhXEADAdc6fV+fOCevVczm0Dv9qxO+T1IHeOd3ntYUBALNbKs6TOZme5XJGCwWAnw0T8hV9QBig4Q5rkJ9/5uer5GRdUWA+tZnivak8XQeAEBLfcfUkpp6fkqYtC8yrM3nqxdQZQoE8jBgA8H5L5RtTmScDf6rlTW9nzqiLF3VlASaChjuswe+NqYCxGvmHfVubam/XlQUA8EHiU89q7mTDuMnfLUvE5hEA4P3kHe5Me4NfZ6fN6U0Qt0Wy7w3hjYY7rIGGO27Buamzx6ZOkyqYKgMAoSIPcGcPHcbthDhVZtlpdrgDwLhkdJ2f3H9FKKiau0RbGJiUz2bzs++NhjvCGw13WEB3t2qVbkhX69bpigKzGlheIC3TcAeAkBgeVpWVwrqft2rA+8jj/ud1tE0aHtAWBgDMa0mbdCSoI2V6Z4q4mQlQSjHGHSZHwx0WcOyY8vkMV1NS1KJFGtPAlPw03OUjFACAICktVS6X0aLb4ayfw494jFdz2oKhmDijVbvPu6StXmceADAp+UiQfJwIeE+13HAvL1ejo7qyADeNhjssQG6Grlmj7PwPAX4MrFglLZeWKrdbVxYAwJ8dOSIsNqZnj0THassCs/PYHXUZ0jXpS7g3FQDGQR7gzvUqGKe6jFyvw2G4PDqqyso0xgFuDn1GWAAD3HHLBpYXKOGH/dCQqqnRGAcAoJTyd2Mq82Rwk+QZRIxxBwC/Jg0PzL90Rig4QcMd4zMcHdu5ULyMp6hIVxbgptFwR6TzePw89mSAO8bBk5Co8sQf9kyVAQDNfD654c5betws+Xtm8dl6h9ejLQwAmNGStnq7z2u0Ohwd25S2UGcemNqF/BXSMmPcEcZouCPS1daqvj7DVZtNrV6tMQ3MTD4Mwb2pAKBZY6O6fFlY59A6blbN3HyfzWa0Gj86nN3eojMPAJiOPH2rPiPHYzc+Nwx80IXF4lVqR49K1/UBIUXDHZFO3neck6NSU3VFgcmtWSOtssMdADQTB7j3zprTlTRVWxZEhr64SaenZwoFy08xQQ4AJNyYigA6Lzfcu7pUU5OuLMDNoeGOSCe3QZkng/GTd7g3NckbLQEAASaeI76Qv1JbEEQSearMstM03AHAkMPrWdJWJxRU03DHzRiYOkNlSg/CmSqDsEXDHZGOG1MRKHl5KiXFcNXnUyUlGtMAgOWJb7HaabhjQk7MWyKscm8qAAgWnW+Oc40YrXpt9uq53GeOm7Rhg7TKvakIVzTcEdF6e/2cMKLhjvGz2VRhoVTAVBkA0MXW1aWam4UCdrhjYqrmLxVWp/V1p/Vc1BYGAMxl+RnpGNDpGZl98UnawiBC0HCHOdFwR0Q7dkx5DW9IV5Mmqbw8jWlgfvIMIhruAKCL8/hx6Zqs5OSueVka4yBynJ+SdnnSZKGAMe4AYEQ+BiQ/0QRuTG64nzxp6+7WFQW4CTTcEdHkBuiaNcrBDem4GfK9qcXF0gMeAEDgOP3d0eKz8yMeE+RnqswZpsoAwI0tP1UtrMqXZAA3tnixSjI+GOHzRRUXa0wDjBcNd0Q0BrgjsNauVTab4erVq6qxUWMaALAuPw33jRt1BUEEqhJbQnI7CQAsK6Pr/JT+HqGgcv4ybWEQORwOuXXjpOGOsOQMdQDgpvUMje2uHsf0TJ/v88eKY4zX30yZf/ZYm/AJBlzumw6HyDZ5ssrKki4GOH6cOUUAEGy2oSFHtdj03LhReXSlQcSpmicNPZjfcSZ5qL8nJl5bHgAwhWXiAPfO5KkXU2doC4OIsnGj2rvXaNF57JjOLMA40XCH+XQPjj55XGqUXzP/0ukv9V81WvXZbD8Yntorfp65qbyVwnXWrpUa7sXF6tFHNaYBACuKqahQbuOH4tHRavVqdeyCxkSIKE2zFw5Hx8a5Rm64avP5lp+p3b9oteZUABDm/AxwF59lApLbbhMWnTU1tqEhNVm6fwXQj5EyiFhL2uqF1XNT03sTkrWFQeSQx7hzbyoABF9Maam0XFCg4uJ0ZUEEcjuctZnSebXlp7k3FQA+bAUD3BEkq1er6GjD1bGxmMpKjWmAcaHhjoglN9xrxPdRgCF59H9trerr0xUFACzKT8Nd3AYFjEeVeG/qytOMcQeAD5g80JvRdU4oYIA7Ji4+Xq1cKaz7+c0QCAUa7ohYS8/UCas1c/O1JUFEWbpUJSQYrnq9qqxMYxoAsB63288+pg0bdEVBxKpcIDWGcs83xY6NagsDAOFv5ekam89ntDoYm9Aya77OPIg04nYKGu4IQzTcEZkSRgbndkjz2aszabhjQpxOVVAgFTBVBgCCyXHihG1oyHDZZlMbN2qMg8hUk5nvdhhedhXlcS8926AzDwCEuQLx6M+JufleO90n3ALxt7uYykrpdh8gFHjJQ2RafLbB7vMarQ5Hx7bOmqczDyKKPFWGhjsABJOjqEhazsvj1izcuuHo2JOzs4SClWekuwEBwGpWipdbVDFPBrdowwZlsxkt2gYHHSdO6IwD+EXDHZFpiThPpmFOjsfu0BYGkUZuuBcXK+PTlACAW+Q8elRa3rRJVxBEuMr5S4XVFTTcAeDPEkcGsy+dEgrkV1TAvylTVG6usG6XN2QA2tFwR2Ra2iY13E/M5YZ03AK54d7ZqRobdUUBAIvxeh3HjkkF3JiKAJHbQ8va6h1ej7YwABDOVrTV2b2G58tdzqi6jBydeRCZxE0VDnlDBqAdDXdEIJvPly8O1qzNlB6NAn7MmqUyM6WC/ft1RQEAi6mpsfX2SgUMcEeAVM5f6rUZvleKdw3nXmjWmQcAwpY8T6Y2M8/ljNYWBhFL3FThOHpUGT/1AfSj4Y4IlNl1LnmwTyio4cZU3KL166XVd9/VlQMALObwYWl1wQI1Z46uKIhwffFJZ2ZIz9cLWhkXCwBK+bvWomoe82QQCOIOd9uVK6qWaW8IIzTcEYFWtVQKq+2TZ/VMStUWBpHpjjuk1QMHeLoOAEFx6JC0yjwZBJQ8VWblqWptSQAgbMWMjeafPykUMMAdgZGerubPlwrk3xIBvWi4IwIVNlcIq9Vz2d6OW7Zli7R6+bKq5k04AATBkSPSKjemIqAq5i8TVleerhZmFgOARSxtq4t2jxmteu32E/O4QQ0BIv+mJ/+WCOhFwx2Rxu7zFog73MsXrtAWBhFrwQLGuAOAbk1N6uJFqYCGOwKqYqHUcE8cGcxub9EWBgDCkzxfq3F21lBMvLYwiHDyWcaDB3XlAPyj4Y5Ik9XemjJ4VSgozVqpLQwimTxVhjHuABBwBw5Iq2lpasECTUlgDV1JU89OSxcKVp5ijDsAq1spNtwrFizXlgSRT95acemSamrSFQXwg4Y7Io08T+ZS6ozzU9K0hUEkkxvuBw8qt1tXFACwBnnjEtvbEQSV8lQZ7k0FYG3R7rElbfVCAQ13BNLChSpN7OfImzMAjWi4I9LIDfeS7AJtSRDhtm2TVvv7VXm5rigAYA1yw/3223XlgIWUi62ila0n7D7GuAOwrsVt9dFul9Gq12avmr9EZx5EPnmDBQ13hA2tDfe+vr6ysrJXXnmloaHBzd5PBIHD61l+ukYoKGOAOwIlLU1lZUkFjHEHgABqblYXLkgFmzdrSgIrqVgg7XBPGuqbf+mMriwAEHZWtlYJqy1p8/viJmkLA0ug4Q6T0NRwLy8vX7t2bXJycmFh4Y4dO/Ly8hISEh577LHu7m49AWARi9vqE0YGhYKyhQxwR+Bs2SKtMsYdAAJIfgc1c6ZatEhTEljJpdQZ7ZNnCgWrWiq1hQGAcCNP1ipbwHY3BJq8weLiRca4I0zoaLg//fTTq1evLi4uVkolJiYuWLDA4XC4XK6nn3560aJFJ04w+hABI8+TOT0jszN5qrYwiHzyGPeiIjU6qisKAEQ6ueG+ebOy2TQlgcX4G+Mu7e4EgAgW5Rlb2lYnFFSKh4SAicjJUTOlB+FsckeYCHrDvaOj44knnvB6vXPmzHn77bf7+vpaWlr6+/v/9V//NTY2tqen5+GHHx4ZGQl2DFhEYYvUcC/NYns7AuqOO6T+ztCQKi7WmAYAIho3piJEysWBhAWtVYxxB2BNi9saYl2GzRyfzVY5f6nOPLAEm83PtT003BEegt5w/+d//uerV68qpV588cVt27bZbDalVFxc3De+8Y0f//jHSqm6urpdu3YFOwasINrtWnJGuiGdeTIIsOnTVX6+VMAYdwAICAa4I3TKFkr3piYP9i1sP6UtDACED3mm1qkZc3sTkrWFgYXIv/XJWzQAXYLecH/zzTeVUtu2bVu9evWHlr785S9PnjxZKVVaWhrsGLCC5adq5BvS5WuvgIlgjDsAaCC/nE6frnJydEWB5bRPnuVnjHsrY9wBWNEq8Xx5WRYD3BEc8g739nbGuCMcBLfhPjY2durUKaVUQUHBDQvy8vKUUidPngxqDFiEPMC9afZCHrAj8OQx7sePq0HpFl8AwLjIDXcGuCPIysV7/1Y103AHYDmcL0fI+B3jzr43hIHgNtxHR0f/9m//9oknnrj//vtvWHD27FmlVHp6elBjwCLkAe4lWTd+6gPcks2blcNhuOpyqaIijWkAIBL5fP4b7kAwyfs0V5w6Yfcyxh2AtSw9U+fnfLl44zQwcX7HuDPZFWHAGdTPnpiY+IMf/MBo9Y9//OO1hvtm3ibhliWODOaek45KlIkXXgETlJKili9X5eWGBe++q+66S2MgAIg49fWqo0MqkA8bAbdM/jVy0vBAdntLY3q2tjwAEHLyAPeWtPlXE5K0hUGkujo89k5z9/V/PjtvVY56zuijXO/sP9zUdVPHH2cnx+ZMT5xIRMBAcBvugpKSkkcffVQplZmZ+cgjj8jFDz30kN9P2N19g/8RanPlypXBwUGfzzcyYnhJN25dT0+Pz+cbiVNut/tDS8ubyh1ej9EHeuyO8ozc6z9KNupy3eyHTMzo6Gj4fCGv1+t2u+32Wzr+Mjo6Ej5/o4Do7e3tTrjxN1jCunVxxg1399tv9z7xxPV/3tPTMzQ0ZLPZhoaGApYS1+np6VFKxcfHhzoIgFsgb29PS2OAO4KtI2X6+Slp6ZfbjQoKmytouAOwlFXiQFfmySAgzlwZ/sarN5hclDk2M1XUAAAgAElEQVQ8c7fxR0Vf7v7FU6+1zJo//i90/+KZ/9ed/BxHIIWg4T40NPT973//e9/73tjYWEpKyp49e6Kjo+UPeeGFF8bzaQMUcCKGh4dHRkautc9CGCPiDQ8PK6VGbCPe687tygPcqzNy+6Ni1U2e9vV4PNd/oWBwu8PoC3m9Xp/P5/V6byWSR9vfSNd/R6Ojo0NDNx4d4yssjDP+QGdV1cilS96kD+/vGBoauvai4fP5AhcTH3btIShPNQBzk88Fs70dWpQvXCE23Mt/e8endOYBgBCKdY3kn20UCjhfjqBqm57RmTx1+lXDfbeFzRU31XAHAk5rw93n8+3ateub3/zmhQsXlFK5ubm7du1atsz/YK/nn39eWL22/33q1KmByjkBDocjJiYmNTU1MZFDKEE0MjLi8/lG4lKdzg+/4Vlz6oTwgaVZK53Om/5uj4mOdjoNd80HUExMjNOpY5v2eL7Qtf613W6fwL/YB7+Qln+6aE3/dMnJyVOnGly6e/fdKjpauQwmGHo80xobPdu3f+iPr+1tnzJlCpuvg+raU7rQ/oAAcEu8XnXwoFRAwx1alC1c8bHi14xWV5yqjvKM6cwDACEkv+h57faKBQxwR3CVZa3cXrbXaLWwueLZTQ/qzAN8iL6Ge21t7eOPP3706FGlVHx8/BNPPPGtb30rJiZmPB/7yU9+0m9NaJtWIyMjHo8nPj6e3llQxcXF+Xw+FRv7oYEnkweuLLh0WvjAsuyCCcxIcTgctzhZZZyczvD6QvY/m/AXcjidYfU3unWxsbGG/+uOj1eFhcLlqDFHj6oHP/zD/tredl40gi0uLk6F+gcEgFtSVaV6eqSCLVt0RYGllWZJ4xHirm32XDZHWx4ACCH5fHljevZAbIK2MLCmsgUrhIb7ytYqu9fr1dIrAG5I0zffU089tWrVqqNHjzocji9+8YvNzc3f/va3x9ltB/xa1VJpM57LMRIdW5uZrzMPLEfeX8kl6QAwYfIA97lz1bx5uqLA0rqTppyekSkUrG4yvkEdACKL3HBnngw0KM0uEFYTRwZzzjdpCwNcT0fD/Te/+c2XvvSl0dHR5cuXl5aWPvnkk2lpaRq+LqxDvrDlxNzFLmeUtjCwIrnhXl2tQnqrMwCY2L590irb26FRaZb03r6wmYY7AEtIGupbdKFZKCgRXy2BgLiYOuP8FKm1WNgitYmAYAv6SJljx4791V/9lc/n++QnP7lr1y6/96MCEyBvKZKPAAPj8cMDrad7DC/ejHZ7342KiRkbvfGyz/eNv/t/31m2+f1/5na7vV6v03nqQyNxnv1sQdY0DmACgFJKKZdLHT4sFTDAHRqVZq186MhLRquL2xr2jgzrzAMAIbGqpdLu8xqtupxRVfOW6MwDyyrLWincZ76mqezXWz6jMw/wfkHf4f5v//Zvbrd72bJlv//97+m2IxhmXukQXmQVD9gRCMYji5RSyuWMrp4rjS1a1VI53i+kxK8EACbn8ynv+P+v6KgaHDT8XDabd8tWo4+VX7eBCShbuEKYBhvlGcuoZZM7gMgnb3ermZs/Eh2rLQysrHShtLdy2enaaLdLWxjgQ4K7w/3ChQuvvPKKUurrX/+606nvglZYympxnsxAbEJjera2MLCssoUrhFGG8pRDALCO7+xrern20jiLv/LGM39lvHpqxtyHnmtW6san2hdNS7z5dICkPy6xcXZW3rmTRgXzKo8q9ajOSACg32pxghbb3aBNafZKn81mdJ9fzNjo8tM1fEMiVIK7w72qqsrj8Sil/uZv/maqsS996UtBjYHIJg9wLxf3IgGBIk8umtt5dvpVxrgDwM2Rh2IXi5dlAcEgj3GfV3FUWxIACIkZvZ0ZXeeFAga6QpuexNSWWfOFAu4zRwgFtxF56tSpa//P1atXLxvr6+sLagxEtlXiVRj8vIcedRm5QzHxQkHBuKfKAACUUokjg/lnG4UCufUJBIP8i+WMU42qs1NbGADQb83JMmF1KCa+fk6OtjCAvIFdPo0BBFVwx7zk5eX94z/+o9+yxYsXBzUGIpjfjcPyVC8gUDx2R9X8Jesbio0KVrVUvlFwp85IAGBqBS2VDq/HaNVjd5QvWKYzD6CUqpy/1OWMNpwJ6/Opd95Rn/603lAAoM/aJqnhXrZwudvBMGHoU5Jd8PDB541Wc843JQ319cUn6YwEXBPcl8KtW7du3bo1qF8CFicfEepJTD01c66uLLC6soUrhIb7avF3UwDAh8ibkmoycgdjE7SFAa4ZjYqpmrdE+uZ8+20a7gAild3nlae9lXG+HHpVLFg+5nBGedw3XLV7vataKvcvvV1zKkAFe6QMEGyrxDEd1+7Q0BYGFicfM591pSOt56K2MABgdmvFQ+slvKVHiBQvWiUtv/22riAAoFv2hZbUgV6h4Hi2+AoJBNpwdGx1Zr5QIP8+CQQPDXeYmN3nXdlaJRSUMU8GGp2cndUXN0koWNXMGHcAGJdZVzoyO88KBcUMcEeIFMvtpPPnVUODriwAoNUa8cxuV9LU0zPm6soC/H+KF64QVteeLNWWBHg/Gu4wsewLLSmDV4UCtr9BJ6/NXrFwuVAgH8gAALxnXWOJsDoYE1+dkastDPB+TbMXXklIkSr27dOVBQC0km9MLV60ivPl0O+4uAkjrediRtd5bWGA99Bwh4kVNlcIq5dSZ1yYkqYtDKCUKhOfrnNJOgCMk7yHrnTBMu5kQ6h4bfYS8ce92rtXVxYA0Mc5OrL8dI1QcHxRobYwwHtq5+RcjZcOmrPJHSFBwx0mVtgiNdxLsjlsDt1KxSlGU/suzxUnJAAAlFJ2r7dQvBT9aBYjYhFKx+VfMt99V42O6soCAJpk1pRFu11Gqz6brYRpbwgFr91eOl86aE7DHSFBwx1m5fB6lp+SHrDLrU8gGE7NnHt50mShgKkyAOBX3rnGpOF+oeAYI+MQUn6uEBgcVEVFurIAgCbzyw4Lq00z5/dMStUWBni/o+KD8FUtlU6PW1sY4Boa7jCrxW318aNDQkG5fNoXCAKfzVa+QBzjLs5BAgAopdaJG5HaU2e2TU3XFga43sXUGWemzZEq3npLVxYA0GSB2HA/xvlyhI589jF+dGjpmTptYYBraLjDrFaLjcvTMzI7k6dqCwO8pyxLetJT2FJh93m1hQEAM5JP/h5bxDwZhF5Rtvh9+OabuoIAgBZnz0492yqsyxdXAkHVnjqjbZq0G4OpMtCPhjvMSr4xtZSf9wiRMnGWUfJg38KLp7SFAQDTSRruX9xWLxQckxudgBZ+Gu41Naq9XVcWAAg+8TniSFRMxbwl2rIA1zueLd3Zu/ZkibYkwDU03GFKsa6RxW3SmaAy5skgRM5OS7+YOkMoYKoMAAjWnCxzeD1Gq167vYQ7WhAGyuYvczmjDZd9PrV3r8Y4ABBk4qSs0vnLRoWXRCD45BOQOeebJ/df0RYGUDTcYVLLztRGu8eMVr02e8WCZTrzAO8n3x/AvakAIFjXWCys1mTm98clagsDGBmJiimfv1SqYIw7gIjhdqt33hHWj3L4DKFWtmDFmCPKaNXu865jkzv0ouEOU5LnyZycndWbkKwtDPAh8gGLla0n7F7GuAPADdh8vnWN0pDNozmrtYUBZH6mG+3dqzyGZzUAwEyOHVNXrwrrRxZJ0zwADYZi4k7MWywUrBe3dAABR8MdpuRvgDuHzRFK8ndg4shg7vmT2sIAgIlktbdO6+sWCo7lrNEWBpD5efzT06OOH9eVBQCCSTyyc2HyrLap0n2VgB5Hc6XfEteeLGXfG3Si4Q7zsff1yf3KMhruCKmOlOnnps4WCuQnRgBgWfLmo57E1Mb0LG1hAFnrjLmdKdOkijfe0JUFAILp9deFxWMcPkN4KMpZK6wmD/bln2vUFgag4Q7ziT96WHgy6XY4q7ghHaEmb3JnjDsA3JDccD+eU+i18bsrwkiRfORCbFEBgDm0t6uqKmH92CIa7ggLrbPmyQ/C1zdw8gz68KYF5hN/5JCwWpuROxQTpy0McEPyGPflp2tix0a1hQEAU0ga7l92ulYokDcuAfodzRW/J6uqVHu7riwAEBxvvKF8PqNFlzOqhPPlCBtHxQfhGxjjDo1ouMN85IY7A9wRDsoWrvTZbEarsa6RdU1lOvMAQPhb21ji8BpeMum12YsXiXdUAtoVZxeMOaIMl30+9eabGuMAQBCI07Eq5y9juxvCh9xwzznXNKW/R1sYWBwNd5iMo6MjprFeKKDhjnDQMyn19Iy5QsGW2iO6sgCAOWysl8751mfk9CYkawsDjMdQTHzl/KVSBVNlAJja2Jjat09YL8rj8BnCSHF2gdvhNFq1+7wbGtjkDk1ouMNk4vbuFU60jUTH1mbm68wDGDkiHjPf1HBM2MgJAFZj93rlAe5F8uwOIET8NJv27VNjY7qyAECgHTmirl4V1v1cZQHoNRibcGLeYqFgA2PcoQsNd5hMvHgyt2reEpfT+GAvoNGBJbcJq8lD/atOVWsLAwBhbvHZ+pRB6S39EfbQISzJp9fV1avqkDQLEQDC2muvCYvnp6S1Tc/QlgUYD3mLxtqTpVEeHoRDBxruMBN7b2/McemB5NEcbkhHuKjNzO1OmiIUbKkv0hYGAMLcbXXHhNXupCmNs7O1hQHG7/SMzPNT0qSKV1/VlQUAAu2VV4RF5skgDB3OWy+sJowMrmDfG7Sg4Q4zidu3z+Z2CwXynmJAJ6/Nfih/g1CwtbbIZjwfCQAsRT7heyRvnXATNRBaR+V5R2K7CgDC18mTqqlJWC/KXactCzBOp2dknps6WyiQLw0CAoWGO8wkTpwn05C+qH3yLG1hAL/eFZ8ATe/rzjt/UlsYAAhbM690ZF1sFQoO5/GWHuHrUL60mU61tqqGBl1ZACBwxAM6I9Gx5QuWacsCjN/RXGna28Z66VQlECg03GEeQ0Oxhw8L6+8uZXs7wktp1sr+uEShYHPtEW1hACBsbaqTTvy4nFGlWQU68wA3pWLB8qGYeKmCqTIAzEg8oFOSVTAaFaMtCzB+R8SzFxld5+Z2ntUWBpZFwx3m8frrtuFhYZ15Mgg3bodTfrq+hYY7ACi1qe6osFqxYPlQTJy2MMDNcjmjji9aJVUwVQaA6fT0qCLpxqmDi6XhmUAIlS9cIf/quKmW29QQdDTcYR5//KOweHbanFMz5uqKAozXu0s2CavzOtp4ug7A4hJGBgtaqoQCP/M6gDBwWP4uPXZMXb6sKwsABMKbbyrj69O8NnuRfH0FEDp+D0feXkfDHUFHwx0mMTamXn9dWH9n6e3asgDjdzRnjcsZLRRsrpEGJQFAxFvfWBLlGTNa9dls8gXUQDgoyl3rtRm/sXK7mSoDwGTEozkNcxZ1J03RlgW4WQfF3x6XtNWlDvRqCwNrouEOk9i3T/VKL4jy7ZRAqAzFxBVnS8fMGeMOwOJuF18Gm9IWXkqdoS0MMDE9ial1GTlSxZ49urIAwC0bG1Nvvimsc/gMYe5I/jqv3bDhafd6b+PqVAQZDXeYhDhPpjNlWsOcRdqyADflwJKNwmr+2YbpvV3awgBAWHF4PesbioUC3tLDLA7LRzH27lXiXUQAEEbeeUfe7uZnjhYQaj2JqbUZeULBbUyVQZDRcIcZeL3yibb9Szb5bDZtcYCbcnDxRo/dYbRq8/kYIQfAsgpaq5KG+4WCg4ulZ5ZA+Dgg3x84OKjefltXFgC4NeKhnEupM5pnLdCWBZgY+V7ftSdLY8ZGtYWBBdFwhxkcOaIuXRLW5XspgdDqTUg+MW+xUMAYdwCWtblGmifTmTz15OwsbWGAW3Fq5rye2ZlSBVNlAJiC16v+9Cdh/eDiDWx3Q/iTLwGKc42sPVmqLQwsiIY7zECcJ9ObkFw1f4m2LMAEHBB3aPrd4AkAEcnm822ulZ44Hs7nLT3MpGn9Nmn51VeVx6MrCwBMVHGxam8X1g8s5vo0mMDpGZlnp80RCu5g3xuCiYY7zEDcECTP6wDCwQFx6pHT497InS0ArCfvXKN8iYX8tBIINyfXbZWWOztVEUPkAIQ9cXt7X9ykyvlLtWUBboV8FdCmuqMOLw/CESw03BH2ysvV6dPC+rtLeMCOcNc+eWZzmjToUB6qAAARSd5Y1B+XWJa1QlsY4Nadz1+hpk+XKl56SVcWAJiol18WFo/kr3M7nNqyALdCbhYlDfUVtFZpCwOroeGOsCfOkxmKiS/JLtCWBZgw+ejl+sbiWNeItjAAEA7khvvhvPVjjihtYYBb57PZ1X33SRW7dyufT1ccALh5dXWqsVFY5/AZTKRmbv7lSZOFAm5TQ/DQcEfYE7cCHclb53JGa8sCTJj8dD3WNbK6uVxbGAAIufkdZzI7zwoFB5bwlh4mdP/90ur586qUK9oAhLEXXxQWR6NijuWs0ZYFuEVem/2g+Ihoc81hGw/CERw03BHemppUQ4OwzjwZmEVz2oLzU9KEgjuqeboOwEK2njgorPKWHmZ1550qKUkqYKoMgHAmvkYVZxcMR8dqywLcOrllNP1q9+KzUscJmDAa7ghv4gN2lzOqKJd34zCNA+IP+031RdzZAsA6tlRLDffi7FW8pYcpxcSoe+6RCnbv1hUFAG5Sc7OqrhbW9y+9XVsWICDKslb0xyUKBVtPHNCVBdZCwx3hTRzgfnxR4VBMvLYswC2SG+7Jg33LT9VoCwMAIZTZeTarvVUo2L90k7YwQIB9/OPSakuLOnFCVxQAuBniE0Gv03lo8QZtWYCAGHNEHclbJxTcWfUuU2UQDDTcEcbOn1fl0lTrA0t4Nw4zqfZ3Z8sdNYe0hQGAENombiZyO5yH8tfrygIE2vbtKiFBKhBPcAJAyIjzZE4vX9sXN0lbFiBQ3hUbRzN6O/POSRcFAxNDwx1hbPduZfyk0Wu3824c5uK1+fmm3VJzSPieB4CIsVWcJ1OSXdAXL07BBsJZfLy66y6p4PnndUUBgHE7fVqVlQnrjbd9VFsWIICO5K2VRyPIFwsBE0PDHWFMnCdTvmB5b0KytixAQMhTZab3dsVWV2kLAwAhMaf7QvaFFqFg39LNurIAwSFPlWlqUlX8uAcQZl54Qdr643CcXL9VYxogYFzO6CO5a4WCbScOsO8NAUfDHeGqu1sVFQnr8mXTQHgqzSoYjJWOmSe+8aq2MAAQEndWvSusuh3Og4s3agsDBMV996mYGKmATe4Aws1zz0mrmzYNJUuzMYFwtm/5ZmE1refirOY6XVlgFTTcEa5eflm53UaLPpuNd+MwI5czqihnjVCQ+Nor2sIAQEjcVfmOsFq2cMXVBObJwOSSk9VHxdkLNNwBhJXWVlVRIRU89JCuKEDgHc1ZMxwdKxTkH3xdWxhYBA13hCtxnkxdRm5HynRtWYAAOrBEelYUfbJBNTVpCwMAmk0927rw4imhYN+yzbqyAMH0yU9Kq62tqrxcVxQA8Efe3u5w+JmUBYS3kejYInGqTN6B15XXqy0PrICGO8JSf7/av19YZ54MzOtI3jqXM1qq2LNHVxYA0C3/XWlwlsfukO+6AExjxw4VFycVyO0tANBJfkW64w41ne1uMLd9y+8QVpO6LqqjR7WFgRXQcEdYevVVNTIirB9gngxMaygmvixrhVQhHu8AAFPLP/CasFqcXcCN6IgQkyapu++WCv7wBzbTAQgL9fWquloqYJ4MzO9I7tqhGPFB+B/+oCsLLIGGO8KS2HAczclrm56hLQsQcO8u2SQtFxer9nZdWQBAo7KyyRfahPW9K7ZqywIEnTxV5tw5deSIrigAYOzZZ6XVqCjmySACjETHHs5fL1W8+KLyeHTFQeSj4Y7wMzqq3nxTWB+4Z4e2LEAwHFy8wWs3fvn1etWf/qQxDgDoIm4dcjmjmCeDiHLffSohQSqQm1wAoIHP5+e1aOtWNWWKrjRAEL0lb+zo6JAnGwM3hYY7ws9bb6n+fmG9f/u92rIAwdCTmFqdkSdVvPyyriwAoIvHI7+lP5q7diBW7E4C5pKQoHaI20ReeEGNjelKAwA3UlysWlulgr/4C11RgOA6vmh1f1yiVPG73+nKgshHwx3hR5wn405PH128VFsWIEj2y/cQ7N+vrlzRlQUAtNi/X56X5WfbEWBGn/qUtHr5snrrLV1RAOBGfv97aTU2Vj3wgK4oQHC5nFHvLhWHu770khoa0hUHEY6GO8KMx6NefVVYH5KvnwJMYp88NmFsTL3xhq4sAKCFuGloODr2SN46bVkATT76UTV5slQgt7oAIKg8HvX881LBvfeqZC4zR+TYu3yLtNzfz3BXBAoNd4SZgwdVd7ewPvyRj2jLAgRPe+rMplnzpQqmygCIJEND6qWXhPUDS24bjo7VFgfQJDpaPfigVPDyy6qvT1caAPigvXtVR4dUIB/TAcymNGvl5Unig3CmyiBAaLgjzIjzZDzTpo0WFGjLAgTV/jzxkvRXXlE9PbqyAECQ7dkjX9DyRsFd2rIAWn3609Lq8LB64QVdUQDgg37zG2k1JUXdc4+uKIAOHrtj7wpxk/tbb6muLl1xEMlouCOceDxyw334rruUnW9aRIj9+eIY95ER9etf68oCAEEmbhfqmZRanM0DdUSoTZtUerpU8Nvf6ooCAO9z9aras0cq+PjHVSyHzxBp/GzyGBtTzz2nKwsiGb1LhJNXX1UXLgjrwwxwRwRpTFtwYfIsqWLnTuXz6YoDAEFz8aJ8M+RbK7Z67A5tcQCt7Hb12c9KBYcOqTNnNIUBgPe88IIaHpYKPvMZXVEAfernLDozPUOqYN8bAoGGO8LJzp3SakrK6DquU0NEeXvZZmn55El18KCmKAAQPLt2KbdbWH9j5Z3asgAh8LnPSas+H5vcAYSAPE8mPV3dcYeuKIBWbxSIv3mWlam6Ol1ZELFouCNsnDolb39T993ni4rSlQbQYffa+7w28XVYfgoFAKYgbhQ6Mz2jPiNHWxYgBPLy1KpVUsGvf82ZNgBanTqljhyRCj77Waa5IlK9UXCnz2aTKn71K01RELl4AUXY2LlTeb1Sgbw5CDChC1NmlWatlCpeekl1duqKAwBBUFoq7xJ6tfCj2rIAIfPII9Jqa6s6dEhXFAAYx3M++VULMLP2ybMq5y+VKvydzgT8ouGO8OBy+XmEuGCB2rpVUxhAo93rd0jLfv+nAQBhTnwR89rtr6/6iK4oQOh86lNKPqn5y1/qigLA8rxeP28xCgtVbq6mMEAovFooXhB46ZJ6801dWRCZaLgjPLzwgp9tvF/+MifaEJEOLt7YlTRVqvB7+AMAwtbwsHr2WWH9ePaqzmTxNRCIDNOmqe3bpYIXX1R9fbrSALC2t99WZ89KBWxvR6Tbt+z24ehYqeKZZ3RlQWSig4nw8POfS6sxMerzn9cVBdDKY3e8slp8un7qlHrnHV1xACCgdu9WV64I68yTgYV84QvS6tCQ+sMfdEUBYG3ykZqYGPXpT+uKAoTGUEz8/qW3SxWvvKI6OnTFQQSi4Y4wUF+vioqkgoceUtOm6UoD6PbSuvu88gEOrk4FYFK/+IWw2B+XeGDJbdqyACG2fbuaOVMqYKoMAA0uX1Z79kgFH/uYmjJFVxogZPxs+xgbU7/+ta4siEDOUAcAlPrpT/1c2PKVr+iKAoTApdQZxxat3tBw3LBizx7V3q7S0jSGAoBbdvKkOnxYWH9rxVaXM1pbHCDYOgZc/3HolFBw2x33FTxr/BSquPh3v3yta6H/ucm5MyZ9ZBGbUQBMyG9/q0ZHpYJHH9UVBQil8oXL2yfPTOu5ZFjx9NPqf/5PZbNpDIXIQcMdoTYwoHbtkgqWLlXr1ulKA4TG7vU7pIa7262eeUZ961saEwHALXv6afmB+p6192jLAmhweXD02JkeoaAo47YXlHTsI+bpX+x68G/9fqHtuTNouAOYoKeeklbT09W2bbqiAKHktdlfWb398TeNj5c1NalDh9Tt4uQZwAAjZRBqv/udnxuivvpVXVGAkDmSu+5i6gyp4sknlcejKw4A3LLRUfkc7snZWQ3pi7TFAcLB6RmZ1XPzhYK7K/bFuUa05QFgOQcPqro6qeALX1AOh640QIjtWb3dz3DXJ5/UlQWRhoY7Qk1+/Zo0iQtbYAVeu/2V1dulirNn1Vtv6YoDALds927V2Sms/3HdfdqyAOFjzxrpYEfCyOBdldyUDiBo5Hffdruf652ByNKZMu1ozhqpYvdu1dWlKw4iCg13hNSxY6qiQir43OdUUpKuNEAovbTuPrdDHPPF1akATORnPxMWR6Jj31zJiXVY0d4VWwdiE4SCTxz7k7YwAKylu1vt3i0VbN2q5s3TlQYICy+LD8LV6ChXmmNiaLgjpH7+cz8Fjz2mJQcQet1JU4py10oVr72m2tp0xQGAW1BTo44cEdb3Ldss9xyBSDUcHftGwZ1CQd7ZxryzjdryALCQZ57xc13q44/rigKEi8P567uTpkgVO3cqr1dXHEQOGu4InStX1IsvSgUbNqgVK3SlAUJv97od0rLHo555RlcWALgF/h6ov8Q8GViY33lKDxX9UU8SABbi9cqHz9TMmWqH+GYEiEQeu+OVwrulitOn1Ztv6oqDyCGOLwBuhsvjfbPxJoZbLfjVz/KHhoSCivs+c76u4/1/0t3d5/P5ohNtE4wIhLdjOavH5s6LOnPasOLJJ9W3vqWiojSGAoCb1N+vfvtbYb0pbWH13MXa4gDhpiltYU1m3pK2eqOCuyr3/z/3feVKYorOVAAi3GuvqdPG7zKUUo8+yrsMWNNL63f85bvP2rwew4qf/UxtF29cA65Dwx0BMzDq+fbek+Mstvl8u38tTcLqTUj+a3u264Of0OVyKaXmTBmccEggnPlstqufeWTqd/9vw4qLF9Xrr6uPfUxjKAC4Sc88o/r7hfXd69lAB6t7af0OoeEe7XZ9rPi1X219WGckABHuJwvr9PoAACAASURBVD+RVu129cUv6ooChJeLqTNaCjdlFb9rWPH666qpSWVnawwF02OkDEJjdXN5Rtc5oeBPa7a7nNHa8gBh4urDj/jZWsLVqQDCmder/uu/hPXR+MQ3Cu7SFgcIT3uXb7makCQUfOLoHjsTYwEEysmTat8+qeCjH1Vz52oKA4Sf8vs+LS37ncgEXIcd7giNB4teFlZ9NtvLa+7VFgYIH55p09X996sXXjCseOstdfq0mjdPYygAGLfXX1fNzcJ69Z33D8XEaYsDhKfRqJg9a+55ZP+zRgWzrnRsrj28f+ntOlMBMKP9zd3N3X6OgG/48b8u9vmEgje2fvLssTb5k3QNum46HGASrYW3qXnzpLFLzzyjvv1tNWmSxlAwNxruCIGpfZdvqz8mFBxfVHh2Wrq2PEB4efxxqeHu9aqnnlLf+Y7GQAAwbuL2dmWzVdz7KSXNmwGs4sX1H/vsgeeEbewPH3yBhjsAvw60Xn69oUMomDQ88Lk/PS8UnJs6+x/VXO9xPw337GkJE8kHmIHPZlePP67+/u8NK65eVb/5jfra1zSGgrkxUgYh8PFjf3J63ELBi+sZUQ0L27LFz3i4X/5SjY3pSgMA41Zfr/bulQq2bu3KzNKVBghr7ZNnHcldKxQsO12Td7ZRWx4Aker+46/Gjw4JBS9suN9rozUEy3vsMRUfLxX85CeKaW8YN15VoZvD67m/+DWhoDNl2pG8ddryAGHHZlOPPSYVXLqk9uzRlQYAxu1HP1LiiXX13/+7riiACTy/8eNywcOHpE2pAOCXw+v5iyMvCQUj0bGvrr5bWx4gfE2Zoh4Wrys/eVK9+qquNDA9Gu7QbVPd0em9XULBS2vv89gd2vIA4ejRR1VsrFTA1akAws2lS2rXLqlgwQJ1zz260gAmUJy96tSMuULB1hMH5V+bAUC29cSBmVekgTOvrfpIXxxjqQGl1Di2hvzgB1pyIBLQcIdu8nWpHrvjT2t4Nw7LmzJFfVzc9fbOO6qpSVcaABiHn/xEjY5KBf/tvyk7v3kC/z+fzfaHTQ8KBU6P++GDbHIHMHGfFV9DfDbbs+KrEGAtixerLVukgsOHVUmJrjQwN972QKv0y+2FzRVCwYElt3UmT9WWBwhfjz8urfp86qmndEUBAH8GB9XPfy4VJCWpv/xLTWEA83ht1V29CclCwQPHX00a5qJhABNR2FwhXwVxNGfNmekZ2vIAJsAmdwQIDXdo9WDRy3afdMvE7vU7tIUBwtqmTSo/Xyp45hk1MqIrDQCInnxS9fRIBV/8okqWuoqANY1Gxby0TvrtN350SD4eCgBGHnn3Wbngd5sf0pMEMI377lPZ2VLBSy+p1lZdaWBiNNyhT7TbdV/pG0LB2WlzSheu1JYHCHdf/KK02t2tXpJuQAIATVwu9aMfSQVOJ9elAkae3/jAmCNKKPjUod0xY+K8JgC4TnZ7y9qTpUJBy6z5vPsGPsxuV3/zN1KBx6P+/d91pYGJ0XCHPtuqDiQP9gkFu9fv8Nls2vIA4e6RR1RcnFTw7/+uvNKREQDQ4Te/UefPSwUPPaQyOLEO3Fh30pQ3Vt0pFEweuPKx4te15QEQGf7ynd/bfD6hYNfmv+DdN3ADn/+8mjZNKvjVr1R7u640MCsa7tDE5vN95tALQsFoVMwrhR/VlgcwgdRU9ZB4zLOqSj3r56AoAASXx6P+7d/81DzxhJYogFn9+o5Pe23S+7LP7/99lGdMWx4AZjen+8K2E+8KBZ0p095auVVbHsBM4uLUV78qFYyO+jncCdBwhzZ3Ve7POd8kFOxdvqUvPklbHsAc5KtTlVL/8A9qlGPmAELn+edVc7NUsG2bWsmJdUDSNj3j0OINQsGM3s57S9/SlgeA2T2299d28SDsrtsfkodZAZb2ta+p+HipYOdOdfmyrjQwJRru0CHaPfa1138h13BdKnAD69appUulgtOn1c9/risNAHyQ16u++10/Nd/8ppYogLk9s/VhueAv3/mdw+vREwaAqc2+3P7Rin1CQV980str79OWBzCfadPUY49JBQMD6oc/1JUGpkTDHTo8WPTHtJ6LQsHJ2Vm1mXna8gBm8j/+h5+C73xH9Um3IwBAsDz3nKqtlQrWrlVbtuhKA5hYXUZuxYLlQsHsy+3by/dqywPAvB7dt0t+Pvf8xgeGYsSbogD83d+p6Gip4Cc/Ud3dutLAfGi4I+gmDQ889vZv5ZrnNz6gJwxgPo88ovLEx1FdXdyTDiAEPB71z//sp+Z//S8tUYBI8NSdj8gFX3zrV0xyByCbfbn9njJpAtVwdOwfbvuEtjyAWc2Zoz77WamATe4Q0XBH0H1h366kIWn7bdv0jNdWfURbHsBkHA7/Ext++EN14YKWNADwZ889pxoapIKlS9W99+pKA5heSXZB9dx8oSCt59J9JW9oywPAjL701q+cHrdQ8OKG+3sTkrXlAUzsG99QDodU8F//pbq6dKWBydBwR3BN7+36iyMvyTU/uedLbodTTx7AlD72MbVBuktNDQ+r73xHVxoAUGpsTP3jP/qp+Yd/UDabljRAhHja/yb3X8eMcVk6gBub19F2d8XbQsFoVMxvN39KWx7A3LKz1UMPSQUDA+p739OVBiZDwx3B9devPym/K6jJzDu4eKO2PIBZ/fCHfvpWv/iFn62mABBATz+tWlqkgiVL1Mc/risNECGKctc2pC8SCqb1dX/i2J+05QFgLo+/+Uu71ysU7F63o2dSqrY8gOn90z/52eT+s5+ps2d1pYGZ0HBHEGW3t3y0XLoeXSn1Hzu+6mP7G+DXmjVqxw6pwO32v9sUAAJieFj9y7/4qfnf/1vZ+T0T+D/s3XdYFFf3B/Czy9J7EWmKKCj2giVij713jcYSoyYaY6yJxhaTmDfGkmg0ajT2bvS1K8YSK1bAoGJBEaQJ0suyLFt+fwzhx6swW5idbd/P45Nns3t25uxyd+7MmZl7Nbal50fsAR+f321TmM9LLgBgTOonPe0afYUloNjSevf7uLwdQBN169LIkWwBEgl99x1f2YAxwYEQ6NCMExuFSrYT7Bebdv4noDFv+QAYt59+IhHr4EuHD9PNm3xlAwBmbM0aFfNG4PJ2AG1dbRj6wJ9tsnSXwtz2h//gLR8AMBZfnNwkUCpZAg6HDnzj5MFbPgAmYvFiFRe579xJT57wlQ0YDRTcQVdCn9xp8+weS4DMQvRbn8m85QNg9OrVo/Hj2QKUSpo/n69sAMCkyBVKqUyhzr+SlNe0fDn70mRLlkoVVOHblay1AAAgoo29J7EHtD26k1JS+EkGAIxC6OPbrWIjWQLE1rY7u47mLR8A0xEcTKNGsQXIZDRvHl/ZgNHATJWgE0KlYtrpzewxR0IHvKrmx08+ACbiu+9o/34SiysNuHqVzp6l3r15zAkATMG3fz078zhNncj5h38elpfHEvCoZv2PXrkr112v8NW61ey1yQ/AnNypGxJZp1mLF/crC7AsltCSJfQHrnMHACIioUIx/fTv7DEHOgzNcsDo7QBa+fZbOniQSkoqDThxgi5fps6d+UsJDB6ucAed6HvvXL3kWJYAsbXd1m7jeMsHwET4+ND06Spi5s0j1rmSAAC0FpCWMPjWKfaY9X0/wewsAFX0Wx8VF7nT9u0UFcVLLgBg6AbeOROU8oIlIN/WYU8XjN4OoK3atWmyquEZ5s7FYTiUhyvcgXtWMumnYdvZY3Z0HY3p0QHeFZ8llsjY+mmLCdOCN2+xyM6qNOLBg8Tf/sgepmKXukF1R5EQFTEA0MzMExssFHKWgFv1Wt0NasFbPgCm6p+Axpcbd+j84FqlEQoFzZxJV9gmSAQAc2BTmD/ljIr7XXZ0/TDP1pGffABM06JFtGMH273mERG0e7eKMWDBnKDgDtwbfeVPr2y229LfOHns7zict3wAjMjaay/T8ovZY8a1H/HFyU0sAaJvlkyR1JGKLFli/vq0rZsdWwAAwFs6xIS3e3yLJUAhEP7WF7OzAHBjfd9POjwKZzvFdfUqHT5Mw4bxmBQAGJxO+ze4FWSzBKS5eB7oMJS3fABMk7c3zZxJ//kPW8z8+TR4MDk58ZUTGDQU3IFjTkX54/4+wB6zqffHRVY2/OQDYHoOdBg64vpRltNa3tlpw24c3ddpBJ9ZAYBps5KVzD62nj0mLKTbY796/OQDYPLiPWseb9NnyM2TbEFz51KfPmRnx1dSAGBgnj177/ge9pBNvT8utrTmJx0AIxWfLZ5woNKpUxi2gX2WO21yyqv8XvPXr8NGf35wzGyWhYTWcp38nr92SYJxQcEdODb53A4nMdtcai+r+59q1Yu3fABMj1RktbnnhCUHlrPETPpr16nWvXHrKABwZczlgzUyklkCii2tf+uDy9sBuLS554RekRfsiosqjUhIoB9+oB9+4DEpADAkn39uIat8IkeiWJ86p0N68pYOgJESS+XP3hSqDNvQ46P5h39mCegWtn9ro+4vq1daUq/hYqtNfmCEMGkqcMknK3Vo+HH2mLX9p8qFFvzkA2CqTrXq+cwnkCXAqSh/zN8HecsHAEybT1bqxxd2s8fs7TQizcWTn3wAzESGk/uOrmNUBK1aRU+f8pIOABiYQ4fo/Hn2kF8GTlMIUfYB4MbR9/qxFNOJSCSXzTvyi0Cp5C0lMFjY8gKXPj+12Yr1BHtknWbXG7TlLR8AU6UQCDf1nsge8+GVQ545b/jJBwBM2/wjv9hIJSwBGU7uO7qO5i0fAPOxp/OIFDcvtgiplKZNIxzbA5ib/HyazTZyBRFdadT+TlAIP+kAmAO50GLNgM/YY1o+j+oT8Rc/+YAhQ8EdOCOKuNf9n79ZApQCgcptEwCo6WrD0HuBzVkCrEuKJ53fxVs+AGCqety/FPr4NnvMr/2miK0xijQA96Qiq1/7T1URdPEi7dzJSzoAYDAWLKBktqHepCJLHH0DcO5G/feuNQhlj5l5YgP7SMtgDlBwB87YLvya/caZ883ej6mBudQAOLNB1XDJA2+frp0Wz0suAGCanMR5c46uY4+JrtXobEh3fvIBMEMXmna+G9RCRdCcOZRW6WzqAGBqbtygDRvYQ/Z3HJ7o4ctPOgBm5edBn0tFliwBrgU5s46r+IWCyUPBHThy7JjltSssr0tFluv7Yi41AC5F12p4uXEHlgALhfyH3d9ZlxTzlhIAmJi5x9a552exBCiEwhVDZigFAt5SAjBDK4bMLLFgO7anrCz64gu+0gEAvSoupsmTSaFgCUlz8dzafRxvGQGYlUQP372dRrLH9L97NvTJHX7yAcOEgjtwITGRJqsopv/ZbnCKmzc/6QCYj3V9P2GfhTgo5cWcY+t5ywcATEn7mJt97qkYg/Jw6MAnfnX5yQfAbL2s7r+38wgVQYcO0aFDvKQDAHq1dCk9fswesnrQ52JrW37SATBD27qPTXWtzh6z8NBKe0khP/mAAULBHaqspIRGjKCMDJaQfFuHbd3G8pYRgPlI8Kx5snVv9pghN0/0jLzITz4AYDKcxHkL/lzFHvPGyUPl2FYAwImt3cepPLanadPo9Wte0gEAPbl5k1auZA8JD259qUknftIBME9FVjYrhs5kj6mekz77+G/85AMGCAV3qLKvvqJbt9hDtncdk2vvxE86AOZmc88JEisb9piFf66q+SaRn3wAwDQs+HO1Zy7b2XQiWjV4eoGNPT/5AJi5Iiub5cNmqwjKyKBPP+UlHQDQB7GYPvqI5HKWEImVzYqhs3jLCMBsXWsQeqlJR/aYgbdPd3x0g598wNCg4A5Vc/w4rV3LHpLu7HGo/WB+0gEwQ+nOHvs7DGOPsSsWr9ixBIO5A4Ca+t471+2fy+wx1xqEXmzamY9sAICIiG7Uf+9ci64qgk6coN9/5yUdAODd7Nn07Bl7yO89JyS5+/CTDoCZWzXoi0JVl54sPrjCLT+bn3zAoKDgDlXw/DmNH09KJXvUb30/UXn5LQBUxfZuYxI8a7LHBKbG4Y42AFCHX2bKV/9VcTY939bhx+Fz+MkHAMqsHjRd9W2js2dTTAwv6QAAj/77X5Wn02Jq1NvbSdV8DwDAkXSXamv7T2GPcS3IWXrgR4GquhmYHhTcQVsSCY0YQbm57FHh9ducDenOT0YAZktsbTtv/LfFltbsYUPDj/eOOM9PSgBgpKxkJT/uXKpyiqdfBkxLd/bgJyUAKJPl4Lp60HQVQWIxjRpFRUW8ZAQAvEhMpMkqJk0psbBcNvIrhRBFHgD+HH2v/52gEPaY0Me3x14+wE8+YDiwLQZtTZtGUVHsIWkunktGL1QI0MwAdO65d+3Vgz5XGfb14dX+6a94yAcAjNQXJzfWT3rKHnMzuLXK6ZoBQEfOhPR4HKrqcpboaPpc9V4BABiHkhL64APKymKP+qPHuGc+gfxkBAAMpUCwbOSXYmtb9rDPzvzRJP4RPymBgUAlFLSybx9t28YeIrMQLRi7JMfemZ+MAOC/bQecCenBHmNXXLR811IM5g4AFepx/9LI6/9lj8mzc/p+xFdKgYCflADgXSemL6Vq1VQEbdtG27fzkg4A6NiXX1J4OHvIo5r1d3T9kJ90AKC8FDfvXwaqOMktkst+3LXUtSCHn5TAEKDgDpp7+FDl7WxEtGbAZ/8ENOYhHQAos3zY7HhVg7kHpbyYeWIDP/kAgBEJTI1bfOAnlUNM/jhsdrqLqkofAOhSoYu7WjOjTptGkZG6TwcAdOnQIVqrYmKVYkvrJaMXyIUW/GQEAG85+l6/qw3bscdUz0n/z+5vhXI5PymB3qHgDhoqKKARI0gsZo+60qj9wfZD+MkIAMqIrW3nqzGY+/Abx6wOYRQ5APh/tvm5K7cvspVK2MPOtOxxvlkXflICADaDB9Onn6qIKSqiwYMpLY2XhABAB+7fp48/Vhn188BpCaquuQEAnVo28sssR1f2mFaxkT22reInH9A7FNxBQ1On0uPH7CGJHr7fjF6Am80B9OK5d+1fBk5TGWY//TN6qmKYZgAwFyUlI3+YUSMjmT0qyd3npyEz+ckIAFT7+Wdq0EBFzKtXNGwYSaW8JAQAnEpPp0GDqFDFNOaPQ7sfCR3IT0YAUJksB9elH3ytsg4W+t/tGPDNTKDgDppYv5727GEPkYqs5o//tsDGnp+MAOBdh0MHng1RMZ2agLlbpaiIn5QAwKBNm1b7n1vsIVKR5dfjlxaifwcwHHZ2tH8/2dioCLt+nSZOJFWjRQGAYWHuUElIUBHm53ds5jJeEgIAFcLrt9nd+QPVcVOm0NWruk8H9AwFd1Db3bs0d67KqOVDZz31DeIhHQBg8eOwOapvLI2Opq++4iUdADBgP/5IW7aojPq1/9THfvV4SAcANNCkCa1frzpszx765hvdZwMAHFEoaNw4lROlkqUlHTxY5OjMS04AoNqGPpOiazVUESSV0pAh9OQJLxmB3qDgDurJyqIRI6i4mD3qVKteJ9r04ScjAGAhtrZdMHaJVGSpIm79ejp8mJeMAMAg7dxJCxeqjDrfrAumZgEwUBMn0oQJqsO+/16dU2sAYBDmzFFrF33FCgoN1X02AKAumYVowdhvsh1cVMRlZlKvXpSSwktSoB8ouIMaSkpo7FiKj2ePkjdouHzoLF4SAgDVnvoG/TLwc9Vx48fT2bO6TwcADM/JkzR5ssqBJl54BXw/ch6mZgEwXL/9Rs2aqQ6bOpX+/FP32QBA1SxbRmvWqA4bPpxmYmIVAIPz2rX6grHfyIUWKuISEqh3b8rK4iUp0AMU3EGVwkIaOJDOnFER5uBQsGe/xErVIJIAwKM/2w0Ka9FNRZBYTAMG0M6dvGQEAAbjwgUaMYJKStij8m0dvpywTGxty09SAKANW1s6doyqVVMRJpfTmDE4yw5g0Navp8WLVYc1aULbtuk+GwDQxt2gFuv7fqI6LjqaevemvDzdZwR6gII7sMrKoh491Nov37hRXi9Y9wkBgGb+M1yNwdxlMpowQa1LaQDANFy5QoMGkUTCHiUXWiwY+82ran78JAUA2vP3p8OHyVLVUHLMuLHnzvGSEwBoaNMm+uIL1WEeHnT8ODk46D4hANDSns4jz4T0UB135w7160cFBbrPCPiGgjtULiGBQkNVT9VCRNOm0Zgxuk8IADQmtrZbNGaR6sHclUqaNYuWLeMlKQDQq4sXqU8fKixUGbh60PSbwa15yAgAONCxI/32m+owiYQGDaKwMN0nBACa+P13+uwzleO8kZUVHT5MtWrxkRIAaEspECwb+WV0rUaqQ69dw3XuJgkFd6hETAx16EBPn6qObNWKVq/WfUIAoKXHfvXW9p+qVujixTR9OikUOs4IAPTnzBnq35/EYpWBBzsMOdR+MA8ZAQBnJk+mr79WHSaR0MCBdOSI7hMCAPWsXk1Tp6qutgsEtHUrderES04AUCVSkdXcj5eluHmpDr1+nXr2xHjuJgYFd6jI7dvUsSMlJqqOdHWlgwfJ2lr3OQGA9g52GHquRVe1Qtevp/HjVQ7rDABGac8eGjSIiopUBl5q0nH1wOk8ZAQAHPvhBxo1SnWYVEojR9LWrbpPCABYKZW0eDHNnau62k5E332HO8sBjEiWg+v0T1bm2DurDr11izp2pORk3ScFPEHBHd5x4gR16UKZmaojBQLatYsCAnSfEwBU1Y/D5ryqVkOt0D17aNgwlYM7A4CR+eknGjdOndNpkXWaLhqzWCHEXiKAgZIrlDlFJRX/k8hyNm6RdVNj3Fi5nCZNkixcnCOWVrY0cYlc958GwIyVlNDHH6s7qOPUqbRokY4TAgCOJXjWnDVpucTKRnXoo0fUrh09fKj7pIAPIn0nAAZm61aaMoVkMrWCf/iB+vXTcUIAwI0CG/tPpq1dt/nLoJQXqqNPnKDeven4cXJy0n1qAKBjJSX02Wf0xx/qxD7xqzvn4/9IRVa6TgoAtPYyS9xt002WANtuc357ntwk/pHKRdn8Z9mlc3eWjfyywl991yCPn/o10D5RAGCRnU0jRtCFC2oFjxpF69frOCEA0IkH/g2+Gv/d6m0LLeWqLnxJSKD27enQIeqhxolzMGy4dgnKWbuWJk9Wq9puYUEbNqg1RiQAGIwMJ/dPpv16P6CxWtGXL1OXLpSeruOkAEDH0tKoWzc1q+1xXgGff7oq39ZB10kBgE4VWdnMnPzTU98gdYL7RPy1+bcZ1fIydJ0VAPy/J0+oTRt1q+39+tHOnYQ7zwCMVnj9NgvGfSMXWqgOzc2lvn1pzRrdJwW6hSvcgYiIlEr66itatUqtYCsr2r2bRozQcU4AwL18W4fPP121YueS0Me3VUdHRlLbtnT+PNWurfvUAEAHbt6kESMoKUmd2HjPmlOn/qzWKJMAYPDybB0/m/Lzxo2z6qY8VxncKCFmz+rJC8Z+ExHYjIfcAMxBeHz2q+yKpyivceF062/nWhbmq7OclPbvX1/0q+JhpRfB5ErUuz0dAPTq78Ydloxe+P2+H4QKVcO1yWQ0axZFRNCmTWRvz0t2wD0U3IGouJg++ogOHFAr2MmJjh2jLl10nBMA6IrEymbOxz9cubPZ6s9DqqPj4qhzZ9q9mzp10n1qAMAdpZJWrqRFi9ScAzndP/CTj1dlObrqOi8A4E2uvdNnU3/esHG2OjV39/ysDZtm/95rwo73P8QUDgBVd/xh6sXYt28csZKVfHFyY7trR9RcSHj9NnMHLJCGJ7LE1K2G+9IAjMO5Fl2b1nAZsfIrtQaW2LOHIiPp4EFq1Ej3qQH3sC9l9s6do8aN1a22e3mVjjIBAMasxMKyYNsumjpVrejEROrShSZMoDdvdJwXAHAkKYl69qR589SstlPTptt/2oVqO4DpybF3njJtzQN/tcZht1DIPzvzx6aNs7yy03SdGIAZqv365Y41Uz5Qu9p+qUmnOR//IBVZ6jQrAODTw4596MABslJvtqSYGGrdmtavJ6VSx3kB91BwN2MpKTRuHPXqRbGxasUHBNDVq9S8uY7TAgBeCIW0YQMtX65WsFJJO3ZQvXq0di0pFDrODACqZvduatKEzp9XN75jR7p8udDZTZc5AYDe5Nk6Tpvy892gFmrGt3hx/+DKCYNvnRLg8B6AI0KFYvylfXt+/kSd200Yp1r1mj9uaYkFqu0AJmfoUDp5khzUuzelqIimT6eePSkhQcdpAcdQcDdLJSW0di0FB9Pu3eq+pXFjun6dgtSaeQkAjMa8ebRunbpTMGVn08yZ1LEjPXig47QAQCvx8dS7N40bR9nZ6r5l4EAKCyMXF12mBQB6Jra2nTF5xbkWXdWMt5cULjy08rdNczyS43WZF4BZCE56tuPXqdNP/W4lk6r5lh1dP/z2g/kY3AnAZPXoQRcvkoeHuvHnz1OjRvTrryRXNf47GAyM4W4W5p2KKXtcJ/r2oE3LPBPj1H/7iyZtdi38VRKZQ5E5LGEi7BAAGKPPPycnJ5o4Ua2B5Ijoxg0KCaFZs2jJEkzhAmAoJBJasYKWL6eiIg3eNWMGrV5NFhY6SwsADIVUZLnow8VpLp7jLu1X8y2tYyNaTB9MSV/R/Pno8QG04FSU/2nYtuE3jgnVvkNUIRSuGDLzcOhAnSYGAPrXujXdvEn9+tHTp2rFFxTQjBm0fTv99huFhuo4OeAACu5mgZmtxSMv84tTm3pHnNfo/tDLjTssGLNEmiwhkrBHOlrjfjcA4zRuHLm50YgR6pbqSkpoxQrau5fWrKFhw3ScHACwUiho/35auFCz+0xFIlq7lj77TGdpAYDBUQoEv/ab8rK6/9d/rraSqTXBg6hESsuW0fbttGwZjR2L83MA6iopCT21b8Gedc6Feeq/Kd/WYeHYb8KDW+suLwAwIIGBFB5Ow4bR33+r+5b796l9exo5kn78kWrV0mFuUGW4JNksWCjko64ePrJ8bJ97f2lUbf+z3aCvPvpOKlJvPgcAMF79Mxtw0gAAIABJREFU+lFYGDk7a/CW5GQaPpz698dwcgB6c/IkhYTQmDGa/Qw9PenCBVTbAczTyVa9p3y2JsPJXYP3JCfThAnUtCkdPYp52wBUkMtpzx4KDh74+w8aVdsTPGt+NGMjqu0A5sXNjf76i2bM0OAtSiUdOEDBwTR9OqWm6iwzqCoU3E2dXE6nTu35efKcY+vsJYUavXVTr49/GjpLIUAjATAPHTvSpUvk6anZu06dokaN6Ouv6cUL3aQFAO9QKOjwYWrZkgYMoPv3NXvve+9RRAR16qSbzADACETXavThnD8iAptp9rZHj2jIEGrWjA4exBiyABWQSmnHDmrQgMaOpTgNRnAlootNO4+buSnBs6aOUgMAwyUS0Zo1tGuXZqO3FRfT+vVUpw598QW9eqWz5EB7GFLGdMXF0fbttGMHJSVpOtWpXGjx09BZ/23bXyeJAYDBatGCrl2jDz+ke/c0eFdBAS1fTitW0Pvv0+TJNGgQWeG2GABuLAl7cvlFZtn/2hYX9b51ZtjlP/3eJGm6KKVAcKDrqC39P5EdTyB6+4r4mi52Vc0VAIxHpqPbZ1N+/jRs20eX9qk/ujQRUXQ0ffABBQTQF1/QhAma3RsHYKoyM2nrVvr1V0pO1vStUpHlun5TDnQYqhQIdJEaABiHsWMpJIRGjqSHDzV4V1ERrVtHmzbRsGE0axa1aqWz/EBjKLibnOJiOnGCdu2is2e1u/Ykpka95UNnx9QM5jw1ADAcG2/EK6jiu8IFP+xufOFEj03/sc3P1WCJCgVduEAXLkgcnGI69r47aGx6rSAiWty9LicJA5inYplCLJUTUb3k2CE3T/aKvKDp/WqMN04e330w72Zwa5JThbsHCgwTAWBm5EKLDX0m367b6rt9P1TPSdfszS9f0qxZtHgxjR5NH39MbdroJkcAg3fjBm3dSgcOaDZp+b/iqtdaNHbxM59AzvMCAMOUXiD9z8XYSl60FP20r+vvP4Wc3KfZAG4lJbR/P+3fn1qvcWS/Dx537iu1tQuu5jCkiTcXKYOWUHA3ITExtGsXbd1KGRnaLSDPzmlLj/EHOwzBMDIAJu9CbEZ+caUTph3zfm/D3B0zTm7sc+8vTZdsU5DX4szBFmcOPvard7Rtf2r3LdnhylkALblkvB779+E+EX8FpWg/atNfzd5fPmxWnp0Th4kBgGmICGz2wZfbZx9b3//uWY3fXFBAmzfT5s3UsCGNGUOjRpG/vw5yBDA8L1/S3r20dy89eaLdAhQC4f6Owzb0mVRsac1tagBgyPIkJf+NzmYJONT5k7ZezRYf/MkzV+PKnvfTB32fPuiyftmlJp3S+g+lhhMw27keoeBu/HJzad8+2rqVIiK0XoZCIPxv2/4b+k7Os3XkMDUAMF6Zjm5LRi8826L7vCO/+GWmaLGE+klP6//5lC5tp7Fjafx4atKEhDiZB6CeFy/o2DE6enR+eLhGs52/Jd3Z46ehs640as9hagBgYvJtHb4dNf9Cs87zD//snZ2mzSIePaKvv6YFC6hVKxo6lAYMoGDcLAumKCaGTpygI0c0G33xHS+r+38/8qvoWo24ygsATMnN4NYj5u364uTGwbdOaXEgYFdc1O9uGN0No/ULadAgGjSIunQhGxtdpAosUHA3TpmZdOMGXb1K169TRATJZFVZWEzN4OVDZ8fUqMdVdgBgMm4Gtx751Y4JF/eOu7TPSlbpFfFsMjNpzRpas4bc3al9e+rcmTp2pKZNcbId4G0FBXT5Ml24QGfP0rNnzHNaj+cqF1r82W7Qpt4TC2w0mX8JAMzVjfrvjZi365Nz20df+dNCodWcqEol3blDd+7QvHkUGEi9elGPHtSpEznh9howZrm5dPUqnTtHYWH0Qvu7zRjFltZbu4/d3eWDEgtLTrIDAJNUYGP/n+Fzw1p0n3fklzqvX2q5lPT00hvR7O2pa1fq0YO6daN6KP3xhO+Cu1QqlUgkTtjr0kJqKl2/Ttev040bFBVFGs1uVIk8W8ctPT862H6IApedAkAlii2tN/X6+HTLnvOO/PLe07vaLygzk44fp+PHiYgcHOi996hdO2rfnjp2xCSrRgE9uE68fk23btGNG3TtWtXPoJe5F9h81eAvnnvX5mRpAGAmiqxs1vaferJ179nH1lepxyei589p/Xpav54sLCgkpLTHb9OGfH05ShY0gB5cYykpdPs2Xb9O165RZKR2U6O962LTzmv7T01x8+JkaQBg8iLrNB09d+vI6/+ddG6nU1G+9gsqLKQTJ+jECSIiHx/q1InataN27ahRIxLhOmxd4embLSkpWb169fbt22NjY5VKpbOzc//+/ZcsWRIUFMRPAkYpO5ueP6foaLp6la5do5fantSqiFIgONG6z7p+n+bYO3O4WAAwVYkevtM/Wdk74vzMExvcCthGnVNLQQEzwyoRkaMjtWtHHTpQ06ZUty7VqkWWuOTHgKAH55JSSfHxNleuiB49Ej5/ThERlJjI7RpeVvdf12/K1Yah3C4WAMxHXPVan3+6KvTx7c9Pb66b8ryqi5PLSy97/+UXIiI/PwoJETRrZuvnp2jYkHx8SKD1nTygAnpwdSmVosREy8ePKTWVIiPp3j1KSuJ2DQ/8G6zrNyWyTlNuFwsAJk8utNjXcfiplj0n/bVr+I1jlnKtbjovLyWFmWGViMjOjpo3d6pfX1KvnqB9e2rSBLOvcYiPgnthYWG3bt1u3bpV9kxubu6ePXuOHj16/Pjxrl278pCDocvJoRcvKC7u7X+68cwncPmwWRgzDgA0ohQIzrTsca1h6Kdh20bcOCrk4j4bIqL8fAoLo7Cw0v8ViahmTapdu/RfgwbUsCH5+2MIGr1AD14laWn08iXFxdHz5/T0aem/ggJ33awtyd1nS8+PzrbojrvWAKDqwuu3uRXc6uMXNwYc3eKTmsDZcpOSKClJePx4NSIiKraySfYJSPX2F9QNCu3ehmrXpoAA8sL1vxxAD16p9HR6+ZJevKAXL0q75idPfAoKdLS2WJ86v/eccKVReyXOLQGAtvLsnH4e9PmBjsMmnd/Z9+45LUd+e5dYTDdu2N24UVplFwopIIDq16d69SgwkAIDKSCAatbE9XDa4aPgPnXqVKanHz169JgxY7y8vM6fP//9998XFBQMHz48JibGyxx2qvLyKC2NMjLozRvKyKD0dEpPp4wMev6cYmMpQ+PZh7WT4ua1p/PIw6GDcDQOANrJt3VYNfiLsyHdR109/H70VSuZlOMVyGQVnHG0saGgIKpdmzw9qXp1qlaNPDyoenXy9Cx9jFvhdAM9OBulkjIySnv2tDRKTaW0NEpKouRkSkqiV6+oqIifROK8Ana+P+pc864yC/wQAIAzCoHwcpue22q3637/748u7Q1Kqero1e+ylkpqxz+uHf+YbobRznWlz9rYkL8/+fqSnx/5+pKXF3l6krc3eXiUdvo4kFGDWffg5Q+6U1MpNZWSkyklhZKSKD6et975VZ2Gv3YchVI7AHAlxc3ru5HztnYbO+7vA/3vnNFyijUWCkXpychTp/7/SaGQvL3J3598fMjXl3x8yNubPD3Jy4s8PMjDg6ytOU7DVOj8wOzhw4d79uwhouHDh+/Zs0cgEBBR8+bNGzRoMHDgwOzs7BUrVvz888+6ToMDSiXl5BARlZRQQQHJZJSfT/n5JBZTYaF1SoogN9dKICCxmMRiKiqinBzKzS0tsmdkUHGxHnOXiiwvN+pw/L2+d4NaKATYQwWAqnpUs/6iMYudxHn97p0bdPNU7bR43a5PIqEHD+jBg0oDmIPwatXIzY3s7MjBgZydyc7OSSpVODlRjRpkZ0eOjuTkRHZ2ZGdHAgG5uBARWVvjvrnKmE4PziI3lxQKkkioqIiKi0t7cImEcnNJIqHCQsrJIbGY8vMpL49ycyknp/RfVhZlZZFSqd/07wSF7O807Hr9tjiYBwAdUQiF51p0/av5++89vfvhlUNtnt0T6HrTJ5GUXndcGXd3cnUlFxdycSl94OhIjo5kb8/0/mRjQy4upV28rS3Z2JT+19KSHBx0m7xhMPoeXCym4uLS427mv1IpFRZSfj5JJJSfTwUFVFhIeXmUl0fZ2ZSbS7m5lJ1N2dmUmcnJbGdaUwiEN+q/t6fzyJw2oS8yxXrMBABMUrK7z4/DZm/u+dGI60eH3DzhWpCj2/UpFJScTMnJlQbY25O7O7m5lfbIzs7k5FTaL5cdfTs5kaUlOTuXdsRl3bGzswmfRNd5wX379u1KpdLW1nbz5s2CckeD/fr1GzBgwLFjx3bv3r1q1SqhQX3FLVqUHmkzZ7/z81VOYmZPZM9HZhp77l37eJu+Z0J65NpjkhwA4FiendO+jsP3dRze9OWDwbdOdb//t3WJnk4uMqc2Hz9+62kX9Zfg6EgiEQmF5OxMjRqVTu5q3oyyB58+nZ48KS2aM8rOlxOVltTLPzBOBTb2Z1r2ONJ24AvvAH3nAgBmQSkQ3AxufTO4tX/6q+E3jvW591eVZm+rosxMyszU5o3t29O1a1xnY4iMsgcPDaUHD0hnQ7vwIMfe+VSrXofbDUpy9yGiOvrOBwBMWKaj28beE7d1G9Pj/qUh4ScaJ8ToLZXCQiospFevtF+ClRXZ2//PAyKytycrq9LHzBn0Bg1o7dqq5cornRfcw8LCiKhbt24uLm/XPfr373/s2LGMjIx79+61bt1a15loICWF0tL0nUSVFNrYn2v+/vE2fR/VrK/vXADA9P0T0PifgMarB03vHfHX4FundHHXuc7l/1s4yMyk6tX1moqhMMoePDKSwsP1nYSuKATCe0HNT7XqdalxR4mVjb7TAQBzlOBZc9XgL37tP6VL9LW+98Lee3aPszldeGBjLltOo+zBi4qMtNousxDdrNf6VKueVxu1K7HASMcAwJ9iS+uTrXqfbNW7TurLAXfO9I4875afre+kNCeVklSNgWr5GhCMK7otuBcXFz99+pSI2rRp8+6rvXr1Yh5ER0cbVmdfdhbFCD32q3e0bf+wFt3E1rb6zgUAzEu+rcOh9kMOtR9SP+np4Jsne0VesCs2sk6xlDH3Alwx1h7cFCfXVQiED2o1vNC084Vmnd84eeg7HQAAkoqszrXoeq5FV7f87G7//N3tnyvNXkYbQeXdPMaZNdYe3Nj2vhRCYUSdZhebdr7QtHOOvbO+0wEAs/bCO+CXgdPW9p/a6nlkj6hLnR5edynM1XdSXDO2Az3dFtzj4uLkcjkRBQRUcMuzj4+Pra1tUVFRbGysTtPQlFRkaVy9vcxCFFOj3r3A5qdb9kzwrKnvdADA3D32q/d4eL21/ad2eXCt5fOoFi/u+2S91ndSmjC2Qz5dMNIe3Oj2w1gUWdncDQp52rrT4VqtMh3d9J0OAEAFshxdmXPtbgXZ7R/d7BAT3uZZhF2xoY7ZZR5XuBtpD54kVvjpOwd1iK3tbtVrea1h6PX6bbMdNBi8EABA1xRC4e26LW/XbfnD8Lkj8+O6PQn3D7/kkvhS33lxxNgO9HRbcM/KymIeeHp6VhhQrVq1V69eZaoag2/+/Pkq15WTw9lEAQXFSsPv7IusbB74N4gMaBwV0CTav4HE8t/rNeRyfaUkkwvkOl47s/ySEqmuV8SQ8rYiaYnhrEihUMjlcqVSKajCFHwlUt7+Rjx9dSVcr0gulysUCoFAoPzfmcc4X1FlZDKd/2DzLG2Ot+h+vEV3IvLKSQ958U/LuH9C4v6pkVH5jCuG4VGWZPPhqApfqu5g9dl7vjznoxdG2oPbyBRGXU2RWYhi/Oreq9PsVt2W//g3lIosA1xt0rMlPHTu/G1Oq9zlyeVydZYg5asn4q/L425vgVlOZUur+t9ITTzu/3D8N6qsEZrgV6f2luGNrdPRlj2PtuwpksuaJMS0eR7Z6nlUo1ePLeUqpsLiU76cMlMzXGx1PqqqfhlpD16gNNzZv2UWooc1gu8GNr8VFBLt30Bm8W8TYv118LZXr/ceXKlUyuVygUDA1awA5taDc3IAzjDBbkiNv1FlR9YaMbGvTk50o0b9PQ4B1PJDv8zUNrERrZ9HhsT9426MA878K7OoxIK7TocHut3bKCwsZB7YVHI1ga2tbfmwyvz0008q15WXl6dhdpVysDPQmw2ltvavgxulNGye0rB5cqPmcksrIqpPZCDDtFsISa7jG0mzs7OJqJqbk0z7DakGrEWCYhkfs+HaiATtffmoEdlYCkJ9VKyopKSkoKDA0tLSgZk2WrsViYShPnwMamQjErRX9Yk4YS0SFMvsOFxgYWGhVCq1t7e3+t+LqUVCgUzBR/vm4Qf7v9yoQ3A8jYwnss/O8HkY5fswyifmvufzx1SFHSMdsba1DnCs+IDB2UbJYXdjyIy0B5dIZV5cLYsvYhe3tLoNU+s3Sa3f9HVw4xIbWyJqQNSAiIhsREKJH5cbn8rwtjm1EQna+Vapg5BIJEVFRTY2NkwjrHRFlsIqrkhNfHZ5KjtxNTE7VK6urhW+amspbMtPY1Bjt4QT1hbUjtO/UVFRkUQisbW1fWsLyWOr42nX0VokKNZiE9TMU0ydrxDdkBZXf/rQ92GU19MHXk8f2mVrNdMpd16JZdFx6e1qaL+LaxSMtAd3djCsY3Cxq/vreo1e12uc0qj563qNZFbWRNSYqLHaSzCfHlwul+fl5YlEIkdHR25WZGY9eHFxsVgstra2trOraoMxzx5cLBYXFxfb2dlZV2HcMJPuwd2oc8MYGhdD5Pbqpffjf3xi7ns9fej2Kk5g+GPBlVOiUBQa1ZG4bgvuZeeXKjtTxwTIZCoufFi+fDnLq8y593cnhNGavTMfNVZ1KHx8FLVrK+rUUTRpIgsNVdSv7yIQuPx7EG6GkpOtlEqlr69v1c/9QmWKiooyMzNtbGw8PDBSsA5lZmYWFRW5u7uzF4xMVAD1acU8yk9PF4WHCx88EL54wfwTqDr844F/deeP21ZwF7ZZMdIe3M7F4MsoIpG0Rg1JYKBlixbKpk0VTZsq/PzcidyJGuk7NWORn5+fm5vr6Ojo7Iwxc7WUlGRJRH5+hn9Lp4HKzc3Nz893dnbmqrpkyjoFEw0jIhlRQUqK8P59i0ePBA8eKKOjrRITBao6EW4F1fCo0dj0m72x9uDuTlwtSgtKC4uSmjUFTZooGjaUN26saNZM4ePjQeSB3lkNUqk0PT3d0tKyevXq+s7FKBUWFmZnZ9vb21d2IhzYZWdnFxYWurq62tsbSinPcLUNIHqfeVggFgujoy0ePiy+fdvq2TObFy8E+fn6zY6dh7O9mLtOhwe6LbiXNXeJRFJhQHFxcfmwysybN4/lVaazd3LirofWS/3L1ZVq16batalBA2rYkGrXprp1hY6VXGNprnJzc5VKpZOTEwruumNpaVlcXGxra8vlbwreIZVKLSwsHB0dq34hg3FzcqLAwP95Jjub4uLo0SOKiaG4OIqLo8ePSczraLCWDg6WZt/+jbUHN6gJ8aysqGZNqlWLAgIoMJACA6lePQoKevPmjVwu9/X1tTC2gQgNh1wud3R0RD+lNeYmNnyBWlMoFEqlEo1QY05OFBxMRHK5PDk5WaRU+ojF9PQpxcbSixcUF0fx8fTqFRUX62j9Vo6OVmbwJzPWHpy3XWJLy9LeuU4dqlOHgoKobt0kGxulpWXNmpgOTRtSqVQsFltZWWGTqB2hUFhSUuLg4IAvUDsymUwgEDg6OlblHn1z5OREXl7Uo0fO69e5UqmXl5dVRgY9fkyxsfT8Ob14QS9fUnw85RrK5Ksia2vj+o3otuBedsa7bCC5tzAjx3F4Ypwbupguz8qKPDyoWjXy9CRPT/LwIA8P8vSk6tWpVi0KCuJvDwMAwJC5ulJICIWE/P8zcjklJFB8PL1+TRkZ9OYNpadTejq9eUNv3lBaGvc7AZg01Xh7cJ5L2Pb25OFBXl5UrRpVq0Y+PlS9Ovn5kbc3+fuTlxfh9DAAQCWUIhHVr0/1/3d0TKWSXr+mxERKSaGkJEpLo+Tk0h4/PZ0yMqgq19+Zx6SpxtqDc7j3ZW9P7u6lx92enqW9s68v+fhQzZrk7U3vDDWufPWKs7UDABgpHx/y8aGuXf/nydxcSkykxERKTaXkZEpLo9TU0h45I4MyM/kbIdbYrlXSbcG9Tp06zMQFCQkJ776anZ1dUFBAREFBQTpNQ2OVXR/n6EgiEQkExOyduLiQrS3Z2ZGLS7GFRYlIZFWtmpWrK9nZkaMjOTqWHodXq0bVq5NRnYcBADAgFhalNwBVRiotPRTPyKDsbBKLSSymvDzKz89//VpQVORQUlL+SZLJSColZuyaggIqKXl7gSi4G28Prul+mJ0dWVuTtTXZ2ZGlJTk4kJUV2duTvT3Z2JCzc+ljR0dycSEnJ3JyIhcXcnEhV1dyczOsC+oBAEyAQEDe3uTtXWmAVEpZWZSdTVlZlJtLeXmUl0c5OVRQQAUFVFhIubkklVJ+PhUVkURChYUklZJYTMXFZGglZt0w1h68/N4X0y+LROToSBYW5ORU+tjWlmxsyNWVbG3J3p6cnMjZubR3dnYu7Zrd3MzkzAoAAB+cncnZmRpVMryWUkmZmZSTQ9nZlJNT+i8/n/LzS3vkwkIqLqacHCopoYICKi4msbj0YFwuJ43GZEfBvTxbW9vAwMDY2NiIiIh3Xy17slFlfzl92baNxOLSTp2IbGxUDjJTmJVVUFDg5uZmhXtYAAB4ZmVFvr7k6/vuK9mvXhGRg8obhJVKYmY8Z/p+DAxtvD34N9/QlCmlB+plnJ1Lr2Ur69mZo3cAADA6Vlbk5UVeRjdDNn+MtQf/7Tf65RczOSkCAGAiBILSATyqgjkpTlR6ppyRl0dyeelj5nlPzyqthXe6LbgTUc+ePWNjY8+fPy+VSq3+95rBU6dOEZGzs3NoaKiu09AMduAAAMyKQECYpOgdRtmDN25MjRvrOwkAAAB9Msoe3M4Og6wCAJijsu2/aR2S63xKznHjxhFRZmbm5s2byz+fmpq6Y8cOIho9erSlpaWu0wAAAACNoAcHAAAwRujBAQAA9EvnBfdWrVoNGjSIiL788sutW7fm5ubK5fLw8PB+/frl5uY6OjouWLBA1zkAAACAptCDAwAAGCP04AAAAPql84I7EW3btq1+/foSiWTSpEkeHh6urq7t2rWLjIy0srLat2+fn58fDzkAAACAptCDAwAAGCP04AAAAHrER8Hd1dX1zp07s2fPdnd3l8lk+fn5IpGoT58+t2/f7tevHw8JAAAAgBbQgwMAABgj9OAAAAB6pPNJUxkODg6rV69euXJlWlpaUVGRj4+PjY0NP6sGAAAAraEHBwAAMEbowQEAAPSFp4I7QygUent787lGAAAAqDr04AAAAMYIPTgAAAD/+BhSBgAAAAAAAAAAAADA5KHgDgAAAAAAAAAAAADAARTcAQAAAAAAAAAAAAA4gII7AAAAAAAAAAAAAAAHUHAHAAAAAAAAAAAAAOAACu4AAAAAAAAAAAAAABxAwR0AAAAAAAAAAAAAgAMouAMAAAAAAAAAAAAAcAAFdwAAAAAAAAAAAAAADqDgDgAAAAAAAAAAAADAARTcAQAAAAAAAAAAAAA4gII7AAAAAAAAAAAAAAAHUHAHAAAAAAAAAAAAAOAACu4AAAAAAAAAAAAAABxAwR0AAAAAAAAAAAAAgAMouAMAAAAAAAAAAAAAcECk7wQ4IxAI9J0CAAAAaAw9OAAAgDFCDw4AAFAhXOEOAAAAAAAAAAAAAMABUyi4Kw3AxIkTieiPP/7QdyImzs7OjogKCwv1nYgpO3bsGBENHDhQ34mYuA8++ICI9u/fr+9ETJlCoSAigUCg70RU0GsXqmf6/u71w8vLi4hSU1P1nYixWrlyJRHNnTtX34kYK2PZNhqyOXPmENGqVav0nYixSk5OJiIfHx99J8INvXakeqPvb51LcrmciIRCob4TMVZ37twholatWuk7EWO1ceNGIpoyZYq+EzFWkyZNIqItW7boOxFj1bx5cyKKjIzUdyJ6oNOO0hQK7gAAAAAAAAAAAAAAeoeCOwAAAAAAAAAAAAAAB1BwBwAAAAAAAAAAAADgAAruAAAAAAAAAAAAAAAcQMEdAAAAAAAAAAAAAIADKLgDAAAAAAAAAAAAAHAABXcAAAAAAAAAAAAAAA6g4A4AAAAAAAAAAAAAwAEU3AEAAAAAAAAAAAAAOCBQKpX6zgEAAAAAAAAAAAAAwOjhCncAAAAAAAAAAAAAAA6g4A4AAAAAAAAAAAAAwAEU3AEAAAAAAAAAAAAAOICCOwAAAAAAAAAAAAAAB1BwBwAAAAAAAAAAAADgAAruAAAAAAAAAAAAAAAcQMEdAAAAAAAAAAAAAIADKLgDAAAAAAAAAAAAAHAABXcAAAAAAAAAAAAAAA6g4A4AAAAAAAAAAAAAwAGLpUuX6jsHg1ZUVPT48eM7d+4UFBQ4OjpaW1trt5ykpKTbt28nJiba2to6ODhwm6QJSE5OvnfvXmxsrIWFhZOTk0Ag0GIhCoUiNjb2xo0bqamp9vb29vb2nOdpMoqLi48cOZKQkFC3bl1N35ucnHznzp2HDx8WFRVVr15duz+WmUhMTDx79mxRUZGvr692S7h8+XJERESDBg24TczEnD17NiIiok6dOpaWlhq9UaFQxMfH37lzJzk52dHR0c7OTkcZgpmQyWQRERH37t1LTU11cHCoYjcUExNz8eJFX19fW1tb3laqd5x0MXl5eXfu3ImKisrKyvLw8NB0y2AUOPmMmjYeE/timT38uLg4oVDo6uqq3ULMeaeI2/bw559/ZmVl+fv7s4eZ8xcO7DhpkJoeTprSVpGTHxeOx6t47KZpi+KkIzMoVfwC0Ueo2ZmyU/OvYEobQF1RQiUSEhIGDBjw1k+0Z8+eDx8+1Gg5e/fu9fPzK7+Q4ODg06dP6yiIhivLAAAgAElEQVRt46JQKLZu3VqtWrXy34+bm9svv/wilUrVX05BQcH06dPL9+gWFhb9+vWLi4vTXfJGbcaMGURUp04djd718uXLnj17lv9R1KxZc+/evTpK0thJpdJWrVoR0cSJE7VbgkQicXZ2tre35zYxE3P06FGmNSYmJqr/LolEsnTp0rcq7EFBQcePH9ddqmDa1q1b5+npWdacRCLR8OHD09PTtV5gz549ieju3bt8rlSPOOliCgsLP/vss/KnKJycnBYsWFDhTsWqVavcK9e5c2eOPhnHNPqMLDRqPFyt1EBcvHjxrcPI1q1bR0REaLQQ9VusXC739vZmaWxnzpzh6JPxhPP2cPPmTSLq27cvSwz2QqEynDRITQ8nTWmryMmPS6Mv0Ej7X5WqcuymaYvipCMzNFX5As25Uy6jTmeqkjp/BVPaAOoUCu4Vi4iIKLsO3cbGJigoqKwuY2FhcfnyZTWXM2nSpLIm6Onp6eLiUva/S5cu1elHMAqjRo0q+0K8vb1r1KhR9r/du3dXKBTqLOTZs2cBAQHMu0QiUe3atcvOrbm6uj569EjXn8LonDlzhumKNCq4P3/+3N3dvex7Ln8KfeXKlbrL1nh99dVXzPejdcF9+/btRISCO4ukpCQ3Nzfme1a/4F5YWFi2hyoQCPz9/csWUpW/F5gz5iwmw8PDQygsHbKvVq1a2pW/Y2NjRSIRsRbcOV+pHnHSxUgkkjZt2pS9sfzp/P79+8vl8rfix48fT5Vr2rQp15+SA5p+xspo1Hi4WqmBOHLkSNnndXR0tLGxYR5bW1tfv35dzYVo1GJfvnzJ0tKI6OjRo1x/Sh3SRXtgfowsNQLshUJlOGmQmh5OmtJWkZMfl6ZfoDH2v+rQ+thN0xbFSUdmgLT+As25Uy5PZWeqDpV/BVPaAOoaCu4VUCgU7733HhG5ubkdOnSIaTEKheLAgQPOzs5E5O/vn5+fr3I5Bw8eZJpdnz59yk7tRkdHt23bloiEQuHVq1d1+0kM29mzZ5nvZ+jQoampqcyTycnJgwYNYp7/9ddfVS5EoVB06NCBiGxtbdeuXVtUVKRUKiUSycaNG5kT7I0aNcJvvrzU1NSyK9o0Kri3bt2aabebNm3Kzc2Vy+W3b98OCgpinoyKitJdzsbo/PnzZSfYtSvghoWFOTo6arfPYSbkcnnnzp3LOnj1C+7z589n3vLpp5/m5OQwT0ZFRTFbfiLatWuXzrIGE3T69Gmm5YSGhkZHRyuVyjdv3nz77bfMk4MHD9Z0gTExMY0bN2beXlnBnfOV6hcnXUzZac4pU6YkJSUplcrY2NjBgwczT65du/at+NDQUCJq167dwoqsX7+e+89ZZZp+xgpp2ng4WamBSEtLYy6p8fDwuHjxolQqFYvFhw8fZq7S8vHxYfYkVdKoxf7111/MdzV//vwKG1tMTIxuPq5OcNseJBLJypUrmfey1AiwFwqVqXqD1OJw0pS2ilX/cWnxBRpj/6tSVY7dNGpRXHVkhqYqX6A5d8oMNTtTldT5K5jSBlDXUHCvwPnz55m2sn379rde2rJlC/PS2bNnVS6HuRm8du3aYrG4/PPp6enMObdJkyZxmLbRadeuHREFBga+deNJUVFRYGAgEbVp00blQnbu3FnZH6tsoImDBw9ymLZRUygUPXr0ICJNr3AvOzuyfPny8s8/e/aMOQs1bNgwHeRrrN68eePt7V32PWtUcN+wYcPkyZODg4PpXyi4V2bZsmVlXzKpXXBPTk62srIioj59+rz1Un5+fp06dYjI19dXB/mCyWKu8qhZs+ZblwZ/9tlnTBN98OCBOss5c+bMzJkz27dvX/5+2MoK7lyt1BBw0sVkZGQwNyP26dOn/IG9WCwOCQlhDkHf2t9gTj9v3LiRqw+ia1p8xgpp1Hi4WqmBmDdvHhGJRKK3rgE8dOgQ0wjVKfRo2mI3bNhARNWrV+fkI+gXV+0hOzt72bJlo0aNKj+uUWU1AuyFQmU4aZCaHk6a0laRkx+XFsfjRtf/sqj6sZumLYqTjsxwVP0LNOdOWaPOlIX6fwVT2gDyAAX3Cvz8889EZG1tLZPJ3nopIyOjwh9zhZi7WqZOnfruS3379iVjvluKE8zm7/vvv3/3pc8//5yI7OzsVF6cztw1U6dOnQrHn2FuJhg6dCg3GRs/5rRnrVq1hg8fTpoU3D/66CMi8vT0fHfrOXHiRCKysbF568SSOevXrx8RDRkyhKnealRwr169Ov0vFNwrdOvWLZFIZGlpOXPmTOaLUrPgvnv3bia+wjsu165dy7yakpLCdcpgmuLj45k28+4FHYmJicxLS5YsUWdRI0eOpHdUWHDncKWGgJMuZseOHcwH/+eff956qexXf+nSpbInc3NzmScvXrzIyafggaafsUKaNh5OVmo4atWqRZXcAsJ02R07dlS5EE1b7KxZs4ioQ4cOVUzeEHDVHh4/fvzu5q6yGgH2QqEynDRITQ8nTWmryMmPS9Mv0Bj7XxZVP3bTtEVx0pEZjqp/gebcKWvUmbJQ/69gShtAHgjf/fMA02oDAgIsLCzeesnZ2Zl5sqyfYFFUVEREcrn83ZcUCgURSSSSqmdrpFJSUpjvkLnT5y3MeMpFRUUlJSXsy/nnn3+IqFmzZhXOQM1cw3X16tWqJ2wCIiMjFy5caGFhsXfvXicnJ43ey9z20bNnz3fnnu7fvz8RSSSS69evc5WqUVu/fv2pU6d8fX3LbojRyNq1a7f/a+DAgZynZxry8vJGjx4tk8mWLVvGnEtX35MnT4hIIBA0b9783VcbNmzIPHj69GnV8wRzUHZXHHOmrTw/P79mzZoR0YULF9RZ1NSpU8t+/szlSzys1BBw0sUwC6lRo0aTJk3eeqlPnz7Mzlv57+T58+fMg3r16lUpex5p+hlZFkJqNx5OVmognj9/zpxvePez07+NLTw8nNmBZ6Fpi2UamxG1NBZctQdvb+/t5bB/OdgLhcpw0iA1PZw0pa0iJz8uTb9AY+x/WVT92E2jFsVVR2Y4uPoCzbNT1qgzZaH+X8GUNoA8EOk7AUO0Zs2aFStWMJOVvSUqKoopoDdq1Ejlctq0afP333+fPXs2Pz+fGQiJkZKScuPGDSJihpoyT15eXtnZ2URUNjlteffu3SOiwMBAa2tr9uVkZWURUWVhzEX0b968yczMLJtGwzwVFhaOGjVKKpUuXbo0NDR027Zt6r83Pz8/OTmZiCosUHbp0oV58OTJk+7du3OSrfF68ODBl19+KRQKd+3aVX4eTvWVv8Q1Pj7++PHj3GVnOqZOnRoXF9elS5e5c+fu27dPo/e2aNFizpw5Tk5OZVNhl5eQkMA88PPz4yBRMAMxMTFE5OzsXLt27Xdf7dKly/3795nTPCp16tSpU6dOzOPLly//9NNPPKxU77jqYpjvpMKFuLm5NWnSJCoqqvx3EhsbS0QODg6+vr43b96MiIh4/fp1UFBQkyZNmjRp8u4lF4ZA08/IshD1Gw8nKzUQzGehyhvbmjVrZDLZ8+fPyyZReJcWLZZpbMHBwdnZ2WFhYc+ePbO1tW3SpEmLFi3K3wNuFLhqD87Ozsw1iYwdO3ZUdp4be6HAgpMGqenhpMlsFbn6cWn6BRpj/8ui6sduGrUoTjoyg1LFL9DMO2X1O1N26v8VTGYDyA8U3CtgZ2f3biFGJpOdP39+xowZRBQUFDRs2DCVy1m+fHnnzp0TExP79u37yy+/NGvWTC6Xh4eHz5gxIy8vz93dffHixTr5AMZAKBS6uLi8+3xiYuK6devOnDlDRF9//bXK5TRo0ODVq1eV/aTv37/PPHj9+rWZF9ynT5/+7Nmz0NDQRYsWafreFy9eMA/8/f3ffdXJycnFxSUnJ6cszGwVFRWNGjVKIpHMmzfv/fff13c6JmvXrl379u1zc3PbvXu3UKjxfVpDhgwZMmRIhS/J5fLffvuNiGrWrBkQEFDVRME8xMXFEVHNmjUrfJXZbGZlZeXk5FTY6xnRSnWEqy6G+U4qXAjzfFRUVPmFMNc3OTo6du3a9dKlS+WDW7VqtXXrVgM8UtX0M7IsRP3Gw8lKDQTzWaiSj1P25IsXL1j++pq2WIVCwaz377//XrZsWU5OTlmwtbX14sWL582bV+FVPoaJ//aAvVBgwUmD1PRw0mS2ilz9uDT9Ao2x/9UpjVoUJx2ZKTHzTpl/JrMB5AeGlFHtgw8+CA4OdnFx6dOnT2xsbOfOnS9evMjMuceudevWFy5c8Pf3v3btWsuWLZk6fpcuXaKjo5s0aXLlypUKR1MxT5cvX27atKmfn5+/v//KlSudnZ3Xr18/YcIElW9kzq1FRka+O25MRETE6dOnmcf5+fmc52xEDh48uH37dicnp71792px1UBeXh7zoLLCDfO8OuMsmbbZs2c/evQoJCTk+++/13cuJuv58+fMHA9btmzx9fXlcMklJSUTJ06MjIwkImbwJQ4XDiaM2UKybx6J6y2kXlaqI1x1MUxHr/5CmOubUlNTL1265O7u3qtXr379+jFl6Lt374aEhLxVBTAEmn7GCmnaeDhZqYFgb2xq/nA0bbGvXr2SSqVEdPr06fz8/MaNG48cObJ169Y2NjbFxcWLFi3q3bu3UqnU5vPoA//tAXuhwIKTBqnp4aTJbBW5+nFp+gUaY/+rUxq1KE46MlNi5p0y/0xmA8gPFNxVe/LkydOnTwsLC4nI0tKyVatWNjY26r+9bLBsqVRaNp67q6urFhdmmrCcnJzo6Ojk5GRm61a7dm1mMhCVZsyYwQzcMXr06LJhSZVK5fHjxwcMGCCTyZhnKhxJ30wkJCR8+umnRLRx40Y1v9W3iMVi5kFlLd/W1paImN+I2Tp27NimTZvs7e337dv37vhxwImSkpLRo0fn5+dPnjy5sqvUtXP79u02bdrs3LmTiCZMmDB58mQOFw6mjdlCsm8eiestpF5WqiOcdDESiYSZHUf9hTAH/CKRaPPmzRkZGWfPnj158mRCQsLmzZvt7e1LSko++eQTgxoCVYvPWCGNGg9XKzUQzGe3tLSscCdczR+Opi2WaWlE1K5du/j4+Ojo6AMHDty+ffvZs2ddu3YlogsXLmg36Qv/9NIesBcKleGqQWp0OGlKW0WuflyaHo8bXf+rU5q2KE46MlNizp0y/0xpA8gP1HxV+/3338PCwn7//ffx48crFIqVK1e2atWq7F4eFgcPHuzYseODBw/q16+/efPm8PDwy5cvr127tkaNGleuXGnZsuW1a9d0n75xaNeu3fnz5//8888ff/wxKCgoKiqqX79+S5YsUfnG6tWrr1u3zsLCIjk5uUePHu7u7s2bN3d2dh40aFBKSkrZQF3lx9A3K3K5fPTo0bm5uWPGjBk9erR2Cym7qaqy8xbM3LYVzpNjJpKTk5k50NeuXVu3bl19p2OyFi1adPfu3Xr16q1Zs4arZb569erDDz9s27ZtVFSUhYXFvHnztmzZYs6NGTTFbCHZN4/E9RZSLyvVEU66GC0WMnbs2B9//PH06dNvnWCbPHkyc5fSixcvtm/fruan4AFXfbFGjcfEdgA4+eFo+p14e3v/+OOPK1asCAsLKz87SI0aNY4dO8bcqqXFcH96oZf2YGKNEDjEVdvQ6HDSlBqkXr5AMsL+V6c0/SuY0h4gJ8y5U+afKW0A+YHBiVRjZtYmok8++eTTTz/t1KlTQkLCl19+eeTIEZZ3JSYmjhs3Ti6X9+7d+8SJE2VNs1OnTpMmTWrfvn1UVNSQIUPi4+Pt7e11/hkMXrVq1bp168Y8njt37rBhw44fP/79998PGzbs3emP3zJ69OjAwMCJEyc+fPgwKyuLmbbFy8vr119/TUtLY06zM7O1mKHvvvsuPDw8ICCAGZlaO2VNVCKRVBjAPF/h/LfmQKFQjBkzJisra+jQoUzZHXTh4sWLK1eutLS03Lt3b4XznWpKJpOtWrXq+++/Z66MaN269bp168x5LmtgPHnyJCwsTGXYhx9+WK1aNfp3C8m+eSSut5B6Wan6duzYUX5MzArVqVOnf//+xFEXIxKJrKyspFKp+guZMmVKZUubPn36d999l5OTExUVxf4p+KTFZ6yQRo2Hq5UaCOazKxSKkpKSd+9FU/OHo2mLbdSoUaNGjSqMdHBwmDlz5pdffvnmzZvk5GRux0nTBb20B+yFQmU4bJDqH06a0laRwx+XRsfjRtf/6pSmLYqTjsyUmHOnzD9T2gDyAwV3zbRt23bcuHFbt249fvy4TCZjmU5hy5YtzOBQW7ZseSvMzs5uw4YNbdu2zcjIOHDgACp0bxGJROvXr2dmRj5y5IjKgjsRtW7d+sGDB8w9QRkZGQEBAR06dBCJRAsXLiQiGxubGjVq6Dxvg7Ry5UoiCgkJ2bBhQ/nno6OjiSgnJ2f58uVE5O3tPX78+MoWwhSViCgtLe3dV5VKZXp6OhF5eHhwl7gxuXfv3uXLl4modu3azPdZhik5RUdHM8+3adOmbKp00NTq1auVSmXjxo3Pnz9fdr8qlZuLacOGDcwQXnPmzFE5qk9aWtqQIUPCw8OJKCgo6Icffhg+fLjOcgdjcu/evVmzZqkM69y5M7NtZP5b4eaRiF6/fk1EAoGA24m79bJS9S1btkzldEkDBw5kCu5cdTHVqlVLTk5m/07U7KdEIlFwcPCtW7cePHigTjxvOPmMmjYeDr9YvSvf2Mpf18ZgPgup+jjc7hSVTWr34MEDozi25789YC8UWHDYINU/nDSZrSK3Py5OjscNtv/VKY1aFCcdmSkx806ZfyazAeQHCu5vKy4uZmqUffv2ZSYAeQvzpFwuT01NZek2mHm6a9asWeEPNSQkxNrauri4+PHjx5ylblTOnz9/+/ZtR0fHGTNmvPuqn5+fh4dHRkZGUlKS+susVavWW2OUMwf8wcHBZjtiPjPG1uHDhw8fPvzuq5mZmV9//TURhYSEsBTcAwICmDOZFY6klJyczJxbCg4O5ixvo8J8yfTv6Y3/a+/eYqOo/gCOn+22tJSKhWJLG4qXIpUIbXWpXIR2NVAaTSAYQwS5BETQAE81BqjYBkvgxfhSKGihxEJkpd5QifogiabYUsUSE7lIASUEG9CaktKWdHf/Dyf/yWZmd3anPbvd3X4/T82Zw8ycw5nzO/Pb3Rmjtra2trY2IURFRQUJ90GT/Xz27Fn5XlOj3bt3yz82b95snnDv7u4uLy9vb29PSkratm1bZWVlKO/BxgjhcDgCXcu+tOCen58vhLh+/brfrxpdvXpVCJGbm6vkZxmaYTlo6LZt29bV1WVeR3tvvKoQk5+ff+PGjUBP/JN9Enqckunm5OTkEOtHhpI2Wh08ajt2eMm2CyGuXLlizFPItohgzVG7KNI+2Ii2wRZI5McDq1CYUD4gQ7mdjJtZMRwX19Dvx6Mz/oaVpRGlJJDFkxEelCMvbibAyCDhrpecnFxbW9vZ2Xnnzh2/CXd5D5mYmJiZmWmyn3Hjxgkh5OVt5Ha75WOPRuyjTi5fvrxjx46EhIT169cbH6rjdrvl649zcnLM9/Pnn39evXo1ISGhpKREt6mnp0e+Fb2srEzdiceYkpISv4Pw4sWLf//9d0pKinxikha5/bLb7YWFhW1tbS0tLcatra2t8o8nn3xSxSnHnrFjx5aWlvrd1Nra2tfXN3HiRNnDeXl5kT21uFJQUOD3x2udnZ3yA87Zs2fLtZHdbjff1fLly9vb28eOHXvixIlA/3cYsaZNmzZt2rTQ6zscDiHEvXv3fv31V+MjieQMqXx6HJaDhs7ST/dUhRiHw/H999///PPPbrdbNwncvn1b3vBrOzl16pTL5UpISHj33Xe1N4z5unTpkhAi0I+Oh4ulNprsRFgZPEoOGiUKCgoSExMHBgZaWlqM60bZ9oyMjAcffNBkJ1ZHbEVFRU9Pz4IFC1588UVjfTnSRPQNtkAiPx5YhcKEkgFp9XYybmZFVReXpQ6M0fgbVpZGlJJAFk9GeFCOvLiZACPEC4PnnntOCFFcXOx3q3zvx/Tp0813sn//ftnDFy5cMG7Vnofw9ddfKzjjGHTmzBmTHmhubpZbm5qazPcjnzwjhDh79qxu0+HDh+WmM2fOKDvveCGzIXl5eSHWr66uFkKMGjXq9u3buk3Lli0TQkyePFn1OcYDmWF/5ZVXBvfPq6qqhBBjxoxRe1ZxprGxUV7p169fD6W+9giajz/+ONznhpHg7t278o6xoqJCt+n333+Xg+3QoUNWd3vq1Cn5b9va2iJ20OGiJMTIR3sJIb788kvdJu2hah0dHbJEfkonhDh8+LBxV7/99pv8It6BAwcG1aBwsdTGQKwOHiUHjR5Op1MI4XA4dOUDAwPySx6rV68OuhNLI/all14SQjzyyCNut9u4K1k/OzvbelOGR5jGg/zw+/nnn/e7lVUoAlEyIK3eTsbTrKjk4rLUgTEaf0M0uHs3qyNKSSCLToPrwJEclHXMg2mIzP8X4mkCjAAS7n7U1tbKgbJ//37dJi1m7NixQyvs7e2tq6urq6s7duyYVtjR0SHvZ+bMmdPd3e27k87OzilTpgghJkyY0NXVFda2RK3+/n4ZDx577DFdJ/z3339FRUVCiPHjx9+6dUsr7+jokP38ww8/aIU9PT2ynxcuXOg7af7yyy/y1wNlZWURaE7MMUm4u1wu2c93797VCv/66y/5zI3XXnvNt3JLS4v8YHPPnj1hP+kYFCjh7nfSMCLhHgqThPuPP/4o+/ny5cta4caNG7k5h1qvv/66vFR915cej0d7RvmdO3e08hAvf/OEu9WDRjmrIcbvpe12ux9//HEhRFFRUV9fn1be1dUlf3NdXl7uuxP5K8bMzMxr1675lv/zzz/yt18PP/xwT0+PynYOmdU2+l04eS0OHqsHjXIul0teWboLUHuQ1E8//aSrP8RFkZaKevPNN3Unc/ToUbmprq5OWQvDTNUg1DHPEbAKRSBKBqTV28l4mhWVxF+rHRiL8TdEQe/dlCxgrAayGBK0AwnK5syDqZIURDxNgBFAwt2PgYGBmTNnyovthRdeeP/990+ePHngwIGlS5fKwsLCwv7+fq3+rVu3ZHl+fr7vfvbu3SvLc3JyampqPvvss2PHjm3dulV7jMyJEyci3rgo8vnnn8t+yMrKeuedd5qamj755JOdO3dmZWXJcpfL5Vv/+PHjsnzjxo2+5VpomTVrVkNDQ1NT05YtW8aPHy+ESE9Pv3TpUmSbFRtMEu5yAhVC3Lx507d8+/btsnzlypVfffVVa2vrrl270tPThRBTp06N0VVRuAVKuAeaNHRIuIfCJOG+adMmuemjjz7SCuX0npSUlGHqjz/+iGw7EMNu3LghX9mUm5v73nvvtbe3u1wu+Ws5IcQHH3zgWznEyz9owt3SQaOfpRDj99L2er3ffPON/Gbc3LlzP/zww3PnztXV1cmgNnr06HPnzvlWPn36tLw9u//++ysrKz/99NPjx49XVVVpDwz89ttvI9Fyiyy1MdDCyergsXTQKOfxeObNmyeESE5O3r59++nTp7/77rvNmzfLBr788su6+kNfFHk8niVLlsjKzzzzTH19/cmTJ/ft26cVPv300x6PJxKNV0TJINQJ+qU8VqEIRMmAtHo7GU+zopL4a6kDYzT+hiLovZuSBYzVQBZDgnYgQdmceTBVlYKIpwkw3Ei4+3fhwgW/D3AXQpSVlV25csW3ssnA3b17t/EB5UKIjIyM+vr6CDYoSu3cudPv+yjS09Nra2t1lQOtkDwez7p164w7ycnJaW5ujmBrYskgEu5ut3vVqlXGfs7Ly+NTjUBIuEeA1YS7XP0Hdf78+ci2A7GtublZZjB92Wy2t956S1dTVcLd0kGjn6UQE+h+1ev17t271/gi0LS0tC+++MJ40CNHjqSlpRkPmpOTE81fiQi9jSa5TquDx1LHRrnOzk6/i/xFixb5fmNOUrIo6u7unj9/vrGyEGLVqlX//vtveBscBkoGoa+gCXdWoTAx9AE5iNvJuJkVlcRfqx0Yo/E3qEEn3L0WR5SlQBZDBp1wH+FBWROZhLs3jibAcLPLBx5BZ8KECa+++urkyZNTU1NTUlLsdntRUdGiRYvefvvtmpoa+UJUX0lJSU6n0+l06l4/NW/evDVr1qSkpIwbN87j8UycOLGkpGTFihWNjY1z586NYIOiVGlp6fLly8X/Xx4r+2fZsmWNjY3y2WQ6DzzwgOznqVOnaoU2m23JkiXz58+/d++ezWYbPXp0QUHBpk2b6uvrfatBJz8/3+l0yh/u6RQXF8t+lt8+kGw229KlSx0OR19fn8fjSU1NnTFjxpYtWw4ePJidnR3BE48xs2bNcjqdxtfSBpo0dB566CGn0xloTQApKytLdqbxA7xHH31UbpLfmnG73f39/aWlpc4QpKamDkdrEJNyc3NXr16dkpLS29trs9kmTZpUXl6+b9++NWvWGCuHePmnp6fLavfdd9/QDxrlrIYY3aWtKS4uXrx4scfj6e/vT0xMnDJlyooVKxoaGmbPnm3cSUFBwYYNG0aNGiVXepmZmc8+++zKlSsbGhoKCwvD1dQhs9RGvwsnYX3wWDpolBszZszatWuzs7N7e3u9Xm9GRsacOXOqq6v37NljvHsUKhZFycnJa9eufeqpp9xud2pqqt1uf+KJJxYvXlxTU/PGG2/4fW1glFMyCHWKioqcTueMGTP8bmUVChNDH5CDuJ2Mm1lRSfy12oExGn9DEfTeTckCxmogiyFBO5CgbM48mKpKQcTNBBhuNq/XO9znAAAAAAAAAABAzEsY7hMAAAAAAAAAACAekHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAE7S2kwAAAErSURBVAAKkHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAAAKkHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAAAKkHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAAAKkHAHAAAAAAAAAECB/wFidGzuFdBirAAAAABJRU5ErkJggg==", "text/html": [ - "<img width=1000 height=400 style='object-fit: contain; height: auto;' src=\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3wU1fr48bPpJCGUhNBCLwFCTygiHVGkSLHgV+ArfgUVL2LDgohIs16vBUVRFC+IV0EFAWnSgwZIkBoCJIQSEloKhBTSdn9/7O/OnZtkz5ZMZneTz/vFH5M9z848mSx7dp49c47BZDIJAAAAAAAAAABQMR7OTgAAAAAAAAAAgKqAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABL2cnAJTj9OnTu3btMm+HhIQ88MADZWNOnTq1e/du83ZoaOi4ceMcPtyWLVumT59u3n7kkUfmz5+vbjWZTHFxcYmJiXl5eYGBgWPGjPHz83P4WC4rKyvrxx9/NG83atTovvvuM2/LT44+hg8ffubMGfP2/v37Q0JChBCJiYk7duwwP9i5c+c+ffron9i8efNWrlxp3v74449HjBihfw4A4EbUb90Gg2Hy5Mm+vr5lw77++uuioiLz9n333deoUSP9UtSa+iNNt27devXq5fCu4uPjo6OjzdtRUVFRUVHm7XJ7ST1lZWX16NHDvN2qVautW7eat/fs2ZOQkGDeHjZsWPPmzXVOTLjAyQEAd3Hr1q1Vq1aV22QwGOrXr9+mTZvWrVuX23Hbi8soNUv9u9PPEv07UBEU3OGKYmJipk2bZt7u0qVLuQX3ffv2KTGRkZEVKbjn5OScPXvWvH3t2jV10/Xr10ePHh0TE6M8kpKSEhYW5vCxXFZqaqpyPgcMGKAU3CUnRzcXL15UciguLjZvHDhwQEn42WefdUrB/fr160pit27d0j8BAHAv6rduIURmZuasWbPKhj377LO5ubnm7Xbt2rl1wV39keaVV16pSMF9165dzzzzjHl77ty5ygV5ub2knkpKSpQEvLz+c3GxcuXKr7/+2ry9du1ap1yQO/3kAIC7yMjIUPfR5fLx8XnxxRdnz54dEBBQkWNxGaVmqX93+lmifwcqgillAJnZs2erq+1w2LRp01r/26FDh5ydjh2+/fZbJfMlS5Y4Ox0AqDoWLVqUlpbm7Czw/3Xv3t3c2bVr187ZudjHfT9jAIB7KSwsfPvttzt37pydne3sXGAr+nfAKRjhDsgod74LIYYMGdK+ffsKfplfbV2+fFn5Cjo/P9+5ydjlxo0bSuaZmZnOTQYAqpLc3NyXX375u+++c3YiEEKI5OTkmzdvCiE8PT2dnYt93PczBgC4o+Tk5FmzZn322WfOTgQ2oX8HnIKCOyBGjx6dlZVl3i41J92lS5fMGz4+Phs2bKhRo4beyTmb5OToJiYmpqSkxLxdq1Ytp+RQrvfff3/hwoXmbb6JAQAHrFq16umnn3bKtGBVhtN7yeDgYOWjgqtdzDv95ACAmzp9+nRQUJB5Oysr6/Dhw2+88YZS/fz888/nzZvn8MTZXEbZwulnif4dqAgK7qhqsrOzlRvc6tSpY+6Z4uPjk5KS/P39O3To0Lhx41JPKSoqysnJMW97eHioq+rKm3iNGjUk1fYzZ84kJydnZ2fXrl07PDy8WbNmZWMKCgquX79u3vb3969bt64Q4urVq3FxcR07dmzWrFl+fn5GRoY5oGbNmrVq1TKv13rhwoXatWtHRUXVrl1b2dvVq1cPHz5cUFDQtm3bNm3aqKdUs4XRaDx06NDFixeDgoJ69uwp6aIkJ0cJOH/+/NmzZ4uLi1u0aNG8eXN7Pw0o32p4eno2bNhQCJGbmxsbG+vv79+zZ0/zj8q8bOqTYOmXql27dteuXYODg0sF5OXlKUPUg4KClE+QZtevXy8oKDBvN2zY0JaPFLdv31ZmGbb08rh69eqJEycyMjICAgKaNWsWERFhMBjKhqmP3qBBAy8vr5KSktjY2NTU1AYNGnTo0KFOnTpW8wEAdzRjxoyDBw96eNg3z6EmPW+5AampqceOHSsqKmrXrl2rVq0sdQcmk+ny5cvnz59PS0urW7duWFhY8+bNfXx87PotJPLy8g4ePJient6gQYNevXp5e3tbirTaS6anp589e/bSpUv169dv0aJFo0aNyu2JLLF6Go1Go/JRwdfXt2bNmpZ2lZ+fv3///oyMjIYNG0ZFRZX9Ij8rK0vpWOvVq2dpGISXl1eDBg1sSd6WjxAOv5ZsfKkAgDsKDQ1V3jYbNGjQvn37yMjIjh07mt9UTSZTQkJCv379Sj3Lxmsfq5dROTk5ycnJycnJgYGBLVq0aNq0qaQfNBqNqampycnJmZmZTZs2bd68edkrQcfyrIxrNNv7d23PUrnkV+Ia9u+aX4nb0r/b+FcuexJu3boVGxt748aNli1btmvXzs/Pz2o+QDlMgOtZvny58hLt0qVLuTFfffWVEhMZGak8PnfuXOXxxYsXHz16tFu3burXfP/+/U+fPm3pcK+88orJZLp69WpkZGRkZKTyuKenp/mRuLg49XPXrl3bokWLUv+tIiIidu7cWSrhXbt2KQH333+/0WicPXu2+cp85cqVJpNpzZo1SsCzzz574MAB9SRrfn5+L7/8clFRUVZW1sSJE9WFiZYtW27atMn207t161b1tw6+vr6zZ88+cuSI8siAAQMkJ0eRlZX1+uuvl+p3PTw8Hn744RMnTihhCxYsiIyMVPeC4eHhkZGRP/74ozlAeTw4ONhkMq1evbpevXpCiMcff9wcoL70zc/PNz+orNhuPl27d+9Wr9bi4+Mzbdq0wsJCdcLq10yp38VkMqkXsktMTDSZTJs2bYqMjGzSpInyeKNGjSIjI19++WXzUx599FGlafPmzaV2ePz48X79+pXq1OvVq7dkyRKj0VgqeMCAAUrM8ePH16xZoy4lGAyGqVOn3rhxw7a/MAC4KPVbt9pXX32lDlN/cbtr165SO9Gw5y0VkJGR8cADD6h72GbNmpV9ey8pKfn+++/bt29fKofg4OA5c+ZkZWWpgyXdqMS7774bGBio7jtWr169ePFi5ZG5c+cqweX2kmY7duwoe/dAs2bNPv/884KCAiVszJgxkZGR6utb82eepKQkW07juXPnlIBevXopu3388ceVx9euXfvpp5+qPzPUqVPniy++KPWLT5gwQQkodebV95I3btzY/KDVzxiSk2OqwGvJxpcKALgR9Zu5EKJUd2bWoUMHJWDp0qXqJruufSSXUWfOnJkwYUKpr+EDAwNfeeWVa9euldpPUVHR119/XfaL0jvuuMPSBbJzr9Hs6t8rfpbk/bvJ2pW4hv27vVfiFezf7forq09CcXHxnDlz/P39lQcDAgI+/PDDkpISG/68wH+h4A5XpFXB/emnny713anyTpqRkVHu4czv/ikpKWWfZaZc+efk5Dz44IOWwoQQU6ZMKS4uVo5S6lLttddeU34sW3Dv27dvuePEn376afOg71I8PT1LfRNgyd///vdyvzEePny4sm1Lwf3WrVtlaw0KLy8v5WJV3R+rLV682BygPBIcHLx582YlPdsL7gMHDiz3O/+77rrr5s2b5b5mbOnmLRWG7r//fvNTJJ+BFi1aJBlf0K9fv9TUVHW8+sPcq6++Wu6zBg4caMufGABclvp9tU2bNsoX2/Xq1VNfr1oquGve86oD7r333q5du5a72927d6t/i1mzZklyGDRoUFFRkRJsb8E9Pz9//PjxZXdrMBiGDRum/GhLwX3ZsmWSPIcOHaqcq1atWpUbc/z4cVtOoy0X5Ork1V5++WX1pa+9BXernzEsnZyKvJZsf6kAgBuxpeCuvhRdvny58ri91z6WLqOOHTumrnWW0rhx48uXL6v3M3HiRMk7+fz580vl78RrNAf694qfJXn/brJ2Ja5h/27vlbjD/bsDf2X1SZg6dWq5z3rzzTdt+SsDavbdvQu4lyVLlpinlyn13WZGRsabb74peaKPj4+lEe7Kl7cLFixQl8h9fHzatGmjrmUvW7ZsyZIl5e4/KSnp/ffflySwb98+8+1jpTJfsmTJwYMHy8aXlJRY+gSg9scff8ycOVOZJ0eo7k3btGmT1aerzZgxIyEhQfkxPDy8T58+yi11xcXFDz74oPnm6+bNm5f77XRoaGipfRYXFz/zzDPq9Gy0e/du83W4r6+v+nv+7du3T58+3d69KYKDg8sd4W7pg4tiy5Yts2fPLioqMv9oMBhatWqlrh9FR0c/88wzlp7+zjvvKE9UP7579+5ffvnF3t8CAFyTh4fHJ598Yt6+fv36vHnzrD6lUnvezZs3m2/2Knu7sfode8+ePcq7tBAiJCSkU6dOjRo1Uh7ZtWuXushur7///e8//vij+hHzjcwmk2nLli227ycxMfFvf/ub8mPNmjX79u0bERGhPPL7778r57xTp07ljoAr+2W21dNoiZJ8qX2+9957FTldtn/GKKUiryUbXyoAUMXk5eWdOnVK+TE8PNy8UcFrH4XRaBw3blxeXp75R29v76ioKPX8JKmpqQ899JASv2LFCvW66w0bNuzfv7/62m3u3Lk7duxQfnTuNZpW/btdZ8n2/t3hK3FX698r8lfOyMhQvhgo9Vd+55130tLSHPhFUJ1RcEcVN27cuBMnThQWFiYlJQ0dOlR5fM+ePZJnhYaGxsXFxcXFKZ1TYGCg+RFzFf7UqVP/+Mc/lPhZs2bdvHnzzJkzN2/efOKJJ5TH33jjDWXGT7WjR48WFRW1b99+8uTJM2bMKLeA+z//8z8XLlwoKCj45Zdf1HPCGgyGDz74ICsr69atW6+88ory+OHDh62ejZdfflnZ7tWr18mTJ/Py8pKSkgYNGmT1uaVs3LjRvBEcHJycnHzq1Kk//vgjLS3tkUceMT+ekZGxc+dOIcTrr78eFxenHh2wbNmyuLg49acls5s3byYlJYWGho4fP/65554rOyegRO3atdeuXZudnZ2RkaG+y+H7779X1vax17333hsXF/fCCy8oj0ybNi0uLu7dd9+VPKugoEDdhQ8bNuzKlStJSUk3b95cunSp8qf85Zdffv/993L34OHhMWfOnJSUlMLCwn379qmnypG/bgHAvfTp00cZ0fzpp5+qL+PL0qHn7dSp086dO3Nzc9PT02fOnKk8fvz4cWXRsJ9//tn078FQixYtunr16rFjx1JTUz///HMl/sCBA1Z/93Klp6ery9lTp069cuVKTk5OdHS0uoJgi23btinTob700ktZWVnR0dEnTpyIiYlRhsUpFee1a9fGxcUpN7mbb5uLi4sre5ZsOY2WRERE/PXXX7m5uRcuXBg1apTy+FtvveXAFb6Z7Z8x1Cr4WhK2vVQAoCq5efPmk08+qSyW5unpab7dueLXPoqEhISkpCTzdr9+/bKysmJjY2NjYy9cuKDcWh0dHX316lXz9oYNG5Tnrl+/Pi0tbc+ePRcuXFC+zjeZTD/99JN527nXaBr273adJdv794pcibtO/17xv3JwcPA///nPzMzMnJycVatWKU+5ffu2w5/uUH05d4A9UC6tppTp3r27+nZgZTUMIUSNGjWUW5wkt3srBXfzEqaKKVOmKE+ZMGFCqdzU9esFCxaYH1TfjCyEeOmll0pNBKYeadW0aVP15Kr3339/uYczGo3qb32zs7MlZ/XPP/9UIoODg2/duqU03b59OywsTGm1OqVMamqq8mDjxo3V93CdOHHizn9bsmSJ8vjo0aOVp0RHR6sTU5+WQYMGqSeBMbM6pYwQYsOGDeqnPPnkk0rTtGnTzA/aeyOb2Ycfflj2r2lW7l1+6nEWzZs3LzWPvHoI55AhQ5TH1R8mZsyYoX6Keof33HOPCQDclvqtOzw83GQyXbp0SRl2pLzFlTulTGX0vOqAgICAlJQUpcloNLZt21ZpjYmJMT8+evToZs2aNWvWrG3btup3+OTkZCW4f//+yuN2TSnz1ltvWXrDP378uHqwldUpZdT3RH/yySfqXb3wwgvmbrpfv355eXnK48oK6p6enpbOUrmn0ZZbzv39/a9cuaI0FRcXqycCVqZktXdKGTPJZ4xyT04FX0s2vlQAwL2UmlKmd+/eymVdREREqfHLyhWWY9c+5V5GrVq1SnlQmcPTbOXKlUoyyttsmzZtlPhjx44pwUajcciQIebgqVOnViRPra7RHOvfNTlLJsv9u8nalbiG/btjV+L29u+O/ZXVJ+GXX35RP0X9geHtt982AfZghDuqslGjRqnvn2rcuLGyXnl+fr4y8ssBe/fuVbZffPHFUq3PP/+8sh0dHV326fXr11+0aFGpRU7U+vTpox7VHhISomwPHDhQ2TYYDOoV2OVfIB87dkzZfvLJJ9Wrtfj6+j711FOS55aiXnY8NTW1RYsWTz311Pr163NyciIiIvb927Rp02zfp9lHH31U7rT7cm3bth05cqT6EfVws7i4OHt3WBHq18aMGTNKzR/3zDPPKK/JmJiYcv9kY8eOVf/YpUsXZfvGjRta5goAzta4cWNlSvStW7eqR6uVUtk9b1RUlPq7Z4PB0KlTJ+VH5e133bp158+fP3/+/OnTp83v8Ldv3z506JB6ZnOHx3Ope+pSv2PHjh2HDBli+67UPfVzzz03aNCgDz74wDwX3AcffGDupvfu3VvuCigSVk+jJRMmTKhfv77yo6enp/pP5sSe2oHXko0vFQBwa/v37//j3+Lj49XfetapU2f+/Pnm7Ypf+yjUPdfPP//csWPH2bNn79u3r6SkZOLEico1Zu/evcvG9+7d+8EHH/z222+vXLliMBi2b99uDv7yyy+1yrMi12iV1L/bcpZs59iVuMv27w78lb29vUeMGKF+hCtxVAQFd1Rl6jq1mXmitIpTVlX18PBQz4hq1rFjR2X74sWLZZ/esWNHyToeQgjlW+iy1EPa7XL69Gllu3PnzqVayz4iERwcrP62/8qVK0uXLh09enRwcPDQoUM//PBD9c0EtvPx8Sl7Mm2hvtA1a926tTJAUrnnTh/qFXfLntU6deo0btzYvJ2Xl5eenl52D6Vet1q9aAHANc2cObNFixbm7eeff76wsLDcsMruee36zJCYmPjxxx+PHTvWPDFoVFTUDz/8INm5jTTsqceNG6dsG43G3bt3z5w5s0OHDs2bN3/66ac3b95sNBodyNDqabSkbPLqdUed1VM79lqqvI+XAOD6evXqdfDgQeWdsOLXPoohQ4aor4Lj4+Pfeuutfv361atX7+GHH16xYkVOTo46Xn0XeF5e3k8//fTYY4+Z19yaM2fOX3/9pQ527jWahv27vWfJRg5fibtm/y4c+isHBQWpRz0K+ndUDAV3wG4lJSXKN/x16tQp9aYshGjYsKGyffPmzbJ7cLhoXhHqIrj6W2gzdc62+Omnn0oNKhdCFBYWbt++/YUXXmjRosWMGTOKi4vt2mfNmjXVdyTYrl69emUfbNCggXnDPN+9A7t1jPpYZc+zsOHlAQDViq+vrzKh9tmzZ9UTeSlcp+fNz8+fNm1aeHj4c889t27duuTkZHPl2rEydClKT20wGMp2bXb11IMGDVq5cmXZnVy4cOHzzz8fPnx427Zty12GXc7h01g2E6WbNmfl2G4dUPHXEgBUBwMGDBiiMnr06Ndff/2XX37Zt29f69atlTANr31q1669c+dO9YQkZllZWT/++OOjjz7apEmTb775Rnn89ddfnzlzpnrEtxDCZDL99ddfCxcujIyMvOuuu65du6Z5ng7QsH+39yzZSMMrcWf178LZf2WgFArucEXqG5yVhVlKUT+uLP+lD09PT+WImZmZt2/fLhWgnuK8Zs2a+mUmpXydK4S4fPlyqdYrV67YtbeQkJANGzacPn36tddeK9vfFxcXL168+I033nAsVXuVu2K48jsGBASo58+pbOob8cpNzDVfHgDgRGPGjFHup164cGHZQe6u0/O+/vrrX3zxhclkEkL4+fmNGDFi/vz5GzZsiI+Pr/jOlZ7aZDIpi8Ip7O2pJ06ceOnSpX/961/jxo1TT4tvdvbs2aFDh1paFFRzZTtE9Z9MfXFe2VzntQQArmzdunXbVdatW7dgwYKxY8d6eXmpw7S99unevXt8fPzu3bufeOKJsl3DjRs3Hn/88W3btpl/9PLyev/991NTUz/66KP+/fuXrRfv2LFjzJgxlZGnvbTt3+06S5XNdfp34ey/MlAKBXe4olJfiubm5paNUV/Z6vw+LoRQbn43mUyHDx8u1Xro0CFlW72ah3OpRyKoMzQrdc+djdq2bbto0aL4+PjExMT333//zjvvVLeql0apVEeOHCk1BduJEyfy8vLM2+Hh4eqFaMyUVoW6960I5bUhyjvPV65cUQ7k7+9f7th8AKiGPv74Y/Olck5OTlFRUdkAV+h5i4qKFi9ebN6uW7fuqVOnNm7cOGfOnJEjRzp2B3cpmvfUPj4+Dz/88M8//5yenr5hw4YpU6ao74jPzs5evXq1w9napeyvExsbq2y3a9eu7FNK9dRaddPCNV5LAFA1VMa1z4ABA5YuXZqWlhYTE/Pqq6+qF0cVZa4xg4ODn3322T179ly9enX58uVjxoxRj3mPiYkx1w2ce41WGVfidp2lylPx/l1wJY4qioI7XFFUVJQyW5bRaJw7d26pgISEBPXy3H379tUvOSHEf69c+vbbb6ubjEbjO++8o/w4ePBg3bKS69atm7L91Vdfqecsu3Xr1meffWb7rt56663e/7Z//34hROvWrWfOnLlv375Dhw4pd2dnZGSUWzTR3MWLF0tNnrto0SJlW5mNrm7dusqDpdZv2bt3r2Pzzpelfm188sknpb4ueuedd0z/Xgm9X79+pUaIAEC1FRERIV9q2xV63uTkZKVf69y5s7oa+8svv1R8/+qe+t1331VPs37gwIFdu3bZuJ9r164p3fSUKVOEEH5+fiNHjvzqq69SUlImTpyoRNo7qs5hq1evPnfunPJjfn6+Mo+QsK2nVn/wqyBXeC0BQNWg4bXPAw88YO65+vXrl5eXZzAYevfu/fbbb58+fVp9rWruubZs2aL0dEuWLBFCBAcHT548ee3atRcuXFBPR26Od+41mlb9u7DzLOmg4v07V+Koqii4wxUFBAQ8+OCDyo8ffPDB3Xff/fXXX//+++9r1qx59dVXe/ToUVBQYG4NCQkZP368zhm+9NJLyv3IGzZsmDx5snmBjrNnz44aNUoZLVW/fv2nnnpK59ws6dOnT58+fczb2dnZffv23bFjR2Zm5t69e/v166dMb2eLkJCQA/82c+ZM9Q3p2dnZytTt7dq1U+a09fD4z7uNXcey0ZQpU7744ou0tLSEhISpU6cq9XeDwfDcc8+Zt8PDw5X4mJiYmTNnJiQknDlzZunSpeold0qxN/OxY8cqK7RcuXJl4MCBR48eNRqN169fnz179scff6wkptuUOwDgFubPnx8cHGyp1RV6XvUUdnFxcdu2bSssLMzPz1+2bNnf//73iu//qaeeUm5w3rdv37hx4w4fPnz9+vUff/xx+PDhtu8nNDQ0JSXF3E0vX778+++/V64wi4uL1TOcqlcdV/q7kpKSzMzMiv4y/62oqGjgwIGbNm3KyMiIiYkZPHiwcn3eqFEj5YOcuqf++OOPly1bdv78+SNHjsyaNWvBggWWdm5vT+0KryUAqBo0vPbx8fEx91z79u2bNWuWMuWX0WhUT7dt7rlatmypXJDOnz9ffbtSfn6+slaH+PdS2M69RtOqfxd2niUzV+vfuRJHdWECXFJKSoot9/gYDIbffvtN/UT1cPjFixeX2q16HvP8/Hzzg8uXL1cefOWVV9TxykxwtWrVKrUr9Rhqs7JTyX/33XdKvPqL6/vvv7/sr7xmzRol4Mknn1Q3Pfnkk0rTmjVr1E2tWrVSmrKysuRn9ffff7d6SoUQAwYMUJ5S7slJSUlRL5vm5eXVunXriIiIUn+y5557TtnP9OnTlcfr168/duzY9evXm5uUx4ODg8tNWz2EUPmrrVy50pbfZdKkScp+CgsL1XeZSSQmJirP+umnn5THfX1977vvvrffftvc9OijjypNmzdvVp6yb9++UpPYqJclMJsyZYr6dxwwYIDSdPz4cXVTYmKi0tSrVy/5nxgAXJn6rTs8PLxsgHmQmtquXbuUVs17XnnAhAkTyr7Jl+rp/Pz8yk4ae8cddyg7kXzGKNfs2bOFDebOnas8pdxecubMmer44ODgiIiI1q1bqxd39ff3T01NVfZjLkmYRUREjB079vz587acRvXQNnU/9fjjj9vyu3z99dfKUxISEmwZcda4cWN1ApLPGOWeHJPWr6VyXyoA4F7Ub+bChktLhQPXPuVeRq1fv169n4CAgHbt2rVr167Uclxr1641x0dFRakfb9KkSceOHZs2bap+sGvXrhXJU8NrNAf6d03Oksly/26ydiWuYf/u2JW4A/27A39lyUlQz8xjy6c4QI0R7nBRYWFhv//+e/v27SUxfn5+77//vr3fCWtl5syZ06dPV3/pqp6MzMfHZ/78+eoLMFdw1113LV68uI5RLK8AACAASURBVNz1x5X1ZGwRFha2du1aZeqY4uLipKSk+Ph49VD3O+64Q32b9r333qtsX7161Xyvn92/gAX9+vVT36SmGDx4sPqONm9v708++aTcPQwcOLBr167lNt15553K6isFBQXr168vdRNcuU9ZunSpehkW9SALIcT48eM1GQsJAFXME088oQxNKssVet53331X/ePt27fNi4jMmjVLucA7c+ZM2aU4bfTGG2+oL7AVfn5+99xzj+37eeedd9Q9b0ZGRnx8fFJSkjIljoeHx6pVqxo1aqTEqD9QxcfHr127Vj0WvoJGjhyp/sMpnn322cmTJys/tmvXTrkvrZTnn3/e0s4d+IzhCq8lAKgatLr2GTVq1MKFC5Ufc3NzT506derUKfUqKc8//7xy3bp+/Xp1eT0lJeXEiRMXL15UHgkJCVGPnXLuNZpW/bu9Z0m4Rv/u2JW4A/07V+JwHRTc4bq6dOly/Pjxb775ptQCIEKIgICAKVOmJCUlvfjii07JTQjh4+OzePHi6OjoO+64Q93HeHt733333UeOHJkzZ46zcpOYPn365s2b1bd01alT58svv5TcqV2ugQMHnjp16oUXXihb6Q4PD//ss8+2b9+uTMQvhBg+fPjixYsbNmxYkeQt6d69e0xMjHpqvKCgoNdff33btm3q1eGEECNHjtyxY4f6169Zs+bMmTM3b96sXl1HrUGDBmvXru3SpYtdKU2dOjU+Pv6BBx4o9Y16p06dNmzY8MMPP9SqVcuuHQJAdeDp6anc8FuWK/S8jz322Jdffqlerb1Lly6bNm166623lJ4iIyPDxoFsZfn4+Hz77bcffPCBeih969atd+3aNXLkSNv34+npuX79+h9//PHOO+8sdSXs6+s7adKkuLi4Ut+1z5s3729/+1vZgd6aePzxx9etW6f+GNCkSZPVq1d/9NFHpdJ77733Pv300zp16iiPhIWFLVu27K233rK0cwc+Y7jCawkAqgytrn1ee+21P/7446GHHip1aWYwGAYOHPjrr79+8MEHyoMNGzY8duzYP/7xD/WSpGYhISGzZs06evSo+nZwDfN0gFb9u7DzLAmX6d8duBJ3rIbAlThchMGkuoECcFl5eXlnz549f/58nTp1WrVqVUl1W4fduHHj3Llzt27dqlWrVqtWrUrdz+WakpOT09LSgoKC2rdvr77B3AE3btxITU3NzMwMDQ1t0qSJvC+/detWdnZ2UFBQYGBgqbu9Ku78+fOXLl0KDAxs3769pW7bLCMj48yZMzVq1GjXrp36iwGJgoKC9PR0f3//oKCgcu8SsPSsxMTEzMxMf3//pk2bhoaG2vhEAICEc3vekpKS8+fPX758uUmTJuqbmjVUXFx8+vTpzMzMBg0alB15YO+uLl++nJqa6unpGRYWVr9+/XIHoynS09OLi4uDgoI0vzg3Go2nTp3KyMgIDQ1t27at/GNASkrKhQsXQkJCwsPDbfzA4NhnDHf8FAcArkmrax+TyXT9+vXU1NT8/PxGjRo1btxYfsWan5+fmpp65cqVoKCgsLCwcu9+row8HaBh/27vWXKR/t2BK3HH+neuxOFcFNwBAAAAAAAAANAAU8oAAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAa8HJ2AhowGAzOTgEAAAeZTCZnp+A09OAAAHdXPftxenAAgLur1B6cEe4AAAAAAAAAAGigKoxwN9NhZEF2dvaNGzeCgoJq165d2ceCEOLatWu3b98ODQ318/Nzdi7VwsWLF4UQTZs2dXYi1cLt27evXbvm5+cXGhrq7FyqhRs3bmRnZ9euXTsoKMjZufwHo8PMXHBsYEZGRm5ubnBwcEBAgLNzqZr4TFXZ8vLy0tPT/f39Q0JCnJ1L1VRUVHT58mVvb++GDRs6O5cqy/U/mtKPu2APro9Lly4ZjcawsDAPD4YwwlYFBQVXr1719fWtX7++s3OBO3HNK1l3p0MPTvcAAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAQruAAAAAAAAAABogII7AAAAAAAAAAAaoOAOAAAAAAAAAIAGKLgDAAAAAAAAAKABCu4AAAAAAAAAAGiAgjsAAAAAAAAAABqg4A4AAAAAAAAAgAYouAMAAAAAAAAAoAEK7gAAAAAAAAAAaICCOwAAAAAAAAAAGqDgDgAAAAAAAACABii4AwAAAAAAAACgAS9nJwDA9eTmiuXLhYeHePppZ6cCAADsUVQkjh/3vHAhIDnZ79Yt0aKFiIgQ7duLgABnZwYAQLV05YpITPRITq6ZlOQZGCiGDBFdughvb2enBaASUXAH8B+e6enim2/Ep5+KjAxhMIiaNcWkSc5OCgAAWGM0iuho8cMP4qefRHq6rxC+6laDQXTuLJ56SkycKAIDnZUjAADViMkkdu0Sn30mfv1VlJR4C1FHafLzEwMHijffFL16OTFBAJWHKWUACCGEOHas7qxZjfr0EfPmiYwMIYQwmcSUKWL7dmdnBgAApPbsEV26iIEDxRdfiPT0cgJMJnH0qJg2TYSFiZkzRXa27ikCAFCdnD4tevQQQ4aIX34RJSWlW2/fFlu2iN69xZgx4vRpZ+QHoHJRcAeqvX37xKhRomvXwO+/NxQU/FdTYaG4/35x7JiTMgMAAFJXroiJE8WgQeLECZvib94UH3wgOncWO3ZUcmYAAFRXK1aIqChx6JD1yF9/FVFRYv36ys8JgK4ouAPVVWGhWLFCdOok+vUTGzcKk6n8sOxsMXy4SEnRNzkAAGDNwYOiWzexapXFTtySCxfE0KHimWdEUVHlZAYAQHX14ovi0UdFTo6t8Tk5Ytw48eGHlZkTAL0xhztQjZy8mhOXkuWTc6vVxjURK77wv37Fpqelpt4YNHTLVz8X1gyy8UBRTep0qM8UsQAAVJqffxb/+78iL8/Bp5tM4tNPxblzYs0aUaOGppkBAFBdzZkj/vEPu59VUiJeeEGUlIiZMyshJwBOQMEdqEYS//gr4IN/jIjb6ld4264n1j57usVTk5+d+m6xp01vGjP6CQruAABUls8+EzNmCKOxovv57Tdxzz1iwwZRq5YWaQEAUI29955YuNDxp7/yimjeXDzwgHYJAXAappQBqod9+8RDD9334OD7//zV3mq7Wa8zcfP+9ZbB3pvWAQCAtv71L22q7WbR0WLoUJGbq83eAAConnbuFLNmVWgPRqP43/8VBw5olBAAZ6LgDlQD27aJfv3EmjUGY5nl0e1xz187nty6XKukAACA3X7/XUyerFm13Sw2VkyapPE+AQCoPq5dExMnatCT5ueLiRP5FhyoAii4A9XAm29qtacp2/45dv9GrfYGAADscOyYGDdOFBZqv+e1a8Wrr2q/WwAAqjyTSTz6qLh8WZu9JSWJl17SZlcAnIeCO1DVbd0qYmI03N+rP/2j70ktdwgAAKzLzRXjx4ucHFtiTXXq5A0ffvt//kdERdm6//ffFytWOJ4eAADV06pVYssWq1GmRo1yx40z1q1rfYdffCG2bdMgMQDOQ8EdqOq0G95u5mkseWvlvA4pp7XdLQAAkJk+XZw6ZT2sdm3x6af5ycnpn3+e88knIjZWHDkiBg609RDJyRXLEgCA6uTmTZsGpE+YUHjsWMaHH6bHxIh77rESbDKJ6dMr5YY2AHqh4A5UaZs3i/37bQ9Prdvg+wEPGT2svDP4F+R/tOyVRpka3TQHAADkvvtOfPut9bCuXcWJE+JvfxM+Pv95sEsXsXOneO89Ya1/F7duiUmTREmFVnwBAKAaeeMNceWKlZjJk8WKFSIwUAhhqlVLbNwoRo608pTERLF4sUYpAnACCu5AlTZvno2Bp8Lazn7o5ZEzv/3H6L+9/cCLVuPr3spa8vkLdXOyKpYfAACwJi1NTJ9uPWzYMBEdLRo3LqfJYBAvvSRWrBDe3lZ28uef4u23HUkSAIDq5vRpsWSJlZjBg8WyZf/1nbeXl/jhB9G9u5UnLlworl+vaIYAnISCO1B1/fabOHBAHmI0eOzs3P/xZz6d+MJXG7oPLfHwFEKs7T3y2yETrO4+LCPt/eVzfIsKtMkWAACU69lnxc2bVmL69BE//2wePWfRhAli5UphMFjZ1fz5Ij7evgwBAKiG5s0TxcWygNBQ8d13wtOz9OMBAeKHH4S/v+y5N26I+fMrmiEAJ6HgDlRRJpPV4e2/Rd0z7rVVL09ecLRFp1JNnw2fujlyqNWDdDl3fMGqhR4mo+N5AgAAiY0bxU8/WYnp0EFs2GDlut1s/HixYIGVmKIiMX26MJlszRAAgGooPl78+KOVmKVLRcOG5Te1aSPee8/K05ctE2lpjuQGwNkouANV1G+/idhYSXta3YYLxr98KbhRua0mg2H+w6/EtrF2m5sQg4/tfWHdpw4mCQAAJHJzrU8mExAgfv5Z1K1r6z5fe0088oiVmN27xb/+ZesOAQCoht58UxilI89GjBBjxsgCnn5a9OkjC7h9W/z9747kBsDZKLgDVZHJJN58Ux7y9dBJxZ5ekoAiT++XHluY1LCl1aM9HP3zA3/+aleCAADAurffFhcuWIn59FPRrp0d+zQYxOefixYtrIS99JK4dcuO3QIAUH2cPCl+/lkW4OcnPvnEyk4MBvHhh1amelu6VFy7Znd6AJyNgjtQFW3YIA4dkrRfrlN/U9TdVneT4xfwzJPvX6lT32rkoztWMbEMAABaSksTH35oJWbCBDF5st17DgoSK1aUM6VsqaMvXGj3ngEAqA4++sjK3GszZoiW1seuiZ49xcSJsoC8PPHRR/blBsAFUHAHqhyTyeoV8lf3PFbk6W3Lzq4HhcyY+u6tGtJF2IRomHU1KvGwrRkCAACr5s4VeXmygJAQ8fHHDu68b1/x8stWYhYvFqmpDu4fAICq6vp18d13soCaNcVLL9m6t4ULhY+PLGDpUiufBwC4HtmEEgDc0vr18tnbLwU3+s2G4e2K5AYtXpk8/+MvX/EuKZKEjT7428G2kbbvFgAAWBQfL5YvtxLzwQciONjxQ8yZI374QZw7ZzEgP18sWCC++MLxQwAA4KqOXc4+dTXHgSd2+PLDjvn5koCE8Y8dv1QoLv3/9U47NazZvn5Ni9FNm4pJk8TXX1sMyMwU338vpkxxIFUAzkLBHahabBjevuzuR0s8pHeRl3GwTeTcR2Yt+m6BwfJ9c4OORQfl38quYfmTBAAAsNFrr4mSElnA4MFi0qQKHaJGDfHRR2L0aFnMN9+ImTNF69YVOhAAAK5nZ2L6d4cu2fssn+Kijd9ZLo4Lkefr/7cWd2fvSlIemdanuazgLoR49VXxz3+K4mKLAYsXU3AH3AtTygBVy7p1Ii5O0p4S0nhz5FAHdryt25DP75X18T7FhcMObXdgzwAA4L8cPiw2bJAFeHmJxYutLLNmi/vuEyNGyAKKisTcuRU9CgAAVcXAE9F1b2VJAn7tNdzuUWitW4vx42UBx46JPXvs2ycAp6LgDlQhJpOYN08e4sDwdsW3gx+5VitEEnDfwU2O7RkAAPzHokVWlmJ77DHRoYM2x/rwQ+EtXdblhx/EqVPaHAsAADc3Zv9GSavRw+Nf/R9wZL/PP28l4PPPHdktACeh4A5UIb/8Io4elbTfatJ8S/e7HN690cPjt6hhkoB2l860TU2SBAAAACsSEsTatbKAGjXEG29odrg2bcRjj8kCjEbx/vuaHQ4AALfVKPNyVOJhScCuTv3T6jZ0ZNeRkeKOO2QBa9eK9HRH9gzAGSi4A1WFySQWLJCHHJv6vMPD283W9R5hkt7AziB3AAAqZNEiYTTKAl58UYSFaXnEOXNEjRqygO++E5fsnuUWAIAqZmzMRg+TrI92cHi72TPPyFoLC8WPPzq+cwD6ouAOVBU//SQf3i7atDl3930VPEhqcKPDLTtLAoYf+t2nuKiCRwEAoJo6e9bK5XTduuKllzQ+aFiYePppWUBhofjwQ40PCgCAW/E0loyK3SwJSG7Q4kiLTo4f4P77RUPp6Pjlyx3fOQB9UXAHqgSTSSxcaCXmzTdNnl4VP9SGnvdKWoPysgec2FfxowAAUB198okoLpYFzJghgoK0P+6rr4qa0hXevvxSZGZqf1wAANxEzzOHQrIzJAHrekvXIbfKx0f83//JAg4dEseOVegQAPRCwR2oEtassdL1tmljZd1zm23vMijXL0ASwKwyAAA44uZNK4PXgoLEjBmVcuiQEPHEE7KAnByWawMAVGfD/touaS308vkt8p6KHmPyZCGdwVX8858VPQQAXVBwB9yf0Wh9ePu8ecKzQrO3K/J9/H7vOkgS0Ot0XMCVVE2OBQBANfL11+LWLVnA3/4m6tSprKM//7zw8ZEFLFkiipg1DgBQHfkUFw6U3sm9q3O/mwEVvgWtdWvRt68s4IcfrCz0AsA1UHAH3N/q1eL4cVlA+/ZaDW83W99zuKTVw2RstfEnDQ8HAEDVV1IiPvtMFuDvL557rhITaNxYTJokC0hLE7/+WokJAADgqgae2BdwO1cS8GvPis0no3jsMVlrWprYxwyugBug4A64OaNRLFpkJWbuXOGh5X/2Y80jkus3lwS03rCaL94BALDD+vUiOVkWMHmyCA2t3BxeesnKB4ZPP63cBAAAcEnDDsnmk0kPCo5r3U2bIz34oAgMlAX88IM2BwJQmSi4A27uhx/EiROygA4dxIMPan7YjT2HSVoD01LEnj2aHxQAgCpLXss2GMQzz1R6DuHh4r77ZAF79rBcGwCgugnKv3XHqYOSgG3dhhi1GuIWGCjGjJEF/PSTlfXVAbgAL2cnAKACSkqsz96u9fB2s41Rw57etMyrxHJP/803YpBsqncAAPD/nT0rdu2SBQwbtjSrxtcf7bVxf0ajsbi42MPDw8vLvk/7UY0GLBHrZBGffiq+/NKufQIA4Nb6xf/pXSJbxWRL97u0PN7DD4vvvrPYev262LlT3H23lkcEoDVGuAPubP16kZAgC+jYUTzwQGUcObNmnX0d7pBF/PyzuHGjMg4NAEBVs3SpMJlkATNmlBhNRpOo7H+xrbpltmgry+T770V2tra/PQAArmzwMdkX3hdCm55sEq7l8YYOFXXrygJWr9bycAAqAQV3wJ2tXWsloHKGt5ut73mvrDk/n9nlAACwrrBQ/POfsoD27cU99+iTi8lgOH7//8oicnPp3wEA1Yd/Qb58Ppmt3QZrfEgfHzFunCxgwwZRUqLxQQFoioI74LZKSsSWLbKATp2s9NMV80f73ulBwbKIb76pvKMDAFBFrFsnrl2TBTz9tDAY9MpGnLlnrKhVSxbx9dd65QIAgJP1PfmnT3GhJGBH54HaH3X8eFnrtWvizz+1PygA7VBwB9zW/v3i+nVZQGUObxdClHh4/hYlHXAXGyuOH6+8BAAAqAq++krW6u8vJk7UKxUhhCiq4S8ee0wWcfAg/TsAoJoYdDxa0nqxXpOzDVtUwlEHiXr1ZAFWb3YH4FQU3AG3tXGjrLVBAzF2bGWnYGVWGcEgdwAApJKTxY4dsoAHHxS1a+uVzb9NnWolgP4dAFAN+BQX3ZlwQBKws3P/Sjmwp6cYNUoWsE66wjkAZ6PgDrit9etlrSNHVurwdrMLoU2Ptugki1i5UhQUVHYaAAC4qxUrrCyX+sQTeqWi0qGDuEO6NDr9OwCgGuh+9oh/QZ4kYGfnAZV17DFjZK3nzomjRyvr0AAqjII74J6Sk8XJk7IA+ffh2rEyyD0jQ2zYoE8mAAC4GZNJfPedLCAiQvTpo1c2/23KFFlrRoaVL/4BAHB//U7Kpkq/XKd+Qljbyjr20KEiMFAW8OuvlXVoABVGwR1wT/Iqtp+fGDJEn0R+7zo4z9dfFrF8uT6ZAADgZv78U5w9KwuwOrVL5XnoIVGzpixA/lUBAADur198jKR1V6f+pspb1dzPTwwbJgvYtKmyDg2gwii4A+5JPoH74MEiIECfRPJ8a2zvOlAWsWWLSEnRJxkAANzJihWyVh8fMWGCXqmUERgoxo+XBWzZIjIy9MoGAAC9tbp8rlHmZUlAdEQl34Umn1UmNlZcu1a5CQBwFAV3wA1lZ4u9e2UBes0nY7a+53BZs9EoVq7UKxcAANzE7dti9WpZwL33ipAQvbIpz//9n6y1sNBK/gAAuDP5fDI5fgGHW3au3AxGjBBeXhZbjUaxdWvlJgDAUZb/6wJwWVu3isJCi60Ggxg5UsdsxJEWnc6HNm1+7aLFiGXLxKxZovLutgMAwEl+Opq27cx1B54YGfP7kzduSAK+aN3/rzX/WQ/Nu/LXQi/tjjtEmzYiMdFiwHffiWnTdEwIAAD99D0pm09mf3iPYs9KLqnVri369JENttu0SUyaVLk5AHAIBXfADcnnk+naVYSF6ZXK/7exx7Dpv31psfncObF3rxhQaQu4AwDgJJdu3v7r0k0HnvjIdtmio9n+QSvqdylU7bldqHTltEryyCNi3jyLrTExIjlZtGypY0IAAOihZn5OpwsnJQF7I+7UI4/hw2UF961bRXGxbBQ8ACdhShnA3ZSUWFkdRd/5ZMw29LzXytf7LJ0KAMC/BdzO7ZNwQBKwreugQi9v3fKxaOJE2Q1qJpNYtUrHbAAA0EmPxEOexhJLrUYPjz/b99Ijj+HS6VuzssT+/XqkAcBOFNwBd7N/v0hPlwXoO5+MWUbNun+26ymLWL1aSG+cBwCg+hh0PNqn2PLscEL81mOYbsnItG4tekkLCt9/r1cqAADop/fpWEnriaYdbgTU0iOPTp1E06ayAKZxB1wSBXfA3WzYIGutX19ERuqVyn/ZIF86NT+fpdUAADC76+huSWtKSOPjzTrolYs1EyfKWk+dEvHxeqUCAIBO7jh1UNIaIx9tpi35IPdt2/TKA4AdKLgD7kZecB81Sui/qJoQQoi9EX0yataVRTCrDAAAQgTl3+p1Ok4SsLX7XbolY91DDwlv6eQ2a9bolQoAAHpofu1iw6yrkoD94T10S0bce6+s9dAhkZmpVyoAbMXSCoBbOXdOnJSt3CJGjNArldJKPDw3Rd09adcPFiP27xcJCaJ9ex2TAgDA5Qw+use7pEgS8HuXQbolY129emLoUNn6MWvWiDff1C8fAAAqmXx4e3aNmvFN2tm+t0s38388klZUVHTz5k1vb+9aly1ODV8ur+B2Y728PIqLy28uKfnzm59T7hohhOhQP7BTwyC7dg6gklBwB9yKfHi7r6+4y5lj4tb1GiEruAshNm2i4A4AqObuPrxT0no+tOnZhi10S8YmDz0kK7ifPClOnBAdO+qYEAAAlUg+gfuB8CijPbeVJ17P3RB/1WQyFRUVGQwGb+/r9ubTollE97NHLbVe/Xn9+57hQoj/69mUgjvgIphSBnArGzfKWgcPFoGBeqVSjguhTa3MObtjh165AADgimrlZkeePSIJ2OJS88mYjR4tfH1lAcwqAwCoKrxKirslW6xuCyFiwnWcwF0IIcSBtlGS1l5nZPPUAXAKCu6A+7h1S+zZIwsYNUqvVCyysnRqdLQokt1EDwBA1TYg/g9Po+xe8m3dBuuWjK1q17ZyCx0FdwBAVdHxYoJ/Qb4kQNcJ3IUQ1grujTKvNL1+SbdkANiCgjvgPrZsEYWFsgD58uW6iI64Q9ackyMOyqbDAwCgaht0bK+k9XTjNhfrNdEtGTs89JCsNSFBxMfrlQoAAJWoR+JfktZz9Ztdq11Pt2TMTjZpl12jpiSgR+Ih3ZIBYAsK7oD7kM8n07WraNZMr1Qsuh4UciG0qSyCWWUAANWVf0Ge/L7v7V0H6pWLne67z8qsMuvW6ZUKAACVSF5wj23TXbdMFEYPj9i2kZKAqKTDuiUDwBYU3AE3YTSKLVtkAS4wn4zZQflHEAruAIDqql98jE+x7Ga1XZ3665aMfWrXFnffLQug4A4AcH9+hbc7XpDdsxXbRlb4rjwHpAX3yKQjBpNJt2QAWEXBHXATMTHi2jVZgMsU3K18BNm/X+Tm6pULAAAuZOCJaElrcv3m5+V3iTnX/ffLWg8dEikpeqUCAECl6JZ8zKfY4qpjRg+PQ6266JmPIq61bFhb3ZysllfO65ULAOsouANuQj6fTGioiHTON+1lxbbpbvLwtNhcWCj27dMxHQAAXIJPceGdCQckATu7DNAtGUeMGiW8vCy2mkzi1191zAYAAO3J52Y53ahNtn+QbsmoXawXJp87PipJNhMOAJ1RcAfcxIYNstZRo4SHq/x3vlUjMKtte1nEzp165QIAgKvodSbOvyBPErC7Y1/dknFE3bqiv3TGG2aVAQC4OXnBPbatEyZwV8S17iZpZRp3wKW4SoUOgMyFCyJeNpGc68wnY3a5h7RkwDTuAIDqp/+JPyStaXUbnAprq1syDhozRta6Z4/IzNQrFQAANOZfkN/u0hlJQKx0XpfKJp9VJvLsUYPRqFsyAOQouAPuQH6Ptq+vGDJEr1RscrnHnbLmw4dFerpeuQAA4HwGk6nfyRhJwG6XXS5VbfRoYTBYbC0uFr/9pmM2AABoqfP5E57GEkutRZ7eR1p21jOfUuQj3IPysoOTEnRLBoAcBXfAHcjnkxkyRAQG6pWKTa516yl8fS02G41i714d0wEAwMnap5wOyc6QBOzq1E+3ZBzXtKnoLh3cJ//EAgCAC+t+9oikNaFJeL6Pn27JlJVWt0Fa3YaSgEZHCZH7BAAAIABJREFUD+qWDAA5Cu6Ay8vJEdHRsoCRI/VKxVbFfjVEr16yCGaVAQBUJ/1P/ilpvRFQ62jzjrolUyHyWWW2bhVFRXqlAgCAlrqfPSpp/atVF90ysSSujWyQe8OjsbplAkCOgjvg8rZsEQUFsoDhw/VKxR6DB8taWTcVAFCd9I+XTeD+R/veRpdZ/NwKecE9O5ub2AAA7si3qKBDyilJwF+tuuqWjMUcWsqK/o2OHBAmk27JAJBwk0/2QHUmvzu7a1fRrJleqdhDPq38qVPi0iW9UgEAwJkaZF1tk3ZWErCno3TtE5fSsaNo1UoWwDTuAAA31Pl8vE+xxZu0Sjw8jzaP0DOfcslH2de4kSnOyBZ9BaAbCu6AazMaxZYtsoBRo/RKxU69e4uaNWUBu3bplQoAAM7UP/5Pg+URZ0We3vvDe+iZT0XJb61bv16vPAAA0Ey3ZNl8MqfD2uT6BeiWjCVpdRterR0qi+A+M8A1eDk7AQDij3OZX8RcKLep7Zkjc65dkzz3Te82Z78/bOOBavrq+F/ey0v07Ss2b7YYsGOHmDRJv3wAAHCSvgkxktZDrbvm+frrlowGRowQixdbbD17Vpw+LcLDdUwIAICK6pp8XNIqn8tFT4dbdh7213aLzdHRYupUHdMBUD4K7oDz3bxdnHD1VrlNQ/bJFhfNDKyzKaCJ0cJzy2oXGmh3chUxZIis4L7d8qcEAACqCt+igsikI5KAvRF9dEtGGwMHisBAkZNjMeC33yi4AwDciKexpNOFeEmAK6yYavZXqy6ygjsj3AHXwJQygEvrH/+npDU6oo/R4ML/i+XrpqamMsEcAKDKi0o67FskW/x8Xwd3K7j7+oqhQ2UBGzfqlQoAABoIT02qUXjbUqvJYDjSopOe+UgcadlZ1nzhgrh4Ua9cAFjkwqU6oNprmHW15ZVzkgBXHxPXpYsICZEF7NypVyoAADjHnQkHJK1nG7RIq9tAt2Q0M2KErHXfPpGdrVcqAABUVNdzxySt50KbZfsH6ZaM3LnQZjcCaski/vhDr1wAWETBHXBdA07sk7QWennHtonULRlHeHiIgQNlATtkE+YAAFAF9EnYL2n9o31v3TLR0vDhwmCw2FpUxHfqAAA30uXcCUnrkZauMrxdmIfbywe5/ym7Sx6APii4A66rn3Q+mbg23fN8a+iWjIOGDJG17toljEa9UgEAQG9Nr6eEZaRJAty14N6woYiUfuu/ZYteqQAAUFFdzslWTD3SQlrg1t3R5h1lzYxwB1wABXfARfkX5HdLPioJ2Btxp27JOE5ecM/IEEdlvyMAAG5NPp9Mrl/AsRYRuiWjsWHDZK2bNumVBwAAFdIkPTUkO0MS4FIj3IUQR+UTyh87xsRugNNRcAdc1B2nDvgUF0kC3GNMXJs2olkzWQCzygAAqq4+p2QF9wNtI4s8vXVLRmPygntKikhI0CsVAAAc1/m8bD6Z9KDgtLoNdUvGFqfC2hZ6+VhsLikRBw/qmA6AclBwB1xU35OyKV/PNGp9uU593ZKpkEGDZK0U3AEAVZRf4e3IpCOSgD/b9dItGe316iXq1JEFbN6sVyoAADhOPoH7YfmE6c5Q6OWd0CRcFsE07oCzUXAHXFTPxEOS1uiIPrplUlGDB8tao6NFYaFeqQAAoJ/uZ4/6FMv6uJh2PXVLRnteXuKuu2QBW7fqlQoAAI7rdCFe0mpl/hYnOdqCadwBl+bl7AQAlCP0xvX6N65JAqI73KFbMhUln8Y9N1ccOCD69dMrGwAAdNL7dKykNbFRq6u1Q3VLxnanr+fMXC8rPSh6Nuj8kFhjqbV41+43VscV+llc4H1g65CRHdzkdj0AQBXlX5DX6so5ScAx+QqlTmJl3dT9+4XRKDwYYgs4DQV3wBV1kc4idyOg1smm7XRLpqIaNRLt28smct25k4I7AKDq6X0mTtLqssPbM3ILT13LsSUyPrjDgwaDwWQqt9WrqDB3+07JkjNhtS3W4gEA0EfExVMeRqOl1ts+fmcatdIzHxsda97RZLkLFtnZ4uRJ0dEVvyoAqgm+7wJcUZdzxyWtR1t0Mhrc6j+vfFYZpnEHAFQ5oTfTW0pHzO0P76FbMpXkelBIYkNZGaLXadlXDgAAOJ18PpmEsLbFnq44UDUrsHZKSJgs4oBs2XYAlc2tanZAtSFftsXK7WMuSF5wP3BA5ObqlQoAAHqQzydz28fviEvOCWsv+Th9+Rh/AACcTn7p7ZrzyZhZn1UGgPNQcAdcTo3C223TkiQBVhZIcUGDBwtPT4uthYVi3z4dswEAoNLJC+5/tepS6OWjWzKV50B4lKS15ZVzoTeu65YMAAB2MZhMERctz30qxLHmEbolY68TzdrLmim4A05FwR1wOREXEzyNJZZaC728E5qE65mPBmrXFl27ygKYVQYAUIV4mIw9Eg9JAva3ldWp3ciRFp3zffwkAT2S/tItGQAA7NL0ekrt3JuSgBPNOuiWjL2ON5N+GXDypLgp+9UAVCoK7oDLkU/gfiqsrVuOiRsyRNZKwR0AUIW0u5RYJ+eGJKAKTOBuVujlfaRlZ0kA07gDAFxWR+nw9rS6DTNq1tUtGXslNWyZ52t5+XGjUcTRBQNOQ8EdcDldzksncHfTKV/lBfcjR0R6ul6pAABQuXpK5y6/VivkXP3meuVS6Q5IR+v3OhNnMJl0SwYAANt1vHBS0urK88kIIYweHlbufWdWGcB5KLgDrsVgMnW8IJ9Fzt0mcDfr21f4+lpsNRrFnj06ZgMAQCXqKZ1P5kDbHiaDQbdkKpu84B58K7P15WTdkgEAwHbyCdyPu/B8MmZWZpWh4A44DwV3wLW0vHI+KC9bEuDiX7Nb5O8veveWBezcqVcqAABUIp/iwi7nZDerVZn5ZMySGraU33HfSzreHwAAp/AqLGiTJvtK2JUncDc70VS6buqBA3olAqA0Cu6Aa5HPJ3MpuJErzyJnxeDBslamcQcAVAldzp3wLSqw1GoyGGLbdNczn8pmMhgOto2UBPRIZN1UAIDLqZd40rukyFJroZd3YqPWeubjgOPy0XjXr4tkbjIDnIOCO+BaOlfJCdzN5NO4nz4tLl3SKxUAACqLvL6c1LBlZs06uiWjD/msMt2Sj3qVFOuWDAAAtmiQcFTSmtiodaGXt27JOCajZt3LderLImJj9coFwH+h4A64li7njktaj7ZwzwnczXr1EkFBsgBmlQEAuL8e0gncY9vIBoO7qQPhsoK7f0G+fJJcAAD01+DkEUmr60/gbhYvn1Xm4EG9EgHwXyi4Ay6kdu7NsIw0ScDR5u48wt3LS/TtKwtgVhkAgJsLvJ3bIeW0JOCAdPYVN3U9KOR8aFNJALPKAABcTYMEWcH9ZNN2umVSEVbypOAOOAkFd8CFdE0+ZjCZLLXm+gWca9BMz3y0J59VZvt2vfIAAKBSdD97xNNYYqm1xMPziFvPDmeZlWnckyi4AwBcSUZGrcuyGU1PNHWPEe5W1k396y9RzKxugBNQcAdcSOfz8ZLWo80jjAY3/z8rXzc1LU2cOaNXKgAAaK/nGdl8Mieadcj1C9AtGT3Fte4mae10Pl6ykCwAAHo7eFBYHuuWXaNmSkhjPdNx2KmwcKOH5SpBXp6IlxUZAFQSNy/eAVVLV+kE7seau/ME7mZduoh69WQBzCoDAHBn8rlTDrbprlsmOotr3U0yLMCnuKjLOdmy8AAA6CouTtJ4smk7k8GgWy4Vkedb41yo9D54ZpUBnIGCO+AqfIqL2l2Sje8+WgVuQjcYxMCBsgAK7gAAt1U3J6vl1fOSgCq5YqpZtn/QmcatJQFM4w4AcCGxsZJGKyuRupj4ZtJspb8pgEpCwR1wFe0unfYpLrTUavTwcK9e3yL5NO67dgmjUa9UAADQUvezRyVrseT7+B1v7h4TwjomVjp+n2ncAQAuRDrCPd5NVkw1i28izZaCO+AMFNwBVyGfT+ZMo9Z5vjV0S6YSyQvumZniiGyxeAAAXFaUdBD30Radijy9dUtGf7Gt/x97dx4c2V3fe//Xm1r7SBrtau27NKs9xuBL7g1kqRDAJL5gF5gUPDihqCSPE1JhC9TzT0ISO6RYknqKlOHJTVJAcIq6QAIksW+4F8fLjGc0kkZq7fu+z2jtbnX3ef4QNmNb59taun/dp8/7VfwxzPdY+o40I6k/53e+Xylw75gZzAnsaGsGAABTc3NqYUGoD1S3auvl9GKczOvvV4GArl4A/BSBO5AqYmxMrbf+APcDTU2qVpwxx1QZAIA13Tsm3TO+0XRJWydJ0d1wIexym1Wd0ejl8V6d/QAAcDjxePtKfvFKfrG2Xk5vtKIh6PGalvf3VU+PxnYAKEXgDqSOC5PSMrHe2nQJ3JVSb3+7VH3uOV19AAAQN2e31uuWp4ULrosHwNPArjdLPmR3zxgv+AEAKUAe4C6PRE89YZd7uLJRukK8wQAgEbQG7pFIpLu7+5//+Z9ffPHFzc1Nne8aSHG+tfmirQ3hgt60OeGuYgXubFEHAFjQvaM3hQHuu96sAV+Lzn6S4kajdIpffgIAAABNxMDdb6l5MgcG5DHuN27oagTAT2kK3A3D+MpXvlJTU3P58uUHH3zwgQceKCgo+MhHPrKysqKnASDFXRQHuC+fKV4oLNPWTMK97W1SdWlJTU3pagUAgPi4MnpTqMrjVtKGPDanfXYolzHuAIDkMgw5gB7wWTFwF2/qc8Id0E5H4G4YxqOPPvp7v/d78/PzSqmysrKMjAzDMP72b//2LW95C0fdARUrcO+uv6CtEx2qqpTPJ13AIXcAgNVcGZWOb19vvKytkyTqqTsnLIZ1RqPyDzwAACTcxIRaWxPq1tqYesDvE0+4+/1qd1dXLwCU0hO4f+ELX/jWt76llPrwhz88PDy8uLi4vb395JNPOhyOsbGx3/3d39XQA5DiLk2IA9zTaZ7Mgfvvl6oE7gAASynZXK1ZmREuSPuNqQcCGZn9NdJr/nvF2xIAACSceLx9vqjids4Zbb3Ey0RZ7V5Gpmk5ElE3pefwAMRdwgP3jY2Nz3/+80qphx9++Otf/3pzc7NSyuPxfOITn3j88ceVUt/+9rc55A6b82zdqVuShqj0pF/gft99UvXqVV19AAAQB/eMSutAd73ZgzYY4H6gizHuAIBU1tUlFK04wF0pFXU6h6qapSsY4w7olfDA/Rvf+MadO3ccDscTTzzhdL7m3f3O7/xOZ2dnc3PzDf7lw94Kuq87jahZdS8jc7iySWc/Osgn3G/cUOGwrlYAADite8alwL2r8WLE6dLWTHIxxh0AkNLEAMq6N8hjTMJhjDugV8J3N33/+99XSr31rW+tq6t7Xam5ubmvTxqjAdhE4U1pSXp/TbvlXqW/MLn+L/4l4YLMgPN/OJ3OqMltht3dT/z5P03ViLfolVJK/e5/qf+vjWdP1iQAAPFyeUwK3G+Ih77TzMEYd09k/9DqwRj359vfrLkrAAB+SjzhbsUB7gdidM45V0CvhAfu165dU0r94i/+YqLfEWBdhTelkeU99ee1dRIvW8HI+FqMrSwTpbWNixNm1YJbN3+cUxXzHW2HIsduDgCAuCrcvl2/LI2G62q8qK2ZpDsY437JfDnqPWM9BO4AgOSYnJQ3pg5WWfWEu79a3Js6NKR2dlROjq52ALtL7EiZ+fn5O3fuKKUqKir29/e//vWvv+c977nnnnve+c53/tEf/dE19iICSqlwuOCWNM+0py7tBrgrpZTqr20Xqp3TA9o6AQDgNC6P9zgMw6xqqwHuB+Qx7pfF8TsAACSQOFllvqjiTk6+tl7ia7rEt59tnqdHIqqH77+APok94T4/P3/wi2g0euXKld7e3oP/e/PmzR/+8IdPPPHE448//md/9meZmebLlJVSSv3SL/1SzPe1vLx8ym5j2tra2tzcDAaDoVAo0e8LSqnV1dVgMOhwOLxeb7J7SSB3T0/RrukwU8Ph6KlqCcdpoHkgEBTe1EHpdbsWTvqOAjF77q1qfVD90KzaMeU/yp/69u3bif+nnxDBYHBtbS29/26nlDt37mxvb+/v7wcCgWT3AiDd3CPOk+mpP2e50XCndKPp0kee/QezavvMcGYoEMiI8fM/AADxl6bzZJRSUYdztam9otf8jkJXl3rgAY0dAbaW2MB9a2vr4Bef/OQnNzc3L168+O53v7uurm50dPTpp58eHx//0pe+pJT64he/KL+dZ599Nub70pChBIPBYDDo8XjIa/Q4+IAHAgHD/NRYGsh74QWhOl5au5GZo8xmnR9TJBKJmr+pg4+zcMHRRcV3dKBXPO7XtDSZGdjZzciS34h189ODv95Ky9cuqFc+4Adfw5PdC4B0IwfuNxtsNE/mwK3azrDL7Y4cfuPcE9k/P+V/ufkezV0BABBrY2rsLWKpbKX1XIzAHYAuiQ3cXw2SNjc3//AP//DP//zPXa6fHvD53Oc+9973vvdf//Vfv/KVrzz66KNXrlwR3s4zzzwjVA/Ov5eWlsapa1OZmZkejyc/P//MmTOJfl9QSjkcjkAgUFJSEvMZCEvziKuDe+rPud1x+3eamZnpdpseGz8I3OPy7ryZmW53jOnqE77mvYzMrNDhcbMzGj2/MH4j1tDbM2fOlJYWn7DLpDr48piZmVlSUpLsXmzB6/V6vd4zZ87k51v1KVEAqcm7s9W0OC5cEPN7WfrZ9WYNVTUL0+Euj/cQuAMAkuDmTaE44LPwCXel1Gpzp1QmcAc0SmzgnpX109Oply5dujttV0rl5OR89atfbWlpCYVC3/nOd+TA/Sg7VzVksqFQKBAIeL3e9M5/U4fX6zUMIzMzM80/4FevCsXe+vNxmfFywOVyCm/N4XCoOI2UcblcMd+O4XQOVTULS9XOzw7ebL4sv5GMjAzr/vU4iICt27+1vPrVmw84gPiq6rnmNH+oK+jxDshLzNJUV+NFMXDv1dkMAABKKTUzo1ZWhPpQldVPuJ+Xyn6/CgQUr4YALRK7NDUvL+/gF+985zvvTtsP1NbWtrW1KaVene0O2M7cnJqZEeq9abox9UB/jbw3dVBbJwAAnExVz8tC9VZtR8htx0lW8iCd81N+T2RfWzMAACgV43j7YmHZRm6Btl4SYaOuUWWZD2Xd31e3TI+7AYivxAbujY2NB7+orq4+9ILa2lp1125VwHaee04o3s45M1Ncpa0X/fpr5cDd9GQcAAApoqpXCty77DdP5kB3w/mow/SFRmYo0D4zpLMfAABizZORdoxZQtTlVufFQ+5MlQF0SWzgXlBQ4PP5lFIjIyOHXjAxMaGUam+XQjcgnYkbU7sbLhgOh7Ze9OsTT7iXbywVb65pawYAgGPb2Skdlnax2HBj6oHNrLyxinrhAnnTLAAA8ScG7lafJ/NT94grUsSPAIA4SmzgrpR6xzveoZT6/ve/HwqFXlcaHR0dHBxUSl28aNOXIoAcuPfWiTtPrG++qGI9r1C4oGOGqTIAgBR29aozbLqNPOxy99V26Gwnpcg3GxjjDgDQTQ7cfQTuAOIm4YH7Y489ppQaGRn55Cc/Gb1ro9TW1tZjjz0WDofz8vI+8IEPJLoNIBXt7Kge6XhXT1oPcD/QXy0dcj83xVQZAEAKE0fDDfpa9jLsu5pMHqdzYbLPYb5sFgCAOFtbU9PTQn2o0gaB+61byvygAIA4Snjgfv/993/wgx9USn35y1/+uZ/7ub/6q7/6l3/5lyeeeOLChQs/+clPlFJPPPGE2YR3IM1dvSp8twu5PQPVrTrbSQp/TZtQZYw7ACCl/ed/CsWbDRe0NZKC5D9+3t722Ylhbc0AAOxOHF++nlu4XFCirZcEOn9eZWSYVvf21BA7VAAd3Brex1NPPbW+vv7DH/7whRdeeOGuARrZ2dl/8id/8rGPfUxDD0AqEufJDPpaQ27z75TpQh7j3jk94DSiwtY1AACSJhxWL70k1LvrxcVl6W4tr2imuKp6dc7sgqpb15X6VZ0tAQDsyw7zZJRSGRmqrU31ms9tu3lTdab56FogFeiIsTIzM3/wgx985zvfeeihh1pbW2tra9/xjnd8+tOfvnXr1sc//nFHWu+EBCTyxlR7vErvr2kTFsPmBnZqVmZ19gMAwFHdvKm2t82KhsPRa4PRcLLueumQe8WtG9o6AQDYnR02ph64fFmqdnfr6gOwNR0n3A889NBDDz30kLZ3B6Q6w1BXrwr1tN+YemAzO3+muEpI1TunByZLa3S2BADAkYgD3CdKazdyC7T1kpq6G86/++UfmVV9Pdd0NgMAsDVbBe5/93emVfamAlowqAFIkv5+tb4u1G/ZI3BXSvXHmiqjrRMAAI5BHODebe8B7gfkx/VyVxbV1JS2ZoB04vf7P/axjz377LPyZbu7u9/61rc+97nP/cEf/MGXvvSl0dFRPe0BKWdnR4l//4eqmrT1knCXLklVTrgDWhC4A0kizpOZKa5ayyvS1ktyyYH7OQJ3AEAKMgz1/PNC3Saj4WTTJdXruYXSFeJNCwBmnnrqqb/5m7/pFoOz7373u9XV1R/4wAc+//nPf/GLX/z4xz/e3Nz80Y9+NBAIaOsTSBW3bqlIxKy4682eLa7S2U5iXbqkhNHN6+vc7QY0IHAHkkR8ld5jp1fpcuDePDeWEd7X1gwAAEcyOqqWl4U6J9yVUobD0d0g/khD4A4c39zc3D/8wz/I1/zbv/3be9/73vX1dafT+aY3venBBx/Mz89XSj311FMf+tCHtLQJpBLx7tRwZWPUkUbh2Jkzqr5euoCpMkDipdHXFMBaxBPutlqzNlTVHHJ7zKqeyH7L3IjOfgD74IF04OTEG+fLBSXzReXaekllMc4QELgDx2EYxg9+8IN3vOMda2trwmXBYPCxxx6LRCIFBQV9fX1Xr1793ve+t7q6+q53vUsp9fTTT3/ve9/T1TKQGnp6hOJwOs2TOcDeVCDZCNyBZFhelkfI9dgpcA+5PaOVjcIFTJUBEoQH0oGTizFPhuPtPxVjtI7fL6+0AXDgmWeeeetb31pQUPCud73r1q1b8sXf+MY35ubmDn7R3v7TZ0k9Hs+3vvWt+vp6pdRf/MVfJLphILXEOOFO4A4gzgjcgWQQX6VvZeVOlNdq6yUV9IlTZTqmB7V1AtgHD6QDpxIjcLfRjXPZUFXzXkamaTkaVS++qLEdwKrGxsaef/75zc3No1z83e9+VynV1tb2q7/6q3f/fm5u7vve9z6l1IsvvriyspKIPoFUFIko8TbVcFWztl40uXhRqhK4A4lH4A4kgzhP5lZdZ1qNkDuCWHtT/do6AeyAB9KB01pbU4PSzWBb7WKRhV3uvtoO6QrxhyIABx599NGJu8gXP/fcc0qpX/iFX3hj6cEHH1RKRaPR/2SgE+xjeFjt7JgVI07XaIU48dyKLl2SqtPTamNDVyuATdkr1ANShfja0lbzZA7IgXv16tyZnSMd5wEg44F0ID5eeEEZhllx15s9UiGNSrObGLcfxGcFABzIy8uru4tw5dLS0u3bt5VS584d8privvvuczgcSqnh4eHEdAqkHvFA92RpTcidoa0XTXw+VVxsWjUM1dursRvAjgjcAe2CQdXVJdRv1XVq6yVFTJVUb2XlmlUdhtExw1QZIA54IB2IDzEjvlXbEXXyM/bPxFgFf+2aCoV09QKkv5mZmYNf+Hy+N1YzMjJKSkqUUtPT01rbApJI3Jg6lH7zZA5cENfJMFUGSDB3shsA7OfWLWW+bDDidPXViE9epyPD4Riobn3T8A2zCzqnB15se5POloC09Oijj/7Kr/zKq//34KC6GfmB9CeffPLggfRf//Vfj3ufQKoTA3fmybxOT11n1Ol0RqOHl/f2VE+Puu8+vU0BaWt7e/vgF7m5hx9nyc3NXV5e3trakt9OUVFRzPc1Ozt73PbSw8LCQjQaVUo5ub1qBcUvvWS+S0QNltWFEnzfd3d3LxQKGYYRDocdDodh/pDcKd2+ffvVf5VnGhvz/uM/zK7ceeGFjf/+3xPUBuJrc3Nza2trd3f3iKemkCII3AHtxOPtI5WNu94sbb2kjr6aDjFw54Q7EAd5eXl5eXlHufIoD6QbhsED6bCjYFBdvy7UuxsI3F9jJzNnvKyuaWHc9IrnnydwB+Jlb2/v4Bder/fQCw5+f3d3V347G0cY8Rw1u5GW7qLRqGEYtv3jW45nYECoDlU0JLyDhCXsrxONRl/9axlql6a2evx+/gJbxatfcPiUWQuBO6Cd+Cq9T5xmnsb6atmbCqSQozyQvry8zAPpsKOuLuFJtajTadtv5YLeunNS4P7CC+r3f19jO0A6y8z86Vles0O7wWBQKZWREWNo9fr6ulA9OP9+6A8JNhGNRn0+HyfcLWB52bm8LNTHa9tj/nM4pezs7IydaDQadTgcDofD4/Ek6B0VFhb+7F/lz/+8cGXGyIivrEwlrBPE0e3btzc3NwsKCvLz85PdC46BwB3Q7obpOW6l1EB1q7ZGUoq8N7Vw+3bl+sJ8UYW2fgCbi9cD6Qeb2WQpmNpvbGzs7e3t7u5mZ2cnu5f0tL29vfmKZPdybPk//GGBeXW4vOG2w52IoeS7O7tHf+Y9Go1GIhGHw3GCw1A7Oztxf7j+RnX7Qy9+36waee65udT7OiALh8PLy8tut3t/fz/ZvaSt+fn5ZLdgSTk5OQe/2NnZOfSCg7PtZt/fX1VYWBjzfdk2bj74gzudTtt+BKykr08oLp8p3sgVvqvHiUOpo/1UfNr343D87O9kZ6fKyDD9gSQYdI6MqMOeZEWqcd4l2b3gGPhsAXqFQqq/X6gP+GwauK/lFS0WlgkXnJuWngQEEF/xeiAdSD8Z4pNqN+23+fwoumul/TSuxUW3XSdBA3FXVVV18ItD71gc3CtSSlVWVmptC0gWcWPqaGWjtkZ0y8hQHeJyOPamAonECXdAr1u3VDBoVgwaOKn/AAAgAElEQVS5PRPltTrbSSn9Ne3lG0tm1c6pgX+/9Had/QB2Fq8H0uWtUAcnfWpqak7SYiLl5OTs7OycPXv21XOCiK/Nzc3bt2/n5+cXFCT+WFnciS/d+xouJujJ9Oyc7Iydox5Xj0aj4XDY6XS63cf+aT8nJydjJ87TZpcq6tbyis5umU6oqJycVA88EN93mlD7+/tut9vj8VRU8PhdYqXg94gUV1VVlZubu729PTQ09Mbq6OjowYMv7eJ8ZyB9iN+1hyubtDWSBBcvSql6b6/GVgDb4YQ7oJe4MXW0snHfZd8xav01bUK1kxPugEbxeiAdSDfj42phQaj31vN09uF65I/Miy/qagRIfw888IBS6rnnnntj6dXffMBSt7iAkxNj5ZGK9D3hrpS6eFGqErgDiUTgDuglDnAfrGrR1kgKkrfMtc8OuyNhbc0ANscD6cDhxFx4Jb94QRyPZme9dWLg/sILuhoB0t973vMepdTVq1cHBl5/YOXv/u7vlFJXrlyprq5OQmeAZqGQesO/grsNV6X7CXcBgTuQSATugF5sTDU3UN0WcbrMqt79YMPipMZ2AFs7eCBdKcUD6cBrvPSSULzFAHdzPfXnpXJvrzJ5ngbAcX3oQx8qKSlRSn3sYx8LBAKv/v5Xv/rV559/Xin1iU98ImnNAToNDAhrzMPezOkSn852dJMD94UFtbysqxXAdgjcAY329+Ul6QM+W59w38vIHC+vEy44N+3X1QsAHkgHDvP880IxxtQUexuqag65zafbh8Pq5Zc1tgOks5ycnL/+679WSv3kJz85f/78Jz7xiSeffPKXf/mXf/u3f1sp9e53v/t973tfsnsEtBAHuK/VNQvnvdLB2bPqlYdWD8chdyBhCNwBjfr61F1nTF5n3+UZL6/X2U4K6henynROD2rrBAAPpAOvt7Ojbt0S6jGmpthbyO0ZlA8WMMYdiJ+HH374a1/7WnZ29ujo6Be+8IVPfepTzzzzjGEYjzzyyDe/+c2DpeVA+hMD5dUmGzypeeGCVCVwBxKGwB3QSJwnM1rREHLbd2PqATlwPzfFCXdAHx5IB17v6lUVNt0mEnJ7hqqadbZjOb3yyB0Cd+DIfvzjH//4xz9+5JFHhGsee+yx8fHxL3/5yx/96Ed/4zd+47Of/ey1a9f+8R//kYXnsBE5cG+wwUBXAncgSdzJbgCwk64uoThQbet5Mgf6a9qEav3SVE5gZyczR1s/gJ0dPJD+yCOPHDyQ/mu/9mslJSXPPvvss88+q3ggHfYkLvYcqG7jxrksRuD+wgvKMBQHb4Ej+Pmf//mjXFZWVvb4448nuBcghYmB8kpTu4poayVJ5DHu4sgdAKdB4A5oJJ5wj/GctT2MljfsZWRmhQ4fvOM0om2zIzeaLmnuCrCthx9+eGtr6/HHHz94IP3V33/kkUe+9rWv8UA6bEfemFrboa0Ri4qxVHZtTY2OqmaeEgAAxMPSklpaEuqrDa1qZFtbO8khn3AfGFD7+8rDcQEg/gjcAV3CYXnw66DPBk+0xRJ1Ogd9LZfHTU8idE4PELgD8fLjH/9YKdXY2Chc89hjj73rXe/69re/3d/fv7e3V1NT8573vOe+++7T1SOQMgxDXb0q1BngHtNKfvFCYVnFhnn88cILBO4AgPiQj29XVwfyC5RK98C9tVVlZppukgsG1dCQOscPMED8EbgDuvT3q709s2LY5R6tsPvG1AN9tR1C4H5u+vXLGwGcGA+kA8cwOqpWV4V6jHkpUEop1Vt/TgrcX3xRfehDGtsBAKSvvj6papOU2e1W7e3q5k3TC3p77fKhAPRiaSqgizhPZqy8PuTO0NZLKvNXS2PcOwncAQBJIc6TmS8qX80/q60X6+qtZW8qAEALeSOoPGslnchj3NmbCiQGgTugixi4D1QzT+an+sQZuGW3l0s2pQOGAAAkhJgF98k5Ml5xSx6809+vtrZ09QIASGviQFd1/ryuPpJN/pPKHyUAJ0XgDugiB+5sTH3FQmHZel6hcEHnFIfcAQDasTE1HoYrGwMZmablSES9/LLGdgAAaSocVn6/dIF87judyGf5OeEOJAaBO6BFJBJrYyqB+8/01bQL1Y6ZQW2dAACglFI7O/L38R42ph5N2OWOcchAvLEBAMCRDA2ZbgpVSmVkqBbbvACXby3Mzqq1NV2tADZC4A5o4fer3V2zouFyj1Y06GwnxfWLgfs5TrgDADS7dk2Fw2bFkDtjpKpRZzuWdksev3P1qq5GAADpSz643dGhMmyzQa2kRJWVSRf09+tqBbARAndAC3GezFZTa9Dj1dZL6osRuE8POI2otmYAAJCPXQ9Ut+67PNp6sTp5WQsn3AEAcSCPJrfPxtQD8hh3psoACUDgDmghBu6bnbaZH3c0/TXtUYfpV6fs4G7t8ozOfgAAdiemwL11bEw9hhgfruVlNTamqxcAQJqSA/dzNhsEJ99gYG8qkAAE7oAWYuB+p9NmN9hj2crKnSnxCRecmxYX4AAAEF/inBM2ph7Lav7ZxULx2XYOuQMATokT7neTT7gTuAMJQOAOJF4kIj+ldYcT7m/QX9MmVDum2ZsKANBlfFwtLQn1PnkoOd4gxi0KxrgDAE7jzh01PS1dIAfQ6Sdm4G4YuloB7ILAHUi8gQG1s2Nadbm2WqSR5fbUx95UAECKEPPfrdKK5TPF2npJDzEC9xdf1NUIACAd9fVJCXJRkaqs1NhNCujsVC6XaXV7W01MaOwGsAUCdyDxurqkakdHJDNLVyuWIe9NbVoY90T2tTUDALA1MXBf7LikrZG0EeOZgJ4etbenqxcAQNphnszrZGaq5mbpAvamAvFG4A4knhy433uvrj6sZKSyKeT2mFU9kf3GBW7CAwC0EEeKE7ifwKCvRfgur/b3Y/zsBACAoK9PqtptnswB+TaD/BEDcHwE7kDiiRtT1T336OrDSkJuz2hFg3BB69yItmYAAPYVDKrubqG+QOB+fCG3Z7hKPGrHGHcAwInJ57XtGbh3is+WEbgD8UbgDiRYNCq/UFdXruhqxWKGxJfiBO4AAB26u1UwaFr1eJZbzmnsJn2wNxUAkCj9/VLVnoF7zL2pAOKKwB1IsMFBtb1tWnW57DhC7miGfC1CtW2WwB0AkHjyAs+LF8PeTF2tpJW+GjFwF8f4AABganZWra+bVh0O1SF+A0pXcuA+PCwdLwBwfATuQILJ82Ta21VOjq5WLEY+4d48P+qMRrU1AwCwKfmo9f336+oj3fTVStvR1fS0mp/X1QsAII3Ih7Xr6lR+vq5WUklDg5Q8hMNqcFBjN0D6I3AHEkwO3NmYam6koiHidJlVs0KBmtVZnf0AAOyIwD0x5s5W7hYWS1dcu6arFwBAGpEDd3vOk1FKOZ2qXbzVzRh3IK4I3IEE6+qSqmxMNRfIyJwqqRYuaGWqDAAgoZaX1cSEdMGb36yrlTS01C5O1WOMOwDgBOTg2LaBu1Ixhtkyxh2IKwJ3IJFibkzlhLtoyMfeVABA8siZb1GRamrS1UoaWmi/JJUJ3AEAJyBvTD1n41Xn8p+dwB2IKwJ3IJGGh9XWlmnV6VQXL2rsxnrkMe5tc8PaOgEA2JG8uvPNb1YOh65W0tBipxi4X7+uIhFdvQAA0kIkogYGpAvkU97pTQ7cGSkDxBWBO5BI8gD3tjaVm6urFUuSA3dOuAMAEuvll6Xqm96kq4/0tNR2QTnNX4xsbSm/X2M7AADrGx1Ve3um1YwM1Sy9wExz8jidmRl1546uVoD0R+AOJBIbU09n0NdimB8ePLOzmbUwp7MfAICNGEaMwJ0B7qcTzMlTbW3SFUyVAQAci3xMu61NeTy6Wkk95eWqpMS0ahgccgfiiMAdSCQC99PZyspdKCwTLsgfYNIcACAxhobU7dumVYdD3Xefxm7S1P33S1UCdwDAsciRsZ0HuB+QD7kTuAPxQ+AOJIxhqJ4e6QIC9yOQp8oQuAMAEkVOe5uaVFGRrlbSF4E7ACCOCNxlnZ1SVd43C+A4CNyBhBkZkYagsTH1aOTA/Yy/V1snAAB7uXZNqjLAPS7kwN3vV9vbuloBAFjfLfE8FoE7e1MBXdzJbgBIX/I8mZYWlZenqxULG/S1CNV8Pz8TAAAS46WXpCoD3OPi/HmVk6N2dg6vRiLqxg313/6b3p4AANYUDKqxMemCdA/cX5ra+EbXrHDB+YnoV82rd651/epf/edR3tEH7vH9zn+pO15zgM1wwh1IGAa4x8OQTzrhnrk0r1ZWtDUDALCLQCDGKTlOuMeFy6UuX5YuYKoMAOCI/H4VDptWc3NVXZ2+ZpIhahjBcFT430BJreFwmP3nZ3bu5GysyW/h4H/7kajOPxdgRQTuQMIQuMfDSn7xWp44JPfmTV29AABso6tL7e+bVr1e5sLFjTxVRh7sAwDAq2IOcDfPmm1iJzNnqaBUuKBpcVxbM0B6I3AHEsMwVHe3dAGB+5ENVTVJZQJ3AEDcyQerL11SXq+uVtKd/KwAJ9wBAEckB+7yvlDbGK1oEKpNCwTuQHwQuAOJMTqqbt82rTocnIw7uqEqaYw7gTsAIP7kg9XyoWwcixy4z86q+XldrQAArCzmCXcoNVZeL1QbFya0dQKkNwJ3IDFibkw9c0ZXK5Ynj3EncAcAxJ8cuDPAPY7q6lRZmXQBU2UAAEdB4H4EcuDesEjgDsQHgTuQGF1dUpV5MscxVCUG7iMjanNTVy8AABtYXVUT4gvO++7T1Yo9yDcwCNwBADFtbqqZGekCRsoopWKNlGlcnHQYhrZmgDRG4A4khnzC/Z57dPWRDmbPVm5n5piWDUP19mpsBwCQ7l5+WQmvNouKVLN4JxjHxRh3AMAp9fdL37vPnlUVFRq7SV2TZTVRp2kSmB3crdhY1NkPkK4I3IEEYGNqXBkOxzB7UwEA2shHqu+7TzkculqxBzlwv35dRaO6WgEAWFN/v1TlePsrQu6MmWKfcEEjU2WAeCBwBxJgfFytr5tWHQ516ZLGbtJBjKkyBO4AgDh6+WWpygD3uJPvYWxuqsFBjd0AACxIHuB+/ryuPixgrLxOqLI3FYgLAncgAeR5Mk1NqqBAVytpgsAdAKAPG1M1KyxULS3SBYxxBwDI5MCdE+53ibU3dVJXI0A6I3AHEkAO3Jknc3yDPvF1eH+/CgR09QIASGvj42plRbqAjamJIN/GkJ85AABADtzPndPVhwWMi4E7I2WAuCBwBxKgq0uqErgf30RZbcidYVre31d+v8Z2AADpSz5MXVenysp0tWIn8m0MTrgDAASrq2ppSbqAE+53GauQAvf6pSknq1OAUyNwB+LNMGJMOLnnHl2tpI+I0zUq/ljAVBkAQHzI2e799+vqw2bkE+49PWpvT1crAACrkY+3V1aqoiJdrVjAVEl1yO0xq2aEQ761OZ39AGmJwB2It8lJtbZmWmVj6knFmCpD4A4AiAs5cGeeTIJcuqS8XtPq/r7q6dHYDQDAUvr7pSrH218r4nRNl1QLFzSxNxU4NQJ3IN7kAe4NDdxdP5kYe1PlMT4AABxFOKy6u6UL2JiaIF6vOn9euoCpMgAAM3LgzgD3N2CMO5BoBO5AvLExNTFiBO49PSoS0dULACBN9fWpnR3TqsvFXLgEYm8qAOBkCNyPaay8Tqg2ELgDp0bgDsQbgXtijFQ2Rpwu0/Lurhoe1tgOACAdyaluZ6fKydHViv3IgTsn3AEAZvx+qUrg/gZjMU64T+pqBEhbBO5AvMnDxAncTyro8U6V1khXMMYdAHBKDHBPIvnDOzKiNjZ0tQIAsI7FRbW6alp1OFR7u8ZurGGsokGo1qzMeCL72poB0hKBOxBXk5Mxvtlfvqyxm3QzKE+VIXAHAJySfMKdwD2h2tpUfr5p1TDU9esauwEAWIQ8T6amRuXl6WrFMubOVgQyMs2q7ki4emVWZz9A+iFwB+JKXt1ZV8fG1NMY8hG4AwASZnc3xot2NqYmlNOprlyRLmCMOwDgjfr6pCrzZA4TdTgnxcfHmSoDnBKBOxBXcubLprXTibE3lcAdAHAaXV0qHDatZmXxoj3h2JsKADgu+WZ5Z6euPixmnL2pQCIRuANx1d0tVRngfjrDVU2Gw2FaXl9XU1Ma2wEApBd5gPs99yiPR1crdiUP7bl6VVcfAADrIHA/EfamAglF4A7ElXzImgHup7OZlbdQWC5dwSF3AMCJMcA96eQT7gsLan5eVysAAIvw+6UqgbsJTrgDCUXgDsTP2pqam5MuuHRJVytpa5Ax7gCABJFPuBO4a+DzqcpK6QL5cwQAsJvZWXX7tmnV6VRtbRq7sZKx8gahWr06lxHe19YMkH4I3IH4kTemlpaqcvF0No6AMe4AgIRYX1cT4mEuNqbqwd5UAMDRyfNk6utVTo6uVixmobBs15tlVnVFI7XL0zr7AdIMgTsQP2xMTbwYgbt8zwMAADPXrinDMK0WFanGRo3d2Jj8JAGBOwDgbsyTOSnD4ZgoqxMuaGCMO3AKBO5A/PT0SFUGuMfDoK9FKs/NqaUlXb0AANKInOTee68StnYjjuTA/fp16b4IAMBu2Jh6CmPiGPdGxrgDp0DgDsSPfML94kVdfaSz1fyza3lF0hXybQ8AAA51/bpUZZ6MNvfdJ93b2NhQo6MauwEApLa+Pql67pyuPiwpxgn3pUlNfQDpiMAdiJO9PTU8LF3AxtQ4GZL3pjJVBgBwAvIJdzamahNzeg97UwEABwxDDQxIF3R06GrFksYqpL2pDZxwB06BwB2Ik95eFYmYVnNyVLMYE+PIBtmbCgCIr9lZtbAgXUDgrhNj3AEARzEzozY3Tasul2pr09iN9cgjZXxr8979oK5egHRD4A7ESXe3VL14UTn55xYfMfamErgDAI5LznCrqlRlpa5WQOAOADgaeYB7Y6PKzNTViiUtnynZzswxqzqj0drlGZ39AOmEBBCIEzlwZ55M/AzJe1NHR6VjDgAAvBHzZFKKPDG/u1uFw7paAQCkMDamno7hcEyU1QoXsDcVODECdyBOCNx1mSuq2MrKNS0bBntTAQDHI48FZ2OqZpcvK7fbtLq7GyNhAQDYBIH7qY2X1wvVhsVJXY0A6YbAHYiHaDTGenQC9/gxHI6RyibpCqbKAACOzjDUjRvSBZxw1yw7O8aaO6bKAAAUgXscyGPcOeEOnBiBOxAPw8Nqe9u06nLxzT6+2JsKAIib4WF1+7Zp1eFQV65o7AZKKca4AwBiMQw1OChdwGvwI4h1wp3AHTghAncgHuSEt61NZWfrasUWhnwE7gCAOJHT2+ZmVVCgqxW8gsAdACCbmlJbW6ZVt1u1iKu/oJSKFbhXri9mhgLamgHSCYE7EA/y0PDLl3X1YRdD8gl3v18F+LEAAHA0bExNQfLc/L4+tbenqxUAQEqS58k0NSmvV1crFrZ8plhYkOY0onXL0zr7AdKG+T4iAEcnH6m+eFFXH3YxUVYb9Hi9+8HDy/v7qr9f3Xuv3qYAAClkdz8S2I8e5cr8ay8LPxDvXrgc2N0X/vNw1DhmaziCc+dUZqbp7fP9fdXdrd7yFr09AQBSid8vVZknc2QTZXUXJk030jUsTg76eFYAODYCdyAeOOGuV8TpGquo75g2n9l38yaBOwDY2V8/N/F0z3zMy9yR8P+50SX8QPx/z2b2/M2LwltoLTU9F4aT83jUpUvqpZdML3j5ZQJ3ALA1NqbGyXi5FLizNxU4GUbKAKc2P6+WlqQLOOGeAOxNBQCcXsPipOnzUkpFnK4YQ8yQOPIwn+vXdfUBAEhJ8gn3jg5dfVjeWIy9qZO6GgHSCoE7cGrd3VK1uloVF+tqxUZiJCBdXboaAQBY2LnpAaE6Vl4fyMjU1gxeQw7cr13T1QcAIPVEo4yUiRc5cOeEO3AyBO7AqcmHqS9d0tWHvcQYJNfbqyIRXb0AAKyqfcZ8OplSA9Wt2jrB68mB+8iIunNHVysAgBQzNaV2dkyrHo9qYez4UU2U1wrV8o2lrJDJShUA5gjcgVNjgHsyjFY0RJwu0/Lurhoe1tgOAMCSOmaGhKqfwD2JWlpUfr5pNRplqgwA2Jc8wL2pSWVk6GrF8lbyizez8syqTiNatzylsx8gPRC4A6cmn3BngHtiBD3eqdIa6QqmygAARN79oPygtL+mTVszeD2nM8b+cwJ3ALAtNqbG1WSZdMidMe7ACRC4A6ezva3Gx6ULGCmTMIM+9qYCAE6udW7EHQmbVUPujNGKBp394PWuXJGqL7+sqw8AQIphgHtcjZXXCVUCd+AECNyB0+nuVtGoaTU/X9VLG0hwGoPy3lQCdwCASJ4nM1zVtO/yaGsGh5DHuBO4A4BtySfcOzp09ZEmJgjcgXgjcAdOp7tbql6+rBwOXa3YzlCVuAnn5k1lGLp6AQBYT8e0tDHVX808mWSTA/fpabW0pKsVAEDKiEbVoPQdnBPuxzVWLh0TlOfvATgUgTtwOvLGVAa4J9JwVZN0P2NjQ02x3QUAYKpzRnq53s8A96Srq1OlpdIFjHEHABuanFQ7O6ZVj0c1i09C4w3GxRPu5RtLWaGArl6ANOFOdgNA6pq9vfeDgWX5mof+81qJefV/51UPvRg7813f3T9ma1BKqa2s3F1fTfaM+Ue4u1vV1elrCABgHbmBneqVWeECTrinhHvvVT/6kWn15ZfVO9+psRsAQAqQ58k0N6uMDF2tpImV/OKtrNy8ve1Dq04jWr805a9u1dwVYGkE7oCp2TuBp16S4nJXNPJ/jUqH454KFA6Jb+FAS0nusZuDUkqpzfbzMQL3X/s1je0AACyjbXbYaZhuYdn1Zk+VVuvsB4e7ckUK3DnhDgA2xAD3BJgoq7sw2WdWrV+aJHAHjoWRMsDJ1S9NZYRDZtV9l0d+Mgunt9l2TirLE/YBADYmD3Af9LVEHfycnALYmwoAeB2/X6oSuJ/ImJhdMMYdOC5eSAAn1zo3IlQnymv3XR5tzdhTjMD95k1djQAALKaDAe6WIAfuy8vsawEA2yFwT4AJMXCvX+S7LXA8BO7AybXMjQrVwSpWtSTcZrsYuE9Pq9VVXb0AAKxEDtwZ4J4qysuVzyddwFQZALCVaFQNDEgXdHbqaiWtjJXXC1VOuAPHReAOnJx8wn2ksklbJ7YVKKtQpaXSFb29unoBAFhG4fbtyvVF4QIGlaYQ+ZA7gTsA2MrkpNrdNa263aqZc28nMVFWJ1TLN5ayQgFdvQDpgKWpwMm1zI8J1SFOuOtx8aJ65hnTane3evvbNXYDALCA9pkhoXonJ3++qEJbM4jhvvvU//yfplXGuANAevlm1+z/GjF9TPnijf/zuPl/u1BW/bnviuff7+JxcQL1Z5bPFG9m5eXvbR1adRrRuuWpAR/HEYCjInAHTqhiYyl/d9OsajgcI5WNOvuxr0uXYgTuAAC8Vqc8wL26zXA4tDWDGGKecI9GlZPQBADSxOztQM+86QvtS+I8mYGzNcJ/+zqtpbnH6yzdTZbVXpjsM6s2LE4SuANHx8+mwAm1iPNk5osqtrL4/q3FpUtSlcAdAPAGHdPiAPeadm2dILb77lPC/Y87d9SotFMHAJBOGhYnheqYuPkTsnHxoyd/5AG8DoE7cELyAPehKga46yIH7gMDKsCwOQDAa7TPSiNlGOCeWs6cUY3iU4NMlQEA25Bj3wkC91MgcAfiiMAdOCF5gPswG1O1aW1V2dmm1XBY9Zk+FgcAsKGy28vFm2vCBQME7qmGvakAgFcmiQsXjIubPyEbK68Xqo2LE9o6AdIAgTtwQq2zw0J1mI2p2rhc6tw56QKmygAA7tIhbkxdPlO8kl+srRkcyZUrUpUT7gBgD+UbS1kh08eXI07XdEm1zn7SzIR4u0L+4AN4HQJ34CTy9rbLby8LFzBSRqvLl6UqgTsA4C7t4sbUgeo2bZ3gqOQT7jdvqnBYVysAgKSRD1nPFFeF3B5tzaSf5TPFwiI6pxGtX5IeLwBwNwJ34CRa50YchmFWvZOTv1RQqrMfu7t4UaoSuAMA7tIpb0xlnkwKunxZuVym1d1d5fdr7AYAkBzyGPFxcSIKjkI+5F6/NKmpD8D63MluALCklhgbU5kno5d8wr2nR0Wjysn9RQCAchhGuzgUzs8Jd12C4ejcnSM+nO4ubWnzDPSblTeee3G3tsWsmut1n8nkVQ8AWF6swL1OUx/pa6y87sKk6Qo09qYCR8ePnsBJtM6NClUCd90uXFAul4pEDq9ub6uxMdXMJwUAoHxr8/m7m2ZVw+EgcNfm1sLme/6/a0e8+P/Jq3lQmQbu//HNH/1ZqN2s+vClyk++jVl/AGB58gnr8bJaXY2krQnxpgWBO3B0HPkETqJlXgrchyt5UadXdnaMPJ2pMgAApZRSHeI8mbmiijs5+dqawdHJs/XlufwAgDQQc4Y4I2VOb1wcKdPASBngyAjcgWPLCO/L3+nZmJoEly5JVQJ3AIBSSqkOMZn115iekkZy9YuBe/P8eEZ4X1szAAD9yjeWskKmg8giTtd0SbXOftKSfNOiYn1R+BQAuBuBO3BsDYsT7kjYrBpyZ0yV1ujsB0oRuAMAjiRG4M7G1FQ1UtUYcnvMqp7IftP8mM5+AACaNS5OCNWZ4irh2wSOaPlM8VZWrlnVaUTrlqWjhwBeReAOHFuruDF1tLIh4nRpawY/JQfuN2/q6gMAkLqcRlTewsIA95S17/KMlTcIF3QyVQYA0lqsjanMk4mPCXEUfv0igTtwJATuwLHJA9wH2ZiaFJcvS9WFBbW0pKsVAECKql+cyg7umlWjDuegj2/iqctfwxh3ALCvWIF7naY+0p1864Ix7sAREbgDx9Y6K51wH2FjalKUlqrKSukCpsoAgO3Jh6AnS2t2vdnamsFxyWPcO8V1uAAAq6sXo95x8Vw2jk6+ddG4IA32AfAqAnfgeByG0bwwLlwwxAn3ZGGMOwwEGXwAACAASURBVABAJB+Clg9QI+kGxAn79ctT2cE9bc0AAHRyGtH6JWmYyURZna5e0ty4+JHkhDtwRATuwPH41uZzAjtm1ajDOVohDRhFAhG4AwBE8gl3NqamuLHy+r2MTLOqMxqVt+wAAKyrfGMpKxQwq0acrqnSGp39pDF5pEzF+mKm+ScCwKsI3IHjaRFfy82U+Ha9WdqawWsQuAMAzHki+03z0jNqA2xMTW1Rp3NYfI6QMe4AkK4aF6VJJjPFVSG3R1sz6W35TPFWVq5Z1WlE65andfYDWBSBO3A8rXPSxtQhBrgnkRy4Dw+r7W1drQAAUk7TwnhGOGRWDbvcw5WNOvvBCcQY407gDgBpqn5RmifDxtT4kufzyNtrARwgcAeOp2VeCtyHqwjck6epSeXnm1ajUdXXp7EbAEBqaZ8ZEqpj5fVBj1dbMzgZeYy7/CkGAFiXPDqcAe7xFWNvqvi0AYADBO7A8bTOSiNl5CedkVgOhzp/Xrrg5k1drQAAUk7nNAPcLa9fXGxbvTqXv7elrRkAgDYNYsg7xgn3uBovqxWq9exNBY6AwB04hsLt2yWbq8IFQ5xwT67Ll6VqT4+uPgAAKUc+/uyvadfWCU5sptgnDJZ1GEbbzLDOfgAAGjiNaP2SPFJG2vOJ42KkDHB6BO7AMbSKG1PX8wrX8oq0NYNDXLwoVTnhDgB2lRkKyE9Ac8LdEgyHY9DXIlzQOTOgrRkAgB7lG0tZoYBZNeJ0TZdU6+wn7Y2JNzAq1xc9gV1tzQAWReAOHEOLuDFVfgUIHeQT7rduqXBYVysAgBTSNjfiikbMqiF3hvzaEqnDL+5N7RAHBwEArEi+ZT5TXBVye7Q1YwfLBSXC82ROI1o4zRh3IAYCd+AYWuelE+5DlQxwT7Zz55TH/IetvT01zJPmAGBHHTNSDjvoawm73NqawWnIY9w7xU80AMCK6hfleTJ1uhqxkQlxjHvRpBSMAFAE7sCxyCfchxngnnRer2qTXoer7m5drQAAUoh88Jl5MhYin3Avvb1SvLmmrRkAgAbyCXcGuCeCPMb9LIE7EAuBO3BU3v1g7cqMcAEbU1PCpUtSlcAdAGxJPuHuFw9NI6UsFpat5xYKF7TPSttxAQCWU78snnAXz2LjZMbE5wbOThC4AzEQuANH1Tw/5oxGzap7GZmzxVU6+8HhCNwBAK+VG9ipXp0TLugXD00j1QyITyQwxh0A0onDMOoXJ4UL5LPYOBlOuAOnROAOHFXrnPRNZaSyKergH1QKkAP3ri5dfQAAUkX7zJDDMMyqO5k5MyU+nf3glBjjDgD2UbGxmBUKmFUjTtdUaY3OfmxCXiafvzirdne1NQNYEfkgcFQt82NCdbiyUVsnkMiB+9qamp3V1QoAICW0z0gzRgZ9zdwytxZ5jLv86QYAWEuDeLx9trgq5Pbo6sVGlgtKtjNzzKqOaFQN8d0WkPDqAjiqFvGE+5CvRVsnkBQVqRrxjANTZQDAZuQjz/017do6QVzIgXvh9u3K9UVtzQAAEkoO3OVR4ziNcflj29+vqQ/AmgjcgSNxRqPNC+PCBUOVbExNGZcvS1UCdwCwmc7pAaHaR+BuNet5hYuFZcIF8o5cAICFNCxNClUGuCdOjI+t36+pD8CaCNyBI6lbnsoUJ8eNVjbo7AcS9qYCAF5RtL1RvrEkXDDAxlQLkg+5E7gDQNpoWJwQqpxwT5wYH1tOuAMiAnfgSNrEeTITZbUhd4a2ZhADgTsA4BXyRO/13MIF8aw0UpO/ulWoMsYdANKDwzDqlqeFC8bF3Z44jRgfW064AyICd+BIWmelwH2QAe4pRQ7cx8fVnTu6WgEAJFnntHTYeUDMbZGy5Mn77TNDTiOqrRkAQIJUbCxmB/fMqhGna7qkWmc/thIjcB8fV7u7unoBrCc5gfvGxsab3/zmtra2pSXpCV8gdbTNDQvVoapmbZ0gttpaVVhoWjUM1dursRsAQDLJA9zZmGpRA9WtUYfpC5ncwE7NyqzOfgAAiSBvTJ0trgq5Pbp6sZ3lM8VbWbmm5WhUDfE8GWAqOYH7b/3Wb129enVoaGh/fz8pDQDH4jCM5rkx4QIC99TicKiLF6ULbt7U1QoAIMnk6SL9NQxwt6TtzJyZEp9wQYf4ZAMAwBLkwJ0B7okWY28qY9wBc0kI3J966qnvfOc7+t8vcGIVG4v5e1tmVcPhGK5q0tkPYrt8War29OjqAwCQTBUbS0XbG8IFjJSxrn5xb2rnjPRkAwDAEhqWJoVqjDgYp8beVODEdAfug4ODv//7v6/5nQKn1CYOcJ8rqtjOzNHWDI6EE+4AAKU6xHkyC4Vl67nmI8iQ2vzi0wmccAeANCAH7pxwT7QYY9wJ3AFzWgP3YDD4/ve/f3d3t7mZ+RuwktY5NqZajbw3tb9fhUK6WgEAJE3njJS6+hngbmV+8YR769yoOxLW1gwAIO4chlG3NCVcECMOxqmNc8IdOCmtgfunPvWp7u7ue++99zOf+YzO9wucUtusuDHVxw2k1NPRoTIzTauhkBrgSXMASH/yAHc/82SsbKiqKexym1UzwqHGxQmd/QAA4qtiYzE7uGdWjThd0yXVOvuxoRiB++Sk2tnR1ApgNfoC9x/96Edf+cpXcnJyvvnNb3o8LJKGlcgn3IeqOOGeejwe1dEhXdDdrasVAEByOI2oHLgzwN3Sgh6vHAR0MlUGAKxMvm86XeILuUmWEmslv3gzK8+0HI2qQb7VAofTFLgvLi5++MMfNgzjS1/6UksL6SSspGh7o3hzTbhgiI2pqUmeKkPgDgDprmZlNjdgevDKcDgGfATu1ibvTe0QBwoBAFJc/aI0T4aNqXpMMFUGOBHTxzDjyDCMD33oQ8vLyw899NBv/uZvnuAt/NM//VPMa3Z3d0/wlo9lb29vb2/P4/FkZGQk+n1BKbW3txcIBHZ3d6PRaFIaCAQC0Wi0ZVo6HLeaf3Ylp0CdrsNwOKLnzyi/o4NSXDqJhMN6/kTBYNDs3767o0P4hxq5cSOY+C8agkAgsLe3ZxiGhq9dUK98Afd6vW63jm98AFKBvDZzuqR6KytXWzNIBH9N+6+/9C9mVfamAoClySfc2Ziqx1h53cWJW6ZlAnfAhI7c4S//8i///d//3efzPfXUUyd7Cw8//HDMa1ZXV0/2xo9ue3t7c3Nzf39/f38/0e8LSqn19fVgMOh0Or1eb1IauHNnNxwOt8jjXyubwuHTruQKBoOnfyOnf0eRSEQpFZdOtP2JNjc3V1eNQ0ve2toy8//Q0dOzurKiHI4ENRZTMBjc2Njwer2O5PVgK5ubm9vb25FIJBgMJrsXAJp0zkjrOuTD0bAE+ZPYuDiRGQoEMsx3ugAAUliMwL2iQVsndhbjSQK/X1MfgNUkPHDv6ur67Gc/63Q6//7v/76oqOhkb+R973ufUD04/56dnX2yN350kUgkFAplZWVpeF9QSu3u7jocjuzs7GQF7l5vxOl0ts+PCtcMVTU7nacdzeR2u07/Rk7/jg6S37h04tL1J/J6vWb/Hh333qscDmUcHsc7Nzfz1tcj1Ulbs+NyuXZ2djIzM/l6osf+/n44HOYLOGAr8gFnfw2Bu+WNVdQHPV7v/uF3Ul3RSOvcSE/9ec1dAQBOz2lEa5enhQvGy2q1NWNnY+X1UrmvT1cjgMUkNnDf2dl5//vfHwqFPvWpT73tbW878dt5+umnhepBSlhcXHzit39EGRkZLpcrPz+/oKAg0e8LSqloNBoIBM6ePZuZmZyjSQU7LrfbLQfuI9Wtp59Q4fV63W4dj03I7+hgCExcBm54vZlut44T7vn5+ab/9ouLVUODGhsz+28LJyfV5cuJ6iyWQCAQiUQyMzM1fO2CUsrtdns8noKCgvz8/GT3AkAHZzjcMm/6LUAp1V/Trq0ZJEjE6Rqqarowafo8e+fMIIE7AFhR5fpiVihgVg273DMlPp392Ja8n1xNTamtLZVnvlgVsKvEHkH9zGc+Mzw8fOXKlT/+4z9O6DsCEiQnsFO1viBcMOhr1tYMjk3O03t6dPUBANCtdHzQ7OCzUirscg9XNursBwki3zhhjDsAWFSDOE9muti37/Joa8bOVvPPbmabn1gyDDXIt1rgEIkN3IeHh5VS3d3deXl5mXf5yEc+cnBBU1PTwe/s7OwktBPgZFrnRh0mM0mUUltZuQuF5Tr7wfFcvChVb97U1QcAQLfyIfMFX0qNVjQEPckZWIf48otj3DtmSAEAwJLkAe4xjl0jrmJM72FvKnAYHUOWw+Fw8LVeXTr66u8Y5pkmkERtc8NCdaiq2WDjZSqTT7h3d+vqAwCgW8VQr1CVU1pYSL84i796de7Mzqa2ZgAA8VK/OCVUx+XB4oirGPtpCdyBwyR2hvuTTz756U9/+o2//8wzz/zpn/6pUurpp58uKSlRSmVlZSW0E+BkWmdHhOpQFfNkUtulS1J1elqtripGqANAOioflE64yyktLGSm2LeVlZu3t31o1WEYbXPDSvHpBgCLkU+4j3HCXaMYH20Cd+AwiQ3cL1y4cOjvz87OHvziLW95i8/HpgukrtY5MXBngHuKq6pSpaVqedn0gt5e9fa3a2wIAKDFzs7ZaWnn+UB1q7ZekFCGwzFQ3fqm4RtmF3ROD26rB3W2BAA4JWc0Wrc8LVzACXedYny0CdyBw+gYKQNYlDMUlL/ND3LCPfUxxh0AbKiryxmJmBUDGZljvFBPI/3V4t5UxrgDgNX41uaFzef7Ls9McZXOfmwuxsT8mRm1yfQ24PUI3AFTWYN+dyRsVg16vFOlNTr7wUnIU2V6enT1AQDQ6OWXheJQVXPE6dLWCxLNLw4I6pge0NYJACAuGsR5MtMlvrArsdMacLf13MKN3ALTsmEov19jO4A1ELgDpnL6pH1rI5WNvFy3ADlwZ28qAKQlMXDvZ2NqepE/oaV3VnPXzIfLAQBST8PSpFDlMTX9JsrqpDJTZYA3SE7g/sEPftAwDMMwGOCOVJbTLwXubEy1BjlwHxhQgYCuVgAAuly7JhTlA9GwnOWCktX8s8IFFQM80AYAVtK0IG5MrSBw1429qcBx8RgOYIrAPfVtB8Pzm2JiXlFbkZXt2Ns9vBoOr1zt2r98T8x3dDY7w+vmkSAAsILVVTUhvVDvr5FGfsOK/NVt/7X/ebNqxdAtnc0AAE5JHinDxlT92JsKHBeBO2AiEskekiaRDVU1aesFZr7bt/jkj0fla/5Had25KdNP5d/8v9/97ptNJ/W/6q8fOv/m2sJj9wcA0O/aNWUYZsXN7PzZs5U624EG/upWKXAf5IQ7AFiGMxKpWZkRLohx2hoJwAl34Lg4sAmYGBpy7u2ZFSNO12hFg852cGLDldKtkda5EW2dAAB0EAe499W0GQ6Htl6gh/zUQvngLRWNamsGAHAahXNTGeF9s2rInTF7tkpnP1BKjZWL6cfcnFpf19ULYA0E7oCJmzeF4mRpTdDj1dYLTkN+FqF9dlhbJwAAHcTA3c88mXTUL95H8e5sqRHurwOANRRPSi/QJstqok6CLN3u5OSv54kPfA8M6OoFsAa+TgEmurqE4qCvRVsjOCV52n7L3Kg7EnukDADAMuTAvZqNqWko9qQgcY8uACB1FE9Kt0jHy+p0NYLXGJUPuff16WoEsAYCd8CEeMJ9yMfGVMsYrmoKu0z3VWSEQ3XL0zr7AQAk0OSkWl4W6v7qVm29QKcYu3DF2zAAgNQRI3BnY2qSjDPGHTgOAnfgMIaheqT9WoPioWmklJA7Y6KsVrigfXZIWzMAgMQSc9WlgtLV/LPaeoFO/hrx2QUCdwCwiOIJaaTMaAWBe3LEuNVB4A68FoE7cJipKWHph+FwjIh7OJFqBqukEUBtjHEHgLQh5qoxDkHDyvrkT253twqFdPUCADipUKhwblKoc8I9WcY44Q4cB4E7cBhxgPtcUcVWVq62XnB6A9VS4N4+Q+AOAOlCHNXdLx+ChpUNVTULE+RUIKB6ezW2AwA4kaEhZyRiVgxkZM4XletsB6+KcatjaUmtrOjqBbAAAnfgMDEGuLMx1WLkJbct86POaFRbMwCARIlE1I0bQr2vpkNbL9As6PGOyVkAU2UAIPWJuzfHy2qjDlKs5NjKyl0+UyxdwSF34C58qQIOIwfuDHC3muHKpojTZVbNDAXqVtibCgDW5/er7W2zYtThlB94gtXFeIKBwB0AUp8Y2o6VN2hrBG8U45C7eLMEsBsCd+AwYuDOxlTLCWRkTpXWCBe0MVUGANKAmKhOltXuerO19QL9YszoF8cNAQBSgnzCXR4jjgSL8SQZJ9yBuxC4A2+wvKzm54X6kI/A3XoGxc8ae1MBIB2IiWofA9zTXYzAfWBAbW7q6gUAcCJi4B4j8EWCxfj4c8IduAuBO/AG4sbU9bzCtbwibb0gXuQx7m1zBO4AYH1XrwrFGGksrG+8vE56iCEalUf8AwCSbHdXTUwI9bEKAvdkivHx54Q7cBcCd+ANxHkyA75WbY0gjuRPXNvssNNgbyoAWNnurny0isA97UUdTvn+unxLBgCQZH6/ipq+KNvJzFk+U6KzHbzORFmd4XCYljc21NycxnaAlEbgDrwBG1PT0VBVs7DRPju4V70yq7MfAECcdXWpcNisGHJnjFawaS399dWKt1XYmwoAqczvF4pj5WLai8Tb9WYtFJZLVzBVBngFgTvwBvLGVAa4W9OuN2umxCdc0DY7oq0ZAED8iQPcB30tYZdbWy9Ilv5qcVI/e1MBIJUxwD3ljcpTZQjcgVcQuAOvtbmpxseFOifcrWuAMe4AkMbEw8v9bEy1hxiDg2Zn1fy8rl4AAMckB+48qZYCxuXbHuIzCoCtELgDr9XdLYyN287MmS+q0NkO4kie69o+M6StEwBA/ImHlxngbhOLhWWr+WelKxjjDgApixPuKW+8vE4qc8IdeAWBO/Ba8gB3XzNj46xLDtzbZocdhqGtGQBAPK2syA+o9dV2aOsFyRXj5gpj3AEgNd25o2alrVpj8jATaBFjI47fr3hNDSilCNyB14uxMVVKbJHiBn0twv2S3MBO1fqCzn4AAHEjHm/fzM6f4wE124gxPogT7gCQmvr7hax2PbdwPbdQZzs41GRpTcTpMi1vb6uJCY3tAKmLwB14LXljKgPcrWw7M2f2bKVwAVNlAMCqxBS1r6aNB9Tso69GfJrh+nVheCAAIGlu3RKKHG9PESF3xnSJT7qiv19XL0BKI3AH7hIMqoEBoc7GVKsb8LUK1bZZ9qYCgDUxwB2vGKhule6vbG7KP+wBAJJDDGoZ4J46YnwuGOMOKKUI3IHXuHVL7e+bFUPujKnSap3tIO5i7E2d5YQ7AFiQYciDuRngbitbWbnTJeIPbEyVAYAUJG9MlUeHQ6NxAnfgCAjcgbuI82RGKhvDLre2XpAIMfamzrA3FQAsaHhYra+bFQ2HgxPudtMnf8bF5yEAAMkhB+6ccE8Zo/J4HwJ3QClF4A68RoyNqcyTsbzBamlvav7eVsXGks5+AABxIOanc0UVt3POaOsFqSDGLRZOuANAqllaUisrZkXD4Rgvr9PYDSQxbn4MDgpjAwD7IHAH7iJvTPURuFveZlbeQmG5cEEbU2UAwHLkjanMk7GfGJ/0W7fUzo6uXgAARyAei14qKN3OzNHWC2Qzxb6wN9O0HAqpkRGN7QApisAdeEUkIi9G54R7eogxVYa9qQBgOWxMxWsNVzYGPV7TciSiuro0tgMAiEV8Jc48mZQSdTrXaxulK5gqAxC4Az8zNCQcd4o6nXybTw8E7gCQVoJB1dsr1DnhbkNhl3uoqkm6gqkyAJBS+vuF4pg8NBzardVLr6kJ3AFF4A78jDhPZqK0NpBh/tgUrGNADNw7ZhgpAwCWcvOmCgbNimGXe7hSPISFNNVXI95oIXAHgJQinnAfLW/Q1giOgsAdiInAHXiFvDGVAe7pYqC6VagW7Nwpu72srRkAwGmJ82RijBZB+ooxSkj8awMA0MowOOFuLasN0mtq+fYJYBME7sAr5I2pDHBPF7dzziwVlAoXMFUGAKyEjak4TF+tGLhPT6uFBV29AABEExNqe9usGHU6J8pqdbaDmNbqxHhkfJzl5ACBO6CUUsowVHe3UB+qEp+ZgqXIh9wJ3AHASl56SSjGmCuC9DV3tnIjt0C6gkPuAJAixAkk08W+kDtDWy84iq3SClVg/k02GlV+v8Z2gFRE4A4opZSamlLr62ZFw+EYqWICbPqQn1doJ3AHAKtYWVHj40I9xjFnpLUYU2UY4w4AKUIe4F7BAPfU43CoDvFMA1NlYHsE7oBSKsY8mfmiis2sPG29INEGY+xNHdTWCQDgVMTMdDM7f6bYp60XpJo+OXAXn40AAOgjnnAfI3BPTefPS1X2psL2CNwBpVSsjakMcE8v/uo2oVq0tVGyuaqtGQDAycnzZGrbDYdDWy9INbfqOqXy9esqEtHVCwDAnBy4l7MxNSXJgTsn3GF7BO6AUirWxlQfgXtaWc8rXMkvFi5gjDsAWIO8MZUB7vbWX9MedZi/2NnaYsIsACTf/r4all58MVImRZ07J1UJ3GF7BO6AUkrJG1OHK5u0NQI95KkybbMj2joBAJyQYajr14X6rVoCd1vbzsyZKq2WrmCqDAAk3eCgCoXMikGPd/Zspc52/n/27js6zuu69/6ZwcyggyDAIhJEJwCCqCRIsEoUpciyVW3JtixZcoqvE9l5nTf2tb3e6+VkJblxEq8U21mJ7diKm2w1qlOFquwdIDrAAhAkQRAkAAIgOqa+fyCWVfjsQZk5U57vZ+WPmHsT8yMJgcSe8+yDmZJPuF+5ovr6dEUBwhEDd0Cpy5fVxYtC/RQn3KNOW6Y0cC/uOqUtCQBgjtra1NCQYdVikReIwQz8vOnCvakAEHKNjULx7NIcr5WxVVhKS1MZGVIDh9xhbnzlApQ6flwoXk1Ok9ePIBL5OeHezUoZAAh7x44JxYGMnGuJKdqyIDw1ywN3TrgDQMiJY1n2yYQ1easM96bC3Bi4A36+Y2/J4nxcFDq5okioLhnqSx8Z0BYGADAX4rS0p7hCWxCELT97/Nva1PCwriwAgOsRx7Jnb8jRlQOzx72pgDEG7oCfE+48kB6VehcsupqcJjQUscYdAMLc4cNC8VJxpbYgCFvty/LGY+MNy16v/I9AAEDQiWPZM8vztQXBrHFvKmCMgTtMz9+Vay1ZxdqyQCd5NT9bZQAgrI2OqpYWoc4JdyilvFar/Ewba9wBIJSGhlRXl1BnpUxYKy+Xqi0tyuvVFQUIOwzcYXpnz6qrV42KPq5ci15t4nfgqy4ycAeAMHb8uPJ4DKvx8b15/PUNpZRqzhZPTrDGHQBCqKlJ+XxGxaHEBf0p6TrjYHZWr1Y2m2F1dFR1dmpMA4QXBu4wPfFR4ktpy7hyLVrJ96YWd53SlgQAMGvynHTdOq/wHSDMpCm7RCozcAeAEGKfTESLjVUF0lPjbJWBmTFwh+mJA/cWjrdHL3ngvmzwysLRIW1hAACzI28C2bBBVw6EOz8n3Pv6VEeHriwAgA8SB7Lsk4kA8r2pjY26cgBhh4E7TE++MTWLgXvU6lm4dDApVWgo6ubeVAAIV/LB5E2bdOVAuOtLWTS8NEPqEG/fBQAEkTiQZeAeAeSBOyfcYWIM3GFuHo+qqxPqLHCPbqcyxHtTWeMOAOHp7Fl15YrUwAl3vM+l1ZVSmXtTASAkfD7V2irUGbhHAPneVAbuMDEG7jC31lY1OmpYtVpPrhBXkiHCyVtlGLgDQJiSj7dnZakM8UQzTMbPwJ0T7gAQEl1dashwh6fXYu1cmqMxDeZEPuHe3q4mJnRFAcILA3eYm7hPZrygaDw2QVsW6Ofn3lQG7gAQnuSB+8aNunIgMlwqFgfujY1qfFxXFgDA74j7ZC6l3TAeG68tC+YoJ0clJxtWPR7V0qIxDRBGGLjD3MSB+1j5Wm1BEBJt4sB9+UBPyviwtjAAgJnixlTMxpWC1So21rDscqnaWo1xAABKKaUaGoTi6YyV2oJg7iwW1rgD18XAHeYmDtxHK9ZoC4KQuJS2bDghxahq8fmKutt15gEA+Dc5qerrpQZOuOODPHaHWiP+o05+ZgIAEAzNzUKRBe4RQx64i88xAFGMgTtMbGpK/jt+tJyBe5TzWSwnxXtTiy+e0hYGADAjtbXK6TSsOhxqLQ+o4SM2bZKqDNwBQD9xFMvAPWIwcAeuh4E7TKyhQU1NGVYdjolVqzWmQWj4uzf1jLYkAIAZka+4XLNGxcXpioLIIT/3wL2pAKDZ1JQ6Ld2Y1b4sX1sWzAsrZYDrYeAOEzt2TKpWVnodxus+ES1OrpBOuK/i3lQACDfybJR9Mrgu+ROjp0edO6cpCQBAKdXSotxuo+KEI+7iouU642DuysuVxWJY7etTPT0a0wDhgoE7TExc4K7Wr9eVA6F0ckWRUM3sv5g0OaYtDADAP3n7x+bNunIgomRlqYwMqYFD7gCgk7hppGNZntfCtCpCpKaqzEypga0yMCW+hMHEGLhDqa5FGaNxiUZVi89X2M1WGQAIG+fOqUuXpAZ5VTfMjK0yABA+xE0jZ1jgHlnKy6UqA3eYEgN3mNXIiDol3ofJwN0cfBbLafHeVLbKAEAYkaeiy5f7OWMFM5PfjGHgDgA6cWNqNGHgDnwEA3eYVW2t8noNq0lJqkjaNIJo0ibem1rMwB0Awoc8FWWfDATywL2hQY2P64oCAKbX3CwUuTE1wsj3pjJwhykxcIdZyftkqqpUTIyuKAixk+LAnRPuABBG5IE7+2QgqKpSsbGGVZdL1dRoTAMAJnblirp8Wahzwj3CyCfcT55UTqeuKEC4YOAOs2KBO35HHrhn93YlTHHkDQDCwMSEn0NSDNwhiI1Va9ZIDWyVAQA9xL/NRxctvZaYoi0LAqCwUMXFGVadslp+0wAAIABJREFUTj/rfIFoxMAdZsXAHb9zfknmeGyCUdXq8xZe6tCZBwBwfTU10gkpv+NUgDXuABAO6uuF4pWVxdqCIDBsNrV6tdTQ0KArChAuGLjDlPr61LlzUkN1taYkCANei/X0cmlLIFtlACAsyPPQNWuk01WAYuAOAOGhqUko9uVym1oEkrfKiH/iQFRi4A5Tknd0LlqkcnI0JUF4YI07AESAQ4ek6saNunIgYskD995e1cEzbQAQfOJ55778VdqCIGDkgTsn3GE+DNxhSvI+mXXrdOVAuGjLlI5RrL5wUlsSAMD1+Xx+Bu6bN+uKgoi1YoXKzJQa5M8xAMD8OZ3qpPTtVW++uJwE4amiQqoycIf5MHCHKR07JlXZJ2M+JzOkE+65vedt14a0hQEAXEd7u+rrkxoYuGMm5EPuDNwBINja2qQbWeLjB1Zka0yDAJEH7pcvqytXdEUBwgIDd5iSvFKGE+7m07k0ezw23qhq8fkSG+t05gEAfJg8Cc3OVhkZuqIgkslvzDBwB4Bgkw87l5T4rDG6oiBw0tPV8uVSQ2OjrihAWGDgDvO5cMHPm6sM3M3Ha7XKW2WST4hriAAAwSZPQrds0ZUDEU4euDc3q2vXdEUBAFOSB6/yQWmEM7bKAO/DwB3mI++TycpSy5bpioIw0pRdIlST6mu1JQEAXIc8cJf3hADvqaxUCQmGVa9XHT2qMQ0AmI88cC8r05UDgcbAHXgfBu4wH/nG1PXrdeVAeGnOKhaqSXU1yufTFgYA8AFDQ6q1VWpggTtmyG738489tsoAQFDJg1dOuEcuBu7A+zBwh/kwcMf1NOaWClXb0KA6c0ZbGADABxw5orxew2pioiov15gGEY417gAQKj09qrdXauAv9MglD9xPnlRTU7qiAKFnC3UAQC+fT9WJt18ycDergaSFl9JuWD5w2bDj6FFVWKgxEQDgdw4flqrV1crGv2kxY/LA/ehR5fGoGK7sQ2Srr68/cOCAUXXx4sUPPPCAzjzA/6ivl6rZ2SotTakBXWkQUIWFKiFBjY9fv+pyqbY2VVmpNxMQMnxzApM5dUoNDRlWLRa1dq3GNAgvzdklfgbujzyiMQ4A4HcOHpSqLHDHrGzapCwWw01xw8OquZmdBoh0v/71r7///e8bVSsqKhi4IzTkvSIcb49oMTFq9WpVU2PY0NDAwB3mwUoZmIy8T6awUKWm6oqCsNOcLa1xV0eO6AoChIt//dd/XWRs+/btoQ4Ic3C7/dxjyQJ3zEp6uioqkhrYKoPId4ZdiAhPLHCPbqxxB36HE+4wGXngXl2tKwfCUVN2iVRuaFBjYyoxUVccIPSampquXr1qVB0cHNQZBubV2KhGRw2rFgsn3DFrmzerkycNqwcPqi9/WWMaIPDa29uVUn/7t3/77W9/+6NVi8WiPRGglPI3cuX4c6STB+7yQiEgujBwh8lwYyqMncoocNrsDrfr+mW3W504oW68UW8oIJSmz8dt2bLl5ptv/mh12bJlugPBnOR9MsXFKi1NVxREiy1b1M9/bliVP+WAsOf1es+ePauUKi4utnHFBcLH+Lg6fVpqYOAe6eQ/wbo65fMp3vCDOfC3L8zE5fLzjjoDd3Nz2uynMwpKz7cadhw5wsAdpjJ9Pu7hhx9+9NFHQ50FJmZ8759SSm3dqisHooi8hujcOXXxolqxQlcaIMAuXLjgdDqVUkXy9iRAs6Ym5fEYVpOTVV6exjQIgooK6ZaUoSHV1aWysvRmAkKDHe4wk6YmNTFhWLXb2RmHpuzVUlleIgxEl+Hh4d7eXqVUYWFhqLPA3OSF2lu26MqBKFJUpBYvlhpY445INv2AmsViKSgomP6R6fk7EGLyRpHpWS0iWkqKys2VGtgqA9Ng4A4zkffJlJaq+HhdURCmmrPEgfvhw7qCAKE3fbxdcT4OoTV91ljAwB1zYLGojRulBrbKIJJN/w2elZVVU1Nz++23L1q0KC4uLjc399577925c2eo08HEuDHVDOStMgzcYRqslIGZsMAd/jTliAP3S5dUV5fKzNQVBwil6fNxSUlJGRkZhw8frq2tvXz5ckFBQXl5eXl5eUxMTKgDwhzkuefSpSo/X1cURJctW5QweZQXGQHhbfpv8O7u7ptuuum9Hzx37ty5c+defvnlBx544LHHHktKSpI/yNtvv+33hSYnJ+cZNUJNTU15vd7JyUmrlSOMs+CoqxN+v1zFxZ7JSaWU2+32er0a8ng8Hl0v5PV6vT6fz+fzKaWC96LafkVut9voP39bSYnt+eeNfqLnxAmXWb9uzNnU1NTU1NTk5KTD4Qh1FswCA3eYCQN3+HMpbdnV5LT0kQHDjqNHGbjDJKbPxyUnJ996663vvvvu+0vr16//7//+77KyshBFg5nIA3cWuGPO5E+ehgY1MqKSk3WlAQJp+m9wt9tdWFj41a9+df369TabraGh4R//8R/b29uffvrpRYsW/cd//If8QW677Ta/LzS9es6E+vv7fT6f3W5n4D4LXm9mU5NQv5qZ6eztVUqNjo663W4NiaYmJ3W+kM/nc7vdlmCuzZnU9SsaGRkx+s8/PjtbWNnmq6837deNORseHh4dHXW5XKZ9jzNCMXCHaYyPq1bjyzAVA3f8j+bs1duajc+1HT2qPv1pjXGAkJk+H9fT09PT05Oenj797XpjY+OFCxeOHz9eVVW1a9euW265Rf4g69at8/tCly9fDkziwBkcHBwfH3e73QkJCaHOEp1GRkaGh4cnJyf9fuewaN8+4V+rI2VlYwafPyMjIy6Xax4ZZ2pyYkLPC01MTM78hbxer8fjsVqtPqOLy4xNzuaF5kPbC42MjHz064wlM3OJw2ExWmzt8Qy8/rrzfaeDP8TlcvX19dlstqCOTkyur69PKcWBvjno6uqKjY3dsGHDa6+9lpiYOP2DVVVVDz744B133LFnz54f//jHjzzyyIYNG4QP8gd/8AdCdfr8e1xcXABjR5DY2FifzxcXF8fAfeZizpyxjI0Zl2NiKiqmP6NsNpue31hrTIyeF4qJibFarV6v12KxWCyW4L1ojK5fkd1uN/rP37pmjfATbRcuxDudvpSU4OSKTlNTUy6XKzY21rRfciMUA3eYxokTSnizNyFBlZRoTIPw1ZxdLA3cjxzRmAUIpemBu81m+9GPfvSlL33pvR//2c9+9rWvfW1sbOxP//RPm5qa4sXbL2pra/2+UBje5OZ0Ol0ul9PptNn4l1JQuFyu6d9h+U/fOjpqO3lSaBhbs8boI3g8njnMmudg+iFxDS/km80LTT+37vV65/CNt8er6bfOo+u3zuPxXPfzxFleHltTY/SzYg4fdhrveXe73S6Xy+fzheFXsKgx/X4Mv8NzUFdXd90fj4+P/9GPflRaWur1enfu3CkP3N966y2hOv1W05IlS+aTM3I5nU6v17tkyRIG7rOwe7dULSxcnJ09/f8mJQ3bbMMaEsXFxdlsOs6Dx8bF2myu6b/yLBZL8P55qe1XlJSUZPif/5IlauFCNTh4/arPt7inR61cGbxs0cfhcMTGxqampqbwRkVE4dtImIa8T2bNGsVUBUoppZqyxbdeamqU06k4bAUTeOSRR+6+++61a9d+7GMfe/+Pf+lLXxodHf3617/e0dHxi1/84itf+YrwQWqMh1nqd+ffb7jhhoAEDiC73T4+Pp6WlvbewUAE1vDwcGxsbHJycmpqqtBmfeMN5fEYluPj0265xegLcnLyhN1ufJIucOLi4+yjOvalxsXH2UeNfzc+aPoYndVqncN39fFx8Xa7jl9R/Gx+RfORnJx83a8zMTffrIy/RiU3NsYbf3Wanrbb7fYw/AoWNaYH7vwOB1ZxcXFeXl57e3uTuNwDCDz5tkz5pk1ElspK6f2V+np1440a0wChwYQRpsECd8xMS1axxxoT4zUYAUxOqsZGNYMtGUCke/TRR41KX/3qV//u7/5uaGjI6Azde6qqqvy+UBiuC3A4HC6Xy+FwhGG26OBwOOx2u//fYfmhoupqh/GlfzExMXp2fVit2l7IOvMXsrzPrF8oZhYvNB+z+hXNR0xMzPU/0268Uf3Lvxj9LOvx4w6r1ehAhsVisdvt05/GgcqJD7Hb7Sos/46IdIWFhe3t7efPnw91EJiMPHAX95AgwlRUSAN3f98+ANGBB6BgGgzcMTMTjrizN+RIHWyVgenZbLZVq1YppTgfh+Dav1+qcjwK87R1qxLWQYyMqMZGjWmAwBgdHb18+bJwLeHg4KBSqqCgQGMowN+YlYF7NJH/NBm4wxwYuMMcBgdVR4fUwMAd79OUvVoqHz2qKwgQvtLT05VSsbGxoQ6C6DU15efN8i1bdEVBlEpLU0VFUoP8lg8Qlnbt2rVs2bKlS5e2tLR8tOpyudra2pRSZWVl2qPBxC5dUleuSA2slIkm8sC9tVVxOQdMgIE7zKGmRgm3ci1YwK0deL/mLHHgzgl3mMDu3bsfffTRr3zlKxMTE9dtOH36tFKqtLRUby6YSU2Nmpw0rMbEqE2bNKZBlNq6VaoycEcEuuuuu5KTk5VS3/3udz9a/bd/+7ehoSGLxfLxj39cezSYmLxPZsUKtWiRrigIvuJiFRdnWHU6VWurxjRAaDBwhzkcOyZVq6uVlhWiiBTNOeLAvaND9fXpygKExvLly//rv/7rxz/+8TPPPPPRanNzc0dHh1KqoqJCezSYxoEDUrW8XC1YoCsKopc8cJc/CYGwFBcX98UvflEp9eSTT37ta18bGRmZ/nGn0/nd7373r//6r5VSf/Znf1ZdXR3KlDAb9smYis2m5EM5bJWBCTBwhzmwwB2z0bkkezg+2bDs8/l5CweIfEVFRWvWrFFKfetb3/rQvWoDAwP/63/9L6/Xm5ub+/DDD4coIExAnnXKc1JghuSbAK5cUWfO6IoCBMz3vve9LVu2KKV+8IMfLF26tKKiorS0NDk5+Tvf+Y7T6ayurv6nf/qnUGeEyTQ0SFUOcEQfeUcQA3eYAAN3mAMDd8yGz2JpzVoldbDGHSbwn//5nw6Ho7e3t6Ki4jvf+c4LL7zw7LPP/s3f/E1xcfHRo0eVUj/5yU8SEhJCHRNRyudThw5JDQzcERC5uSozU2pgqwwikMPheOWVV771rW8lJiZOTEw0Nja2tLQ4nc7ExMTvfe97hw4dWsATQtBMHrCywD36cG8qTM8W6gBA8PX0qEuXpAYG7viIpuzVG08Zv0/DGneYwKZNm37+858/+uij165d+9Ae2OXLl//kJz/52Mc+FqpsiH4tLWpgQGrgxlQEytat6sknDav796s/+RONaYDASE1N/d73vvd//s//aW1tPXfuXExMTHl5eWFhYUxMTKijwXyuXVMdHVIDK2Wij/xn2tCgvF5l5QQwohkDd5iAvP3jhhtURoauKIgYzdniGvejR/knAszg85///O233/6DH/zg2LFj7327vmbNmkcffTQ1NTXU6RCRjncNdfSPTUxMjI2NJSRMJSSMXbdt5Y6d64w/yGhG1iu9SvV2Cy/UP+acX1KYxpYt0sCdNe6IZKmpqZs3b968eXOog8Dc6uuVz2dYTU1Vubka00CL8nIVE6M8nutXR0ZUR4cqKNCbCdCKgTtMQN4nw31BuJ6m7NU+i8Vi9E/D4WHV1qZKSvSGAkJg0aJFf//3fx/qFIgeb5zsfbH5ssfj8Xg8MTExRmctv/vGO8IH2bus+F/2iGfllCpanDT3lDAVeY17e7vq6VHLlulKAwBRx+8+GYtFVxTokpioCgrUyZOGDSdOMHBHdON4JkyABe6YveGElK5F4qMPbJUBgKBZc7ZRqNbllWtLguhXWqoWLpQaOOQOAPNx4oRUXbtWVw7oxRp3mBsDd0Q7n0/V1koNnHCHAf9bZQAAQZBx9dKSoT6hgYE7Aslq9XMlwL59uqIAQDRi4G5O8sBd/qwAIh8Dd0S7jg519aph1WJRVVUa0yCSNGWLG2M44Q4AwbH2bINQHUheeGFxprYwMAV54L5/v64cABB1JibUqVNSAzemRiv5rRQG7oh2DNwR7eSngHNzVXq6riiIMM3ZxVK5tVWNjOjKAgAm4m+fTIWPZa8IrJtukqpNTWpgQFcUAIguDQ3K7TasJiSooiKNaaDR2rXSdv6rV9X58xrTALoxcEe0kwfuLHCHsTPL8icdcYZlj8fP9QAAgDlZ0yGdcD/BPhkE3Lp1KiHBsOr1ssYdAOaovl6qlpcrg+vTEfEWLlQ5OVIDa9wR1Ri4I9rJTwHLTxDD3NwxtrYVhVIHW2UAINDSRwYy+7uFhrr8Cm1hYBYOh9qwQWpgqwwAzI28OYR9MtGNrTIwMQbuiGp9ferMGalh61ZdURCR/Kxx595UAAi0qg7pKNxoXGL7DXnawsBE5K0y3JsKAHNTWytVuTE1unFvKkyMgTui2v79yuczrKakqHIeS4fEzxp3TrgDQKBVigvc6/PKvVb++YogkAfuJ05wcQsAzJrTqZqbpYaqKl1REAryGyqslEFU4zsWRDV54ebmzSyMg6wpRzzh3turzp7VlQUATKGqXTrhfiKPfTIIjo0blcNhWHW71aFDGtMAQFRoalJOp2HV4VAl4ndbiHTywP3SJdXToysKoBsDd0Q1eeEm+2TgT1/Kot7UxVIHh9wBIHAWjA3nXjkvNLDAHcGSkKDWrZMaWOMOALMl7wwpK5Pe6UQUWLpUZWRIDWyVQfSyhToAEDRjY36uRGfgjhloyi65dWiPYfnoUfXQQ/rSAEBUW3u2werzGlUnHXEnVxTozIPoMOr0HLsw6Lcts7J6mfEx9pG33m37099/ELfb3d8/ZrPZuly//8ElSbE5aQnzTAsA0YMF7li7VnV3G1Zra9Wdd2pMA+jDwB3R6/Bh5XYbVh0OtX69xjSIVM1Zxbc27DEsc8IdAAJnrXhjamNOiSvGri0MokZH/9hXnmvy27bZtfzfjauxJ2q+9lTNlD12+n/6fD6Xy2WxWOz23z8O/8nSG75zW+F84wJA1JAH7vJzRYgOa9eqnTsNq/JnCBDJWCmD6CUvcF+3TiVwBAn++VnjXlenJiZ0ZQGAKFclDtxr8yu1JYEJNeSWClfyOtyu8nMtOvMAQGRzubgxFX7+lBm4I3pxwh3RiwXuCIS2FYWuGLvd47p+2eVS9fVq0ya9oQAgCqVMjKy8JN1EfYKBO4JpLC7x1PKC4ounjBrWnG04XsACBACYmeZmNTlpWHU4VGmpxjQIpLqL1278j4Mz6UwbVi8J5e7ue/9h50BKmlH9vrJlX9uWN+t8QBhg4I7IM+n2nu4dlXssbnfJ0aPCExznVq8dvjQsf5BLw8b/PoBpTNljzyzPW91l+O23OnKEgTsAzF/l2UZhgbvT5mjJWqUzD0yodmWlMHBf117/09t1xgGAMHJlZOrapPHK1o9YsPfwUuPqVFHx+WG3Utf5gBMuz+zTQSuPzzfDP6bu+AX9KemLhq8aNeR2tnavNvxu2uU1/JchEOYYuCPydA1O/MnT4m2oSpVcaPvV2JhR1WexfLEr8Zq/D5K9MH4u+RB1mrNLpIH70aMaswBA1Kpql/5ebspZ7bQ5tIWBOZ3Ir3x4z9NG1dLzLbGuqffWuAOAqfzsyPkXmy/PvP//e/bNTxtXdyWs+L+/uf46kaLFSbOMhrDWtqLoxlbDO8lXXTx9wHjgDkQudrgjOlV2SldjnV2acy0xRVsYRLrm7GKpzL2pABAIazsahCoL3KHBifwKeY176fk2nXkAIHKtNn5gSCnVllmkLQlCqy1Tuk68+OJpbUkAnRi4IzpVnm0UqvV55dqSIAo0ZYv3pp4/ry5d0pUFAKJT0uRY0aUzQgML3KHBaFzi6eUrhYaqjjptYQAgctk9rpWXOoSGthXSEBbR5OQK6c0VYZMbENEYuCMKWXy+ik7pPvT63DJtYRAFLqYvd6elSx1slQGA+Vnb0WA1XtPptNmbslfrzAPTkp+lqOrws5AQAKCUyu/pdLhdRlV3jO2M+O4moslJ8c2VJUN96SMD2sIA2jBwRxTK7utKGx0UGuo44Y7Z8Fkso5VVUgcDdwCYn6p26eBwS1Yxi7OhR+1KaeBedq7V4XZqCwMAEUq6AUup9mV5TptdWxiEVu+CRVeT04SG1V0ntYUBtGHgjigk75PpTV18eaFwXzpwHSPywJ017gAwP+vEgXvNyjXaksDk6vLkNe7O0vOtOvMAQCQqFkeorZmrtCVBOJD/xIvFt2eACMXAHVFIvjH1RF6FtiSIGqNr1kvl48eV260rCwBEm5SJkQJx02stA3foMhKfdGZZvtCw/swJbWEAIELJJ9y5MdVs5D/xkguccEcUYuCOKLSGG1MRaKNrqpTxeTc1Pq6apWsDAACCte31Vp+wwN3BAnfoJL/BIz+NAQBwuJ35lzuFBm5MNZtWceDOShlEJQbuiDbpIwMZVy8JDdyYijnwJCWr4mKpg60yADBX8gSzKWc1C9yhU424xr30fFu8c1JbGACIOAWXOmwew8d/nTZ7x7JcnXkQcvJKmYWjQ8sGr2gLA+jBwB3RZm1Hg1Adjk8+e0OOriyILhs3SlXuTQWAufK3wH2ttiSAUupEfqWwxt3ucZWda9GZBwAii58bU5fnu2K4MdVcBpIXyhfpscYd0YeBO6JNZae0T6Yht8xr4dMec7Jhg1TlhDsAzMmCseG8y+eEhtp86bgxEHCjcYknMwqEhnXtrHEHAEOrxZXcrStY4G5GbJWB2TB5RLSpPCvdmNqQW6otCaKNfML91CnV16crCgBEj6qOOmGB+5Q9tpkF7tCupkB6roJ7UwFAUCIOT+XtIohW8r2pDNwRfRi4I6okTY4V9HQIDXXcmIo5W71aJScbVn0+tXevxjQAECXk2WVDTqnTxoPn0E1eZLS661TC1Li2MAAQQRKmxnN6zwsNLVnizViIUvIbLcVdpyw+n7YwgAYM3BFVys+1WL2Gp+ScNkcbb6djzmJi/GyV2b1bVxQAiB7V4sC9pmCNtiTAe+pzy9wxNqNqjNez5qy0wxAATKu467TwLfl4bHzn0mydeRAm2jKLfBaLUTV5YjSrr0tnHiDYGLgjqlSK3/w0ZxdzSg7zsm2bVN2zR1MMAIgWS671Z/deEBpqVjJwRwiMx8bLZ/GqxZt+AcC0Si60CdWTK4qEW6kRxYbjky+mLxcaSsTV/0DE4Ssdoop8Y2p9bpm2JIhO27dL1bY2dfmyrigAEA3Wicfbx2MT2PSKUJHf7Fl/plZbEgCIIPIC95Ys/lo3L3mbUEmX9FYNEHEYuCN62D2u1V2nhIb6XBa4Y36qq1ViomGVNe4AMEvV4tSyLq9cWOsBBJW8zqjg0tnUsWvawgBApFgtnnDnfXQzaxXfbuGEO6IMA3dEj+KuU3HOSaOq12JtyinRmQdRyG5XW7ZIDaxxB4DZqBL3chwrrNKWBPiQ+tyyKXusUdXq81afbdCZBwDC38LRoWWDV4SG1swibWEQbprFE+6F3e12j0tbGCDYGLgjesi3V7UvzxuJT9IWBlFL3irDwB0AZiy776L8bfnxgrXawgAf4rQ5GsWzGhtY4w4AHyQvcB9KXNAtbvFGdDuVUSA8uehwOwsundWZBwgqBu6IHpVnm4Qq+2QQGPLA/fRp1d2tKwoARLb14rzyWmJK+7I8bWGAjzpeID1jsaFduoEAAEyo7HyrUJVXeCPqTdljO27IFRrkN2yAyMLAHVHC4vNVnGsWGurzuDEVgVBVpVJSpIY9ezQlAYAIVy3OK4+vXOu18C9VhNIx8RmLrKuX5Ec0AMBsVos3prJPBvKbLqtZ444owrcxiBJ5l8+ljA8LDfU5DNwRCDab2rpVamCrDADMgNXnqxZPuLNPBiHXmrlqNM74snS2ygDA+1h8vpLz0gnl5uzV2sIgPMlr3DnhjmjCwB1RYk2ntMC9O315b+pibWEQ5VjjDgDzVtx9ZoH4Trm8zQPQwGu1nsivFBrYKgMA78nq60qZGDGq+iwWVsqgNWuVUM3tPZ88MaotDBBUDNwRJSrFG1PrcznejsCRB+5nz6rz53VFAYBItVGcVF5JXXJh8QptYQAjRwvlNe51Fp9PWxgACGcl4j6Q7rRlQ4kLtIVBeDq7NGc8NsGoavH5irtO6cwDBA8Dd0SJyk7xxtQ8bkxF4FRWqoULpQbWuAOAP/LAXZ5yAtocFz8V00cHV/ac1RYGAMJZ6QXpxlT2yUAp5bVa5VX+8mcREEEYuCMaLBnqu0G8tKqOgTsCKCZG3Xij1MBWGQAQxbqmKs+1CA3HCtdpCwMIOpdk96ekCw0bTtdoCwMA4az0vDQqZZ8MpslvvcifRUAEYeCOaFDVUS9UhxIXnF+cqS0MTEHeKvPuu7pyAEBEWtvZFOt2GlV9Fgs3piJM+CyWY+J1AgzcAUAp5XC7Ci5JT/wwcMc0+d7UUvHeXSCCMHBHNPC7T8ZnsWgLA1OQB+5dXeosD5gDgKENZ2qF6pll+VeT07SFAWRHi6TnLdZ2NMS6prSFAYDwtOriabvHZVR1xdhPrijQmQdhSz7hnjY6mHH1krYwQPAwcEc04MZU6FZerhYtkhrYKgMAxjacERe4i/NNQLMjReuFoxuxrqlycT8SAJhB6XnpK+GZ5XlOm0NbGISz/pT0ywuXCg0cckd0YOCOiJcyMZJ75bzQwAJ3BJ7Fom66SWpg4A4ABhaODhVeahcajosbPADNriannV2aIzSwVQYAysTV283ZJdqSIPz52SrDvamICgzcEfEqzzZZfV6j6qQj7nTGSp15YBascQeAOak+XWv1+YyqTpv9BO+UI8wcLVovVDecYuAOwOzkZ32axC0iMBt5q4z85g0QKRi4I+JVdkr7ZJqyV7ti7NrCwETkgXtPjzp9WlcUAIgkG08dF6qNOaWTjjhtYYCZOFIorTkq6j6TOnZNWxgACDdLrvUvHeoVGpozD8LUAAAgAElEQVRyOOGO35MH7kUXzzjcTm1hgCCxaXul3t7eI0eOnD59uqenZ+XKlaWlpRs3brTbmYRivirPSjemsk8GwbJ6tVq6VF25Ytiwe7cqLNQYCAAigc8nD9yPiEeJgZCoy69w2uwO9/XvA7T6vNVnat+svEVzKgAIE2XnmoXqQNLCi+nLtYVB+GtbUeiKsRvdsmv3uFZdPN2YU6o5FRBYOk64ezye73//+ytXrrz33nu/+c1v/tu//dtXvvKVm266qaKiYjdrjjE/Drdz1cVTQkN9LgN3BIfForZtkxr4+gYAH7Hk3JnFw/1CAwN3hKEJR5x8PHNT2zFtYQAg3Mg7QDjejg+ZsseeycgXGriNHFFAx8D9L//yL7/+9a+PjIwsXLjwjjvu+OIXv7hp0yaLxdLW1nbLLbfs2LFDQwZEq9LzrUanjZRSHmtMc7Z0HQcwL/JWmd27lfGSYgAwp7zaA0J1IGkhN68gPB0tlN4K2njquIW/9AGYFQvcMVuN4j26DNwRBYI+cK+rq/vxj3+slLr11ltPnTr16quvPvbYY4cOHTp06FBmZqZS6s/+7M+6u7uDHQPRqrJT2idzKmPleGyCtjAwHXng3tur2tp0RQGAyJBXIw3cjxat81q4YQjh6PAqaeC+eLg//3KntjAAED7sHldR9xmhQV7YDXNqFJ97KGPgjsgX9G9p/uEf/sHj8cTHx//yl79cvHjxez++cePG3/zmN0qpwcHBp59+OtgxEK0qz0o3ptbnVWhLAjMqKlIZGVIDW2UA4P0mJ7NaaoU6+2QQtk5lFAwkLRQaNp1kqwwAMyq6eCbWNWVU9VqtrZmrdOZBRGgSV7QvHu5fNmh8WRoQCYI+cN+7d69S6q677lqxYsWHSjfddFNWVpZSqrZW+tYLMGL1eeVHjepzy7SFgUmxxh0AZm7vXtvUpFHRZ7EcLVynMw4wc16L9WiR9Pm56RQDdwBmVC7emNq+LG88Nl5bGESKnoVL+1IWCQ3yTbxA+AvuwH1iYqKvr08pVVZ2/bnn9FaZnp6eoMZAtFp56WzS5JjQ0JDLxdYIMnmrzJ49yuvVFQUAwt4bbwjF9mV5/Snp2rIAsyU/gVF5ttE+OaEtDACEiQrxDFyDeJAZZibfplvBwB0RLrgDd6vVunPnzp07d/7RH/3RR6tTU1NtbW1KqZUruR0Lc1HVUS9ULyzOvJqcpi0MTEoeuF+9qpr5hwIA/M6uXUKRfTIIc0eK1vssFqOqw+3KbuSQOwDTKe+Uvt9pZOAOA/JtuuWdrHFHZAvuwD02Nvauu+666667pk+yf8i//Mu/DAwMKKXuv//+oMZAtJIf3a3PY58Mgi8/X2VlSQ1slQGAaefOyVdJHy6q1pYFmIOryWmnl0vnhPLFO4EBIPosH7i8eLhfaOChcxiR700tvNSeMMVzY4hgtpC8qs/n++EPf/hXf/VXSqnt27fffvvtcn9amv9zyhcvXgxMOGOjo6PXrl0bHR0dHR0N9mtBKdXf3z81NeVyuWJjY9//45cHp5xOZ6xrqqpdOuF+PKvE6XTOJ8DEhJrnR5ih8fFxTS80Jr2Qy+UK2Atp+xXpeqHe3t6LMdffX5RWXZ1w4YLRT5x47bWr13tPcWpqqr+/PzY2Vk9+DA8Pj4yMjI+PDw8PhzoLYFbi8fYJR1x9Xrm2LMDcHF5VXdR9xqiaf3yvzjAAEHIVnU1CtS9l0aW0ZdrCILK0Za5y2hwO9/W/HY7xekoutKkN+ZpTAYESgoF7fX39X/7lX05fplpWVvbcc8/5/SmDg4N+e7zBX5Ts9Xp9Pp/X69XwWlBK+Xy+6/6GT//PdZ2NwmXoSqlj+ZXBzRc4Pp+uF9L0Ovp+Sdp+RdOfitctTWzcmPDss0Y/MfbIEa/LpWJiPvTj019PhA+LwOILOBB6r78uFI8XrHXa7NqyAHNzpGj9H73zW6NqWvd51d6u2JYJwDTKzkt7Pxo53g5jTpv95IpC4dLdis6mYXWXzkhAAGkduF+5cuXb3/72L3/5y+l5xx//8R9///vfX7Bggd+fOL15xsj0+fcVK1YEKqeR4eHhhISElJSU1NTUYL8WlFIOh2NycnLJkiVxcXHv//GJ2DGHo+fG9jrh53bckHt1yQrH/ALExcU5Juf3IWYmISHBMa5jCJiQkOAY8/NCDsc8f9veeyEdw/CEeP+/ooBYvHjxihULr1+7/371jW8Y/UTr8PCKq1fV2rUf+vHJyUm73R4XF7dkyZIA5oSRoaGh4eHh1NTUlJSUUGcBTMnpVO++K9QPr9qgLQswZw25peOxCQlT44Ydr72m/uIvNCYCgFCq8LPAXdoZAjTklgoD9/JzzWxqQ+TSN3B/7LHHvvnNbw4NDSml1qxZ88///M+33nrrDH/uwoUGc673sVqDu49++iXeE+zXgjL+DZ/+n5tPHhV+7qHiAHzfbjG+FyuwdL2OvhfS9krafkXSf/g5OSo3V3V2Gv7cvXvVunXX/YB8PdGG33AgxPbvV+JGvsOrWOCOCOCKsR8rrLq5ab9hx65dDNwBmETC1HhBT4fQwI2pkDXklD5iXC0733rQx9PJiFQ65g5er/cLX/jCl770paGhoaysrN/+9re1tbUzn7YDH7V84HJOr+HWbMX37dBs+3apyr2pACDukzm/JOti+nJtWYD5OCQ/jbF7txo3Pv8OAFGk/FyL1Xhbo9PmOLmiQGceRBx56VDyxOiiTsN7U4Awp2Pg/ud//uePP/64UurLX/5yS0vLQw89pO3gMKLVJvF4+4Qjrj6Xi9egkTxw37dPud26ogBAWBJvTD3E2+SIHAflxygnJ9WePZqiAEBIyTemtmStcsVwOwskA0kLuxZlCA0ZLdImYSCcBX3g/sQTT/zkJz9RSv3whz/80Y9+lJSUFOxXhBlsPnlMqHLxGnS75RapOjKi6viHAgAT6+xULdKlan6ODAPh5ErqkvZleVKH+DwHAESNSnHgzhk4zERDbplQzWiu0ZYECKygD9x/8IMfKKU++clP/gXbDBEgFpdrnXhj6pEiDspBr+XLVYH4vCRbZQCY2auvCsVJR9yJ/AptWYD583NXEAN3ACZg87hLz7cKDQ3ithBgmjxwz2xk4I5IFdxLU1tbW48fP66U2rp1a3Oz4dXDqampK1asCGoSRJO4o4cTJ8eEhoDcmArMzvbt6ozxgrndu9W3vqUxDQCEk9deE4o1K9dM2WO1ZQHm7+CqjV9490nDckeHamtTxcUaEwGAbqsuno53ThpVvRZrY06JzjyIUPXiwD3lSrfq6lKZmdryAIES3IF7W1vb9P/zjW984xvf+IZR2wMPPPDUU08FNQmiSeK7bwnVC4szuXgNIbB9u/rpTw2rBw4ol0vZ2XQEwHzGxuSnfA6s3qQtCxAQDbmlo3GJScL5j1deYeAOILrJ+2Q6luUOJ6RoC4PIdW5J1kDSwrTRQcOOAwfUgw9qTAQERnBXynR0dAT148OcEsSBOxevITRuuUUJ10GPjqoanoYDYErvvqsmDU/AKaUOFm/UlgUICHeM7WhhldQhrlECgChQfs5wh4FSqiGHfTKYEZ/F0ihvH9q/X1cWIJCCe8L9/vvvr672P/1csmRJUGMgqvT0xLZJF68dZuCOkFiyRK1apX73WM917N6tNnGKE4D5vPKKUGxfltezcKm2LECgHCjedGvjPuPyAXX1qkpP15gIAPSx+HxrzjYKDfJibuD96vLKb24ynqozcEdkCu7APT8/Pz8/P6gvAdN5/XXl8xkVnTZHbX6lzjjA723f7mfg/u1va0wDAOFh1y6hyD4ZRKgDqzd6LRar0T9KPR715ps8Ag8gWuX2nl84OiQ01OWVawuDSCevcVctLWpgQKWl6YoDBEZwV8oAgffGG0LxRH7FpCNOWxbgA26+WaoeOqSmpjQlAYAwUV+vLlwQ6uyTQYQaSFrYsqJI6mCrDIDoVSkeb7+SuuQyj69hxk5lFEwIYxyfTx08qDEOEBjBPeEOBJjHo95+W6izwB1Bsqej/9A544tclFJKxTtyv2yxGD6BMT7+9E9f7C5fP/2/3G73yMiI3W5PShp9f9cjVRmLk2IDERkAwsDOnULxWkJyY06JtixAYO1btaGs66Rhedcu5fGomBiNiQBAk7UdDUL1RH6FtiSIAu4YW1N2SfWZWsOOvXvV3XdrTAQEAAN3RJQjR9TAgFA/vGqDtiwwlZoL184Njvtt+9jSnPzLnUbVodfefMK9bPr/93q9brfbarXabB94GPOu1UsYuAOIHi+/LBQPF633WBlHIlLtLd7452/9yrB89ao6fFht3aoxEQBosvasNHCvy2PgjtmpzyuXBu77jC9NAcIVK2UQUcR9MldSl3QuzdaWBfiomoI1QnVd+wltSQAg9C5dUrXG3zsptX8V+2QQwU4ty+9dsEjqeOklXVkAQJ8VVy8tGeoTGjjhjtnys/S/rk4ND+vKAgQGA3dEFPHiNfbAIuRqVq4VqmXnWmJdrHEHYBovvyzcc+6xxhwo5rk0RDCfxbJPfrbyxRd1ZQEAfeR9MoNJqecXZ2oLg+jQmFPitNkNy263OnRIYxwgABi4I3L09ckH5Q6zwB2hVptf4bUYfl11uF1rxPuFACCqvPKKUDyRUzocn6wtCxAM++TTHu3t6qTxkncAiEyV4j6ZE/mVPotFWxhEhyl7bGvmKqlj715dWYDAYOCOyPHmm8rrNSq6Y2zHCqTDxYAGwwkpZ5bnCw03tXDBOgBzGBtT77wj1Hev3qwtCxAkR1aunXDESR1slQEQdarEE+5+doMABvxsImLgjkjDwB2RQ9wn05hTOhaXqC0LYKRmpbTGfVvzQYvxggUAiB5vvaUmJ4W6n6PBQCSYssceK1wndYj3BgNAxLlh8ErG1UtCwwluTMWcnMivlMo1NWpsTFcWIAAYuCNCeL3qzTeF+iH2ySA8yHcJLB3qLeo+oy0MAISMeLC3Y2nOhfTl2rIAwbO3ZItUPnJEXb6sKwsABF1VR71QHU5IaV+epy0MokljTqk7xmZYdrlY447IwsAdEeLECdXbK9QPcfEawsOJ/Ap5K/G25gPawgBAaLjd8gL3fas3acsCBNWBkk3C9S3K61WvvaYxDgAEV1V7nVA9Id5oBQjGY+NPriiUOnbv1pUFCAC+FCJCiPtkriannVkmLc4GtHHH2A4XS89bbGtmjTuAaHfggOrvF+p7WeCOaDGQtLApp0TqYI07gCiyrl064V4rbwUBRH7WuDNwR0Rh4I4IIQ7cDxZv4CZ0hI+9pVuFauGl9uUDPdrCAEAIvPiiUBxIXtiUvVpbFiDY/GyVefNNNTqqKwsABNENg1fkb2RqVzJwx9zV5EvXoamaGjUyoisLMF8M3BEJhobU0aNC/QgL3BFODhRvdNrsQgOH3AFEOfGiyD2lW728TY4osqfsRqk8Oalef11XFgAIovXtJ4TqcEJK+zIWuGPu6vPKpTXubrc6yPfRiBgM3BEJ3npLud1GRa/VerRgnc44gGw8NkG+Y5017gCi2YkTqrNTqO8pFaeTQKS5sHjFuSVZUscLL+jKAgBBtO6MtMC9lgXumJ/x2Pg2eY37u+/qygLMF18NEQneeEMoNmcVX0tM0ZYFmAl5q8zasw0Lxoe1hQEArcTZojM+saZgrbYsgB67y26Syq+8oqamdGUBgGCRT7jXrhT3gQAzULNS/Fcia9wRORi4IxK8+aZQPLxqg7YgwAztLd0q3Ctg9Xq3tElbkgAggokL3Nurt8lLt4BItFveKjMywqE8AJEu/WLnkqE+oYEbUzF/NQXi2zZ1dWpoSFcWYF4YuCPcWZqaVFeX0HCIBe4IP70LFslPw93cwvo5ANHo1CnV3CzVt/yBtiyANm2ZRVdSl0gdbJUBEOFy6o4I1cGkVBa4Y/4ac0pdMcYnMzwetXevxjjA3DFwR7iLeestoTqUuKAts0hbGGDm5K0ym08di3U7tYUBAE2ee06qxsa2V2/TFQXQx2ex7CmT/t5XL72kPB5dcQAg8HLqDwvV4yvXCg/4AjM04YhrzVoldbzzjq4swLwwcEe4s4oD9yNF67mYBeFJHrgnTE1Ud9RrCwMAmsgD91tumUpI0hUF0MrPGvfeXrV/v64sABBoXm924zGhzgUtCJRj8ucSA3dECCaVCGuW8XHrYemN9EMscEe4al+W152+XGjY3nJIWxgA0OHsWXVCuk5N3X+/riiAbnV55eMLFkodzz6rKwsABFpDQ8K1QaF+nIE7AuR4QZVUbm1V3d26sgBzx8AdYS3u4EE1NWVU9VksxwrFr8VASO0t2SJUt7cesvp82sIAQNDJx9ttNnXvvbqiALp5rDFnNt4idTz/vPJ6dcUBgIASjxVfXri0a1GGtiyIbk05qycccVIH95AjEjBwR1iLFy/EOJlR2J+Sri0MMFvyVpn00cGSrpPawgBA0MkHeG++WS1apCsKEAJtWz8mlXt61EGuTAcQmcRFr8dXcrwdAeOKsdflV0gdbJVBJGDgjrAWJw7cD6+q1pYEmIO6vPKhxAVCw81slQEQNbq61PHjUgP7ZBDtOqu2qNRUqYOtMgAi0eSkfAsF+2QQWMfkrTIM3BEJGLgjfMW0t9suXBAaDhWzwB1hzWu1yp+l21s56QYgWjzzjBLWZFmt7JNB1PPY7Oqee6SO555jqwyAyHPwoJqYMCr6LJbjhQzcEUh+Bu4XL6rWVl1ZgDli4I7wFbt7t1Adi0tszirWFgaYmz3iVpm8K+ez+rq0hQGAINqxQ6pu3aqWLdMVBQidT39aqnZ3qyNHdEUBgAB5802heHZpTl8KK+MQSGeW5w8miU+MiZ+TQDhg4I7w5RCvwjhStN4dY9MWBpibI0XVTptDaLiJrTIAokBnpzp2TGpgnwxM4rbbVEqK1PD007qiAECAvP22UDxatF5bEJiEz2LxczEAA3eEPQbuCFeTk/bDh4X6Yf5eRyQYj40/Vig9ELet+YC2MAAQLDt2+NknIx/7BaJGXJy6+26pYccO5fHoSgMA89bfr+rrhfqRwnXassA8jhaJn1d796qpKV1ZgLlg4I5wtWePxXhPnFLqCAN3RIi94laZis7mtJFBbWEAICjkQ7s33qiWL9cVBQg1+e2lnh61b5+uKAAwb2+9JVw+4bTZ6/IrdMaBSfgZ+IyPq4Nch4awxsAd4er114Vixw25lxcu1ZYFmI99JZu9FsMvtlafd2sb61wBRLKODnXihNTwwAO6ogBh4OMfVwsWSA1slQEQQd54Qyg25pROOOK0ZYF5XEld0rk0W+pgqwzCGwN3hCWvVz33nFA/WLxRWxZgnq4mp7VkrRIa2CoDILI99ZRUjYlR992nKwoQBuLi1L33Sg3PPadcLl1pAGAefD554O5n7wcwD34OuTNwR3hj4I6wtGeP6u4W6kdWsU8GkUTeKrPhdE2cc1JbGAAIsCeflKrbt6ulPJQGk5Gf6ujvV++8oysKAMxDQ4O6fFmos+gVwePns6u+Xv7kBEKLgTvC0hNPCEVvUlJ9brm2LMD8yQP3OOdk9ZlabWEAIJDq61VLi9Tw2c/qigKEjdtuU+npUoP8XAgAhIldu4TiYFLqqYwCbVlgNifyKz12h2HZ5+OQO8IZA3eEH6dTvfCCUB+94x6nza4tDjB/nUuzLyzOFBpuZqsMgAglH2+329WnPqUrChA27HY/m5Sef15NTOhKAwBzJe6TOVxULVxVBczThCPuYpm4s0i8+Q8ILb44Ivy8+qoaGBDqI/d9RlsWIFD2lm4RqltbDlu9Xm1hACAwvF4/A/fbblOLFulKA4QTeavMyIh6+WVdUQBgTkZG1KFDQp1Frwi2zuobpfKbbyqPR1cWYHYYuCP8iPtk1OLFEzdt1xUFCBh5q0za6GDZeXEnAwCEof37VVeX1PDgg7qiAGHm5pvVDTdIDb/9ra4oADAnb7+tnE6jotdiZYE7gu3s+puk8sCAOnZMVxZgdhi4I8wMD6tXX5UaHnjAZ7PpSgMETGNOydXkNKFhW/NBbWEAIDDk98gTEtQnP6krChBmYmL8XGCwa5fq79eVBgBm77XXhOKpjIKBpIXassCc+nMLVaa0mpWtMghbDNwRZvxutHzoIV1RgEDyWqwHV28UGrY37dMWBgACYGpKPfus1HDvvSopSVcaIPw8/LBUdbnUjh26ogDALPl88sD98KpqbVlgah//uFRl4I5wxcAdYUZeBZudrTZKI0sgnO0Rt8pk9nfnXjmvLQwAzNcrr8h3rrBPBma3fr0qLJQa2CoDIGzV16tLl4T6weIN2rLA1D7xCalaW6t6enRFAWaBgTvCSW+vevddqeHhh5XFoisNEGBHC9dNOOKEhm3NB7SFAYD5evxxqZqerm6/XVcUIFx9/vNS9dAh1dGhKwoAzIa46HU4IaUpu0RbFpjarbcqu92w6vP5WUoMhAgDd4STp55SbrfU8LnP6YoCBN6UPfZY4TqhgYE7gIjR3y8/aa4+8xnlcOhKA4Srhx6SDov4fH7euAKAUBGHmAeLN3itTJOgRUqK2io9Kc7AHeGJL5EIJ/I+mYoKVVqqKwoQFHvFrTIlF07arlzWFgYA5u6JJ5TLJTU88oiuKEAYW7lSVYtrjn/1K+Xz6UoDADPT16eOHxfqB4tZ9AqN7rpLqr79tpqa0hUFmCkG7ggbHR3q6FGpgVWwiHx7S7YIh0GsPm/im7t05gGAOfrNb6TqypVq0yZdUYDwJl+deu6c2set6QDCzGuvKY/HqOi1Wg9xYyp0uvNOqTo6qvbs0ZQEmDFbqAMAv/PEE9IBH4tFPfCAxjRAUFxLTGnMLqnsbDJqSNr1ivr6/6MzEgAopa6MTA1Pilvd3sdx+lS2ePDt6n0PDPSPX7c05fbOOhwQ0R58UP3v/62cTsOGX/1KbdumMRAA+PPyy0KxMbtkOCFFWxZAFRWpggJ15oxhwyuvcHUQwg0Dd4SNp5+WqjfeqHJyNCUBgmlv6VZh4J6wd48aGVHJyTojAcB/Hjz3WtuVGTb/xc6ffMG46rNY/sRe2v2b2utWCxcnzj4dEMnS09Wdd6oXXjBs2LFD/fu/q6QkjZkAwNjkpHrzTaG+v2SztizA/7jrLvX97xtWd+5U//7v0qUpgHaslEF4qK9XLS1SA9elIlrIa9wtzin1xhvawgDAbMV4PXfWSF+m6nPLutOXa8sDRIA//EOpOjoqjeMBQLN331Wjo0J9X8kWbVmA/yFvlTl/XjU06IoCzAgDd4SHJ56Qqna7+sxndEUBguvC4hVnl+ZIHb/6laYoADB7W1sPp48MCA2vruORXuCD7rxTLV0qNfz857qiAIA/O3cKxa5FGZ1Ls7VlAf7HjTeqBQukhpde0hUFmBEG7ggDXq966imp4fbb1aJFutIAQScfclevv64uXtSVBQBm555jrwvVSUfcW5XbtYUBIoPN5udhzb17VXu7rjQAYMznkwfuHG9HaDgc6hOfkBoYuCPMsMMdYWD/ftXVJTU8+KCuKIAOe0u3/PE7vzEsezzqF79Qf/VXGhMBwIykjwxsaTsiNLxTvm0sji3tMKm+MedPj5y/bmnR2o/dp35o+DN9vvr/+/1jX/7WDF+oYFHi9pUcRgEQBMeOqe5uob63lIE7QuTee6WTmnV16tw5bv5D+GDgjjAg75NJTFT33KMrCqBDS1bxhUUrsvqNj7E/9pj69rdVTIzGUADg3501b9g8bqHhpQ13aAsDhJu+0amfHjZauJRUklFQ1H3G6OdmvPjMf5d/2mOd0V/9dxQvZeAOIChefFEoDiekNOSWacsCfMAnPqEcDuV0Gjbs3Km++lWNgQAJK2UQai6Xeu45oe65+26VlKQtDqCBz2J5qVp8IO7CBfXOO7riAMCMWHy+Tx55VWi4lLasLq9CWx4gsshvRy0e7t988qi2MABwfeIdzgeKN87wfUEg8BYsUNu2SQ3cQI5wwsAdofb66+rqVaHu+exntWUBtHl5/SfcMeIzRo89pisLAMxIVUd9Vp+0Au7FjXf6LBZteYDIsqvqNqfNITR86vAr2sIAwHW0tqpTp4T6njLxJiog2O69V6ru26f6+nRFAfxg4I5Qe/JJoehNTfXeequ2LIA2V5MX7l21Qep46SXV26srDgD4d9+hl4Wq12J9dd3t2sIAEWc4Pvnd8puEhq1th28YvKItDwB8mHhA2B0bd1j+/gUItnvuUcLZDo+Hq1MRPhi4I6TGxuQ70Mfvvls5pKNAQOR6vlrcdOx0ql//WlcWAPBj4ejQzc37hYbDq6qvpC7RlgeIRC9uvEuoWr3ee469pi0MAHzY888LxbNVWyYccdqyANeRmanWr5caxM9hQCcG7gipF15QY2NCfYzrUhG9Dhau71m4VOp47DHl8+mKAwCSu4+/7nC7hIbnN92tLQwQoWrzK7sWZQgN9x3eKd9LDADB0tmp6uqE+sktH9OWBTD0qU9J1bffVoODuqIAEgbuCKknnhCKnoyMqXXrtGUBNPNaLC/J6xdOnVIHDuiKAwCGLD7fJ49I26X7UhYdWL1JWx4gQvkslpfFq1MXDV/d2npYWx4A+L1nnpHO+thsZzbcrC8MYOT++6Wqy6VefVVXFEDCwB2h09en3n5bqE/df7+y8imKaPbi+ju88ic5V6cCCAMbTx3P6rsoNLy08U6PNUZbHiByvVR9pyvGLjTcd1i6LAEAguXZZ6Xqtm0TKam6ogDGCgpUWZnU8MwzuqIAEqaZCJ1nnlEu6eH0SflZISDyXU5dfKRQfIxjxw6eiQMQcp85+KJQ9VqsL224U1sYIKINJC/cU7ZVaNh4qmbF1Uva8gCAUkp1dqraWqnhM5/RFQXw5777pOobb/AdNMIBA3eEzpNPStXiYvfq1bqiACEj35+mJibkzUsAEGw3DF7Z2ibtuDi8qtrPjRQA3ucF8cIDq8/7mQMvaAsDAGZWAIwAACAASURBVEoptWOHtE8mJkZ98pMa0wAieauM06le5lkxhB4Dd4TIhQvq0CGp4eGHdUUBQmlv6db+lHSp46c/1ZUFAK7j04desnq9QgPXpQKzcnzl2guLM4WGe469Fu+c1JYHANSOHVL1ppvUUt5ZR9goK1OrVkkNbJVBGGDgjhD57W+lt9AtFvXggxrTACHjsca8tu5jUkdjo6qp0RUHAD7A4Xbee1S6e6pn4dL9qzdrywNEAZ/F8tzme4SG5InRT9S+qS0PALM7c8bPtxvsk0G4+exnperbb6uBAV1RgOtj4I4QkffJbNqkcnN1RQFC7PlN9/gsFqnjZz/TlQUAPuD2uncWjg4JDc9vvsfP5c8APmLn+o9POuKEhgf2P68tDACzk783t1rZJ4OwIx/QdDrVCyxnQ4jxDRJCobFRNTVJDQ89pCsKEHoX05fX5VVIHU88oUZGdMUBgN97cN+zQtVps7+4QbyIAsD1DCek7Fr7B0JD/uXOde112vIAMLWnnpKq27apZct0RQFmZtUqVVIiNXARGkKNgTtCQf4b3WbjmTWYzQvy1amjo+yhA6Dfuva6wu52oeHtyu2DSana8gDR5MkbPy03PLRXXKkMAAFRX6/a2qQGdr0iPMlToz17VHe3rijAddhCHQDRY2jC9bnHa/222d2uX/3oZ2nGDTVF677z4lmlzjqdTq/X63BctH7wWfX0hNh5hwXCyzsV2775wr+njA8bdjz2mPriFzUmAgA/x9uVUju2fEpPEiD6dCzLrcsrX3O20ahha+vhrL4u+XpVAJgv+TCc3a7uu09XFGA2Pvc59Td/Y1j1etXTT6uvf11fHuCDOOGOgPH6VP+Y0+//Ve97Je1av/BxXq64dbpzYMI9MOH+6EcYmnBq+0UBejhtjteqbpM6jhxRzc264gCAWj7Qc2PrIaGhNbOoKXu1tjxA9HlmqzTGsvq8ft/0AoB58Xr9bN64/XaVnq4rDTAbRUWqqkpqkC8nAIKMgTu0svh8n98jbcZw2hx7S7doywOEjxflrTJKqcce0xIEAJRS6qG9O6xer9Dw220PaAsDRKXdZTf2LlgkNNx1fJf09BsAzNOePaqrS2r43Od0RQFmT953VFPjZ10SEEwM3KHVja2H8q6cExr2lG4di0vUFQcII+3L8prls6KPP64mJ3XFAWBqKePD9x59VWjoXbDonYpt2vIAUckdY9uxVdrLFO+cvO/wTm15AJjO449L1YQEdc89uqIAs/e5zymrONX89a91RQE+jIE7tPrDd/081PP0jWyIg3m9uOFOqTwwoF54QVcWAKb2mYMvxjuld/h2bP2UO4argID5em7TPROOOKHhgf3PO9wubXkAmMj4uHruOanhnntUcrKuNMDsZWSobeL5j8cfVx6PrjTAB/CdEvQpudBW0dkkNLRkFTfklmnLA4SbN9fc+u3Xf2IdGTHs+NnP/Dw3BwDzFuuaemD/80LDpCPu+Y0ceQMCYDgh5ZX1H//MwReNGhYP999R84b/vXMAMFsvvqiE7zuUUo88oisKcH2dV8f/3xelm8w2FW/73O7dhuXu7h/9/S9OVWz0+0Kbc9IeqFw+h4SAEQbu0OeP3/mt3PCLWz+vJwkQnsZj40c+ef+Cx39p2LFnjzpzRhUU6MsEwHzuOr4rbXRQaHh13e3XElO05QGi25M3ffr+Qy9bfYZXJnxh91Mvb7jDa+HRZAAB9YtfSNUlS9Rtt+mKAlzf8JT7VNeo0NCwovpT9thY15RRQ84rO36eUuj3hRYnOuaSDzDGv9ugSVZf103NB4WGC4sz93FdKkzv2uf/SCr7fOrnP9cUBYApWb3eh/c8LTR4LdbfbvustjxA1LuwOPPAaunwXVZf181N+7XlAWAK58+rd9+VGh58UNntutIAczQal7i3RJojbW/clzA1ri0P8B4G7tDkkd1PCSd3lFKPb/8cJ3eAybVVqrJS6vjFL5SLXa4AguW2+t2Z/d1Cw56yrRcWr9CWBzCDx7f72Rfn9xokAJidX/5SeaVvz9UXvqArCjAvr66/XajGOydvrxPfWwKCg/kmdEgbHbyj9i2hYSBp4WtVPLAGKKWU+uIXpeqVK+qVV3RFAWAuFp/vT95+XO7xOxkEMFt1eeWNOaVCQ8mFtg2na7TlARDlvF71q19JDSUlau1aXWmAeTlStP5qcprQcO/RV7WFAd7DwB06fG7fs8JSLaXUUzd9esoeqy0PENYeeUQlJEgNjz2mKwoAc/n/2bvvsKbO9g/gdwZh76ECCoo4cOC24t4txb0nWrV1trZ1VftqW20dVavVarXOOjrco26teyI4cYCooCB7QxIyfn/EH0WFcxI4OVnfz/Ve70WTOydfYjhPcp9znqf9vYsBr54yFEQGBN/1C+ItD4Dl2NJ5KHPB2BOM3TEAAO2dPUtPmYZ7+ugjvqIAVJRSKDrKePpm/efRAUmMb3gAPUDDHfTOVi7td+UgQ0GhxGZPq5685QEwds7O1LcvU8GxY/T8OV9pAMCCaHF6+2B+kgBYmgtBIXGV/BkKGsfdaRp7i684AGDWfvuN6V6xmIayHAIEMCoHW3zAXNDr+hF+kgAUQ8Md9K731cPO+TkMBfvfC8u2d+ItD4AJGDeO6V6ViuVTMgCA7kIeXAtKeMRQEOMdcLFuK97yAFgUtUCwrRPLAa2xJ3GSOwBUWGoq7dvHVBAWRpUr85UGgANxlaszX4IZGnFcosBCaMArNNxBv0Qq5dBzfzMUKIWine0H8pYHwDS0a0d16zIVrFxJKSl8pQEAi/DJ8c3MBZu7DFcLBPyEAbBAR5t0feVaiaGgeUxk8NO7vOUBAPO0ZQvJmKZ7xXwyYIoOtvyQ4V6X/OzOt8/ylQWACA130Leut/6tkpnMUHCyUcckxq8WABaK+ZNuXh4tWcJXFAAwf7Wvna0X/4Ch4LlXtVMNO/AVB8ASKUTirZ1YpnEYf2wTP2EAwDyp1SzLQXl70wcss3MAGKHjjTsVWNsyFPS7fIC3MACEhjvo24h//2QuwGywAKUbNYqsGVcS/uUXevGCrzQAYNbU6o47VjGXbOk8VCXE50YA/TrQMjTF2YOhoHlMZLPYKN7yAIC5OXOGHj9mKvjoIxKL+UoDwJkCa7tTwR0YCho9vYulU4FP+OIEetTycUTtlzEMBddqNXvkE8hbHgBT4uFBvXoxFUil9P33fKUBALN28KB3zH2G+xPdqhxt0pW3OAAWSy6WbOs4hLlmwtGN/IQBADO0ejXTvUIhjR3LVxQAju1t1ZO5oN8VnOQO/EHDHfQo/MxO5gLWy2YBLNrcucR8PunGjfTkCV9pAMBMqVQ0bx5zycauIxQinO8GwIc9IT3TnNwZCoKf3g2MuMBbHgAwH/HxdOgQU0H37uTnx1caAI7d8wtiPqEz7MZxe2k+b3nAwqHhDvpSKzG2eUwkQ8Fj75o3ApvwlgfA9NSrR0MYT3MrKqJvv+UrDQCYqe3b6fZthvtfunv/06w7b3EALJxcLGGdcbHL1p9IpeInDwCYj7VrSalkKvj4Y76iAOjFnhCmk9ztZAU9rx/lLQxYODTcQV/Cz+wUqNUMBVs7DVULBLzlATBJ8+eTRMJUsGMH3bnDVxoAMDsymRant4/E6e0AfNod0ivViWkm9yqx0fQnyzpJAABvkEppI+OEVL6+FBbGVxoAvTjWpGu+jT1DwYBL+4RqHLEGPqDhDnrhnfGqy62zDAWJbpVPNerAUxoA01W9Oo0axVSgUuEkdwAov19/pWfPGO5P8PD5p1k3vtIAABGRzMp6c5fhLEVff01yOS9xAMAs7NhBqalMBZ98guVSwdQVWNseacq07FC11BetHl7nLQ9YMjTcQS+GnvtbpGK6Wm1n+4FKoYi3PAAmbN48srVlKti3j65d4ysNAJiR7GzWtZd/6zYK4zUA//a1CktyrcRU8fQprV3LVxwAMHFqNf30E1OBtTWNG8dXGgA92tWmD/NUCkPP7eItDFgyNNyBe04FOT2vH2EoyLFzOtgilLc8AKbN25vGj2cqUKtZZ4QAACjFDz8wn+wWW6XGsaZdeIsDAMWKRFYbuoWzFC1YQFlZvMQBABN3/Djdv89UMHAgVWI8yAdgIuIq+V8PbMpQ0PJxRK2XsbzlAYuFK4aAewMu7beTFTIU7Grdu8Ca8YxdAChp9mzasIFyc8ssOH6czp6lDh34iwQApu7pU1q5krlkTeg4lQAnZwAYxuHm74/490//lPgyK9LSaMECWrqUx1AAYHTWXHp28WkGc82sJd81ZCyYW6Nz7PZI5o3YiPGRAEzDX237tXwcwVAw7Nzf84bO5i0PWCY03IFjEkXRwIv7GArkYqu/2/ThLQ+AOfDwoM8+owULmGq+/pouXuQrEACYvlmzSCZjuP929Qbn64XwFgcA3qIUin758OMfN3/NVLRqFX3yCQUG8hUKAIzOq1zZ49Q8hoLAxCcN7l1lKLjjX++Ic3Vi3AgR1fJkWosSwHhcCGoV71m1WmpCWQXdo06vCR2b7OLFZyqwNDhECRwLu3HUPZfpAPvh5h+kO7rxlgfATEybRm6MfziXLtHRo3ylAQATd/Ei7WKZv3JV2Cf8ZAGAsvzboO0d//pMFXI5TZ/OVxwAMEnhZ3YK1GqGgp3tB/IWBoAHaoFgV+veDAVipWLwhT285QHLhIY7cEmikIef+YOhQCUQbu+A4RxAd87O7N+ov/6aGD9MAwAQESmVNHky8+7ibIO2t6o34C0RAJTl5x6M67gQ0YEDdOoUL1kAwPR4ZyR1vfUvQ0GSa6V/G7TlLQ8AP/a/F5Zj58RQ0P/Sfuf8HN7ygAVCwx24NObkNp/0RIaCsw3axHtW5S0PgFmZMoUqV2YqiIykPThQDwBsfv2Vbt9muL9IZPVzGFuPDwB4cat6A/Ze2JQpJJfzEgcATMzws3+JVEqGgj/b9VcKRbzlAeBHocRm33thDAW2cunAS0yTIQNUEBruwBnRo4cjGU9vJ6LtHQbzEwbADNnb02y2pV3mziUl00dqALB0aWn0v/8xl+xq3Tve05efOADAamXPiXKxFVPFw4e0fDlfcQDAZLjnZvS6doShIM/G/kDLD3nLA8CnP9v1KxIxjZ5Dzu+2kxXylgcsDRruwBG12u7zz6yURQwlUTUa3vGvx1siADP0ySdUvTpTwYMHtH07X2kAwATNnEmZmQz359g5begezlscAGD1wt37z7b9WYoWLKCEMleHAwDLFH56p3UR0wLpf7fpk2eDpVDBPKU6eZxo3ImhwKkgp9/lA7zlAUuDhjtwZPNmq3NMc8MR0baOQ/jJAmC2JBKaM4elZt48kjF9sAYAy3XuHG3ezFzy6/ujc2wd+YkDAFra2HVEhoMrU0V+Pn36KV9xAMAEuOVm9r16iKFALpb81bYfb3kA+Lel8zCVgKntGX5mJ05yBz1Bwx24kJpKM2Ywl9yu3uBCUCt+4gCYs/Bwql2bqeD5c9qwga80AGA6ZDIaP555rdQY74A9Ib14SwQAWsq3sV8TOpalaP9+2ruXlzgAYALCz+y0kUsZCg62+CDd0Y23PAD8e1rJ71z91gwFLvnZ/S/v5y0PWBQ03IEL06ZRejrD/UqhaHG/qWqBgLdEAGZLLKZvv2Wp+f57KijgJQ0AmI7Fi+nhQ4b71QLBj30+w8ppAMbpYMvQ+9XqshRNmULZ2bzEAQCj5pmT1p9xrgyFSPx7J1yADuZvc5cRzAUj/v0TJ7mDPqDhDhV27hxt28Zc8nvHIY+9a/ITB8D8DRxIjRszFSQl0S+/8JUGAEzBvXv0ww/MJScad4oMCOYnDgDoSiUQLur/uUrI+PUtMZFmzuQrEQAYrzEnfmeevf1I066JblV4ywNgKNFVa1+p04KhwDUva8j5XbzlAcuBhjtUjFxOEyYwX5+e5FppU1eWg4oAoAOBgL77jqVm4ULKyuIlDQAYPYWCRo9mXt1BZuewoudE3hIBQDk88K29970eLEXr19Pp07zEAQAj5Z3xqte1IwwFKqFwS+dhvOUBMKz13UczF4Sf+cM+i2nOBoByQMMdKmbhQnrwgKVkwLRCiQ0/cQAsRVgYhYQwFWRm0sKFfKUBAOO2dClFRDCXnAr/PNXJg584AFBua0LHsqyeqlbTmDGUk8NXIgAwOhOObrBSFjEUHG3SNd6zKm95AAzrrl/QZcaT3O1kBa3+xipowDGxoQOAKYuJoUWLmEtONOrEvGsDgJK+PvowLZ/p83GxBu+NWHn5MkOB+sel02RVo2o3LfXe3eFN3ewk5YkIAKbl7l365huWmhYtrvcYQg9T+cgDABWQY+e0vPfkBdvnMxU9f07TptH69XyFAgAjUvfFo+6RTJe5KETiDd3CecsDYAzWdx8d8vA6Q0Gzgzvo2f/I35+vRGD+cIY7VMCECSRlWvc838Z+Ra9JvMUBMAMFRcocaZE2/7vkG3S9VunNdA2BWjVz63eC9PRSH840DxQAmA2ZjIYPZ55MhsRiWrdOLcBnQgDTcKxJl5hmbVmKNmygI0wTSgCAufrs4FqhWsVQcKj5+wkePrzlATAG9/yCLga1YigQy2X01Ve85QFLgC9XUF7btrFOELkq7JMUZ1yfDqAvv4SOUwsEDAVeWalzdv3IWx4AMDpz5tCdOyw1X35JjRrxkgYAuHFo8jdkb89UoVbT6NGUnMxXIgAwCu3uX24WG8VQIBdLfus2iq84AEZkTehYFfP5JX/9RVeu8BUHzB8a7lAuGRk0bRpzSXS1OuzLOgFABdyvVvd8vdbMNZ3unO9z9TA/eQDAuJw+TT/9xFJTpw77hDMAYGSyKvnQ99+zFKWk0OjRpMYlbQCWQqIo+vzAauaa3SG9Ulw8+ckDYFQee9c83qQzU4VaTV98gXETuIKGO5TLjBmUksJwv1IoWjBwukqINxiAfq35YKxSKGKu+XL/qurJz/nJAwDGIjmZRowgFdNF5SQS0ebNZIOFzQFM0JQp1K4dS83Ro/Tzz7ykAQDDG3bur6ppLxkK8mzsN3UdwVseAGPz6/sfFYmsmCquXqWtW/mKA2YO/VDQ3cWLtGkTc8mO9gMfe9fkJw6AJXtSpfq690cz19jIpYu2zpMo5PxEAgDDU6loxAhKSmIpmzqV3nuPl0AAwDWhkDZvJgcHlrIZM+g60zJxAGAevLLTRp/azlyzucvwLHtnfvIAGKGX7t57Q9imYZg1i7KzeYkDZg4Nd9CRXE6ffMJ8lc0r10pY9xyAN1s6D7sR2IS5JuDV08n//MZPHgAwvIUL6eRJlpp69WjBAl7SAIB+1KhBixez1MjlNGgQZWTwEggADGbavp/tZIUMBa9cK/3Rrj9veQCM0/puo3NsHZkqkpNp7ly+4oA5Q8MddPTjjxQdzVyypO9nBda2/MQBAJVAOG/onGx7J+ayIed3tY2+zE8kADCkEydo3jyWGmtr2rEDk8kAmLwJE+iDD1hqnj2j8HCWCaYAwJS1ib7S6c455ppfQsfJxRJ+8gAYrWx7J/aJlX75hW7c4CUOmDM03EEXz57RwoXMJWcatmddxREAuJXi7LFg4AzmGoFaPffPxe65OMcNwKw9f07DhpFSyVK2YAEFB/MSCAD0SSCgLVuocmWWssOH6dtveQkEAHyTSAtn7F3BXHO7eoNjTbrwkwfAyP3Vtm+Chw9ThVJJH39MCgVficA8oeEOWpPLadQoys9nKMm3sV/a51PeEgFAsX8btN3bimVCOte8rHl/LBRg4XUAc5WfT336UFoaS1mnTvTFF7wEAgD98/KijRtJIGApmz+f9u/nJRAA8KrL5mXeGa8YClQC4Y99PlWz7iUALEORyIq9bXXrFi1bxkscMFtouIN21Gr6+GM6x3Kd2poPxqQ4e/CTCADesrTPp7FVajDXhDy8PuT8Ln7yAACvVCoaOZKioljKKlWi7dtJiE+AAGYkNJQ+ZesdqNU0ciTducNLIADgy8WLLQ/tZC7Z/96HD31r8RMHwCRcqvse+8QM8+bR/fu8xAHzJDZ0ADARX39NW7cylygaN9nVug8/cQDgXXKxZM7wudt++liikDOUTf5n/c2ajYne4y0YAPBhzhzau5elRiik33+nKlV4CQQA+pJZWLTpenzJW4QDPw09c8HrbiTTw3JzCzp3O7T5QL6XtjsBf1e7ToE4mQbAWOXn00cfCdRMKzRkOrj8Evoxb4kATMXSPlNaPo6wLpKVWSGT0ahRdOUKidE4hfLA+wa0sH49/fADS41IVLB6reqalJdAAFC6J1Wqrwr75Mv9qxhqJIqi77d9J5jZl+ywbhKAudi4kRYtYi/76ivq1k3/aQBAv9Lz5WsuPXvrxr29Zm6PHetUmMvwQLu05AYTwz+Z9HOhRKs1kzsHeqDhDmC8vvySYmKYS1b2mJBt78RPHAATkuhWZUO3kZP++Y2pKCKCfviB5s7lKxSYFVxQDGyOHKFJk9jLpkxRNGqs/zQAwOLPtv0uBIUw1/inxNvNnM5PHgDQu3/+ofHj2cu6dcOqiQBmLNGt8jdDZ6sELN/vghIeLdo6T6zEWnAAJu7wYVq/nrnkZs1G/zTrzk8cAJOzrcNg1hlZaf58unKFlzhgbtBwB0Y3b9KgQeyrM1epQt98w0ceAGCjFgi+Gzwzzcmducxm80b66y9+IgGAHl27ptVI7e9PO3eSSMRLJgAwjPP1QjZ0C2cta/3g6v/+WoJF1AFM2MuX9NFHxPhXLLOy/n7AdKyVClAWhUi8YOB0lgPVCgUNH07Z2XyFAvOBhjuU7elTCgujvDyWMpGINm8mZ2deMgEAu0wHl28Hz2L/eD1hAj1/zksiANCPO3coNJTy81nKbG1p715yZzkOBwBm4Ldu4WcbtGUt+zDi+NSDa3jIAwDc0yyTnprKXLUmdGy8py8/iQBM1D2/oD/a9WcpioujkSOZj28BvAsNdyhDejp98AG9esVeuXo1dcd1agDG5UqdFjvbDWApysykTp3o2TM+AgEA5x49om7dKCODpUwgoK1bqTGmfQOwCGqBYO7Q2XGV/Fkrh537e+KRDfpPBABc+/prOnOGueSuX9AfbdnaiABAtCZ07HOvaixFBw/SypW8xAHzgYY7lEYqpd696dEj9srZs7WaNxYAePfLhx8/8glkKYqLo3btWFdbAgCj8+gRde5Mycnsld9+SwPYDr8BgBkpsLabOm5RhoMra+VHp7aNPbGVh0gAwJm9e1mXSS+U2MwbOlslRLcHgJ3MyvqbIV+phWzzLs6YQRcu8JIIzAR2wfAOlYpGjKCLF9krBw+mBQv0HwgAykMutpoV/m2BtR1LXUICtW1L9+7xEgoAuPDgAXXsSC9fslcOHUpff63/QABgXBLdqkz76Hu5WMJaOf7YpvHHNvEQCQA4cP8+jRrFOrXFip4T4z2r8pMIwAzc9Qu6OJTtRNKiIhowgBISeEkE5gANd3jHtGm0ezd7WceOtHUrYQ0WACOW4OGzvNck9rrkZOrcme7c0X8iAKiwW7eoY0dKSmKv7NiRNm3CSA1gme7415s3dDbLWnBERDT2xNZPD/3KQyQAqJCUFOrRg3JzmasuBIXsbdWTn0QAZuPCsEnUqhVLUXIy9e7NvswhABERiQ0dAPhw6L4WU7ETEZH/X1sb/PQTa1luQK1L368tinlj3li5EotIABid/e+FtYiJ7BZ1mqUuJYXat6djx6hlS15yAUC5XLhAPXtSVhZ7ZcOGtG8fWVvrPxMAGKmTjTq652ZM2/cza+XIf/9wLMxd2P9LzEEBYKSkUurTh54+Za5Kcfb4bvBMNY61A+hIJRLR9u3UpAllZzPVRUbS4MF04ACJ2KagAYuHhrtF+PbEY23K2t2/tHQz+4XnqU4eo4cueHU1meiNqWMdra3KmQ8A9Glh/y8aPLtXJZNtruesLOrenY4coZAQXnIBALukHGmuTKH52eHo4SqffCSQFrI+qqiaX8L23Qq5iFK1PQdHplCVPyUAGKs/2/Zzy8346NR21so+Vw+75WXNHjFXZoUDdQBGRqmkIUPo8mXmKpVQ+PXwuZkOLvyEAjA3NWrQxo00YADLrE3//EOTJtGvuDIMWKDhDq81jb218PdvhSqW79v5Nvaffbz4lWslflIBQMXl2jrMGTFv9bppdrICltLsbOrenQ4dog4d+EgGAGxWnI87HZNGREPP/T314FqBmr0tnuLsMW7Eopenkoi0mHbm/9XydCh/SgAwYms/GOtckNvv8gHWyvb3Lq5bM/XLj75Pd3TjIRgAaEWtpgkTaP9+1sK1H4yJDAjmIRGA2erXjz77jFasYClbt448PLCiITDDNYNARNT3yqHV66ZZF8mYyxQi8czwbx971+QnFQBw5Y5/vfETV+TYObGX5uXRhx/S8eP6DwUAWrFSFn21e/kXB34RatFtz3RwmTR++Ut3bx6CAYBJUAsEi/tNPdgyVJvi+s+jt64YXysxVt+pAEBbX3xBv/3GWvVvg7ZbOg3jIQ6AmVuyhNq0YS/7/ntaskT/acCEoeFu6exkhT9s+272rqVWyiLmSrVA8P3AaVdrN+cnGABwK7pq7QkTlmfZO7OXFhRQz560b5/+QwEAC4es9LVrPtfm1FR63W1f9rSSn75TAYBpUQmECwZOP9K0mzbFlTOTN/48iX31FwDgwcyZ7CfbEj2t5Ddv6GxM3Q7AASsr2r2bfH3ZK2fOpGXL9B8ITBUa7hbNLyV+88oJWn6e/vX9jw41/0DfkQBAfx75BI6bvCrVyYO9VC6ngQNpO/uUrwCgRxcufDp1QKOnd7WpzXBwHT9hBa5CA4BSqQTCb4Z8dbj5+9oU28qlP2z77osDv4gUCn0HA4DSqdU0dao2p9AWOLl8MWZhgbUdD6EALEKlSrRvH9nasldOm0aLF+s/EJgkzOFuubrdOvP1X0vsZOxrrxHR/vfCNnYdqe9IAKBvTyv5TZj4E7/lEQAAIABJREFU05q1n3tlp7GUKhQ0ejQR0fDhPAQDgDeoVLR4Mc2d66xdtyvVyWPShGVxlfz1HAsATJhKKPxu8Ey5WNL3ykFt6oee+zsh6QE13E81aug7GwC8QaGg8eNp40b2Sonkz/+tShD56D8TgDkrKFJGvsj+778rB7qsWFdjwihiW+aQZs16lZCcOHMuaXeJiZudlb8bDo9ZBDTcLZFYqfjs0Noh53drWX+5bsuF/b/QayQA4M0zr2ofT161d9tMYXw8S6lCQeHhdOUKLVxITlrM/w4AnHj+nMLD6dw5LcvjPX0nf7Is0a2yXkMBgBlQCYQL+3+RZ2M/8t8/tKmv+vguNWlCK1dSeLi+swHAawUFNHgwHTrEXikQ0MaNzzya04Nk/ccCMGfPMgo+3nX7zdv8hoeNn3pwDetjK//y081r0fMHzVCI2FusoXUrffd+7fLGBFOCKWUsjld22ro1U7Xvtj/0rTVr5LdKoUivqQCATy/cvbNPnKGaWkw9oVLRmjVUpw6mdAfgg1pNmzZRcLD23fZHPoFjJ69Gtx0AtKQWCH7uMX55r0naTvecnU2jRlGfPpSMjh6A/r18Se3aadVtJ6IlS3ApKoD+bO8waGf7gdpUfhhx/Of1M5wKcvQdCUwIGu6WpcmT29uWjwvWbjZYIkp0q/zZuMUF1lrMXQUAJkVVtSpduED162tVnZREffvSwIGUmqrnXAAW7OlT6t6dxoyh7Gz2YiIiulT3vXGTV2U4uuo1FwCYn53tB3497H9ysZW2D9i/n4KCaMsWUqv1mQvAsl29Si1b0s2bWhVPn07Tpuk5EICl+6nnRC3XMmwRc3PrivE1kp/pORGYDDTcLYVArR51eseva6e652Zo+ZDb1RuMnfJLuqObXoMBgMFUrkynTlGDBtrW79pF9erRzp36zARgkWQyWrCA6tWjkye1f9Cu1r0/H7MQB8UBoHyON+k8YcJPmQ4u2j4gI4NGj6ZOnejePX3mArBUq1dT+/b08qVWxZMmYalGAB6oBYIFg6afDu6gTXHVtJdbVox/P/KUnkOBacAc7hahSmby9L0r292/pP1D/mjXf2WPCdpMQQUApig6OdfeSkxkI95xoOawvnZ3b2n1sNRUGjYse9PvCT8sl3trtTpTE1/nCgUFMHv79tGMGRQbq/0jFCLxst5TdrXurb9QAGAJbldvED711+UbZ9dMitP2MWfPUuPGNGkSzZ1LbjgvB4AL6ek0dizt369t/bhxtGqVlis0AkAFKYWiOcP/J1CrOt05z1psJytcsH1+i8cRS/t8htNiLBzaqebuxQv68cc9a36VKORaPqLA2nbBoBknGnXSay4AMKy5Rx/lyhSanx2G/PBz7oyGz7Q9Yc359HHrtk1/6xa+reNglYDlSqmIz9tVKCiAGbt8mb76is6zf3YvKcPBdVb4t5EBwXoKBQAWJdGtyujP1v7vz8Xdbp3R9jEKBa1cSb//Tl99RZMnky0aCgAVcPgwffwxJSVpWz9pErrtADxTiMSzR8ybv2NB11v/alPf8/rRJk9ufzvkq6gaDfWdDYwWppQxXykpNGsW1apFP/+sfbf9uVe10Z+uRbcdwKLk2dhPGr/semBT7R9iI5dOObzut9Wf+qfE6y8YgNmKiKAePah1a1277ZEBwcO/3IBuOwBwqFBiM3vkvOW9JhWJtJ7SnYgyM2nGDAoIoFWrSCrVWzoA85WSQsOHU48eOnTbZ8xAtx3AIBQi8Zzhcw+0/FDLet/0xHW/fDZj7woHab5eg4HRQsPdHL16RZ9/Tv7+tHgxFRZq/7gTjTqN+Hz9kyrV9RcNAIxTocTmizE/XK3dXKdHBT+9u3PpmIlHNnjmpOkpGIC5OXuW3n+fmjenw4d1epxKINzUZfiECT+lOHvoKRoAWLKd7QeOnbLqpbu3bg9LSqJPP6UaNejHHyknRz/RAMyOQkGrV1OdOrRjh7YPEQpp+XJavBjddgBDUQmFCwZO39ppqJb1QrVq4MV9exYOD404IcCS45YHDXfzkppK06ZRQACtWKFTq10hEi/t8+nskfMwyRSAxZJKbD4dt2R5r0lSiY32j5Io5B+d2nZo/qDFW+c1i43SXzwA0yaT0fbt1KwZdexIx4/r+uhXrpUmTli+JnScUijSRzoAACK6X63usC83HGnaTedHJiXRjBlUtSp9/jk9eaKHaABm5OBBatSIpkyhzExtH2JjQzt30uef6zMWALBTCwSrwj5Z1P8LlVDbbqp7bsZ3O7/funJ801jtVk0Dc4GGu7lIT6dvvqGaNWnZMioo0OmhKc4en0xc8WfbfnqKBgCmQiUU7mw/cOCMLddqNdPpgWKlovPts7+umbp34fDwMzudCnP1lBDA9Dx6RDNnUtWqNGIE3bxZjg0cadptyLRNETUbcx4NAOAteTb2c4fNmTHquyx73dc8z8mhFSuoVi16/33at4+KivQQEMCUHTtGISHUqxfdv6/DoypXprNnadAgvcUCAN3sDun16bglObaO2j8kKP7hujWf/fLrl9WiI/UXDIwKFk01cSoVXbtGu3bRhg2UW54O143AJnNGzM1wcOU8GgCYqES3KpM/Wdrj+tGpB9fo2jqvlpow5fC6MSe3/dOs267WveMqY4oqsFTp6bR7N23bRpculX8jvr5bPpq92qUed7EAANidadj+Vo2GX+5f1T3ytM4PVqno+HE6fpw8PWnIEBo+nJrrNmEdgHmYf/Lx+bh0IhKplG0j/x14Ymdg/ENdNxJdo/6CcQtSb6no1pWyaio76HBxKgBw4mrt5qOmrl266esayc+0f1TLxxEtvxxKB9fRl1/Shx+S1qfJgylCw900KRR07hzt3Uv791NiYvm2oRYItnQatvaDMdpfCwMAFkItEBxsGXq5bssZe1d0uqPboo5EZCcrGHBp/4BL+2/WbES+s6l3b7LSZR02ANOVlkYHDtCePXT6NMm1XbG8FCIRTZxI8+c/uPCSYrBGAgDwLcPBdc7wuYk9+o/eupiePSvPJlJT6eef6eefKSCABgygPn2oeXNMPw2WI0+msEpK6nntn75XD3llpZZjC3+36ftTr4lFIisqYLpexNPeurwZAaD84j2rhn++7qtdy0JvntDtkefO0blzVLMmffIJjRpFHlifyTyh4W5SpFI6eZL27qVDhyg9vSJbyrV1mDd09vl6rbmKBgDmJ83Jfcao+Z3unJ+xd4VHTnn2OU1jb9HAgeTtTT16UKdO1LEjeXpynhPAwFQqunWLjh+nf/6hq1dJqazoBkNC6JdfqFEjIiJ6WeF8AADl9LBZO5oZTosW0ZIlJJWWcytPntCiRbRoEXl7U2gohYZSp07krPuUNQCmIj+fDhwY/dO6WpEXhSpVOTaQY+f03aAZZxu05TwaAHCoUGIzd9icmzUbfbl/lZ1Mh2UUiYhiY2n6dJozh8LCaPhw+uADssHVKmYFDXdTkJtLR47Q3r105Ajl5VVwY3Kx1f73wrZ0Hp7ijMNoAMDuTMN2EYGNpx5c0+P60XKurp6YSOvW0bp1JBBQgwbUqRN16kTt25OTE9dhAXiSkitV3Iu2uXzR+tIFm4vnRKnlOXPtXYqq1bLmzc/v058EAsosJKIiVbn+6AAAuFCkVD+XEk2dJe4z2GX+PPt9u6l8nwQ0EhNpwwbasIHEYlnjptJ2HWQhrWXNW6ocHG2thF4OOEsXTFx6Oh09Svv309GjVFBQp7ybuVynxYJBM/FtHcBUHGj5YWRAo293ft/wmS7LM2jI5bR3L+3dS87OFBZGvXtTt274mmwe+G64y+VyqVTqhHcPM4WCoqMpMpIiIykqiiIiyn9GSQlFIqtDLT7Y1GX4K9dKFd8aAFiOHFvH7wbNPNa4y5xdS33SyzmNFRGRWk137tCdO7RiBYnF1LTp6+Z769Zka8tdXtALjOCUnEyRkXTjBl275nj+om1eDofbzrJ33tJ52N9t+shzJLQ1ovj2AHc7Dp8FAEAnidmF/bbceP0fbSYHVesy5Z91zWMqvOCbQmF945r1jWu0jFRCYWzlGi8aNvUa2J2aNaO6dUmMc8I4hhFcj2QyunqVzpyhEyfoxo0KXuWWY+u4sueEgy1C1Zh8CcCkJHj4jJ28evCF3ROPbrSRl6t9l51NO3bQjh1kZUWtW1PXrtSxIzVrhqlZTRdPn2aKioqWLVu2efPmmJgYtVrt7Ozco0ePuXPnBgYG8hPA2MlkdPfu6w57ZCTdvctJh72YQiT+p1n3jV1HJrpV5nCzAGBRrtdqOmj65olHNw6+sLt8l8e+QaGga9fo2jVauJCsrallS6pXj+rWpTp1qFYtqlYN07waCYsdwQUFBcLnz+nZM7p/n+7codu3Sy6awuEBomx7p53tBvzRrn+BNXrrAGDUoqvVmTDhpyZPbo0/tqnJk9ucbFOoUtVKjK2VGEvH/iIisrGh+vWpUSOqV8/G01MREEDVqnHyRBbIYkdwvYuLsz1xwioqShgdTTdukExW8U2qBYJjTbr81HNShqNrxbcGAPxTCYU72w8826DdtH0r292/XP4NFRXR2bN09iwRkb09NW9u06RJUZ06wrZtcea7aeGj4Z6fn9+lS5erV68W35Kdnb19+/Z9+/YdOHCgc+fOPGQwIlIpJSRQQgK9eEHPn1NcHEVFUXQ0FTEthFJ+YjENG9bf9/0X7t562T4AWBKpxGZ5r0lHm3YZcebPTnfPi5UKbrYrk9H583S+xOqsdnZUuzbVrk116lCdOq9/xlnwvLOIEVylolev6Nkzio+np08pLo6ePHF9/Nj9pd4nT09x9tjZfuDeVj0LrPHeBgCTERnQ6ONJPzd6enfU6R2tH1wt53RzZZFKKSKCIiKIyEtzi709BQZSzZoUEEDVq5O/P1WrRn5+ZIeDlEwsYgTngVpNCQkUE0OPHtH9+3T/Pt2+TVlZ7pw+yUPfWkv7fHqregNOtwoABpDoVvmLMQvbRF+ZenCNf0p8RTeXn09nz9qcPft6cncPDwoOpnr1KCjo9Tflyjin1njx0XCfMGGCZqQfOnTo8OHDK1eufPLkyfnz5+fl5Q0YMCA6Orqymb1F5HLKyqLMTEpLe6O3/uIFJSRQSgpPMUQiaf+BeTNnK2sGvthwjacnBQAL8MC39uyR8zxy0vtcPdznykGv7DTun6OggKKiKCrqv1sEAvLxIR8f8vQkLy+qUoW8vMjTk7y9X9+C5d31wBxGcIWCMjIoPZ3S0yk1lZKTKSWFUlLo5UtKTqaEBEpOfveYt1DPoR761trZfsCJRp0UIsycAAAm6Vb1BlPHLqrx6umQ87tDb560LuLgJN/S5efTrVt069bbt7u6ko8P+fpSpUpUpQpVqkSenuThQV5e5O5Obm7k4KCvSKbAHEZwPqWmUkoKJSVRUtLr7+/x8RQXR0+fcnvp+VsS3Sr/+sGYY026qAT6/ugBAPy5GNTqau3mfa4eHnPyd4+cdM62m5ZGp0/T6dP/3WJvT9WrU/Xq5OdHVauSt/d/w6KLC2fPC+Wi96959+7d2759OxENGDBg+/btAoGAiBo3bhwUFNSrV6/MzMwlS5YsX75c3zF0lpNDSiVlZZFKRVlZpFRSTo44O9suJUUiEhER5ee/7qoX/3/xD/n5hs2uEghPNer4W7fwp5X86GwGnUW3HQC4l+bk/lu38E1dhne4e2HApf1Nn9zi+By3t6jV9OIFvXhRZoGV1evOu7MzOTiQvT25uJCDg+ZniURiLxKJNd/DNR8+XFxIICAbm9cnzrviAt63meQIPmIEZWVRdvbr/2VkUG6uoTP9R2ZlfSq4w+7Wve/6BRk6CwAAB+IqV/9+4PTVH34SFnGs75VDfhU/m097mZmUmUn37pVZIJGQqys5O7/+n6srOTrS4sWWcITeJEdwTiiVr7/I5+SQTEYFBZSbS4WFlJdH2dmUl0c5OZSd/fqbu+ZgfHo6paWRgqOrNrWW5Fppc5fhh1p8UCTCBM0AZkghEu9q3ftQ8/f7Xz4w4t8/3XMz9PI0+fl0717pQ6FEQh4e5OFBbm6v/+fiQk5Or78sOzqSoyPZ2r7+WSx+/e1Y8//ABb033Ddv3qxWq21tbdevXy8o8c8WFhbWs2fP/fv3b9u2benSpUKhMR3RtbYmufzdm+2IjPzCRanE5mz9Npu6DI+rXN3QWQDAIiiFotPBHU4Hd6iR/Kz/pf0fRpywlxrooGNRESUmlpxluyRtd+DF/feOHWnPHg7TmSKTHMEPH6asLEOHKMU9v6DDzd8/3rhzrq1Fn3EJAGYp295pR/uBO9sNaBx3JyziWJdbZ+1kBYYORSSXU3IyJSe/cePChQZKwyuTHMG/+Yaio9+4JT//jW/lcvl/Z7ZpmulEVFREeXmlFBux2Co1fu845ERjXOUGYP6kEpvtHQb93aZPr2tHhpzfVS217LPHOCeXM3w7ZmFrSzY2REROTqQ559jB4b/lW+3tSSL5r1giIXt7po2UQ6knwwUG0pgx5dygIeh9F3/s2DEi6tKli8s7lzP06NFj//79aWlpERERLVq00HcSHdjamsporZFj63ixXqt/G7S7XKeFzMra0HEAwBLFVfJf0nfq6g8/Dr15csDFfQGvnho6UblIpa8vHE7Twzw5psYkR3AnJ6NquMdWqXEquMOxpl2xkgoAmD21QBAZEBwZELy479Q20Ve6R51p/eCqHqeaKR9HR0Mn4INJjuDnzr1eJNBMKYWic/Vb72rdJ6JmYzVOIAWwJHKxZFfr3ntCeraJvhJ+43CDu1eFapWhQzEqLKTCQiKizExDRymhWzc03P8jk8kePXpERC1btnz33vfff1/zw507d4xrsLe1pexsQ4dgl+7odq5+mzMN20XUbIzD4wBgDAqs7XaH9Nod0qvJk1v9Lx8MeXDVwVAnvFeQtaUfvDTREbzQ1t7gy4+qhMJ71YLO1ws507BdvGdVQ8cBAOCbzMpac/WbrVza6uG1jncvhDy85pyfY+hcpBSLt9xJHdOymqGD6JeJjuBmPInB00p+/zTrfrj5+2lO3C62CgCmRCUQnq/X+lWH7nmPYsJuHAu7ccw745WhQ4Ee6bdLGxcXp1Qqiah69VJmOPH29ra1tS0sLIyJidFrDJ3ZGvzbOpNEt8pnG7Q707DdHf96WFwFAIxTZECjyIBGQpWq7otHzWMim8dEBj+7ZyPX46pTHLP4hruJjuBJZF3DQE+d4uxxrVbzq7WbX6vdLMve2UApAACMSKHE5kzD9mcatheqVPXjH7R6eK3l45v14h+IVEqD5Mmztot8kT2mlC60WTHREZyMan4bLmRU9j1ct+2Jxp0e+tYydBYAMCKJblXWdx/9W7dRDZ7f7xZ1puPdC5WyUgwdCrin34Z7RsbrZQG8vLxKLfD09IyPj09PZ1m0d9asWazPlcXdJeQKpdDYVtJRCYVPKvmfCwo506DtA5/A/79VTWSYT6ulUigFms92XFEqlSqVSiAQqN9ciVGhUHD7RGWRFxXx9ERyo3gizV2cJCmSy83s36iI6ydSqVRKpVKtVgvePJ2H8ycqi0LBzb81MyXRHZ9ad3xqbewwWKIoahAf3SI2qkVMZP2Eh2Il34tT6eRWasGGXZHv3l7ZQTK5lS//efhnoiN4gQ2vh8xfuHvf9q8XWb1hREBwvEeJNwZ3f1y87RP4253Ki5T/T69PJOdrJOJvyNPl00JZo4w2iozjYwmnT8T9v5FarVYqlQKBoOQs2Gb40nG0Z1ASRVWtE1W1zpqu4faygkZP7zWNu93o2b2gF4/5nHMmX2Ink8k4HHSMk4mO4A5KpTlcsi0Wy5s0lXXtKuvW7bsU+wvPsom4/FRQKp5HcB6eyFxHcM3Q/NbAwS0zHIb4ezMY4KWLqlo3qmrdJT0mBr143O7BlTYPrtV5+Vj4ZvsLismLigpMagTX76CW//+rmtiUMVO+ra1tybKyLF68mPW5cnI4u0rR3kbCXqRnKpEoy8cvOTAoJbBucmBQakCdIhtbImpBZEwX/r1BJCQlp/NQ5eXlFRUVOTg4WFm9sXS7lUhQpORjH2QtFsgUpS3+wDUbsaCNT3lXk9DpiawEId5lPlFmZiYRuZa6PIWuTyQWhnjz0fayEQvalP0bcchaLJApuFw1uaioKC8vz8rKysHhjRUUeXt7c/4Hq5XGlQqo41miizKpd/TtalFXve9HVX54V8jLhxud2NhZ13QSvXu7sw2Xw40xM9ER3Mldv6eW57t5pATUSQkMyqhbP6FmvQJXdyJyJOqot2e0EQulvnws2c7b7tRGLGjtYyuVSgsLC21sbGz1dlmhjZWwtQ8/IxF/Qx7DIP4WuVyen58vkUjsS13GipGtlbAVP28Gxo8lHLIWUWuu/42USmVOTo5IJHJyciq+kcd3HU8fHa3FAhn3uyA3auabTe+fI7qgUHg9eVjp8f0qMdHusQ/c4+OECj0ej5e4OHX2szP7cdxER3CVTOHG1bb4pRYKU2vUflm/SUKj5i/rN5U5OBIRFVKQq7CGIx+/E88jOB9PZKYjuEKhyM3NFYvFjnpbTAIjeLkZeARv2KogtNUJovM5WVVv3/C9E+F7J8It/qnAyKd651dGvkxuUiO4fhvuxScml3VyjaZAwfa5atGiRQz3ao69v7sgTLnZu3O2KR3Y2irr1VMGB6uCg5XBwcqgILFE4kPkY4AoxiI1NVUmk3l4eJT1YRG49eKFFRH5+lrE2bsGJ5VK09LSrK2tPT09DZ3FQDrUJRpMRPnZ2cJHj4SPHgljY0WxscJHj4TPnlFRkWHTBXi7fdSqlAuxLYeJjuC2vqWfzVc+Kjc3da1aqtq1lbVrq+rVU9arp/b0dCfCDKwVl5ubm52d7ejo6OyM6Xf0orCwMD093dbW1t0db1i9KCoqSk5OFovFlStXNnQWE9c2kKiH5sc8uVz08KHwwQNhdLTo0SNVdLTVixcC7o7Ku1Zy+7CB+X/QNdER3M7edL7xCQRFVasW1q0ree89VfPmysaNbRwcAogCDJ0LjJxMJktNTZVIJGVdfQJARNS9MdHHRJSXkyO6cUMUGam6fl18755VYqKhkxmYh4NNAXeDDg/023AvPqdGKi193l6ZTFayrCwzZ85kuFcz2Jc8u6Si3jzhlHseHlS1Kvn6kp8f+fpStWpUvz7VrSsSi0s5ndKCSaVSKysrJycnNNz5oTnVmss/JSibRCKRSqU2NjZ4wcnJiapWpS5d/rulqIji4ujBA3r0iB49ev0DvyukWzk4WFn2P42pjuDl6y3a2b0ekf38yN+fatTI9vDIrVzZtUYNe3t7EZEV+yZAZ0ql0tHREftAPRGLxTKZzM7ODq+wnhQVFeXn52s+qRo6i3lp04batNH8GB8fL1AoqiqVFBtLcXH09Ck9e0bx8ZSQQK/Ks9CcyNXVEv69THUEtzLWwVYiIX9/qlWLatemOnWofn2qXz85K0ulUvn6+upvbhAwPzKZrLCw0Nra2hJ2RMABJyfy9aU+fbKyslJzclyJHJ8/p+jo19+OY2Pp2TPS52VhxkYsFpvW345+G+7FR7yLJ5J7i2bmOA4PjHOjglc3CwTk6kouLuTqSl5e5OPz+ju8pslerZqRL8oKAGBgVlZUuzbVrv3GjRkZlJxMKSn06hUlJ1NqKiUlUUoKpaZSYiKlplJhIZcZLH7RVFMdwUv9EObsTB4e5O5O7u7k4UGenlSlCnl5UeXK5OND3t70zlRaivR0Fdu19gAAoG9qsZhq1KDAwLfvkMspMZESE+nVq9cfAzQfEtLSKD2d0tMpI6OUq+X0No2DUTHVEdywnWtbW/LyIm9v8vKiqlXJx4d8fMjfn/z8yMeHRO+cF2dS8wgDgBlQu7hQtWrUtu1/NykUlJBAz59TfDw9f05JSfTiBSUnU1ISpaZSGcdcgTf6bbgHBARoVrx8/vz5u/dmZmbm5eURUeC7H6EMy9aWHBzIyoqcnEgkIhcXEgrJxUWhVsttbMS2thI3N7K2JheX11314v/X/ICLowEAOOfmRm5uVLdumQW5uZSURLm5lJ1NeXmUn1/yZ3l6uiI9XSKXi2Uyys0lhYJyc18/SqH47z+LSQy/mIdhmeoIPngwNWpEjo6vB2XNuIyzzwAAzIzmpGN/f6aa/HzKyqLMTMrOptxcys0ly5jGwVRHcN1XeC6FUEjOziQQkIsLicXk6Ei2tmRjQ66uZGdHjo7k6EjOzv99hXd1JU9P8vAg3Ze7AAAwMLGYqlen6mXMg5qbS6mpr49AF4+GmZmUm0t5eVRQQFlZVFhIUillZ5NS+fo4Ir+XlZs3/TbcbW1ta9asGRMTc/PmzXfvLb6xfv36eo2hsz//LPXmgpycrKwsJycnibGdDgAAAJovUWUoyMrKyclxcXFhuQytuP/+7qlMFsZUR/A6dahOHUOHAAAAI2BvT/b25GNxS2KZ6gg+axaNHPnGLZpeeTGR6L/r2Ip/1nTYiUgiQdMcAOA/mm/HNWqU57E5OaRUklr939U82dmk+v8VXDVfmYtJpaVfa15QQDJZeZ6dyuj7l3VowVjpt+FORN27d4+JiTl58qRcLpe8ecLg4cOHicjZ2TkkJETfMQAAANhZxsXmWsIIDgAAYIpMcgRv3drQCQAAgIhKzNLp5mbQHKZN7xdZjxw5kojS09PXr19f8vakpKQtW7YQ0dChQ62MdoEUAAAAS4URHAAAwBRhBAcAADAsvTfcmzdv3rt3byKaPn36xo0bs7OzlUrl5cuXw8LCsrOzHR0dZ8+ere8MAAAAoCuM4AAAAKYIIzgAAIBh8bGM2KZNm+rWrSuVSseOHevh4eHq6tq6devIyEiJRLJz505fX18eMgAAAICuMIIDAACYIozgAAAABsRHw93V1fX69etffPGFu7u7QqHIzc0Vi8WhoaHXrl0LCwvjIQAAAACUA0ZwAAAAU4QRHAAAwIAmnT7IAAAgAElEQVT0vmiqhoODw7Jly3788cfk5OTCwkJvb2+bkguOAwAAgFHCCA4AAGCKMIIDAAAYCk8Ndw2hUFilShU+nxEAAAAqDiM4AACAKcIIDgAAwD8+ppQBAAAAAAAAAAAAADB7aLgDAAAAAAAAAAAAAHAADXcAAAAAAAAAAAAAAA6g4Q4AAAAAAAAAAAAAwAE03AEAAAAAAAAAAAAAOICGOwAAAAAAAAAAAAAAB9BwBwAAAAAAAAAAAADgABruAAAAAAAAAAAAAAAcQMMdAAAAAAAAAAAAAIADaLgDAAAAAAAAAAAAAHAADXcAAAAAAAAAAAAAAA6g4Q4AAAAAAAAAAAAAwAE03AEAAAAAAAAAAAAAOICGOwAAAAAAAAAAAAAAB9BwBwAAAAAAAAAAAADgABruAAAAAAAAAAAAAAAcEBs6AGcEAoGhIwAAAIDOMIIDAACYIozgAAAApcIZ7gAAAAAAAAAAAAAAHDCHhruaL4sXLyaiGTNm8PaMFq5bt25EdPz4cUMHsRSaU1RUKpWhg1iEU6dOEVHnzp0NHcRSzJo1i4gWLlxo6CClMOgQamCGfu3LNGrUKCLavHmzoYOYrR9++IGIvvrqK0MHMVt79+4loj59+hg6iNm6f/8+EQUFBRk6iNlSKpVEJBQKDR2EnSHHUcMx9KtuYB4eHkSUmppq6CBgSi5dukREISEhhg4CJsaYv8maOr0OlObQcAcAAAAAAAAAAAAAMDg03AEAAAAAAAAAAAAAOICGOwAAAAAAAAAAAAAAB9BwBwAAAAAAAAAAAADgABruAAAAAAAAAAAAAAAcQMMdAAAAAAAAAAAAAIADaLgDAAAAAAAAAAAAAHAADXcAAAAAAAAAAAAAAA6g4Q4AAAAAAAAAAAAAwAGBWq02dAYAAAAAAAAAAAAAAJOHM9wBAAAAAAAAAAAAADiAhjsAAAAAAAAAAAAAAAfQcAcAAAAAAAAAAAAA4AAa7gAAAAAAAAAAAAAAHEDDHQAAAAAAAAAAAACAA2i4AwAAAAAAAAAAAABwAA13AAAAAAAAAAAAAAAOoOEOAAAAAAAAAAAAAMABNNwBAAAAAAAAAAAAADiAhjsAAAAAAAAAAAAAAAdE33zzjaEzGF5hYeGDBw+uX7+el5fn6OhobW1dvu1kZmZGRkbev39fLBY7OzsLBAJuc5qNzMzM27dv37p1S6lUOjs7i0Si8m0nMTHx0qVLcXFxAoHA1dWV25Dm6ujRozdv3gwICLCystLpgQqF4ubNmxEREUlJSQ4ODvb29npKaE5kMtmePXueP39eq1at8m0hLS3t4MGDVlZWHh4e3GYzSwkJCUePHi0sLPTx8dH1scnJyVFRUQ8ePJBIJM7OzvqIB0ZCM+LHxcUJhcIKjh3a/4Vy+KTG7+XLl9evX793715hYWGlSpXK93EoJyfn+vXrUVFRGRkZHh4euo5Z5sEgryTeq7rCByQG3P4h79q1KyMjw8/Pj88nBUvDyW5BpVLFxMRcunQpKSnJ3t4euwXLcfbs2Zs3bwYFBZXv4dh9WSwtBzhmFXz7AffUlu358+c9e/Z8axzt3r37vXv3dNrO1atX33vvvZIbcXV1XbFiRVFRkZ6Sm6iLFy82aNCg5AslFosnTZqUmpqq/UZUKtXatWsrVapUcjvBwcFnzpzRX3LzsG/fPs3LlZCQoNMDV61a5eXlVfJfbcCAASkpKXrKaTY+++wzIgoICCj3FhYuXEhEP/74I4epzJVcLm/evDkRjRkzRqcH/vHHH2816F1dXZcsWSKXy/UUFQzl9OnTb30GbdGixc2bN8u9QW3+Qjl/UmP29OnT7t27l/xYVa1atR07dui0kfz8/IkTJ9ra2hZvxMnJafbs2aX+SS5dutS9bB06dODoN+Mb/6+kGu9V3V9htS4fkMz1vVoWXd9+rK5cuUJEH374IZ9PChaFk91CXl7elClTSnbYRSJRWFhYXFycnmKD8ZBKpc7Ozvb29uV4LHZflkybAY5VRd5+oCcW3XC/efOmg4ODZndmY2MTGBhoZ2dXPC6ePXtWy+1s27ateGB2cHCoUqVK8V6yc+fOSqVSr7+FCfn111+LXygXF5eaNWuKxWLNf1apUkXLnrtUKu3cuXPxK+zn51f8jygQCMrxTclyvHjxws3NTfNa6dRw13SNNTw8PITC11NR+fv7o+fO4MiRI5o3fLkb7lKptHbt2oSGu3ZmzJiheWfq1HAPDw8vfnt7enpWrVq1+D+Dg4Nzc3P1Fxh4tmfPnuLdl6Ojo42NjeZna2vrixcvlmOD2vyFcv6kxiw2Ntbd3V3zC4rF4pInR2u/E5NKpS1btiz5V1n8c48ePd79TFXyT/hdwcHBXP+WfDDIK4n3qq6vsFrHD0hm+V4ti65vP21oXkCGfoQ+nhQsBye7hcePH1evXr14IzVq1Cg+Q9nV1fX+/ft6/RXA4DZv3kxE5eh4Yvdl4VgHOG2U++0H+mO5DXeVSqU5J93Nze3vv//W7MVUKtWff/6pmUzAz89Pm1ZLbGyspuFbq1at8+fPa25MTk4ePXq0Zhf5/fff6/c3MRGvXr1ycnIiogYNGhSfLVVYWDhv3jzNC9W3b19ttjN79mxN/dixY9PS0tRqtVKpPHXqlL+/PxFZW1s/f/5cj7+GyVIqlR06dCgeubVvuP/zzz+ah4SEhNy5c0etVqempn777beaG/v06aPP1CYsKSmp+JS38jXcU1NThwwZousHfYt18uTJ4uN52jfcjx07pnlImzZtYmJiNDcmJSWNGjVKc/tHH32kt8jAq+TkZM1g7eHhcfr0ablcXlBQsHv3bs2ZRN7e3oWFhTptUJu/UM6f1Mi1aNGCiIRC4a+//pqdna1UKq9duxYYGKi5MSoqSpuNFB85Gz9+/IsXL9RqdUxMTJ8+fTQ3rly58q36kJAQImrduvWc0qxevZr731P/+H8l8V4txyus6wcks3yvlkXXP2RmUqn0xx9/1DyWoR/B7ZOCpan4bkGlUrVt25aIbG1tV65cqdltSqXStWvXak54r1+/PjqnZuzYsWOOjo7l63hi92WxtBzgWFXk7Qf6Y7kN95MnT2re1ps3b37rrt9++01z19GjR1m3o7mcXCgURkdHl7y9eMStWbMmh7FN15w5c4hILBY/fvz4rbuGDRumeQ3z8vKYNxIbG6s5KT48PPytuxISEjTfFSdMmMBhbLOxYMECIiruSGrfcNccbK9Wrdpb52pNnDhRs8G7d+/qIa9pU6lU3bp1K37BdWq437t3b86cOWFhYcVnF6Lhzio1NVVzaZHmBde+4V6vXj0i8vLyevfw6qBBgzQvfnEjHkzazJkzNWPQW+fq/v3335p/aC27XTr9hXL1pCbh6NGjml9q0aJFJW9//Pix5jyG/v37s24kLS1Nc61haGhoya5EQUFB06ZNNZ3ft66t1hzaXLt2LVe/iMEZ5JXEe1Wt4yus1v0Dkvm9V8tSjj/kUmVmZi5YsGDIkCElJ+0pqx/B1ZOCZeJkt7B169ay2gvFs3r+9ddfHMYGY7BmzZpx48bVqVOneDela8cTuy8LpNMAx6Dibz/QK8ttuC9fvpyIrK2tFQrFW3elpaWVOuKWql+/fkRUt27dd+8qPlSVkZHBTWhT1rNnTyLq3Lnzu3ft3r1b80JdvXqVeSOay2SIKD4+/t17v/rqK03vDOcOvOXq1atisdjKymrq1KmaF1DLhvuzZ8809e8eV09ISNDcNXfuXD1ENm2av31/f/8BAwaQjg33tWvX0jvQcGcWFhZGRH379g0ICCCtG+7F7+EFCxa8e+/t27c19+7cuZPrvGAAmqugSr0oR/O2adeunTbb0ekvlKsnNQma60K8vLze/U44ZswYIrKxsSkoKGDeyJYtWzQv6e3bt9+6a9u2bZq7Sq7Xkp2drbnx9OnTnPwWxsAgryTeqxrav8K6fkAyy/dqWXR9+5XlwYMH7+5vy+pHcPWkYJk42S1oJoUICAhQqVTv3tuqVSsi6tevH2ehwTi8tbAc6d7xxO7LAuk0wDGo+NsP9Er47j+zhdC8xatXry4Sid66y9nZWXNj8YdjBoWFhUSkVCrfvUulUml+kMlkFUxrBjQvuOa6vLcUTyzO+oJrWmDu7u4l51kupjnVKCUl5eHDhxVMa05ycnKGDh2qUCgWLFigOUiuveILQTQNzZJ8fX0bNWpERKdOneIkp9mIjIycM2eOSCTasWOHZholnXTs2HFzCfpIaGZWr159+PBhHx+f4ouTtFS8oyj176Ju3bqa8+UfPXpU8ZBgWLGxsZru2Lu7MiLq0aMHEV2+fFkzoDPT/i+Uwyc1CZrxonv37sXz1RbT/LJSqfTixYvabKRq1aoNGzZ8667Q0FDNZ7OSg05sbKzmB81k+uaB/1cS79Viur7CpPUHJLN8r5ZF1z/kslSpUqXk/pb5pePqScEycbJb0HxRbdSoUcllV4tpvqieP3+ek8BgPFauXFm8m+rVq1c5toDdlwXSaYBjUPG3H+iV2NABDGbFihVLliwpXrSzpKioKE0DvX79+qzbadmy5ZEjR2JiYqKioho3blx8u1Kp3Lt3LxH5+fm9e9zJAkVERKhUqpLX4Je8i4iEQmFQUBDzRjIyMojI2tq61Hs1V/wR0cOHD1k3ZTkmTJgQFxfXsWPHadOm7dy5U6fHRkdHE5Gzs3ONGjXevbdjx463bt3C4Y2S8vPzhwwZIpfLv/nmm5CQkE2bNum6hdq1a5cccYtXg4BS3b17d/r06UKh8Pfffy8+dKclT0/PL7/8kspouGuuAiEiX19fTqKCAWl2ZURUcpgu1rFjxxUrVigUitjY2AYNGjBvSvu/UA6f1Pjl5ua+fPmSyv5lNT88fPiwa9euDNvRvGilbsTNza1hw4ZRUVElB52YmBgicnBw8PHxuXLlys2bN1+9ehUYGNiwYcOGDRu+e0aF8TPIK4n3ajFdX2HtPyCZ33uVga5/yGVxdnYuXlKFiLZs2cJwCJyrJwULxNVuQZsvqqmpqenp6cWrs4IZKJ6FkoiePXt24MABXbeA3ZcF0mmAY1Dxtx/oleU23O3s7DRTZZWkUChOnjz52WefEVFgYGD//v1ZtzN58uTt27fHxMT07t37559/7tatm42NzaNHj+bMmXPt2jWhULhs2bJSj3JbmlJP9c3Nzd21a5dm3dQRI0awNrY0bfTExMScnJx3N3jr1i3ND0lJSRwkNgu///77zp073dzctm3bJhTqfEVLXFwcEVWrVq3Ue/38/IgoIyMjKyvLxcWlglHNw5QpUx4/fhwSEvL1118bOov5KywsHDJkiFQqnTlzZqdOnXR9eHBwcHBwcFn3rly5koiEQmG7du0qlBKMgGZXRv+/13pL8Y1PnjzhsJ9okCc1lCdPnmh+KPWXdXJycnFxycrKKi4ri+ZFK3UjmtujoqJKbkRz1rCjo2Pnzp3PnDlTsrh58+YbN240udfWIK8k3qvFdH2Ftf+AZH7vVQa6/iGb7pOCeeBqtxAUFBQfH19WY7T4i+qrV6/QcIeSsPsCMFeWO6XMWwYPHlynTh0XF5fQ0NCYmJgOHTqcPn1aIpGwPtDNze3ff/9t3759fHx87969HRwc7Ozs6tatu3fvXg8Pjz179mgmeYeS8vLyGjduHBAQ4O7uPmbMGLlc/vHHH69fv571gcUHfjW9sJJyc3N/+umn4p+5DWyiYmNjJ0+eTES//fabj49PObaQk5NDRGU104tv12byJUvw119/bd682cnJaceOHWZ2tppx+uKLL+7fv9+0adP58+dzu+V169atWrWKiAYNGlTr/9q79+CYzj6A47+VzYUEIW5BlNJEp0R0G5cOtTUVWpeWdujEbdS4ldAOxlTrMqZab9NUtYggZWhpSjvi0iotvQyiIW6tYtw1JXWLEhKyu+8fz/vu7Owtu3GSzW6+n7/Wc07O5efZ5zn7O+c8T2ysthtH5VNNmbhozSqoKfPJTn3F/clay8s8WdV9e74R9dTw5cuXd+3aFRUV1adPn379+qkcaG5ursFgsMtsVn0+iSR11ZaHEfb2Ainw6qob3n6R/XenCAxaNQvqh2peXp7juDEHDx7ctm2b+swPVdih+QICFQn3/zlx4sTJkyeLiopEJDg4ODEx0engJ06ZzeZ69epZPxcXF6vPtWvX9iRlXw2VlpYePnz47NmzDx48EJEGDRo4DljmVK9evbp16yYi8+fPX7RokXWU/GPHjiUlJV28eFH90+mQ+tXNgwcPkpOTb9++PWbMmEGDBpVvI3fv3hURV9+FmjVrqg/qi1PNXbhwYdy4cSKSnp6uZp9Dhdq0adOyZcvCw8PXrVvnOOBmuf31119DhgwZP368xWJJSEhwOkMm/I5qyoKDg52+6FNBTZlPduor6mSlrP7C/ckWFxerbt3zjagkpl6vX758+bVr17777rstW7ZcuHBh+fLl4eHhDx48GDt2rH+NPO6TSFJXbXkSYfH+Ainw6qor5fgi++lOETC0ahamTJmihjdMTk62TvNgsViys7MHDBhQWlqqSvihCls0X0AAI+H+PxkZGdu3b8/IyBg5cqTZbE5NTU1MTLS+Y+vG8ePHDQbDpk2b6tev/9577+3cuXP//v1r1qzp0qXLuXPn+vbtm5aWVgnH718iIiJ27ty5ZcuWRYsW9ezZs6CgYNKkSf3797feq3BFp9OtXLkyMjKypKTkjTfeqF27dkJCQnR0dHx8fE5OTlJSklqtdu3aFX8SVd0777yTm5sbFxf38ccfl3sjapIDV9eF6n6JiDBokslkSk5OvnXr1rBhw5KTk319OIEvPz9/9OjRIrJo0SKtnkAvKiqaM2dOXFzcV199JSL9+vXbsWOHdWYI+DWfNGXVqv20zojj/nzdn2w5NjJ8+PD3339/27ZtY8aMsV1zzJgx6sWXM2fO+Nfs0z6JJHXVlicRFu+DFnh11RWtIlz1d4qAoVX9ady48aeffhoUFJSfn5+UlBQVFdWxY8e6deu+9NJLf//9t3X8d36owhbNFxDAqu8Y7nbUvOEiMnbs2HHjxvXo0ePChQvTp0//+uuv3fyVxWIZPHjw1atXmzVrlpeX16hRI1XeqVOn4cOHT5gwYdmyZdOmTevWrZt1+xARvV7/3HPPqc+TJ0/+8MMPp0+fvmPHjhUrVqSkpLj/27i4uOPHj0+YMCE7O/vu3btqOvjQ0NAZM2YMHDhwx44dYjN7arX1448/pqamBgcHf/HFF45zFXguPDxcRFzdCLGWR0RElHsXgWHevHl79+5t1arVkiVLfH0sgc9sNg8bNuzGjRsvv/yySrs/vOzs7JSUlEuXLolI8+bNFyxYMHToUE22jIpw586dlStXlrlajx491Pvdqikzm80PHjxwfB+igpoyn+xUK+WLsJTVX7g/Wb1eHxIScv/+fc83Mn78eFdbS0lJmTdvXmFh4aFDh8o4jarEJ5H067rqLU0iLN5fIAVeXXWlHF9kP90pAoZWzYKIJCcnt2nTZvTo0b///vuNGzfUNKpNmjT55JNPCgoK1GPv/FCFLZovIICRcHeia9euI0aMyMzMzM7OLi0ttd51dLR79+4//vhDRD744ANrtt1q4cKFX375ZWFh4eLFi0m4uzF16tSMjIzTp09v3LixzIS7iERHR2/atOn69etHjhw5e/Zso0aNjEZjnTp1rO/uPfbYYxV8yFVdWlqaxWJp3779zp07rWERm+l6li5dqmadnTp1qpvhOBo2bCgiBQUFTpdeuXJFRHQ6HTP/pKamiojBYFi6dKlt+dGjR0WksLBwwYIFIhIdHT1y5EifHGEgOXDgwE8//SQijz76qAqsVWFhoYgcPXpUlXfu3PnZZ591vzWTyTRx4sSMjAwRiYyMnDFjxpQpU6yjAaBqKiwsfPPNN8tcbeHChSodrJoyESkoKHCcnVs1ZSLSoEEDDQ/SJzvVysNE2HE1i8Xyzz//iAcn27Bhw/z8fPedjocR0+v1bdu2zcnJOXbsmCfrVxE+iaRf11VvaRhhVxsRLy+Q/LSuuqHhF7mK7xSBQatmQenUqdOxY8fOnz9/9OjRa9eutWrVqnv37nq9/u233xaRsLCwmJgY7Y4dgYDmCwhU1TThXlJSohJkffv2tc7DaUsVmkymy5cvu+kUrbOQd+3a1XFpWFhYx44dd+/e/eeff2pz3H7r1KlTapSG119/XY1tZ0un0yUkJJw+ffqvv/7yfJtRUVE9e/bs2bOntURN3q3T6R5//HEtjtqPqZHg8vLy8vLynK7w/vvvqw+TJk1yk3CPi4sTkUuXLjl96u3cuXMiEhMT8zAP0QcGFfCNGzdu3LjRcen169ffeustETEYDCTcH5518gbVjDvKzc3Nzc0VkalTp5aZcB83blxmZqaIvPLKK0uWLHG8dYoqKDIy0tX/vq1nnnlGfVBNmYicPXvWMZ+omjIRadu2rXbH6JudasXbCLdq1Uo9n+V0LL78/Pz79++LBycbFxeXn5/vakA/FTTPI6ZynaGhoR6uXxX4JJJ+XVe9pWGERbsLJH+sq25o+0WuyjtFYNCqWbDVsmVLuymd1A/Vtm3bOp0tA9UZzRcQqKppwj00NHTx4sUFBQW3b992mnC/efOmiOj1evfJF+tcqaobdqTKeXHMZDLNmjVLRAwGw/PPP++4ggp406ZN3W/n1q1b6n3bJ598Uj2gbSsrK0tEEhMTrf8v1VZ8fLzTt9IKCgrUXaIuXbqo33VBQUFutmMwGETk/v37hw4d6tSpk93S/fv3i8iTTz6p1WH7r2eeecZpI3Dy5MkrV66EhYWpd1ysSQ08jDp16vTo0cPpov379xcXFzdp0kSFunXr1u43lZqampmZqdPp0tLSPHmeF1VERETEtGnTPF8/Pj5er9eXlpbm5ORYc8RWqimLiop65JFHNDxIn+xUK95GOCgoqEOHDrm5uTk5OY5L1cmKB/2FwWDYtWvXgQMHTCaTXfd07do1la2wbmT37t1ZWVk1atRIS0tz+lbKqVOnRKRdu3aen4jP+SSSfl1XvaVhhMXjC6SArKtueFX9/HqnCAxaNQsXLlw4d+5cjRo1HBvSoqKibdu2iYh1yjHAiuYLCFiW6uqFF14QkcTERKdL1awm7dq1c78R6xPuy5Ytc1x68+ZNNdjW9OnTNThif2YymdT8ME5Dcfv2bfXY+6RJk9xv5/r166oT+uijj+wWnTt3Ts0l8sEHH2h23AFn7dq1qsZeunTJk/Xv3r2rfhlOnTrVbtHx48fVpj777LMKONIAoUYYb926dbm3oIKcmpqq4VEFMJVhHz16tCcrl5SUNG7cWERef/31ij4w+JzRaBQRg8FgV15aWqru9Y4YMaIcm3X/Da2gnVZNc+fOFZGQkJBr167ZLRo8eLCItGjRosyNqNGiRGTLli12i6wDdp05c0aVWK/BVq9e7bipY8eOqacIMzIyynVCPlP5kbRQV//P8wh7dYEUqHXVFW+rn4fUvfa+fftW5k5RTWjSLGRnZ6ualpeXZ7do9erVatFvv/2m2UGj6pkzZ46IhIeHe/VXNF9w38F5qHzVDxWq+ibcFy9e7CpXbu0RZ82aZVuelZWVnp6enp5+9+5dVWI2m9XbPfXr1z916pTtyiUlJS+//LKI6HS6n3/+uULPxS+88sorIhIaGnrkyBHb8tLSUuu0hz/88IO1/N69eyraX375pe366pGB6OjoK1euWAtv3LjRoUMHEYmKivr3338r+lz8l5uE+6+//qoCfvr0advyCRMmqIbbtps3m839+/cXkYYNG96+fbsyDt0/uUm4O7YnTrlP58GOq4S70/Zk/fr1Krxnz56t3MOED6hXoETErk+xDpyyb98+u/Uf/hvq7U792sWLF0NCQkRk/PjxtuU5OTnqTvmCBQtsy512OiaT6YknnhCRhISE4uJia/nNmzfVUCd9+vSx3Yh6SbFRo0bnz5+3Lb9+/bp6r6hVq1ZFRUVanmfF80kkqasW1xE+c+aMivAvv/xiW+7VBVJA1lVXvK1+riJsx30+wtudArY0aRaKiorUfbhevXqZTCZr+cGDB9X77klJSRV9IvCtMjOemnTZCDzuOzhXmTE7JNyroOqbcC8tLX3qqafUr4hBgwYtX77822+/zcjIGDhwoCrs0KFDSUmJ7Z+odlBELl++bC08dOiQ6p7DwsKmTJmybt267Ozs//znP23atFErOz75Uj1dvHhRPeQeEhIyefLktWvXbt261TrfmohMmDDBdv2rV6+q8ri4ONvyffv2qWlsmzVrtnDhws2bN8+ePVsNH6HT6bKysir3tPyMm4T7xIkT1aL169fblufn56uphGJiYhYuXHj48OGsrCz1goiIrFixohIP3/+4Sbg7bU8ckXD3iquEu9P2xDpiRpRbTh9IhN8xm83dunUTkdDQ0JkzZ+7du3fHjh2TJk1SD5YOHTrUbn1NvqHe7tTfzZw5UwVk2LBhW7du3b9///z58yMjI0UkNjbWLpnoqtPZvn27is/TTz+9Zs2aI0eOpKenq/+OmjVr2t2z37t3r7oGq1u37ttvv/3NN99s2LBhzpw51vEAv//++8o4c61VfiSpq24ivGHDBrXyuHHjbMu9ukAK1LrqilfVz1WE7ZT5AKBXOwXsaNIsWG9Sdu7cedWqVRs3bkxJSVFvckdGRto9n4fAU2bGU5MuG4HHfQfnKjNmh4R7FVR9E+4Wi+XEiRNOB3AXkaSkJMdnHl39/N6yZUuLFi0cNxIcHPzmm2/aZe2rs82bNzdp0sQxUEFBQRMnTrS7jnHTrGRkZDjOKxUaGup0YB/YKkfC3WKx7NmzR/2ktKXT6d55553KOnB/RcK9knmVcB80aJDT9t9Oenp65Z4EKkpBQYHTTr93796Oj7Fr9Q31aqf+zmQyDR8+3PFkW7du7ZhlcNPpLFmyxHEWyjYrMQ4AAAP6SURBVIiIiOzsbMedfv7552r4PjtNmzbdvHlzRZ1qBfNJJKmrriLsJh3s1QVSQNZVNzyvflol3L3aKWBHk2bBbDa/9tprTr/me/bsqcSzgW+UO+Fuofmq3ki4B6ogNWBZ9dSgQYMxY8a0aNGiVq1aYWFhQUFBCQkJvXv3nj179rvvvut04s3ExESj0Wg0GtVTKkpsbOz48eOjoqLq1asXFBQUHh7euXPnAQMGZGZmDh061P2klNVKXFzc2LFja9WqVadOHb1eHxER0aVLl/79+6enp48aNcqxgwkODlbRtpuNymAwvPrqqyUlJXq9XqfTxcbGDhkyJDMzs3fv3pV4Nv6qcePGKqqONy0ee+wxtchuruCYmJgRI0aEhYXdu3dPp9M1b968T58+S5cuHTlyZCUeuL+Ki4szGo3qhXE7TtsTR2qdmJiYCjvGgNK5c2ej0eg4P61je3Lnzp2OHTsaPVDmfM7wC+Hh4aNGjYqOjr53757FYomKiuratevcuXMXLFjg2AGJRt9Qb3fq13Q63cCBAw0GQ3FxsdlsrlWrVvv27VNSUjIzM6Ojox3Xd9XpJCYmDhgwwGw2q46+TZs2ycnJq1at6tKli+NG4uPjx44dGxISoi7kGjVq1LNnz2HDhq1atUqNNeePfBJJ6qqbCDds2FBFODY21rbcqwukgKyrbnhV/VxF2E5CQoLRaGzfvr0mOwVsadIs6HS6F198sXv37vfv39fpdDVr1oyPj584ceLKlSvd120EjJYtWxqNxu7du7taQZMuG4HHfQfnKjNmp8zqh0qms/z/+SwAAAAAAAAAAFBuNXx9AAAAAAAAAAAABAIS7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGjgvy0WE63Z46Z+AAAAAElFTkSuQmCC\"/>" + "<img width=1000 height=400 style='object-fit: contain; height: auto;' src=\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3wU1drA8bNJCCGBQAgl9BoIhJ4oSC9WQBAEvV68V3wFFURsWBDLFUXAdkEUG4hXRUUQEJTeCYYSioRIC6GEhFCSkEJ6dt8/9jrO3WTPbnZnZ3eT3/fjH8ucszNPJmvOnmfOPGMwmUwCAAAAAAAAAAA4x8fdAQAAAAAAAAAAUBmQcAcAAAAAAAAAQAMk3AEAAAAAAAAA0AAJdwAAAAAAAAAANEDCHQAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADRAwh0AAAAAAAAAAA2QcAcAAAAAAAAAQAMk3AEAAAAAAAAA0AAJdwAAAAAAAAAANEDCHQAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADRAwh0AAAAAAAAAAA2QcAcAAAAAAAAAQAMk3AEAAAAAAAAA0AAJdwAAAAAAAAAANEDCHQAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADTg5+4AgHKcPHly+/bt5tf16tUbM2ZM2T4nTpzYsWOH+XWDBg1Gjx7t8OE2bNgwZcoU8+u///3vM2fOVLeaTKa4uLjTp0/n5eXVrFnznnvuCQgIcPhYHiszM3PZsmXm140bNx4xYoT5tfzk6GPo0KGnTp0yv967d2+9evWEEKdPn966dat5Y5cuXXr37q1/YG+88cY333xjfj1//vxhw4bpHwMAeBH1n26DwTB+/Pjq1auX7bZ48eLi4mLz6xEjRjRu3Fi/ELWm/krTvXv3nj17OryrhISE3bt3m19HR0dHR0ebX5c7SuopMzPzpptuMr9u06bNxo0bza937tx5/Phx8+s777yzZcuWOgcmPODkAIC3yMnJWbp0ablNBoOhYcOG4eHhbdu2LXfgriimUWrWxne3nyXGd8AZJNzhiWJjYydNmmR+3bVr13IT7jExMUqfqKgoZxLuubm5Z86cMb++cuWKuunq1asjR46MjY1VtiQnJzdt2tThY3mslJQU5XwOGDBASbhLTo5uLly4oMRQUlJifrFv3z4l4KeeesotCferV68qgeXk5OgfAAB4F/WfbiFERkbG9OnTy3Z76qmnbty4YX4dERHh1Ql39VeaF1980ZmE+/bt25988knz69dff12ZkJc7SuqptLRUCcDP76/JxTfffLN48WLz61WrVrllQu72kwMA3iI9PV09RpfL39//ueeemzFjRlBQkDPHYhqlZm18d/tZYnwHnEFJGUBmxowZ6mw7HDZp0qS2fzp48KC7w6mAr776Sol84cKF7g4HACqPWbNmpaamujsK/FePHj3Mg11ERIS7Y6kY7/2OAQDepaioaPbs2V26dMnOznZ3LLAX4zvgFqxwB2SUO9+FEEOGDOnQoYOTF/OrrEuXLimXoPPz890bTIVcv35diTwjI8O9wQBAZXLjxo0XXnjh22+/dXcgEEKIpKSkrKwsIYSvr6+7Y6kY7/2OAQDeKCkpafr06R9//LG7A4FdGN8BtyDhDoiRI0dmZmaaX1vUpLt48aL5hb+//9q1a2vUqKF3cO4mOTm6iY2NLS0tNb+uXbu2W2Io17vvvvvWW2+ZX3MlBgAcsHTp0smTJ7ulLFil4fZRMjQ0VPmq4GmTebefHADwUidPngwODja/zszMPHz48GuvvaZkPz/55JM33njD4cLZTKPs4fazxPgOOIOEOyqb7Oxs5Qa3kJAQ88iUkJCQmJgYGBjYsWPHJk2aWLyluLg4NzfX/NrHx0edVVf+iNeoUUOSbT916lRSUlJ2dnadOnXat2/fokWLsn0KCwuvXr1qfh0YGFi3bl0hxOXLl+Pi4jp16tSiRYv8/Pz09HRzh1q1atWuXdv8vNbz58/XqVMnOjq6Tp06yt4uX758+PDhwsLCdu3ahYeHq0uq2cNoNB48ePDChQvBwcE333yzZIiSnBylw7lz586cOVNSUtKqVauWLVtW9NuAclXD19e3UaNGQogbN24cOHAgMDDw5ptvNv9TqcumPgnWfqg6dep069YtNDTUokNeXp6yRD04OFj5Bml29erVwsJC8+tGjRrZ85WioKBAqTJs7eNx+fLlY8eOpaenBwUFtWjRIjIy0mAwlO2mPnpYWJifn19paemBAwdSUlLCwsI6duwYEhJiMx4A8EZTp07dv3+/j0/F6hxqMvKW2yElJeXo0aPFxcURERFt2rSxNhyYTKZLly6dO3cuNTW1bt26TZs2bdmypb+/f4V+Com8vLz9+/dfu3YtLCysZ8+e1apVs9bT5ih57dq1M2fOXLx4sWHDhq1atWrcuHG5I5E1Nk+j0WhUvipUr169Vq1a1naVn5+/d+/e9PT0Ro0aRUdHl72Qn5mZqQys9evXt7YMws/PLywszJ7g7fkK4fBnyc6PCgB4owYNGih/NsPCwjp06BAVFdWpUyfzH1WTyXT8+PF+/fpZvMvOuY/NaVRubm5SUlJSUlLNmjVbtWrVvHlzyThoNBpTUlKSkpIyMjKaN2/esmXLsjNBx+J0xRzN/vFd27NULvlMXMPxXfOZuD3ju52/5bInIScn58CBA9evX2/dunVERERAQIDNeIBymADPs2TJEuUj2rVr13L7fPHFF0qfqKgoZfvrr7+ubF+wYMHvv//evXt39We+f//+J0+etHa4F1980WQyXb58OSoqKioqStnu6+tr3hIXF6d+76pVq1q1amXxv1VkZOS2bdssAt6+fbvS4d577zUajTNmzDDPzL/55huTybR8+XKlw1NPPbVv3z51kbWAgIAXXnihuLg4MzPzwQcfVCcmWrduvW7dOvtP78aNG9VXHapXrz5jxowjR44oWwYMGCA5OYrMzMxXXnnFYtz18fH529/+duzYMaXbm2++GRUVpR4F27dvHxUVtWzZMnMHZXtoaKjJZPrxxx/r168vhHjkkUfMHdRT3/z8fPNG5Ynt5tO1Y8cO9dNa/P39J02aVFRUpA5Y/Zmx+FlMJpP6QXanT582mUzr1q2Liopq1qyZsr1x48ZRUVEvvPCC+S0PPfSQ0rR+/XqLHcbHx/fr189iUK9fv/7ChQuNRqNF5wEDBih94uPjly9frk4lGAyGiRMnXr9+3b7fMAB4KPWfbrUvvvhC3U194Xb79u0WO9Fw5LXokJ6ePmbMGPUI26JFi7J/3ktLS7/77rsOHTpYxBAaGvrqq69mZmaqO0uGUYm5c+fWrFlTPXb8+OOPCxYsULa8/vrrSudyR0mzrVu3lr17oEWLFp988klhYaHS7Z577omKilLPb83feRITE+05jWfPnlU69OzZU9ntI488omxftWrVRx99pP7OEBIS8umnn1r84OPGjVM6WJx59b3kTZo0MW+0+R1DcnJMTnyW7PyoAIAXUf8xF0JYDGdmHTt2VDp89tln6qYKzX0k06hTp06NGzfO4jJ8zZo1X3zxxStXrljsp7i4ePHixWUvlN5yyy3WJsjunaNVaHx3/izJx3eTrZm4huN7RWfiTo7vFfotq09CSUnJq6++GhgYqGwMCgr697//XVpaasevF/gfJNzhibRKuE+ePNni2qnylzQ9Pb3cw5n/+icnJ5d9l5ky88/NzR07dqy1bkKICRMmlJSUKEexmKq9/PLLyj/LJtz79u1b7jrxyZMnmxd9W/D19bW4EmDNe++9V+4V46FDhyqv7Um45+TklM01KPz8/JTJqno8VluwYIG5g7IlNDR0/fr1Snj2J9wHDhxY7jX/W2+9NSsrq9zPjD3DvLXE0L333mt+i+Q70KxZsyTrC/r165eSkqLur/4y99JLL5X7roEDB9rzKwYAj6X+uxoeHq5c2K5fv756vmot4a75yKvucNddd3Xr1q3c3e7YsUP9U0yfPl0Sw6BBg4qLi5XOFU245+fn33///WV3azAY7rzzTuWf9iTcFy1aJInztttuU85VmzZtyu0THx9vz2m0Z0KuDl7thRdeUE99K5pwt/kdw9rJceazZP9HBQC8iD0Jd/VUdMmSJcr2is59rE2jjh49qs51WmjSpMmlS5fU+3nwwQclf8lnzpxpEb8b52gOjO/OnyX5+G6yNRPXcHyv6Ezc4fHdgd+y+iRMnDix3Hf961//sue3DKhV7O5dwLssXLjQXF7G4tpmenr6v/71L8kb/f39ra1wVy7evvnmm+oUub+/f3h4uDqXvWjRooULF5a7/8TExHfffVcSQExMjPn2MYvIFy5cuH///rL9S0tLrX0DUNuzZ8+0adOUOjlCdW/aunXrbL5dberUqcePH1f+2b59+969eyu31JWUlIwdO9Z883XLli3LvTrdoEEDi32WlJQ8+eST6vDstGPHDvM8vHr16urr/Fu2bJkyZUpF96YIDQ0td4W7tS8uig0bNsyYMaO4uNj8T4PB0KZNG3X+aPfu3U8++aS1t8+ZM0d5o3r7jh07Vq5cWdGfAgA8k4+Pz4cffmh+ffXq1TfeeMPmW1w68q5fv958s1fZ243Vf7F37typ/JUWQtSrV69z586NGzdWtmzfvl2dZK+o9957b9myZeot5huZTSbThg0b7N/P6dOnn3jiCeWftWrV6tu3b2RkpLJl8+bNyjnv3LlzuSvgyl7MtnkarVGCt9jnO++848zpsv87hgVnPkt2flQAoJLJy8s7ceKE8s/27dubXzg591EYjcbRo0fn5eWZ/1mtWrXo6Gh1fZKUlJT77rtP6f/111+rn7veqFGj/v37q+dur7/++tatW5V/uneOptX4XqGzZP/47vBM3NPGd2d+y+np6cqFAYvf8pw5c1JTUx34QVCVkXBHJTd69Ohjx44VFRUlJibedtttyvadO3dK3tWgQYO4uLi4uDhlcKpZs6Z5izkLf+LEiQ8++EDpP3369KysrFOnTmVlZT366KPK9tdee02p+Kn2+++/FxcXd+jQYfz48VOnTi03gfvAAw+cP3++sLBw5cqV6pqwBoPh/fffz8zMzMnJefHFF5Xthw8ftnk2XnjhBeV1z549//jjj7y8vMTExEGDBtl8r4VffvnF/CI0NDQpKenEiRN79uxJTU39+9//bt6enp6+bds2IcQrr7wSFxenXh2waNGiuLg49bcls6ysrMTExAYNGtx///1PP/102ZqAEnXq1Fm1alV2dnZ6err6LofvvvtOebZPRd11111xcXHPPvussmXSpElxcXFz586VvKuwsFA9hN95551paWmJiYlZWVmfffaZ8qtcuXLl5s2by92Dj4/Pq6++mpycXFRUFBMToy6VI//cAoB36d27t7Ki+aOPPlJP48vSYeTt3Lnztm3bbty4ce3atWnTpinb4+PjlYeG/fTTT6Y/F0PNmjXr8uXLR48eTUlJ+eSTT5T++/bts/mzl+vatWvqdPbEiRPT0tJyc3N3796tziDYY9OmTUo51Oeffz4zM3P37t3Hjh2LjY1VlsUpGedVq1bFxcUpN7mbb5uLi4sre5bsOY3WREZGHjp06MaNG+fPn7/77ruV7W+//bYDM3wz+79jqDn5WRL2fVQAoDLJysp67LHHlIel+fr6mm93dn7uozh+/HhiYqL5db9+/TIzMw8cOHDgwIHz588rt1bv3r378uXL5tdr165V3rtmzZrU1NSdO3eeP39euZxvMplWrFhhfu3eOZqG43uFzpL947szM3HPGd+d/y2Hhob+5z//ycjIyM3NXbp0qfKWgoICh7/doepy7wJ7oFxalZTp0aOH+nZg5WkYQogaNWootzhJbvdWEu7mR5gqJkyYoLxl3LhxFrGp89dvvvmmeaP6ZmQhxPPPP29RCEy90qp58+bq4qr33ntvuYczGo3qq77Z2dmSs/rbb78pPUNDQ3NycpSmgoKCpk2bKq02S8qkpKQoG5s0aaK+h+vYsWN9/rRw4UJl+8iRI5W37N69Wx2Y+rQMGjRIXQTGzGZJGSHE2rVr1W957LHHlKZJkyaZN1b0Rjazf//732V/m2bl3uWnXmfRsmVLizry6iWcQ4YMUbarv0xMnTpV/Rb1Du+44w4TAHgt9Z/u9u3bm0ymixcvKsuOlD9x5ZaUccXIq+4QFBSUnJysNBmNxnbt2imtsbGx5u0jR45s0aJFixYt2rVrp/4Ln5SUpHTu37+/sr1CJWXefvtta3/w4+Pj1YutbJaUUd8T/eGHH6p39eyzz5qH6X79+uXl5SnblSeo+/r6WjtL5Z5Ge245DwwMTEtLU5pKSkrUhYCVkqwVLSljJvmOUe7JcfKzZOdHBQC8i0VJmV69einTusjISIv1y8oMy7G5T7nTqKVLlyoblRqeZt98840SjPJnNjw8XOl/9OhRpbPRaBwyZIi588SJE52JU6s5mmPjuyZnyWR9fDfZmolrOL47NhOv6Pju2G9ZfRJWrlypfov6C8Ps2bNNQEWwwh2V2d13362+f6pJkybK88rz8/OVlV8O2LVrl/L6ueees2h95plnlNe7d+8u+/aGDRvOmjXL4iEnar1791avaq9Xr57yeuDAgcprg8GgfgK7/ALy0aNHldePPfaY+mkt1atXf/zxxyXvtaB+7HhKSkqrVq0ef/zxNWvW5ObmRkZGxvxp0qRJ9u/TbN68eeWW3Zdr167d8OHD1VvUy83i4uIqukNnqD8bU6dOtagf9+STTyqfydjY2HJ/ZaNGjVL/s2vXrsrr69evaxkrALhbkyZNlJLoGzduVK9Ws+DqkTc6Olp97dlgMHTu3Fn5p/Lnd/Xq1efOnTt37tzJkyfNf+ELCgoOHjyormzu8Hou9Uht8TN26tRpyJAh9u9KPVI//fTTgwYNev/998214N5//33zML1r165yn4AiYfM0WjNu3LiGDRsq//T19VX/ytw4UjvwWbLzowIAXm3v3r17/pSQkKC+6hkSEjJz5kzza+fnPgr1yPXTTz916tRpxowZMTExpaWlDz74oDLH7NWrV9n+vXr1Gjt27FdffZWWlmYwGLZs2WLu/Pnnn2sVpzNzNBeN7/acJfs5NhP32PHdgd9ytWrVhg0bpt7CTBzOIOGOykydpzYzF0pznvJUVR8fH3VFVLNOnTopry9cuFD27Z06dZI8x0MIoVyFLku9pL1CTp48qbzu0qWLRWvZLRKhoaHqq/1paWmfffbZyJEjQ0NDb7vttn//+9/qmwns5+/vX/Zk2kM90TVr27atskBSuedOH+on7pY9qyEhIU2aNDG/zsvLu3btWtk9WHxutfrQAoBnmjZtWqtWrcyvn3nmmaKionK7uXrkrdB3htOnT8+fP3/UqFHmwqDR0dE//PCDZOd20nCkHj16tPLaaDTu2LFj2rRpHTt2bNmy5eTJk9evX280Gh2I0OZptKZs8OrnjrprpHbss+S6r5cA4Pl69uy5f/9+5S+h83MfxZAhQ9Sz4ISEhLfffrtfv37169f/29/+9vXXX+fm5qr7q+8Cz8vLW7FixcMPP2x+5tarr7566NAhdWf3ztE0HN8repbs5PBM3DPHd+HQbzk4OFi96lEwvsM5JNyBCistLVWu8IeEhFj8URZCNGrUSHmdlZVVdg8OJ82doU6Cq69Cm6ljtseKFSssFpULIYqKirZs2fLss8+2atVq6tSpJSUlFdpnrVq11Hck2K9+/fplN4aFhZlfmOvdO7Bbx6iPVfY8Czs+HgBQpVSvXl0pqH3mzBl1IS+F54y8+fn5kyZNat++/dNPP7169eqkpCRz5tqxNLQFZaQ2GAxlh7YKjdSDBg365ptvyu7k/Pnzn3zyydChQ9u1a1fuY9jlHD6NZSNRhmlzVI7t1gHOf5YAoCoYMGDAEJWRI0e+8sorK1eujImJadu2rdJNw7lPnTp1tm3bpi5IYpaZmbls2bKHHnqoWbNmX375pbL9lVdemTZtmnrFtxDCZDIdOnTorbfeioqKuvXWW69cuaJ5nA7QcHyv6Fmyk4YzcXeN78Ldv2XAAgl3eCL1Dc7Kg1ksqLcrj//Sh6+vr3LEjIyMgoICiw7qEue1atXSLzIp5XKuEOLSpUsWrWlpaRXaW7169dauXXvy5MmXX3657HhfUlKyYMGC1157zbFQK6rcJ4YrP2NQUJC6fo6rqW/EKzcwz/x4AIAb3XPPPcr91G+99VbZRe6eM/K+8sorn376qclkEkIEBAQMGzZs5syZa9euTUhIcH7nykhtMpmUh8IpKjpSP/jggxcvXvz+++9Hjx6tLotvdubMmdtuu83aQ0E1V3ZAVP/K1JNzV/OczxIAeLLVq1dvUVm9evWbb745atQoPz8/dTdt5z49evRISEjYsWPHo48+WnZouH79+iOPPLJp0ybzP/38/N59992UlJR58+b179+/bL5469at99xzjyvirChtx/cKnSVX85zxXbj7twxYIOEOT2RxUfTGjRtl+6hntjr/HRdCKDe/m0ymw4cPW7QePHhQea1+mod7qVciqCM0s7jnzk7t2rWbNWtWQkLC6dOn33333T59+qhb1Y9GcakjR45YlGA7duxYXl6e+XX79u3VD6IxU1oV6tHXGcpnQ5R3ntPS0pQDBQYGlrs2HwCqoPnz55unyrm5ucXFxWU7eMLIW1xcvGDBAvPrunXrnjhx4pdffnn11VeHDx/u2B3cFjQfqf39/f/2t7/99NNP165dW7t27YQJE9R3xGdnZ//4448OR1shZX+cAwcOKK8jIiLKvsVipNZqmBae8VkCgMrBFXOfAQMGfPbZZ6mpqbGxsS+99JL64aiizBwzNDT0qaee2rlz5+XLl5csWXLPPfeo17zHxsaa8wbunaO5YiZeobPkOs6P74KZOCopEu7wRNHR0Uq1LKPR+Prrr1t0OH78uPrx3H379tUvOCHE/z65dPbs2eomo9E4Z84c5Z+DBw/WLSq57t27K6+/+OILdc2ynJycjz/+2P5dvf32273+tHfvXiFE27Ztp02bFhMTc/DgQeXu7PT09HKTJpq7cOGCRfHcWbNmKa+VanR169ZVNlo8v2XXrl2O1Z0vS/3Z+PDDDy0uF82ZM8f055PQ+/XrZ7FCBACqrMjISPmjtj1h5E1KSlLGtS5duqizsStXrnR+/+qReu7cueoy6/v27du+fbud+7ly5YoyTE+YMEEIERAQMHz48C+++CI5OfnBBx9UelZ0VZ3Dfvzxx7Nnzyr/zM/PV+oICftGavUXPyd5wmcJACoHDec+Y8aMMY9c/fr1y8vLMxgMvXr1mj179smTJ9VzVfPItWHDBmWkW7hwoRAiNDR0/Pjxq1atOn/+vLocubm/e+doWo3vooJnSQfOj+/MxFFZkXCHJwoKCho7dqzyz/fff//2229fvHjx5s2bly9f/tJLL910002FhYXm1nr16t1///06R/j8888r9yOvXbt2/Pjx5gd0nDlz5u6771ZWSzVs2PDxxx/XOTZrevfu3bt3b/Pr7Ozsvn37bt26NSMjY9euXf369VPK29mjXr16+/40bdo09Q3p2dnZSun2iIgIpaatj89ff20qdCw7TZgw4dNPP01NTT1+/PjEiROV/LvBYHj66afNr9u3b6/0j42NnTZt2vHjx0+dOvXZZ5+pH7ljoaKRjxo1SnlCS1pa2sCBA3///Xej0Xj16tUZM2bMnz9fCUy3kjsA4BVmzpwZGhpqrdUTRl51Cbu4uLhNmzYVFRXl5+cvWrTovffec37/jz/+uHKDc0xMzOjRow8fPnz16tVly5YNHTrU/v00aNAgOTnZPEwvWbLku+++U2aYJSUl6gqn6qeOK+NdaWlpRkaGsz/M/youLh44cOC6devS09NjY2MHDx6szM8bN26sfJFTj9Tz589ftGjRuXPnjhw5Mn369DfffNPazis6UnvCZwkAKgcN5z7+/v7mkSsmJmb69OlKyS+j0agut20euVq3bq1MSGfOnKm+XSk/P195Vof481HY7p2jaTW+iwqeJTNPG9+ZiaOqMAEeKTk52Z57fAwGw6+//qp+o3o5/IIFCyx2q65jnp+fb964ZMkSZeOLL76o7q9Ugqtdu7bFrtRrqM3KlpL/9ttvlf7qC9f33ntv2R95+fLlSofHHntM3fTYY48pTcuXL1c3tWnTRmnKzMyUn9XNmzfbPKVCiAEDBihvKffkJCcnqx+b5ufn17Zt28jISItf2dNPP63sZ8qUKcr2hg0bjho1as2aNeYmZXtoaGi5YauXECq/tW+++caen+Uf//iHsp+ioiL1XWYSp0+fVt61YsUKZXv16tVHjBgxe/Zsc9NDDz2kNK1fv155S0xMjEURG/VjCcwmTJig/hkHDBigNMXHx6ubTp8+rTT17NlT/isGAE+m/tPdvn37sh3Mi9TUtm/frrRqPvLKO4wbN67sH3mLkS4gIKBs0dhbbrlF2YnkO0a5ZsyYIezw+uuvK28pd5ScNm2aun9oaGhkZGTbtm3VD3cNDAxMSUlR9mNOSZhFRkaOGjXq3Llz9pxG9dI29Tj1yCOP2POzLF68WHnL8ePH7Vlx1qRJE3UAku8Y5Z4ck9afpXI/KgDgXdR/zIUdU0uFA3OfcqdRa9asUe8nKCgoIiIiIiLC4nFcq1atMvePjo5Wb2/WrFmnTp2aN2+u3titWzdn4tRwjubA+K7JWTJZH99NtmbiGo7vjs3EHRjfHfgtS06CujKPPd/iADVWuMNDNW3adPPmzR06dJD0CQgIePfddyt6TVgr06ZNmzJlivqiq7oYmb+//8yZM9UTME9w6623LliwoNznjyvPk7UA4/8AACAASURBVLFH06ZNV61apZSOKSkpSUxMTEhIUC91v+WWW9S3ad91113K68uXL5vv9avwD2BFv3791DepKQYPHqy+o61atWoffvhhuXsYOHBgt27dym3q06eP8vSVwsLCNWvWWNwEV+5bPvvsM/VjWNSLLIQQ999/vyZrIQGgknn00UeVpUllecLIO3fuXPU/CwoKzA8RmT59ujLBO3XqVNlHcdrptddeU0+wFQEBAXfccYf9+5kzZ4565E1PT09ISEhMTFRK4vj4+CxdurRx48ZKH/UXqoSEhFWrVqnXwjtp+PDh6l+c4qmnnho/frzyz4iICOW+NAvPPPOMtZ078B3DEz5LAFA5aDX3ufvuu9966y3lnzdu3Dhx4sSJEyfUT0l55plnlHnrmjVr1On15OTkY8eOXbhwQdlSr1499dop987RtBrfK3qWhGeM747NxB0Y35mJw3OQcIfn6tq1a3x8/JdffmnxABAhRFBQ0IQJExITE5977jm3xCaE8Pf3X7Bgwe7du2+55Rb1GFOtWrXbb7/9yJEjr776qrtik5gyZcr69evVt3SFhIR8/vnnkju1yzVw4MATJ048++yzZTPd7du3//jjj7ds2aIU4hdCDB06dMGCBY0aNXImeGt69OgRGxurLo0XHBz8yiuvbNq0Sf10OCHE8OHDt27dqv7xa9WqNW3atPXr16ufrqMWFha2atWqrl27ViikiRMnJiQkjBkzxuKKeufOndeuXfvDDz/Url27QjsEgKrA19dXueG3LE8YeR9++OHPP/9c/bT2rl27rlu37u2331ZGivT0dDsXspXl7+//1Vdfvf/+++ql9G3btt2+ffvw4cPt34+vr++aNWuWLVvWp08fi5lw9erV//GPf8TFxVlca3/jjTeeeOKJsgu9NfHII4+sXr1a/TWgWbNmP/7447x58yzCe+eddz766KOQkBBlS9OmTRctWvT2229b27kD3zE84bMEAJWGVnOfl19+ec+ePffdd5/F1MxgMAwcOPDnn39+//33lY2NGjU6evToBx98oH4kqVm9evWmT5/++++/q28H1zBOB2g1vosKniXhMeO7AzNxx3IIzMThIQwm1Q0UgMfKy8s7c+bMuXPnQkJC2rRp46K8rcOuX79+9uzZnJyc2rVrt2nTxuJ+Ls+UlJSUmpoaHBzcoUMH9Q3mDrh+/XpKSkpGRkaDBg2aNWsmH8tzcnKys7ODg4Nr1qxpcbeX886dO3fx4sWaNWt26NDB2rBtlp6efurUqRo1akRERKgvDEgUFhZeu3YtMDAwODi43LsErL3r9OnTGRkZgYGBzZs3b9CggZ1vBABIuHfkLS0tPXfu3KVLl5o1a6a+qVlDJSUlJ0+ezMjICAsLK7vyoKK7unTpUkpKiq+vb9OmTRs2bFjuYjTFtWvXSkpKgoODNZ+cG43GEydOpKenN2jQoF27dvKvAcnJyefPn69Xr1779u3t/MLg2HcMb/wWBwCeSau5j8lkunr1akpKSn5+fuPGjZs0aSKfsebn56ekpKSlpQUHBzdt2rTcu59dEacDNBzfK3qWPGR8d2Am7tj4zkwc7kXCHQAAAAAAAAAADVBSBgAAAAAAAAAADZBwBwAAAAAAAABAAyTcAQAAAAAAAADQAAl3AAAAAAAAAAA0QMIdAAAAAAAAAAANkHAHAAAAAAAAAEADJNwBAAAAAAAAANAACXcAAAAAAAAAADRAwh0AAAAAAAAAAA2QcAcAAAAAAAAAQAMk3AEAAAAAAAAA0ICfuwPQgMFgcHcIAAA4yGQyuTsEt2EEBwB4u6o5jjOCAwC8nUtHcFa4AwAAAAAAAACggcqwwt3MvSsLMjIycnNz69atW7NmTTeGUeklJyebTKZmzZqxpMJ18vPzr169WqNGjfr167s7lsrs2rVreXl59erVCwwMdHcsldmFCxeEEM2bN3d3IOXjT5lZVVsbmJKSUlpa2qRJE19fX3fH4pWys7OvX78eHBxcp04dd8firTz8b6Pnu379enZ2dp06dYKDg90di1cqLS1NSUnx9fVt0qSJu2NxCuN4pRnB+avojKKiorS0NH9//7CwMHfH4pVyc3MzMjJq1qxZt25dd8filUjHOSktLa2oqCgsLMzf39/dsehHhxGcFe4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAaIOEOAAAAAAAAAIAGSLgDAAAAAAAAAKABEu4AAAAAAAAAAGiAhDsAAAAAAAAAABog4Q4AAAAAAAAAgAZIuAMAAAAAAAAAoAES7gAAAAAAAAAAaICEOwAAAAAAAAAAGiDhDgAAAAAAAACABki4AwAAAAAAAACgARLuAAAAAAAAAABogIQ7AAAAAAAAAAAa8HN3AAA8Q2amKCoSN274pKf7X77sX1goqlcX+fkiO1sUFYnsbJGfLwoKxIQJom1bd8cKAAAqLjlZHDsmMjJqnTkjSkrEoEEiKkoEB7s7LAAAAKBSIeEOVFWTJ4tffxU5OSIvTxQWKpurCxEmedfevWL7dmEwuD4+AACghfR08eOP4vvvxZ49wmgUQoSYt7/5pvDxEe3aiQkTxOOPi6Agt0YJAAAAVBKUlAGqpF27xKefigsXRGamOttu286d4osvXBYWAADQjtEoFi4UbdqIyZPF7t3mbLtlhxMnxLRpolUrMXu2KChwR5QAAABApULCHah6iorE448Lk8nBtz//vLh4UdOAAACA1hISRN++4oknRFaW7c5Xr4qXXxa9e4szZ1wfGQAAAFCZkXAHqp733xfHjzv+9uxsMWmSdtEAAACtbd0qevcWsbEVe9fhwyIqSqxa5ZqYAAAAgCqBGu5AFZJXVJqfeKbuW285W4L9l1+yvvmucNS91tpr+vsF+vs6eRAAAOCIH34QDz0kiooceW9Wlrj3XrF4sXj4Ya3DAgCgKjqSknX0Ura11oKCghs3bgQE5AUF3XDyQF0aBXdrUtvJnQDQBAl3oAr56eilFuMf7p+X5/yuSp548m/JtbNr1Cq3dWq/Vv+Mbub8UQAAQMV8+6146KFyyrXbz2QSEyeKgADxwAPahQUAQBX127nML/dfKLvdv6Qo4uKpyHMJja+l5FUPygqqlRlU50C7qEshDR070P/d3JyEO+AhSLgDVUizHRv7J/ymya5CczKeXrNw5v0varI3AACggZgYMWGCU9l2s9JS8c9/iqAgMWKEFmEBAIC/dDr/x4TNX/c6ecCvtMSiyWQwJDTvsLnboDU3D82pUdMt4QFwHgl3oMq4ceOm91/XcH9371+/ocet+8OjNNwnAABw0JkzYtQoUViozd5KSsQ//iEOHBDt2mmzQwAAqrz2Kaen/Pr5LSf2W+tgMJk6nf+j0/k/Htr23by7J6+Pus1kcLYiLAD98dBUoMqYOTMoLUXD/RlMpleWvVOjqEDDfQIAAEcUFIiRI8W1a1ruMztbjBkjtKhEBwAAxvz285L5kyTZdrW6OZkzv5v16SdPN8jSdHAHoAsS7kDVkJAg/v1veZcbAUEpoY2TGrb4o0n4/rbdf4u4eU+HXvK3NM5Ie3TjEu2iBAAADnn5ZZGQYFfPm2/OfeCBwij7blCLjxdPPOFMXAAAIKCo4M2lb7204gP/kuIKvTEq8ciS+ZPaXDrrosAAuAglZYAqwGQSTz4pimVDe0atkHtf+janRk2j0VhSUuLj4+Pn5yeEeP/LGQOOxUjeOG7nj5u7Df6jWXuNYwYAAHbavl3Mn2+7W5s24osvxKBBGRcuCCGaX7woHnpIJCbaeNdXX4lRoyjmDgCAY3yLCj9Y/PLNpw869vaG168s+mjKtIdnHWzbTdvAALgOK9yBKuDrr8X27fIuH4ycUu4jWeaMeUb+qBYfo/HVZXPLPuwFAADoISdHjB9v+0GpvXqJffvEoEF/bendW8TFiSFDbB/iiSdEdrZTQQIAUDUVFd35ymSHs+1mtfJz5y96seOFE1oFBcDVSLgDlV1mpnjhBXmXQ226bexe/nz7anC9hUMnyt8ennrmwR3LHAwPAAA44803xYULNvr06iW2bhWhoZbba9cWP/8s+vWz8faLF8WMGY5HCABA1WQyiQcfbPHbNuf3FFBUMG/xS40z0pzfFQAdUFIGqOxeeklcuSJpL/atNnvMs5JHn//Ue8Qdh7Z0Oxsv2cmjG5fs7NT3bMMWjscJAACsO3Qx60hqlsXG2ueTRs2bJ19Bk9uo6drXP84/9tcj1zIyMoQQdf+cs1d749MR4++ufSFJtpeFC8U//iFuvtmByAEAqKLeeUcsX67VzurmZM774sVHpn4svwcdgCcg4Q5UagcOiEWL5F2+HvyAPFFuNPi8ef8L37/3iH9JkbU+/iXF01d88NjkeZLEPQAAcNje85lf7rdcyf7hFy/5SJ/RUuRXbeK4maeP5wqR+9fGoiIhhL//X1Vifr3/1a/mTwooKrC6I6NRTJsmdu1yLHgAAKqcnTvFK69ou8vWl8+9vPy96f/8l7a7BaA5SsoAlVdpqXjsMXlR10shDb8aMs7mns43aP7lrQ/K+/Q4c2TU3l8qFiEAAHBU3z9iex/fJ+/zyV0TTjduY3NXiY1avztqqo1Ou3eLNWvsDw8AgKrryhXxwAOixPajzjJr1vmu9z2f3vbP31t1tmfHtx3ZPvTgJqfjA+BaJNyByuujj8Thw/Iu79z7dL5/gD07W3LrgyebhMv7PLX2kwbXr9obHgAAcJTBZJq83sZNbIfadFs68D47d/hzz2H72kXb6DR9uigttXOHAABUXU8+KS5dstlrRe+Rw1/+fs6IJz697aFHnvzouf+blVEzxOa7XvhpXljmZS2iBOAqJNyBSiotTbz+urzLti79d3fsbef+Sn18Z42dZvSR/dEIKrgxfcUH9kYIAAAcNSh+V7uUREmHIr9qb933vNFQgW/7s8c+VyC/DP/HH+Krr+zfIQAAVdGvv4off5R3MRkMs+57fs6YZ9UL4HZ26vt/Ty28UL+p/L01C268uuwdDeIE4DIk3IFK6umnRZblo9XUCvwD5o14okK7/KN5xA/9xsj79PvjtyG/76jQbgEAQIX4mIyPbVgi7/PdgPtsztgtXAxtvOi2f9ro9Pbb9twgDwBAFZWbKyZPlncxGQzvjH56Va/hZZsuhjZ+fPL8K3Xqy/fQ81Tc4KM7HQ8SgIuRcAcqo82bxbJl8i6f3fFwat2wiu544V2PXAxtLO/zwsr5/tmyXD8AAHDGrUe2t0k7K+mQXqvuEjue0VLW0oH3ZTduLuuRlCR++MGBPQMAUCX861/iguVDzi18M+hvy/vcY631Su16T0+Yk1c9UL6TZ37+WPa0cwBuRcIdqHQKC8WTT8q7JIW1+r6/jbXq5SrwD5h13/Mmg0HSJzQnI/rDWQ7sHAAA2GQwmR7Z/I28z0fDH70REOTAzot9q+1/5BkbnebMkT+SHQCAKursWfHRR/Iuh9p0/XjoRHmfU43bzho7Td6nUebl8du+q1h4APRCwh2odObMESdPStpNBsPc0U+X+Po5tvsD4T3WRd0u79Nm7Y8iJcWx/QMAAIlbTh6QL2+/UL+pzZFa4vRtI0SPHrIeCQlizRqH9w8AQKX16quisFDSnhUU/PI/Xi/18bW5p409hmzocau8zz+3fd/g+tWKRQhAFyTcgcrl0iUxZ468y9qb7jzYtpszB/lg5BT5w9MNRqP46SdnDgEAAMo1boeNqnGf3/GwPTN5a0w+PuLNN210mj3b4f0DAFA5HTokvv9e3mXeiMnXgkPt3N/ce5+RF3P3LymasPlre8MDoCMS7kDl8tNPokBWxy0rKPjDuyc5eZCsoOD3RtmoWiNWrHDyKAAAwELbS0k3nz4o6ZDUsOWm7oOdPczQoSIqStZh/34RG+vsUQAAqExeeklecu1AeI9fou+0f385NWq+P3KKvM+I/esaZ1yyf58A9EHCHahcbK0r/2jYY9eDajt/nE3dh+yK7C3rsWePSE11/kAAAEDx4I5lBpNJ0mHR7f80GrT4hv/SSzY62KpRCwBAFbJ3r9i8WdJe7Ftt9pjn5I9DK2tr14H7w2WXwP1KSyZu/E+F9glAByTcgUrkyhWxe7ek/WrnqJ97DtXqaO+Nmir7ukBVGQAANBWSe/32w1slHS6FNNzadaA2Bxs9WkREyDqsWCEusaQOAAAhhBBvvy1vX9Fn5IX6TR3Y8Xujp8ofwDbs4MbmVy86sGcArkPCHahEVq8WpaVWWw2G/S/N0mbVmxBCiNS6jeJbRMp6LF+u1bEAAMDd+9f7lxRLOnzff4wz1dv/h4+PeOEFWYeiIvHZZ9ocCwAArxYfL375RdKeGxC0+LZ/OrbvpIYt19wsWzbnYzSO2/mjYzsH4CIk3IFKRL6iPDo6o500P15xW7oNlDVTVQYAAK2YTKP2rpW05wYEre41XMsjPvCAqC97Vpv4/HNRLLsAAABAlTB7tpAWfPt68N+dqey66LZ/Fvn5SzoMP7AhJPe6w/sHoDkS7kBlkZkptm+XdRgzRvNjbukykKoyAADooFncnmbXUiQdVt4yIq96oJaHDAgQEyfKOly6JF/QBwBA5Xf2rPhRtsA8PyT0u/5OTcav1Km/8pa7JR2qFxeO3bPKmUMA0BYJd6CyWL3axiqze+/V/JhX6tSnqgwAADro+PN3klajwWdFn3u0P+qkScJPVjdWLF6s/UEBAPAiCxfKKrsKcXTswwX+AU4eZMmtD8p3MnbPar/CAiePAkArJNyBykK+lrx7d9GmjSsOa7uqTIpsOR4AALAtLa1VzGZJe2zEzal1w7Q/btOm4h5pHn/DBgZ6AEDVlZdn49pz7drxox2s3q6WXqvu6p7DJB1Ccq+337DS+QMB0AQJd6BSyMkRW7fKOrhgebuZ7aoyKxn1AQBwztKlPiUlkvafeo9w1aGnTJG1lpaK//zHVYcGAMDDffutyMyUdZgypahmLU0O9d2A++SPRu+08htNDgTAeSTcgUrh559FgfT2sdGjXXTkK3Xqx7foKOtBVRkAAJz09deSxst1GsR0uMVVh+7fX7RrJ+uwZIn8SXEAAFRaH30ka61RQzz1lFaHSq0btrXLAEmH0DMnxJ49Wh0OgDNIuAOVgryeTGSk6NDBdQff0nWgrJmqMgAAOOPIEXH0qKT9557DjD4u+1ZvMIiHH5Z1SEwUu3a56ugAAHisnTtFfLyswwMPiPr1NTzgtwPvt9Hj0081PBwAh5FwB7xfXp7YtEnWwWX1ZMy2dB1EVRkAAFxFurzdaPD5uedQ1wbw0EM2Hp26dKlrAwAAwAN98YWNDvKybBX3R/OIw627yHosXy6uXdP2oAAcQMId8H6//CLy8mQdXJxwp6oMAACuUlIivvtO0h4X3v1ynQaujaFRI3HXXbIOK1aIoiLXxgAAgEe5ft3GwrK+fUX37pofdkVv6cPMCwvFV19pflAAFUXCHfB+8noy4eGii/QauBZsV5VJTXV1DAAAVEKbNonLlyXtv0TfqUcY//d/stbMTLF+vR5hAADgIb77TuTnyzpMneqKw27r2j+jZoish8119wBcj4Q74OUKCmxMcV28vN3MdlUZ+VUBAABQrh9+kDTm+wfs6NxPjzCGDROhobIO0mX4AABUNosXy1rDwsQ90qXojir2rbZGXkru1Cmxb58rDg3AfiTcAS+3YYPIyZF10CXhTlUZAAC0V1Ag1qyRtG/tOjCveg09IqlWTYwdK+uwdq2NLyQAAFQaR4+KQ4dkHR56SFSr5qKD/9R7pI2Hpf/nPy46NAA7kXAHvJx85XjLliIqSp9AqCoDAIDGNm4UWVmS9l+j79AtFvH3v8ta8/PFqlV6hQIAgFt9+aWs1WCwUYrNOZdCGu5tFy3rsWyZKCx0XQAAbCLhDniz4mLx66+yDvfeKySVXjRlu6qM/JEyAADAgrSezLXg0INtuukWi+jbV7RsKevA3WwAgKqgtFQsWybr0LevaNfOpSH8crP0YeYZGfI75AC4Ggl3wJtt3iwyM2UddKknY0ZVGQAAtJSXJ375RdK+petAG3eUa8tgEPffL+uwebPIztYrGgAA3GTrVpGWJuvwyCOuDmFHp745NWrKenz9tatjACBBwh3wZvJ6Mk2aiJ499QpFCJtVZWJiqCoDAIC91q0TubmS9s3dBukWy3/Jq8oUFoq1a/UKBQAAN5E/Jzw4WIwZ4+oQivz8N3cbLOuxcaNIT3d1GACsIeEOeK2SEhu3iY0eLfRc+EZVGQAANCS9M+xynQZHW3bSLZb/6tJFdOgg6yBfCgAAgLfLz7cxqx01SgQF6RDILzfdKWsuLmb2DbgRCXfAa23fLq5dk3XQsZ6M2ZU69Y81l87DqSoDAIA9CgvFhg2S9s3dpBe5XUf+7WLDBvmqfAAAvNuaNSInR9Zh3Dh9AjnaMvJcg+ayHvJC8wBciYQ74LXki8jq1xd9+ugVyl+2yG9vp6oMAAD22LpVXg/dDfVkzOQJ9/x8sW6dXqEAAKA76fPMRViYGCyt9KKpDT1ulTXv2GGj1jwAlyHhDngno9F2PRk/P72i+ctmqsoAAOC81asljWkhDf9oFqFbLP+jWzfRtq2sAwM9AKCyys0VGzfKOtx/v/D11Ssasam7NLlfWipWrNArFgD/g4Q74J127xaXLsk66F5PxoyqMgAAOKu0VH5ZfUenvu6pJ2Nms6pMUZFeoQAAoKO1a0V+vqyDXvVkzC7Ub3aySbisB1VlADch4Q54J3k9mZAQMWCAXqFYoqoMAABO+e03cfmypH1bl/66xVIOecI9K0vs3KlXKAAA6Eh+F1d4uLjpJr1C+a+N3YfImn/7jdk34BYk3AEvZDLJ7zQX99wj/P31isbS5q6DBFVlAABwmHSUvx5U+/dWnXWLpRzR0aJFC1kHedU7AAC8UV6ejeeUjBmjVyh/2SJ/iLrRaCN1AMA1SLgDXmjvXpGcLOvgpnoyZlfq1L/aqbusB1VlAACQkCasd3XqU+qjX33YchgMYsQIWYc1a4TJpFc0AADo4tdfRV6erMPYsXqF8pfUumE2arquWqVXLAD+QsId8ELyejK1aokh0tvKXO/8kGGyZqrKAABgzcmTIjFR0r6jU1/dYrHq7rtlrRcuiN9/1ysUAAB0Ib9Ru3Vr0V267MxlNstruu7cKTIy9IoFwH+RcAe8kPwa9YgRIiBAr1DKd/7WYVSVAQDAEb/+KmnM9w/Y1y5at1isGjBA1K4t60BVGQBAZVJYKB+g3bK83WxH5/6yqjLFxWLtWh3DASAECXfA+xw8KJKSZB3cWk/G7EbDxqJnT1kPqsoAAFAu6Xx+X/ubCqtV1y0Wq/z9xZ13yjowtwcAVCY7doicHFmH0aP1CsVSat2wU43bynpQVQbQHQl3wNvI68kEBoo77tArFCn5FX6qygAAUFZWlti9W9Ie06GXbrHYIC/jfuiQuHxZr1AAAHAx+Z1bLVqIm27SK5RybO/cT9a8aZO4cUOvWAAIQcId8D7yYizDh4vAQL1CkRo71kZVGS6zAwBgYeNGUVxsrdFkMPzmOQn3YcOEv7/VVqNRbNyoYzQAALiMyWQj4T5qlGzy63rbuvSXNefni02b9IoFgBBC+Lk7AAAVER8vTp6UdfCAejL/1ayZ6NlT7N1rtcPy5eKJJ3QMCAAAjyetJ3OiSbsrteu5OoTYcxlfxyXb0/PjFpFRpw9ba90y7z+vZLaSvH1cVNMn+8o6AADgEQ4dEhcvyjoMH65XKOVLCmt1oX6z5letD9+//CJGjdIxIqCqY4U74FXk9WQCAsRdd+kVih3kVWV27xZpaXqFAgCAxzMaxYYNkvaYjnosbzcJUWI02fNfTIQsnptPHDCWlEreXmo06fDjAADgLPny9jp1RH/pAnNd2Kgqs26dMBr1igUACXfAu6xYIWu9805Rq5ZeodjBZlWZ7dt1jAYAAM92+LC4ckXSHtPxFt1isceeDrIHpAfn53Q+n6BbMAAAuMrPP8tahw0T1arpFYpVOzv1kTWnpYm4OL1iAUDCHfAiJ0+KBOnE1X0PRi+fuaqMhPS5cAAAVC3Soud5desfb9Zet1jskRTWKi2koaRDn+P7dAsGAACXuHhRHD0q63D33XqFInOseceC2iGyHr/8olcsAEi4A15E/vAxf38PGen/h7xO3K5desUBAIDHkw70F3oNMBo87qv7bxGyK+u9T5BwBwB4ufXrhcl6DTR/f3HnnTpGY5XRx+f8LYNkPUi4AzryuG/tAKyKiZG1Dhki6tTRKxS7DRgga/3jD5GerlcoAAB4sJwcERsraU++2f31YcuSV5Vpn3I6NCdDt2AAANDe+vWy1gEDRO3aeoViw7k+Q2TNR47YePQrAO2QcAe8h7wAi6fVkzHr0UMEBVltNZlsXEUAAKCK2LpVFBdbbfXxSb6pr47R2OtAeFSRn9XCtQaT6eZTB/WMBwAALRUViS1bZB2GDdMrFNuSb+onqyZvMtm4eABAOyTcAS9x+rRIS5N1GCS9fcxdqlUTvXrJOpBwBwBA2CocFx1tozCrm+RVr3GkdRdJh56neEQbAMBrxcSInBxZh6FD9QrFtqKatUR/6f1w8i8bALRDwh3wEvLEdFiYaNNGr1AqqF8/WStl3AEAEEJs2iRr9Yz6sOXa2+4mSWvPk3EGSelbAAA82bp1sta2bUV4uF6h2Gf4cFnrli2ipESvUIAqjYQ74H5FJcbMvGL5f4U7ZInpoj59be4hM6+4qNSo2w/1F3nC/dAhkZurVygAAHikxESRlCTrcPvteoVSYXvbyxLu9bOvtU47p1csAABoSp5w96Tl7f8lDykrS+zdq1coQJXm5+4ACpgpLwAAIABJREFUAIgtp6+9tuGEvM/K9VuaW2+db2y87DPZk9bMIhrUrGBoWujVS/j7i6Ki8ltLSsTeveLWW/WNCQAATyKvD1unjujZU+zz0AednW7cJqNWSN2cTGsdep46cKZRKz1DAgBAA+fPi+PHZR3uukuvUOzWrp1o3Vp2FX/DBtHXE58KA1QyrHAHvEDdnMzmV2XT7MOtu+oWTIUFBooePWQd5A+DBQCg0tu6VdY6ZIjw89xVMiaDYX94lKRDL8q4AwC8kbzaW2CgGDhQp0gqRF6GbsMGveIAqjQS7oAX6J70u6T1RkBQYqPWugXjCHlVGRLuAICqzGgUO3bIOtx2m06ROGpf+2hJa48zv/uXFOsWDAAA2pAn3AcPFgEBeoVSEXfcIWs9fFhcuaJXKEDVRcId8ALdzsZLWn9vGWn08ez/l+UJ9717rRacAQCg0jt0SFy7Juvg8YXX9rW7yWQwWGsNKCrofC5Bz3gAAHBWaanYtk3WQZ7XdqPBg4W/v9VWo9HGhQQAWvDsJB0AIYQQ3ZOOSlqPeHI9GbO+fYXkkkB+vjh4UMdoAADwJPL5fMuWok0bvUJx0JXa9c42bCnpEJ14SK9YAADQQlycyMiQdfDY55nXrCn69JF12LxZr1CAqouEO+DpAgvzw1PPSDocadVZt2AcFBIiOnWSddi1S69QAADwMPInpg4ZolccTtnbTlZV5qbTJNwBAF5FnpVu0UK0a6dXKBUnL+O+ZYswmfQKBaiiSLgDnq7LuWO+xlJrrUV+1RKaR+gZj4Mo4w4AQFkFBSImRtbB4+vJmMWFd5e0drpwPLAwX7dgAABwlrzuiscubzeTl7tJTRV//KFXKEAVRcId8HTyejLHm0UUVquuWzCOkyfcY2JEqdWLCgAAVFqxsSLfeibaYBCDB+sYjeMOtelW6uNrrdWvtET+QBoAADxITo7Yu1fWwcOfZ96liwgLk3WQ310HwGkk3AFP1+2sLOF+uHUX3SJxSv/+stasLHHsmF6hAADgMXbskLV26SIaNNApEufkBgQdb9Ze0oEy7gAAr7Fjhyguttrq6+vpBd8MBjFokKwDCXfAxUi4Ax7Nr7Qk8sIJSQcvKOBu1qiRjWe+UVUGAFAFbd8ua/Xw+fz/imsrqyoTTRl3AIC3kD/PPCpK1K2rVyiOkpek27lTdkUBgNNIuAMerWPyyYCiAmutRoPP0ZaResbjFMq4AwCglpcn9u+XdZAvT/Mw8oR7RMrp4Pwc3YIBAMBx8oS7hxdwN5Mn3HNyxL59eoUCVEUk3AGPJq8nc6ZRq+zAYN2CcZY84b5rl15xAADgGWJjRWGh1VZfXxtDp4c50qpzkV81a60+RmOPxCN6xgMAgCOuXhXx0ueOeMX9Z82bi3btZB2oKgO4Egl3wKN1kz4x1WvqyZjJy7inpYnERL1CAQDAA8gLuHfvLmrX1ikSLRT4BxxrIbvxrseZ33ULBgAAB23bJkwmq62BgeKWW3SMxgnyRe7yVfwAnEPCHfBcBpOp6znZo0SPtPKSJ6aatW0rGjeWdWCROwCgSpEn3AcO1CcKDcmrykSdYYU7AMDjyR+v0ru3qF5dr1CcI0+479sn8vL0CgWocki4A56r1eVztW9kSzocae1VK9yFEH37ylop4w4AqDoqVwF3s4Ntuklaw1PP1MrP1S0YAAAcIV/6PXiwXnE4bdAg4etrtbWoSPz2m47RAFULCXfAc3WX1pNJrRt2uU4D3YLRBs9NBQDAbM8eUVRktdXPz8ZVao8U37JjkZ+/tVYfk1H+3QYAADdLThanT8s6eEUBd7M6dUQ32YVwG3faAXACCXfAc3U7K3tUy5HWXlVPxkyecD9zRqSm6hUKAABuJS+k1qOHCPae56L/qcjP/1iLDpIOPagqAwDwZPLl7bVrix499ApFC/K75SjjDrgMCXfAc8lXgXlZAXezzp1F3bqyDixyBwBUEfKEuxfWkzE7JK0q0yOJ56YCADzYzp2y1v79hZ+fXqFoQf51Ii5O5FLqDXAJEu6Ah2pw/WpY5mVJh8PeuMLdx8fGI91JuAMAqoLCQhsF3AcM0CsUjR1q01XSGnHxVFDBDd2CAQCgYuRVVryogLtZv36yKwTFxWLPHh2jAaoQEu6Ah5IvAbseVPtcg+a6BaMlyrgDALBvnygosNrq6yt699YxGi0dbRFZ7FvNWquP0dj17DE94wEAwF4XLoizZ2UdvO7+s1q1RFSUrANVZQDXIOEOeCh5PZnfW3U2GQy6BaOl/v1lrfHxIiNDr1AAAHAT+QXmrl1F7dp6haKxAv+AP5pHSDpQVQYA4KHk9WTq1hWdO+sVinbkFwl4birgGiTcAQ/VTZpw98p6MmbR0SIw0GqrycRNbQCAyk+ecJffDebxDkqrysiXFAAA4DY2C7j7eGEOTZ5wP3SIMu6AK3jhHwugCgjOz2l1+bykw5FWXnhp3axaNdGzp6wDVWUAAJVbSYn47TdZB/ndYB5P/tzUDskn/EuKdAsGAAB7yRPuXvp4lT59RDWrpd5sfycB4BAS7oAn6pYU72MyWmst8A842TRcz3g0Rhl3AEBVdviwyMmx2mowiL59dYxGe0dbdir18bXW6l9SHHnhhJ7xAABg28WLIjFR1mHgQJ0i0VZQkIiOlnVgAg64AAl3wBN1Oyu72zq+RUfJ48i8gDzhfvCguHFDr1AAANCdfGYbESEaNNArFJfIq17jVOO2kg5UlQEAeBz58vY6dbyygLuZ/M45+Q8OwCEk3AFPVGkLuJvdcovsprbiYrFvn47RAACgr5gYWauX15MxO9JalpWQLywAAMANbBZw97V685ank3+12L9fFBToFQpQVZBwBzxO9eLCDsmnJB2OtPLyhHtQkOjeXdaBm9oAAJWVzceDV46Eu/RhM13OHvMxWi2dBwCAG8gnoV5awN2sTx/Z1YLCQla8AZrz0/NgpaWl8fHxycnJ9erVi4yMDA4O1vPogLfodP54tdJia62lPr7HWnTQMx6X6N9f7N9vtZWEOwCgsjp1Sly5IusgL7zmJQ637ipprVlwo+2lJCGa6xYPAAAW/ricm3jtv7VM/TPT7zx5UtJ5V7PO1xMuO3agK7mFjr1RM7Vri65dxaFDVjvs3OndVxQAz6NTwt1kMi1YsGDu3LmpqanmLQaDYfz48XPnzq1fv74+MQDeQn6f9cmm4XnVA3ULxlX69RPvvWe1NTZWFBUJf38dAwIAQBfyejJNm4pmzfQKxYUyaoVcqN+0+dWL1jp0O3tUiIE6RgQAwP/YdPLKtwf/O04Nit99p8lkreeNgKBpF6oZL8oy8hIRDWo69kYt9e8vS7iz4g3Qmh4Jd5PJNG7cuO+//978z4YNG2ZmZhYVFS1ZsmTXrl2HDh1iqTug1u1svKTVK+rJpOcV7T2fKeng16JTtI+PsHY7eV7esXU7c7tLn6UuhBCibb2gekHk5QEA3iM2Vtbat69ecbjckdZdZAn3pPg/9IwGAADr5E/zPtoy0ujj5QWZ+/cX8+ZZbY2NFSUlwk/XGhhA5abH/07vvfeeOds+fvz4l19+OTw8vLi4eN68eS+++OKZM2emTJny9ddf6xAG4BV8jMbO5xIkHeRFUT1EXHLW0oMp8j7LGrRok3bWWuu2L1d+Pai6zQPNvDNiaIcGFY4PAAB3ka9w79NHrzhc7kirLiP2rbPW2u0cCXcAgKeQ32V+uLUXLHqzoV8/YTAIa6v4b9wQhw+Lm27SNyagMnP5NbrMzMxZs2YJIe67777FixeHh4cLIapVq/b8889PnTpVCLFs2bLs7GxXhwF4i3apiTULblhrNRkMR1p7QcLdHvJvLd2kSwwAAPBKV6+KU7LnoleqFe7SJQINrl+tdTlVt2AAALAmsDC//cXTkg5esejNhnr1RMeOsg7yBQEAKsjlCfelS5dmZWUZDIa5c+f6/O89OE888URkZGR4ePjBgwddHQbgLeT3sl2o3yyjZohuwbiU/HFq3ZLifUxWCs4AAOClYmKsLi4TQgQHi87eP6X/04X6TdNr1ZV0aHzMejFZAAD00vl8gq+x1FprkV+1hOYd9IzHVeRPZd+zR684gCrB5Qn3NWvWCCH69u3bsmVLi6bw8PBjx44dO3Zs0KBBrg4D+H/27jQ4sqw69P3OUalZqtI8VGkeqko1dDc0w7VxQ3dgJmN3GONoAy8cmAgTQZh4NsY2wXv4A/GgwWBM3EsQEHigm9n26+fLaMC3fe0GelJJKg2p1FAqlea5NGUqx/dBdLmqS2cdDZk7zzn5/32q7r2lXCWVdPKss/ZadiE3cHfCWbaXXG2VEu4l4a2WhSldsQAAoMXPfiatvupVyuPRFYoO15rOC6u1g9TcAACyTy56G2ns2vOZNzu1AbltHRXuQFplPOH+3HPPKaUefvjhTL8Q4AyXTCamOqfwbam0Yu5UrbBBft8DAID9yOVjDuons29ATLjXkXAHAFiA3M7UOffg8tuMxUU1JvXVAXAkmU24z83N3bp1SylVW1sbi8W+8pWvvP3tb7/vvvve8pa3fOQjH9nPxQO47czyTMXmqrDBSRXuSqlescidhDsAwFH29tTVq9IGB01M3ScnKSomgmp7W1swAADcy5uIn58eETY45x68qUk1NEgbKHIH0seb0c8+N/fLUUjJZPKBBx4YGPhl+uzq1avf//73H3/88T/6oz/6xCc+EQgE5M/zwAMPmL7WwsLCCaM9iY2NjZ2dnVgsts1tQyYtLy+nUimfz+dyubIdSzqtr9+KxWJKqQvj0n34SvGpqZJKFYsd+4Ui4UjM7MNTqVQ8Hne5XCmhyaz5C4VNX0gp9cLZ8299/odGq/eNXzX9JOvr6wsLtmz1vra2Fg6HE4lEfn5+tmNxsuXlZaWU3+/PdiAAoFRvr4pEDFe9XvXggxqj0SHY0Bn1+vzxg6/m7kRCPfecev3rNUcFAMBtHXMT+VHDq3PS5e53TIW7Uuq//Tf1zW8arj7zjPr939cYDeBkmU24b21t7f/hwx/+8Obm5qVLl972trc1NTWNj49/+9vfnpyc/NznPqeU+uu//mv58xxmqmo0Gj15wMcWjUZjsVg0GvX5fFkMw/H2v8vRaNRhCfd4PL6f3b5yfVDY9mJzz0mS4EqpRDJp+hmSL+05yWslD/FCSqkXmy4IqxVbaw0rszdP1wl74vF4dn/2j+32Lw2Ps9r1Ws3+Mxub/iMB4DRyA/dLl1Rhoa5QNIl6fcGGzotTxm9vnnmGhDsAIIsuX5fOVU/WNG3lF2kLJuNe+1op4U6FO5A+mU24R16q4tnc3PzQhz70yU9+8nZq6aMf/ehv//Zv//CHP/z85z//e7/3e3IN+wsvvCCs7n9sTU1NmqI+Dr/fv7OzU15eXlTkoN/F1rOfmK6pqXFYwr38ltfnW1FK3S/ckSrV33r5hE908vMDvm3D8ev7ksmky+Vyu91e7/F/PwTyA75t88LzudrmlZLTQhedV9wcWag5K3yG8vLympqK44SYbV6vNxwOnz59uqCgINuxONl+wj27FwgA+KVf/EJafdWrdMWhVV9zj5Rwlx9CAACQYRfFojd5GIn9yG3cQyG1vKwqK3VFAzhZZhPut1slXL58+c5su1KqsLDwi1/8YkdHRzQa/ad/+ic54X7//febvlZ2Owb4/f5oNOr3+2lckFE+ny+VSvn9focl3L1er8vlOrW1fmZlRtjW13LxhH9xt9tt+hlcdzjBC3kO+eH9zT1v6H/aaPW+6wPffeWbhA/3er02/aHz+/3xeJxfGpm2/4yKLzIAS/j5z6XVV79aVxxamaQqnn1WpVLKWe/rAAA2Ij0VVspR/WSUUj09qrRU3bp18GoqpX7+c/Ubv6E3JsCZMjs0tbi4eP8Pb3nLW+5tm3D27Nmuri6l1O3e7kAuuzLZL6zuBArHa1u0BaONPIJGnhcPAIBtTE+r2Vlpw2teoysUrQaapfZxan1dBYO6YgEA4C51awtVt1aEDU5LuHs8Jg/4OXkGpElmE+6tra37f2hsbDxww9mzZ9Uds1WBXHb5+jVhtb/5QtKd2R/YrOhtuSSsnlmeERrOAABgG888I61WV6vmZl2haLVWVD4jjmMxKfwHACBjLon34GvFZpcwOyLhDmiR2fxdWVlZQ0ODUmpsbOzADdevX1dKdXd3ZzQMwBauiNXcfc1SJbh9jde1yFNoLtwY1hYMAACZIqeVX/taXXFkwYA4I92ktT0AABkjJ9ydeQ8un6h7/nkVjeoKBXCyjBfMvulNb1JK/cu//Ev0nh/a8fHxYDColLp0SSpxBXJBwd5u+9yEsKHPYWfZXpJ0ueX78O6ZkLZgAADIFDmt7NAG7vsGz56TlqlwBwBkycUbQ8Kq0yam7nvwQXVPw+f/Eomovj6N0QCOldmhqUqp9773vV/+8pfHxsY+/OEPf/azn3W/1BNja2vrve99bzweLy4ufuyxxzIdBmBxPTeGPcmE0WrU6xs869iDIANN5187YpiG6L5Ja1cAgM2Fw6pfmtTi7IS7ScJieFhtbqqSEl3hAACglFL+3Z22+Ulhg+0auE9vhP/HM1Om297Z0lkxZniO/D+/9t3+WJX8Ga7Ul76mqfyo4QE5JeMJ9wcffPBd73rXk08++Td/8zfPP//87/7u7zY3Nw8NDX3xi1+cmppSSj3++ONGHd6B3HF+ekRYHWnsinr92oLRbKShU1ilwh0AYHu9vdIBbb9f3X+/xmh0G6trjfgDgWjk4OVkUj37rHrkEb1BAQByXXVwwJ1MGq1Gvf5gQ7vOeE5uZiP8k9Cy6baqqo53GCfcI//+H3/X9LD8GWL3N5BwB2QZT7grpb785S+vra19//vf/9nPfvazOyYwFBQUfPzjH//DP/xDDTEAFtclppWvtjixedxLgo0dwmr59kbN+uJCebW2eAAASDO5n8yVKyoQ0BVKFiTcnuHGrvsmjI+o/+IXJNwBAJrVDvYKq8ONnTGPT1swOl1rOv+OZ54yWr10fVBnMIBT6Ui4BwKB733ve//8z//8ta99bWhoKBKJnDt37tKlS+973/taWlo0BABY3/lpqXHKNbn5qc2tFZUvlFfXrC8abeieCZFwBwDY2LPPSquvepWuOLLm2tlzUsKdNu4AAO1qh68Kq9cc2cBdKaVUvzhErXJzhYo34OR0JNz3Pfroo48++qi2lwNsxL++Vr2xJGyQm644wEhDh5Rwvzn6v3p+RWc8AACkk5xwf+UrdcWRNSZt3J99VqVSyuXSFQ4AIOelUjXD0nTQa2cdm3CfPV23Wnzq9Naa0YaLN4ZIuAMn5M52AABU6ZB0pV8rKl8qq9QWTFaMNMpt3Ee1RQIAQJrNzanpaWlDTlS4i2mLtTU1Pq4rFgAAlBoby7+1Lqxfa3LyKfP+ZqnI/cKUYYd3AIdEwh3IvtKhAWFVbnHuDCZzU2+ScAcA2JZc3l5VpXKgxeJacfns6Tpph/xVAgAgve6YL3ivuVM1yyUV2mLRb1BsWnthmoQ7cFIk3IHsKxnqF1aHG7u0RZItcoV72c6tWuOGMwAAWJrcoDwHytv3DZ7tlpZJuAMAdBLnmTu4gfs++eRZ10zIH49pCwZwJBLuQPaVDUotZUYanF/hvlFYOi82ieu+KQ2VBQDAuuRU8oMP6oojywbPiGfzSbgDAHQSH4cPOLeB+77hxs64x3Cmoz8e65wd0xkP4Dz6hqYCONjKSmBhTlh3/MTUfSONnUIZe/fN0L9dfJ3OeAAAOIwfBpf+Y3LVaNWdSPxfzz3vN/7wv1W1E98fOcwL7caSR4/OQuTT66q/X0UiKhDQFQ4AIIdtb6uhIWHd5Jplf3u+vLHaVmFY2oUbw9ec/kUAMoqEO5BtL7wgLK4XlTl+Yuq+YEPn6wf+t9Eqc1OBTIjH4ysrKyUlJQUFBaabo9FoJBIpKSnREBhgI8Gl7R+NLhutdsyN+yNho9Wky/0Prpod4w+/U1dV0XHis4zR+raYx+dLGBxRj0ZVX1/uNNgBAGTTCy+oRMJocc+XF6pv0xlOVlxrOifcZffcGP6GzmgAx6GlDJBtL74oLMrNzZ1kWPybnrs56kqltAUD5IivfvWrtbW1X/jCF4Q9sVjsk5/8ZGdnZyAQKC0tLSsre/e73z02xiFT4FDOT0st0a5Xn90JFGoLJruiXv9Yfau0g64yAAA9xCvOSENHzOPTFku2mMxNvSGdAABgioQ7kG1ywj03+skopYYbO1Mul9Fqye4mc1OBtHviiSfkDTs7O7/6q7/6F3/xF6FQKJVKKaVu3br15JNPXrly5ac//amWGAF7u3BjWFh1/Ey2l6GNOwDAEsSJqQNNF7QFkkXy3NS6tYXKzRVtwQDOQ8IdyDaThLvzJ6bu2ywoYW4qoNPnP//5p59+Wt7z/ve//xe/+IVS6rHHHvv+97/f29v7+OOPFxUV7ezsvOMd71hYWNARKGBncsJ96Ey3tkisYPCs+Pcl4Q4A0OO554TFoTNd2gLJopnTdetFZcKG8zcONWMGwIFIuANZtbKipqeF9eHGnLjY7xsR/7LdMyFtkQBOtb6+/pOf/OQzn/nMK17xig9+8IPy5sHBwSeffFIp9Y53vOPJJ59805vedOXKlQ9/+MPf+MY33G73+vr6pz71KS1RA3ZVsBduXrohbBjKpau8Mq1wn5xUy4dqZw8gHo8vLCzs7u4eZnM0Gt3c3Mx0SIBt3Lyp5uaEdcdPTN2Xcrnk6/KFaRLuwPGRcAeyiompd5DL+btvMjcVOKlvfetbjzzyyIc+9KEXxF8++/7u7/4ulUrl5+d/6Utfct3R8emtb33rb/zGbyilnnjiiWQymcFwAZvrmhl1G/+MRPyBidpmnfFk3c2K+s0CcfDy88/rigWwN6awAMcnHqhaLqlYLKvSFkt2XWuSEu7nSbgDJ0DCHcgqJqbeQf77djM3FTixzs7O/+MO8uYf/vCHSqmHH364rOzlp03f9ra3KaVWVlYOk7gHcpZcGhasb0+4PdqCsYKUyzUon9Mn4Q4cDlNYgOMTG7jLOWiHkVvbnZ8OCnUDAGQk3IGsYmLqHUbkuanhrbq1eZ3xAM7z0EMP/f0dhJ17e3ujo6NKqQcffPDe1V//9V/f/8PAwEAGwgQc4oLY/DTXJqbuM2lbLzbVBbCPKSzAiYgV7ibdz5xl6Ex30mWYFSzY220SO+MBEHizHQCQ25iYeofN/OK5U7X1q4YN9bpnQrOn63SGBOSsycnJRCKhlGpuPqDlRV1dXX5+fjgc5mQ6IJDPYufUmJbbhqlwB45lfX39xRdf7O/v/+Y3v2l6vOxlU1j2+8JduXLl3Llzb3/72/ensHz2s5/VETdgNbGY6u0V1k3mezvLdqBwurKhaclwqtyFGyOTNbnV/g5IFxLuQPaYTUzNtZYySqmRhg4p4X5z9CeXfk1jOEDuWltb2/9DVdXBXSwrKyunp6dXV1flz/Pnf/7npq+1sbFx1PBsbXNzM5FIFBYWejy51U4kXba2tjY3N1OWaTIWDof3n069zOmtteqNJeEDBxo6DvxAI9Fo7Ej7Bfufx+izxdL3Qve6VicWEywvb/b3J8+ezdCrp8utW7e2trZcLhdzLI4nkUhsbm56PJ7CwsJsx2Ib3/rWt97//vcfcrM8heWpp5564okn/uqv/srt5rw7cs/goDKeNpx0u4M5dsp86Ey3lHCfHvmXB9+sMx7AMUi4A9ljNjE1d6a13DbS2Plw/9NGq8xNBbTZ2dnZ/0MgEDhwQ35+/p3bjDz++OOmr7W5uXnE6Oxta2srmUzuJ5uyHYstbW9vb29vK6Vcxl3IdIpEIgemp7vFfjJrRWU3SyrVUfLa8Vja8uD7aWKjzxaNRTOXcF8qKJkrr65bXzTaEH3mmd3y8gy9erpsbW1tb2+73W7rPPixl0Qisf8FJOF+ePtTWG7/5z/8wz8Im+UpLE899dT+FJZXvvKVmQgVsDSxd9lETfNuXr62WKxg8Oy5t7zwI6NV5qYCx0bCHcgeJqbeQ/5bd82EXKmU0OcdQLrcziIZ5TT3N8TjcfnzfPKTnxRW9+vf700HONvu7m4ymSwrKyPhfjz7X7fi4uLS0tJsx6KUUvn52x7PAQ+NLs6GhI8abOw+6j8An9/n8cSOFpyB/YS7UQB+f57HY/KjfRLDjV1Cwr1kdNT/rndl7tXTwuVyud3u0tLS4uLibMdiS4lEIhwOu93uXPv9fxIPPfTQQw89dPs/hYT74aewkHBHLhIT7iaDRpxI/iu3zU8GopGI/+D6GwACEu5A9jAx9R7Bho6Uy+UyqBcrCW/Vr83P0MYdyLzbVYeRSOTADXt7e3duM/Jnf/Znwup+wr2kpOQ4IdrW1tZWIpEoKSkh4X5siUSiuLjYIv9yAoHAgd/KCzPSqayhpnNHTrj7fOn6N7NfwG702Xw+b0b/cQ6f6X544N+NVv19fX5rfGcFyWQylUpZ5x+h7SQSia2tLY/HwxcwE5jCAkjEhPtg7iXcQ3Wte768vNjegaueZKJrdqyvuUdzVIADkHAHsoeJqffYzC+ePVXbYNzG/dzNIAl3QIPbVYe3m7m/zH73dooTgQO5UqlzN4PChtycmLrPpH7wxRdVPK683KQAx5SuKSzf+c53TF9r17gXtr2Ew2HloL+OZtFodH+ciQ2+gNvbBSNSj5TBhs5MDOdIxBPCp00mk8lkMi1zQeLiCx0o6nKP1rVdvDFktOHc1HDv2fMv/6ho1Drf7nA4HA6Hd3d3mUtxPOFweP8banp2GUfCe1kgS5iYamCksVNIuHfdDP3r5dfrjAfITa2trS6XK5VK3bhx497V9fX1/Sba7e3t2kMDbKB2faF0RxpOkLNXeaXUSGNH0uV2pwwyAjs7amRE9VBMBxxTuqaw/M7v/I7pa62srBwxOotaX19XL31lcFSxWGx9fT2Nx7AyJ+/ZZwuMh5REfHmjFQ3sL8DwAAAgAElEQVSJDOQc9/b2hFRmMplMJBKpVOrkc0H29iLHyJlea+iQEu7TI/d+zp2dHev8+G9sbOw3bDQ6mAvZ2tpaLBbzer0+ny/bsTgKCXcgS8Ty9o3C0hycmLpvpKHzkb7/ZbTaLZ7QB5Au+fn5bW1tY2NjLx70y+r2/7xw4YLeuAB7OD8tlbfPnardKLREA/qs2M0rmKo+27Jw3XDHCy+QcAeOLV1TWN7xjncIq/v17wUFBccJ0Xr2H0445q+jWTQaDQQCfr/f+l/A/OFhYXWkvj3l9WWiRtrj9cjF18lk0u12n7xA2+v1ut1HHvcyeKZbPfP/Gq2enxm9NzBLfbv39vaSyWRBQYF1QrKX/Px8j8eTn5/v9/uzHYujkHAHsuSFF4TF4TO5e9JcLvrrvjnK3FRAjze+8Y1jY2M//vGPo9Hoy95+ffe731VKlZaWvuY1r8lSdIClyf1khnL4Kr9vqLHLJOH++7+vMRzAUdI1heXb3/62sLqfza+oqDhOiNaz3xzDMX8dzaLRaDwe9/v9NvgCDhnWcSulhprOezPT0CwvL8/rNcyD7zeBcbvdJ391+YWMBJulApqGtfnTe7u3Cu8auVFYWGidb7fb7c7Lyzt16lRRUVG2Y7GleDwejUYrKipIuKcXHY6ALGFiqoGRxk4hn14U2REazgBIo/e85z1KqdXV1S996Ut3/v/5+fm///u/V0o99thjHDwEDnR+WmoRa9LEPAeYdNR5/nldgQAOxBQWwJA4MTVni95mTte9LJ9+J1cqdV4sIwBwIBLuQJYwMdXAdqBQHovazfUe0OIVr3jFb/7mbyql/vRP//QrX/nKrVu3EonEz372s7e+9a23bt0qLi7+yEc+ku0YAStyp5JdM2PChlyemLrPpMa/v1/t7emKBXCa/SksSimmsAB3WVpSB/1Q3DaUq1fnlMslF/ydE8sIAByIhDuQDUxMFY2I73W6Z0LaIgFy3N/+7d92d3dHIpE/+IM/qKioKC8vf+1rX9vb2+v3+7/+9a83NDRkO0DAipoWbxTs7RqtJl3uYEOu57nG6tpiHuPzMdGoGhzUGA7gKPtTWNQdA1fuxBQW5C7x+NRGYencqVptsViNXAogN8oDcCAS7kA2MDFVJBf4d99kbiqQHq973ete97rXNTY2Gm0oLy9/7rnn/viP//j06dPxeHxra8vr9b75zW9+9tln3/rWt+oMFbAR+cHwVNWZ3bxcH+oV9fomapulHeKoGwCyN77xjUqp/SksL1tiCgtyl5hwHz7TlctzwgbPSs3u5FHwAA5Ewh3IBjHhPpzb5e3KdG7qTMidSmoLBnCwp59++umnn37nO98p7CkqKvrMZz6ztLQ0Nzc3MTGxtbX1ve997/Lly9qCBGxHLgTL2RaxL2Pyboc27sAJMIUFOID4KDdn+8nskyvcT2+tVW8saQsGcAYS7kA2iAn3YA5PTN030tCRdBn+diqM7DSszOqMB4Db7a6trW1paQkEAtmOBbA6+SQWj9X3mTSyp8IdOAGmsAAHEB/l5vg885WS00tllcIGityBoyLhDmSDeBuZ4w3clVI7gcKZinphQ/dN2rgDAKzIk0x0zo4LG+Q5JbnDJOE+OKh2DfvgAzDFFBbgLtPTakmq0eYeXK7xP8/cVOCISLgD2plNTKX2TSk10ii2cZ+hjTsAwIpaF67nxfaMVhNuT6iuVWc8ljVR2xzPMz4xk0io/n6N4QA2wxQW4GjE8vbFsqrV4lPaYrEmueUdc9SAo/JmOwAg9zAx9RBGGjrf2PtTo9VzXO8BAJbUJZ7Bmqhp3vPlaQvGyhJuz3Jbd+3QVcMdL7ygXv1qjREBdvL000+b7tmfwvLpT396cXExHA7X1dXRFw65SzxiTsWbUmqoUWqq0z0z6kqlcnmuLHBUVLgD2jEx9RDkr0MXc1MBAJYkT0zlxPqdFjt7pGXauAPpwBQWQCmlnntOWMzxBu77hs90Cfn04vB2I3PUgKMg4Q5ox8TUQwiKc1ML9nYbl2d0xgMAwGF0z0gV7jxWv9Ni10VpWXy/BADAYaVSqrdXWDcZK5IbtgOFN03mqHHKHDgCEu6AduINJLVv+3bzCm5WStOc5IwGAAD6+RKx9jkmph7WUscFaTkYVDs7umIBADhXKKQ2NowWUy5XUJwfljvkXIR8hg/Ay5BwB/RaWVE3bgjrIw1c7H9J/lLwgB0AYDVt85P+eMxoNebxjde26IzH4tbOtqqiIsPlREL19WkMBwDgUGLF28zpus38Ym2xWJlc6d89ww04cAQk3AG9zCamLpRXa4vF4uQH7FzvAQBW0y1OTB2vbYl6fdqCsb6U260uXZJ20FUGAHBy8sTUMxw++6URsb1t10zInWSOGnBYJNwBvZiYemjm13vmpgIArKRLfBg8won1ez3wgLTK3FQAwMnJCXe6vb3EbI5auGlJOqwP4E4k3AG9mJh6aKbX+zPMTQUAWEmXOF+EBu4HuP9+aZUKdwDACSWTcoMyEu637eblT1WdETaco60rcGgk3AG9mJh6aLt5+dPi3FTGtgAArMOXiLXNTwobOMd2ADnhHgyqrS1doQAAnGhkRLiUJF3u0fo2neFYHG1dgXQh4Q5oxMTUI5LLDbrEVrkAAOhkOjF1sqZJYzg20dWlio1H1SWTqr9fYzQAAMfp7RUWb1Q17uYVaIvF+uTigG4q3IFDI+EOaMTE1CMKiu1uecAOALCOrpkxYXW8tiXmYWLqPZibCgDIKLGBO0fMX0Zuf9c5O+5JJrQFA9gaCXdAIyamHpE8N7VzdsyV4HoPALAEswbuHGIzIM9NJeEOADgJuacrQ9TuNlrflnB7jFbzYnstC1MawwFsjIQ7oBETU49otL496ZbmphZOTeiMBwAAI/K5K67yhpibCgDIkERCnpg6dIaJqXfZ8+XJHfC6xfICALeRcAc0YmLqEe3m5U9VSnPSS4do7QoAyD5fItY2Jz0D5hybIdO5qdvbukIBADjL8LDa2TFaTLk9Y3VMTH05ebBcF21dgcMh4Q7osrrKxNRjkNu4k3AHAFhBy8KU2cTUZp3x2ElnpyoqMlxlbioA4NjEBu6rTW1hf0BbLHYhn8ljbipwSCTcAV3Eiz0TU43IbfVKhwa0RQIAgBH5/nO8tiXqZWKqAdO5qb29ukIBADiLeAVZ6jivLRAbkU/ed8xNMDcVOAwS7oAu9JM5FvkMfsnwgGJuKgAg2+SJqcGGdm2R2JLcVYaEOwDgeMQryGJnj7ZAbCRU18rcVODkSLgDujAe/VjkuameSFgFgzrjAQDgXl2zY8Iqj9VN3HeftMrcVADAMSQSclOypS4S7gfY8+VNiH3wmJsKHAYJd0AXKtyPJeIPTFWdlXZwHw4AyCpPMtEuTkwN1jOmRSQn3EdGVDisKxQAgFOMjAgTU5XXu9zarTEaO5HnqHXfpOINMEfCHdCCiaknYPLFIeEOAMiqloWpvNie0Wrc4x2va9EZj/2cO6cKCgxX43E1wMgWAMARyfeJ587F85iYejD5/D0V7sBhkHAHtBAv9tHyU0xMFZiU/4vTaAEAyDT5znOypinq9WsLxpY8HnXxorSBh+sAgKOSR4DIh6tym1zx1j434WaOGmCGhDughZgUvnX+krZA7Eiem6r6+lQ8risWAABerkNs4B6sZ2LqIciJD+amAgCOioT7cYXq2+Ier9FqXmzv1JT0zgeAIuEOaHL1qrC4eU6s6sp5obo2YW6q2t1lbioAIIvkCvcgXeMO4/77pVUS7gCAI0kmVV+ftOGBB3SFYj9Rr3+yuknYUBUa0hULYFck3AEtxKPQt0i4iyL+wHV5bqo4fR4AgMxxJZPtc+PCBhLuhyJXGg4NqWhUVygAAPsLBtX2tuGqaSuznBdskM7nVYcGtUUC2BQJdyDzVlfV9evCOi1lTJm0cZeLFwAAyJjy6cmCvbDRatLtHqtr0xmPXV24oALGw+uiUTXIvT0A4NDk4R/d3aqwUFcotiSXC1SRcAfMkHAHMk8+B11REa5v1BWKXYXqxWwFFe4AgCyR7zmnqs6G/cZ5ZNzm9aqeHmkDXWUAAIcnJ9zlPmZQKtggVbxVjo8wRw2QkXAHMk9s4M60lsMYrRMnzlHhDgDIkqqxYWFVPpGNu8jviOR3UwAA3Il78JMJ1bUKc9S8kbAaHdUZD2A7JNyBzJPTwTxdP4Sx+lZpeXlZzc3pigUAgP8iV7gH60m4H9qVK9KqXKsIAMBtySQJ9xOK+ANT8hw1Tp4BIhLuQObJCffLl3XFYWOb+cXz5dXSDorcAQD6pVKV4yPCOhNTj0BOfwwMcHodAHAoY2Nqa8tw1e3mHvwwRuT3MCTcAREJdyDDwmEVCkkbuNgfjsnQOdq4AwD0m5zM2940Wky5XKNUuB9eT4/y+QxXw2EVDGqMBgBgW/KhqM5OVVSkKxQbMyka4OQZICLhDmTYtWsqkTBcLSxUbWIeGS8ZZW4qAMBqxPKumxX1O4FCbbHYXiCgurulDRTTAQAOQz79LHcww0tMEu59fSqZ1BULYD8k3IEMkxPBPT3KeBQJ7mRS4U5LGQCAfmKL2GA9/WSOiLmpAICTkx/Q0sD9cEbr25Iu42TF1pYaH9cYDmAzZPqADJMT7vSTObSQXOE+Nqa2t3XFAgCAUsokBWxy5cK95CQIFe4AAFOpFAn3tNjNK5iubJB2cF0GjJFwBzJMrry+dElXHLY3e6p2WziYn0yqwUGN4QAAYJJwp4H7kclJEE6vAwBMXb+u1tcNV10uWsoc3khjp7TMyTPAGAl3IJNSKXXtmrSBhPuhpVyu8doWaQdt3AEAOs3NqcVFYX20gYT7EV26JLXa29xUExMaowEA2JBcdt3aqsrKdIVieyalA1S4A8ZIuAOZNDmpNjcNV91u1dOjMRrbC8nXexLuAACdXnxRWFwsq1orKtcWi0MUFal28VpPMR0AQEY/mfQxmZv64osqldIVC2AzJNyBTJL7ybS1qaIiXaE4QaiuVVpmbioAQCf6yWSCfNKfhDsAQCYn3OkncxSj9e0pl8tweX1d3bihMRzATki4A5kk11zTT+aIQnXi9LmBAVq7AgD0EZO/QfrJHI+cCuH0OgBAJj+apcL9KLbyi+ZO1Uo7eBAOGCDhDmQSCfe0Gq9rSbg9hss7O2p8XGM4AIDcRoV7JsipEG7sAQCC2Vm1tCRtIOF+RCZdZXgQDhgg4Q5kktzk5PJlXXE4RNTrv1HZKO2gjTsAQI+1NfkYNQn3Y5LfHS0vq5kZXaEAAOxGzv82NqqKCl2hOARzU4HjIeEOZMzGhrp5U9pAhfvRherFrjIk3AEAeojP1DcKSxfKq7XF4igVFerMGWkDRe4AACNMTE0387mpAA5Cwh3ImL4+aWb36dOqoUFjNA5h0saduakAAD3EW3qTu1PImJsKADge+X6QialHZzKTZnFRzc/rigWwExLuQMbQTyYDTCrcSbgDAPSggXvmkHAHAByPXOFOwv3o1orKl8oqpR10lQEOQsIdyBgmpmaAScJ9dlatrOiKBQCQw8Tby1G5HAwyEu4AgGNYXVXT09IGEu7HEpTLCLguAwch4Q5kDAn3DFgrKl8tPiXtoI07ACDTdnfV2JiwPio3QINMTojcuKHW1nSFAgCwD7nUuqJCNTbqCsVRTM7tkXAHDkLCHciMeFwND0sbaClzXKN0lQEAZNfAgEokjBZ38/JvVjKm5QQaG1WleHqdaz0A4F5ywv3++3XF4TQk3IFjIOEOZMbwsNrbM1z1+1VXl8ZoHCUkX++pcAcAZJp4Sx+qa0u6eI99MnJdAvf2AIB7yVcH+skcl8ko+KkpTp4B9+JmAMgMOe17/rzy+3WF4jShulZpmao3AECmyRNTaeB+crRxBwAcFQn3zFgor94oLDVcTqUoegPuRcIdyAwauGfMmNwYd2RERSK6YgEA5CQ54V4vFoLhMEi4AwCOZHtbjY9LG0i4n0BIvgfnugzcg4Q7kBlynTUJ9xO4UdkY8QcMl+NxNTKiMRwAQI6JxdTQkLBuMmsEhyGnRUZHVTisKxQAgB3096tk0nC1uFi1iuekITLpKkPCHbgHCXcgM+QKdyamnkDS7Z6oaZZ20FUGAJA5waBwlCrm8U3WNGmMxqHa21VRkeFqIqEGBjRGAwCwPDnne/mycpP+Oj6TuanyuFogJ/EbB8iA2Vm1siJt6OnRFYozmRQP0kIOAJA54i39ZE1TzOPTFotjud3q4kVpAw/XAQB3knO+992nKw5nMplPMzqqdnd1xQLYAwl3IAPkm8AzZ9Tp07pCcSaTNu7chAMAMkdMuJucucbh0cYdAHB4TEzNpOnKht28fMNlTp4B9yDhDmSAnPCln8yJherEBnz9/SqV0hULACDHmExMpYF7msjvl0i4AwBui0bV8LC0gXvwk0m63OO14j04RW/A3Ui4AxkgtzRhYuqJjdW1JV3Gv742NtT0tMZwAAA5I5WSa7hMmpzi8ORqxGvXVDyuKxQAgLUND6to1HA1L0+dO6cxGmcKyl1leBAO3I2EO5ABJNwzbDcvf/Z0rbSDB+wAgEyYmlLr60aLSZd7TD6DhcO7cEH5jLvhh8NqdFRjNAAAC5MbuPf0SBcUHI5JSQEJd+BuJNyBdNvZUePj0gaOs6VDSL7ek3AHAGSCeH2ZPV27m1egLRaHy8tT3d3SBu7tAQD7aOCeeSYJ92vXVCymKxbABki4A+k2MKCSScPV4mLV3KwxGscyb+MOAEDamTRwp59MWsk1CjxcBwDsI+GeeRO1zTGP8UGBSISTZ8CdSLgD6Sanei9eVG5+7tJgrE6cSkfCHQCQCXLCXW5viqNibioAwFQyaXL3R8I9HWIe3/Xqs9IOrsvAHUj8AekmX+zpJ5Mmo/Viwv36dXXrlq5YAAA5w6TCvUNbIDlBTpFcvapSKV2hAACsanxcbW8brno8qqdHYzRORht34PBIuAPpJh9wZmJqmiyWVW0Ulhoup1JqYEBjOACAHLCyomZnhXWTh8E4qsuXlctluLq+rm7e1BgNAMCS5DxvR4cqLNQVisOZnOQj4Q7cgYQ7kFbJpBoclDaQcE+fMbmNO61dAQDpJd5JrhafWi0+pS2WnFBWppqapA3c2wMA5Ps++smkj0mFe18fJ8+A20i4A2llepztwgWN0TgcbdwBAFrRwF0/5qYCAGS9vdIqCff0CdW1Jl3GWcSNDTU1pS8awNpIuANpJd/4dXSoggJdoThfSK5wJ+EOAEgvOeFeR8I9A0i4AwBkTEzVZSdQOHu6VtrByTPgJd5sBwA4i3yxp59MWoXkVrnXrqlYTPl8usIBADidmN41uSrhHiOL2+/5usmd+ZXN0v/TeHXlP5/9Y7PPoJR6uKPiPQ80HjE6AIAdzM2pxUVpA/fgaTVa3964YjzP5upV9eijGsMBrIuEO5BWJNw1mqxuSvp87ljs4OW9PRUKqfPn9QYFAHCo3V01NiasmzQ2xT12ovHgknEjPqWUUquF9ULCvWJlfub67GZBifxJLtQWHz06AIAdyCXVjY2qokJXKDlhtKH94f6nDZc5eQa8hJYyQFrJFxj5WDSOKO7xbrd2Sju43gMA0mVgQCUSRou7efkzFXU6w8kRi2VVG4WlwoaOuQltwQAALEdOuN93n644csVofYe0TEsZ4CUk3IH0WV1Vs8anqxQV7um32SUWsNPGHQCQLuJD3PFacYwYTkDu1dMxKx07AAA4nJzhpeIt3YLyiPjZWZMOP0DO4MYASB+5nrqyUtWKA0ZwdFudJNwBAFqIV/lRGrhnjNyrp4uEOwDkMjnhzsTUdFsrKl8pOS3t4B4cUEqRcAfSSU64c7HPgM2uC9IyJ9oAAOkiXlNo4J45oTq5wn1cWyQAAGvZ3FRTU9IG7sEzwGRKPG1dAaUUCXcgnZiYqt3muQvK5TJcXl5W8/MawwEAOFQioQYHhfVR+YQ1TkA+PdC8eMMfj2oLBgBgIVevqlTKcPXUKXXmjMZockVQLjKg6A1QSpFwB9KJhLt2seJS1dgo7eABOwDg5IJBtbtrtJhweyZqmnWGk1Omqs5G/AGjVU8y0bpwXWc8AACroIF7NoTkhDs34IBSioQ7kDbRqAoGpQ1c7zNEfpJBCzkAwMmJV5OpqjNRr19bLLkm6XbLzzPoKgMAOUrO7XIDnhkmbfTGxtTOjq5YAOsi4Q6kydCQihqfaM7LU52dGqPJJfIbKRLuAICTM5mYSj+ZzJK7ynSScAeA3NTbK63SwD0zZk7X7RUWGy4nEmpgQGM4gEWRcAfSRE7s9vQor1dXKDlGrnDnRBsA4OTkhDsN3DNMPr3eMTumLRIAgFXs7ZkcMSfhnhkpl2ultUvaQRt3gIQ7kDY0cM8WucI9FOJEGwDgpMRbx1CdVH+Nk5O/wh1z4+5UUlswAABLGBpSsZjhaiDAEfPMWW7rlpYpegNIuANpI19USLhnTkuLKikxXE0m1eCgxmgAAI4zM6NWVoT1sbpWbbHkprG61qTL8LalYC9cvzqvMx4AQPbJZdQXLnDEPHOWO85Ly1S4AyTcgbSR+5QxsCVzXC7V0yNtoI07AOAkxGfqm9X1G4Wl2mLJTWF/4GZlg7Chk64yAJBr5Io3+slk0nLbOWl5cFDF47piASyKhDuQDjduqLU1w1XTjDBOiLmpAIDMEa8jK/KpaqTJqNxVhoQ7AOQauYyahHsmrTa1K7/fcDkSUSMjGsMBrIiEO5AOckq3qUmVlekKJScxNxUAkDnidcSkjSnSRJ5M2zk7ri0SAED2JZMcMc+ihM+numnjDkhIuAPpIF9OuNhnmmmFe5JZagCA4xJr6JbaxTamSJMxkwp3Eu4AkEvGx9XWluGq280R84yTzxCQcEfOI+EOpINc4c7E1EyTR+Ls7KiJCY3RAAAcZHNTTU4K68vtVLjrEBQr3Cs3V05trWsLBgCQZfINeHu7KirSFUqukovemJuKnEfCHUgHEu7ZlZ+vOjqkDTxgBwAcT3+/SqUMV8vKNqvrNUaTu9aKyldKTgsbOuYocgeAnCHnczliroH8Re7rk94+ATmAhDtwYltbcu0b13sd5KcazE0FAByP6TN1l0tXKLkuVE9XGQCAUsqsoIqJqRrIb4HW19X0tMZoAMsh4Q6cmFntmzp7VmM0uYqEOwAgExjTYhmjdeLc1LkxbZEAALJMrnAn4a5BWZlqbpY20FUGuY2EO3BicjL34kVq33QwPdEGAMAxkHC3DCrcAQBKKbW4qBYWpA30dNWDe3DAGAl34MQGBqRVLvZ6yF/nmRm1uqorFACAU8TjamhI2kANnUajYsL97PLNQDSiLRgAQNbIpdN1daq6WlcouY2EO2CMhDtwYvKFhIS7HjU1qqZG2sD1HgBwVMPDKmKcw/X7VXe3xmhy3UxF/W5evtGqO5lsmxdn6gAAnIHDZxYhlx3QUga5zZvtAACbSyTU4KC0gYS7NpcuSUcL+/vVG96gMRoAgP3J94rnzyu/X1coUEmXe7y29eKU4fuujrnxwbPndIYEAEi7b/fNPT0hnU5+73f//X7j1R8G6v7ln64d7qWMJ7HhMORnG9PTam1NnTqlKxrAWki4AycTCqndXcNVr1dduKAxmtx26ZL60Y8MV6lwBwAclTymhX4y2o3Wt0kJd9q4A4D9Ta3tPje9Lmz485BU8fZvJWfkD7+ts6roaJHhZRoaVGWlWl423NDXp17/eo0BARZCSxngZOQG7p2dKhDQFUrOkw8TyEkTAADuRdc4ixmrk9q4d86OaYsEAJAVBXvhhpU5YUOovl1bMDApcqerDHIYCXfgZLgVtw75qz0yovb2dIUCAHAE+WEtXWK1C4pplPb5SXcyqS0YAIB+7XPj7pThr/qdQOHsqVqd8eQ65qYCBki4AyfDrbh1yOcJYjE1MqIxGgCAzd24odbWDFddLh6r6zdR25xwe4xWA9HImZUZnfEAADSTDzON1relXC5twYCEO2CEhDtwMvIhKRLuOnm96vx5aQPXewDA4clXjeZmVVqqKxT80p4v70bVGWFDB11lAMDROuYmhNWxulZtkUAps4xHMKgiEV2hANZCwh04gaUltbAgbaD2TTP5ek8bdwDA4fFM3ZJG66U27nIiBgBgd/KD1dE6Grjr1dmpCgoMV+NxNShNuAUcjIQ7cAJy7Vtdnaqq0hUKlFLMTQUApI88F51n6lkSYm4qAOQqTzLRNn9d2DDaQMJdL49H9fRIG5ibilxFwh04ASamWo38Nb96VaVSukIBANicfJWnwj1LRsW5qSTcAcDBWham/PGo0WrM47te3aQxHCilaOMOHIyEO3ACTEy1msuXlTAkZ2NDzTBLDQBwCBsbampK2sBVPkvk/rynttYrNle1BQMA0Kld7Bt2vfps1OvTFgx+iYQ7cBAS7sAJyAl3Ktz1KylRTU3SBq73AIDD6OuTDkWdPq3OSKM7kTnrRWVLZZXCho7ZcW3BAAB0ko8xhcQhH8iUK1ek1YEBlUzqCgWwEBLuwHHt7anRUWkDCfesoI07AODkmJhqYfJMvM45usoAgDN1zEmPVEm4Z0dPj/J4DFe3t9UY12XkIhLuwHENDqp43HA1P1+1M7AlG0i4AwBOjompFianVKhwBwBHcqVSneJv+GB9h7Zg8F8KClSH+JXnlDlykjfbAQDWtRmJjy5vG61W/tvPmow/dqfr/PDc1iFfaGErcrTIIJCTIFzsAQCHwcRUCxsVE+5yOgYAYFO164slu5tGqymXSx7ygQy6fFmNjBiu9vWpd75TYzSAJZBwBwwNL2594J+vGa3+6f98usn4Y38UqP1//lEsjrtDR2XR0SKDQE6CTEyozU1VUqIrGgCADUWjanhY2kDCPatC9dIhwoaV2YK98G5evrZ4AAAadIgN3OdO1W7lc1udJZcvq298w3CVojfkJFrKAMckT0gfq6N/XJY0NamyMsPVVAvjiWkAACAASURBVEoNDmqMBgBgQ0NDKho1XM3LU11dGqPBy82eqt0OFBqtulPJtnnpTRoAwI7kBu7y4Sdkljw3tbdXVxyAhZBwB47DlUrJCXeu91njcqmeHmkDbdwBADJ5YmpPj/L5dIWCA5j2DeiaYT4bADiN3DEsRMVbFskn/5aW1Py8rlAAqyDhDhxH7fpCcdiwvXvK5ZqoadYZD+7C3FQAwEnIVwq5jAtayHNT28UqSACAHcktZeRuY8isykpVXy9toKsMcg8Jd+A4OsSn6zOn63aMTzoj45ibCgA4CflKcfGirjhgaLROSqx0ikkZAIDtlOxu1q4vChs4Yp5lcpE79+DIPSTcgeOQ+8fRwD3L5Iv9tWsqkdAVCgDAblIpkwp3JqZagFzh3jZ/3ZPkWg8AziH3k7lVWLJYVqUtGBxAPv9Hwh25h4Q7cBwdYgP3kNhXFBl34YLyeg1Xd3fVOCfNAQAGrl9Xt24ZrrrdJueooMVkTXPcY3it98ejTYvTOuMBAGSUfHQpWN+hLRIcjAp34G4k3IHjkFvK0D8uywIB1SG+5aKNOwDAiDwxta1NFRfrCgWGol7fZHWTsKFzjq4yAOAc8hFz+dgTdJAT7uPjamtLVyiAJZBwB46sMLJTu74gbKDCPfvk6z0JdwCAEbkIi34yliGnV+TaCACAvZhUvNHTNetaWlRJieFqMqkGBjRGA2QfCXfgyDpnx12plNHqVn4R/eOyj7mpAIDjIeFuE3LCnbmpAOAY/ni0efGGsIGJqdnncpncg8snCAHHyVrC/Qc/+ME3v/nNcDicrQCAY2sXj7ON1renXC5tweBg8sWeCncAgBH5GkEDd8sYrZM6+MnNBwAANtI2NymMwt7z5U1VndUZDw7G3FTgDsZzBTPpqaee+q3f+i2l1M2bNxsaGrISA3BsZhNTebpuAfLFfnZWLS2pKg4iAADutrKibt6UNlDhbhmh+raUy2V06LB0Z7NmfXGhvFpzVACAtOsUn6GO1bUm3TRvsAD5PRIV7sgxWfitNDs7+973vlf/6wLpIvePG6ungbsFVFWpavEemxZyAIB7yeVXVVWqrk5XKDCxlV80L+bTKXIHAGfoELuEUfFmFXLCfWhIxWK6QgGyT3fCPZlMvutd71pbW9P8ukC6eJKJ1oXrwgb5gDP0YW4qAOCo5PKr++7TFQcOZbReetPVNUMbdwBwApMj5jRwt4jz55Xfb7i6t6dGRjRGA2SZ7oT7Jz7xiaefftpFh2vY1tmlaX88arQa93inqukfZw20cQcAHBUTU20lJCbcqXAHAAdwp5LtYsJdfvgKffx+de6ctIGuMsglWhPuzz777F/+5V/6fL4PfvCDOl8XSKNOsZ/M9eqzUa9PWzCQkHAHABwVCXdbGRWrGuUWBAAAW2hYmSvY2zVaTbrd47UtOuOBRH6nxNxU5BJ9CffNzc3HHnssHo9//OMfv//++7W9LpBe8tN1+sdZiHyxHx5We3u6QgEA2EE4rEIhaYP8KBfaye+7atcXS8Jb2oIBAGRC16x0aZ6qPBP2B7QFAxNXrkirJNyRS/Ql3N///vdPTk4+9NBDH/rQh7S9KJB28vFk+sdZSGenys83XI3H1fCwxmgAAJY3OKjiccPVwkLVzqF1a1kor75VWGK06kql2melOgkAgPV1iEfMRxu4NFuJaYV7KqUrFCDLNCXcv/rVr379618/derUE0884XbrbhwPpJGccB+ra9UWCUx4POr8eWkDXWUAAHfq7ZVWL11SHo+uUHBY8rD6TrEuEgBgfXJ/MG7AreXSJSWMbNzYUFNT+oIBssqr4TXGx8c/8IEPKKW+/OUv19fXH+MzPPLII6Z7lpaWjvGZ02VjY2NnZyeRSOzuGjYXw8mtrq6mUqm8vDw9c3fX17fjd1e6VWyuntpaFz5kuKopLhTHGYhE9o7xUcdwmBdKJpPxePyED8YikYiev9HGxobwo1/c0ZH/wgtGq7s///n2m9+ckbAOYW1tLRwOp1KpfKEMHye2urqqlAoEOGcK4BDkk87yKWlkSai+7ZVjLxqtyqN3AADW1yUm3IP1HdoigbnSUtXSoiaMj5f19anmZo0BAVmT8YR7LBZ77LHHtra23ve+9z366KPH+yQ/+clPTPdEIpHjffK0iEQie3t7kUjEQ+lTJu1/lyORiJ6EezQaTSaTd/6fdrG8fbG0ci2/WN39IYeRSCSSR/+oYzjMCyWTyVQqlUwmTxJSUtffKBaLCT/7vs5OIZntHhjI4u+N27809Pxjzll7e3sq2xcIALZx9aq0ysRUS5K7+ckHEwEAFmda8UZPV8u5ckVKuF+9qn7rtzRGA2RNxhPuH/3oR59//vnOzs7Pfe5zx/4kP/7xj4XV/fr3qqqqY3/+k/P5fNvb2+Xl5UVFRVkMw/Gi0WgqlaqqqtKToyzfu+X1Ltz5f84tXBf2h+pavd7j/EwFAnler4568EAgYPpCqVTK5XK5XK7j/V325QUCXm/i2B9+eKWlpVVVFUar7te+VvjYvJGRqspK6chbJnk8nt3d3dOnTxcUFGQlgByxn3DP7gUCgD0kEmpwUNrAxFRLCtZLLWWaF2/44zFtwQAA0qtrRuoMtlBevVFYqi0YHMqVK+of/9FwlbmpyBmZTbj/9Kc//fSnP+3z+b72ta+dJKn08MMPm+7JbseAvLy8WCwWCARoXJBReXl5qVQqEAjoSbj7/eGXdVbpnJ8U9o/Vtx+vE4vH49Ez28DjcZu+UDKZdLlcbrf5TvGFNP2N/H6/9EP3ilcol8toMIvr1q3A8rI6cyZTwYny8vISiQS/NDItLy9PZfsCAcAexsbUzo7hqtereno0RoPDulF1Zs+XlxfbO3DVm4i3LFxX6qzmqAAAaSEfVArVUd5uPXILPvk0IeAgmU24f+Yzn0mlUj09PT/+8Y/vrFLve+mh1he+8IWSkhKl1J/8yZ/4fL6MBgOcnNxShuNsllNSopqa1HXjcwn9/dlKuAMArEW+A+zqUjy6s6SE2zNe23J+esRoQ+fsmFK/pjEiAEDadM2IDdwbpENOyI777pNWZ2bU0pLi/DFyQGYT7vtNnHt7e3t7ew/c8IlPfGL/Dx/4wAdIuMPi8mJ7Z5dvChtCTEi3oEuXpIR7X59629s0RgMAsCo54S7fPSKrRuvbxYT7+JTGYAAAaSRXvI1R4W5B1dWqpkYtLBhu6O9XjzyiMSAgOzKbcL948eKBo+oWFxeDwaBS6lWvetX+eX9mjcL62uYn3caDQMP+wExFvc54cCiXLqmnnjJc7e/XGAoAwMKYmGpbo+IRw87ZsSldkQAA0qgostOwOidsGBXHeCBrrlxRP/iB4erVqyTckQsym3D/1Kc+deD/f/LJJ9/97ncrpb7zne80NDRkNAYgXTrmjGdtKzVW15p06ehajqORUyQk3AEA++QpXnJDUmSVnHBpnxv/15RhwQQAwLI6ZsddBuO4lFKb+cXz5dU648FhXb4sJdyZm4rcQH4QOCyOs9nSpUvS6sSE2tzUFQoAwKpmZtTKiuGqy2VyNUFWjde2JI1HtRfshctnb+iMBwCQFl2zIWF1tKE95XJpCwZHwNxUgIQ7cHids/KEdBq4W1JTkyorM1xNpdTgoMZoAACWJN/7nT2ryst1hYIji/gDU5XSCPSqccMO7wAAy+oUJ6bST8a65IR7KKS2t3WFAmQNCXfgUFypVNv8pLAhxPXemlwu1dMjbeBEGwCABu42FxLbuFeNDWuLBACQLu1iT9cQR8wtq6VFlZQYriaTamBAYzRAdmQn4X7x4sWPfexjH/vYx0qEH0LASurX5gsjO0arSZd7oqZZZzw4Atq4AwBkcsL9vvt0xYFjkuscq8dJuAOAzfjjsZbFKWEDFe7W5Xab9OKjqwxyQGaHphq5ePHixYsXs/LSwPF0zErH2WYq6nfz8rUFg6ORL/Yk3AEA8o0fE1MtzyThToU7ANhN68KkNxE3Wt3z5U1VS83EkGWXL6v/+A/DVU6ZIwfQUgY4lA7xONuoeJAZWSYn3AcGVCKhKxQAgPWsr6vpaWkDE1MtT24pU7CxqubmtAUDADi5LrGB+3htS8Lt0RYMjkwuVujt1RUHkDUk3IFD6RAnpo7RP87KenqU1/g0TzisxqVvLgDA4fr6VCpluFpRoRobNUaD49goLF0sq5J2cHodAGylcyYkrNJPxurkhPvgoIpGdYUCZAcJd+BQOuaknGyorlVbJDiyvDzV2Slt4EQbAOQy+sk4gknyhWs9ANhKp9jTNdhAwt3azp1TeXmGq9GoGhnRGA2QBSTcAXPF4e3qjSVhQ4gH7BZHG3cAgBH5XDMJd5sw6e9HhTsA2Ic7lWxduC5soMLd6vx+df68tIHrMpyOhDtgrmN23GV82PxWYclSaYXOeHBkJNwBAEaocHcEk+QL7WIBwD7OLM8U7IWNVpNu93hti854cBzyOygS7nA6477GAF7SOScdZxut4+l61qRSKmncd/c218VLLmG5r8/0k7iljwcA2FY4rEJSl1gS7nYx2tAhLU9NqfV1VV6uKxwAwPF1iQ3cp6rO7vmM25XAIki4I7eRcAfMtc9OCKsh+QgzMulrvTMf+1HQdNup7ci/Cstzc7/+8f9vrUi6Cf/vj/a86ix36QDgONeuqXjccLWwULVxlbeH+fLqzYKSkt3Ng5dTKdXfr37t17TGBAA4Fhq4O4GccO/vV8mkctN1A47FP27AnNnEVG7FrW6tqHy1+JSwoW1uUlswAAALkQusLl5UHo+uUHBSQbmrDMV0AGATcoW7yW97WMSlS1I+fXNTTUh1jYDdkXAHTHiSiebFKWHDWF2rrlhwfPJBBPmZCgDAsWjg7iAmhw5JuAOATZhUvJFwt4XCQtXOg3DkLlrKACZaFqb88ZjRaszjm6o+ozMeHE+oru3VweeMVkm4A0COevFFaZWEu62YzE3lxh4A7KBkcbZ0x6A/mFIpl4uerll3dXbzdf/jGdNt/3dR4xvUqNHq177yP7+0XC9/hkcv1n7wVxiQC1si4Q6YaJ+TDjpN1jTFPD5tweDY5M4/HbMk3AEg98TjanBQ2nDffbpCQRoE5bmpIyNqd1cVFOgKBwBwHNXjw8LqfHnNZn6xtmBwoEQyuRNNmG4bqm17g/qJ0WrrjVHTT7IXTx45OMAaaCkDmKCBuzOM1Uudf5oXb/jjUW3BAAAsYWRERSKGqz6fOndOYzQ4qRuVjWF/wHA5kVBDQxrDAQAcR/WY9Lva5NkqrGRUHG8rd+oH7I6EO2BCrn2W07iwjqnKMxHjm3BPMtG8eENnPACA7JN7jJw7pwLG2VtYT9LtHq8VD5739uqKBQBwTGYJdxq420awXno6UrZzq2pjWVswgGYk3AETcoX7aB3Xe3tIut2T1WeFDZ10lQGAXMPEVMehjTsA2F31mNRSRs7hwlJuFZYslFcLG7pmKXKHY5FwByRVt1bKdm4JG0wKqWAl8jj7duamAkCukeudaeBuQ/K1noQ7AFjd0lLR6pKwLncpgdXID8K7Zsa0RQJoRsIdkHTMSheAhfLqW4Ul2oLBCYXqpP4/8lEGAIDTpFKqv1/aQIW7DZn09h0YULGYrlgAAEcnPhldLT61WnxKWyw4Ofm63CnmWwBbI+EOSDrmJoRVJqbay5j4/eqYHXelUtqCAQBk2cSEumV8iM3lUhcvaowG6TFe2xL3eA2XIxEVDGoMBwBwRGLCnfJ22zGrcKelDByLhDsgaRMT7mNixTSsZqyuNeVyGa0Wh7erN6TTiwAAR+nrk1bb2lQJh9jsJ+r1TVY3STvoKgMAViZ2e6OBu+0ExYR79caS3MIXsC/jAhAASnWKbUbkFiWwmu1A4Xx5Td3avNGGrpmQPNQFAGAXw4tbU2u7wobOH/+ncBWfb+2+OrJ4mBda3YkeMTRk1mh9u9QmrrdXvec9GsMBAByFnHCX+4bBepbKKteKy09trRtt6Jwde7bjAZ0hAXqQcAcMuXd3G1dmhA0mg7lgPcGGdinhPjv2dM+v6IwHAJAh3x1a/Hb/nLDh8//750LC/R+9tf/ww9HDvFBnVdERQ0NmjTa0v+35HxguU+EOAJZ165aanBTWg7SUsaHR+vZXB58zWu2aCZFwhyPRUgYwVBAacSeTRqu7eQWzp2t1xoOTk2siaCEHALmjS5zTRQ2dfZl87/r6lPG7OwBANl29qoynam0WlMyX1+gMB2kht3HvnGFuKpyJhDtgqHCwX1gdr21JuvgJshm56x8JdwDIEVUby8LpZmV2cwgrC9W1Se/QNjfVhDShBwCQNeIhpGB9uzCRC5ZlUvQmFkAA9kW6EDAkJ9xH69u0RYJ0kS/2FZurFZur2oIBAGRL16z0hHW+vHqjsFRbMEiv3bz8mYp6aQddZQDAml58UVjk8JlNyd+4xpWZosiOtmAAbUi4A4YKr0kJ95GGTm2RIF3WisuXSiuEDRS5A0Au6JwVh6JT3m5zJkkZEu4AYE3i72cOn9nU7Knazfxio1VXKtUhvisDbIqEO2AgGi0IBYV1HrDbFG3cAQDyb3su8XYXlJMyvb26AgEAHNrurhqVxpUzMdWmUi5XSGwPIJ87BGyKhDtg4No1VyxqtBj1+iZrmjRGg7ShhRwAoFP8bU8Nnd2ZPDIh4Q4AFtTXpxIJo8XdvPyblQ06w0Eayddl5qbCkUi4AwbE/nHjda1xj1dbLEgjKtwBIMeV7dyqWV8UNow0UuFub8HGDmmw3sqKmp7WGA4A4BDEfjJj8kBsWJtcytDNPTiciF9YgAGx+ilYz624Xcnfu5r1xfLtDW3BAAD0k5+trhWXL5dI0z5gfZv5xfPl1dIOitwBwGrkG3D6ydiZXPTWtHQjEI1oCwbQg4Q7YMDkek/C3a6WyirXisuFDXKfAQCA3cm/503af8MmTPoCMTcVAKxGvAEfpeLNzm5UNob9AaNVdzLZPj+pMx5AAxLuwEFiMXXtmrBOwt3W5GQKXWUAwNm6b8oz2bjEOwFt3AHATvb21NCQsD7C1dnOkm53SO4qI743A+yIhDtwkKEhFTE80xT3eMdrm3WGg/SijTsA5DL59zwTU52BhDsA2Mm1ayoWM1qMev3Xq8/qDAdpJ7+/4pQ5nIeEO3AQ8TZsoqY56vVriwVpR8IdAHJWcXi7fm1e2DDS2KktGGTOSIP4fZybUwsLumIBAJgRb8DH6lrjHq+2WJAJ8j149wwV7nAaEu7AQWjg7mjyd7B+bb4kvKUtGACATl0zIVcqZbS6mV88X16jMx5kiPnwW4rcAcA6uAF3OnnsbcvClD9ueMQBsCMS7sBBuN472nx5zWZBidGqK5XqmB3XGQ8AQBu5hCrY0JFyubQFg4yiqwwA2MaLLwqL3IA7wGR1k9AnwJuItzE3Fc5Cwh24RyKhBgaEda73dpdyueS5qcxsAQCnkpuEjorlV7AXuZiOhDsAWEUspgYHhXUmpjpA3OMdr2sRNnTRVQbOQsIduMfIiNrZMVpMut1jtdJ1ArYgPzVhZgsAOFXXjPQbnlt6JzGpkBCrKQEA+gwOqkjEaDHm8U3WNOsMBxkSrGeUGnIICXfgHmLF02R1U8Qf0BYLMkSueuNiDwCOVLC327g8I2zgEJuTjIqn2dT0tFpe1hULAMCYeAM+Udsc9fq0xYLMkefScw8OhyHhDtyDBu45QP4+nlmeKdjb1RYMAECPrpkxdypptLoTKJypqNcZDzJqobx6vahM2kFXGQCwgqtXhUWTp6ewD7norW1+0pdgbiqcg4Q7cA8GtuSAmxUN24FCo1V3KtkxN6EzHgCABnJ70NH69qSL98aOQlcZALABKt5yw0RNS8xjeFjBH4+1LExpDAfILG4qgLslk6q/X1inu6szpFyuUH2bsIG5qQDgPJ2z48KqPE8bdmTyto0KdwDIukRCvgEfFvuQwEaiXt9ErdSOn3twOAkJd+BuoZDa2jJaTLrcY3VSlhY2Is9sYW4qADhPt9geNNjIM3WnocIdAKxuaEjtGjbzTLg947UtOsNBRsnXZdq4w0lIuAN3E2udblQ17ubla4sFGcXFHgBySn400rR0Q9jAoXXnCTaIdZFTU2p1VVcsAICDiDfgkzVNe748bbEg00zuwSl6g4OQcAfuRv+4nCHPbGlZnApEI9qCAQBkWsfsmDtpODF1Ny9/quqMznigwdypmo3CUmkHXWUAILvEw0Y0dHUY+RvaPjfhSSa0BQNkFAl34G5MTM0ZU1Vnw/6A0ao7mWybn9QZDwAgo+R+MkxMdapRuTU/CXcAyC6TijcauDvKWF1r3OM1Ws2L7bUuXNcZD5A53FcAd0ilVF+fsM4DdidJut1jda3CBjk1AwCwF3kS1wi39A5FG3cAsK5EQr4BZ2Kqw0S9/snqJmFD103uweEQJNyBO0xMqI0No8WUyxWSi6RgN/JNOHNTAcBJ5OEcHGJzqhE5WUPCHQCyaHhYnpgqF0jBjuTrcveMVB4B2AgJd+AO4k3XzYr67UChtligQbCeuakAkBMC0UizycRUnqk7k8mjlOvX1dqarlgAAHcTb8CZmOpIZgl37sHhECTcgTvQPy7HyDfhrfPX/fGYtmAAAJnTaT4x9azOeKDN7KnaSLHx3NRUijbuAJA18g24WB0Fm5L79HbMjnsTcW3BAJlDwh24g8n1nto3p5msaYp6/UarvkSsdYG5qQDgBHLBVKiuLenmXbEzpVyuxY7z0o4XXtAVCwDgbuJv4JFGEu4OJM9N9cejLYtTGsMBMoVbC+AOV68Ki0Gu944T93jHa5uFDV0ztHEHACcwmZjKTDZHW+i4IC3Txh0AsiIeV/39wjrjVRwp6vVP1jQJG5ibCmcg4Q68ZGpKra4aLaZcLircHclkbiot5ADAEZiYmstIuAOAFQ0NCRNTk273WF2bznCgzYjYrZe5qXAGEu7AS8Tbrfnyms2CEm2xQBs5ydI1S4U7ANhevtnEVLmdKOxuoaNHWr5+XSi5AABkingDPlHTHPYHtMUCneSThefEU4mAXZBwB14iNnDnsLlTyaN4mNkCAA4gT0yN+ANMTHW2/5+9+46v+jrzfb92URcqdISQaBIqdCG6MQbsxNgmduJ4kjhxJh4nTplzcmY855XJyZ0zczOTZDKTMncyuQmOHaeQOC44Ju4YY5oAdaGOCiCKQAUh1LW1y/mDG1/b8Hu2EHuvvX/793m/5o8J65H0hShb2s9vrWddnTlbTZkiVbDJHQD0E197uTE1gskbHbLaW3kPjghAwx34M/nG1HTmyUSmFn93tszrkDZFAgDCX97ZBmG1cXYWN6ZGOJtNFRRIBTTcAUA/8bWXHW8RzP+9qZfOaIwDBAXvLoA/k29M5QF7hHI5o07NmCsU5FxgjDsAmFuuOMC9fk6OtiQIGRruABBWxsbkG1NpuEcwlzO6deY8oSDvXKO2MECQ0HAHlFJKnTunOjqEda5Ti2Dy8YVF5xnjDgDmlisOA+VHvCXIDfeyMl05AABKKaVqa9XIiNGi2+FsSlugMw40q2eMOyIdDXdAKeVnnkxHyvQriSnaskAzudUi74sEAIS5+NGhjK7zQkHjHBruFrBqlbTa1qa6unRFAQD4edJ5aubc0agYbVmgn3yCQd4qAZgCDXdAKcWNqZYmN9yzxav2AABhLud8k91n+DI+FBN3ZnqGzjwIjcxMNXWqVMBUGQDQSXzVZdpbxJN7LAsvnop2j2kLAwQDDXdAKeXvxtTZ3JgayZrSFgrX5cW5RjK7zunMAwAIoPyz0hjQxvRFXhu/D1uDvMm9tFRXDgCAn4Y7094iXsus+S5nlNFqlGdsYXurzjxAwPEGA1BK8fPe0kaiY89Mk7Y35jBVBgBMy9+NqRxis4zCQmmVHe4AoM3oqKquFtbr0/npHOHGHFEt4pj+vPNMlYG50XAHlOroUBcvCus03COePMB30QXuTQUAs8o9J+1wb+AtvXXI96aWlOjKAQCWV12tXC6jRY/TTysWkUF+rMIYd5gdDXfAz4UtXUlTu5OmaMuCkJCnBuXydB0AzClxZDD9crtQwDUtFiKPlLl4UbVL3yoAgIARp3h1LcgRho0gYnBvKiIbDXeAeTLw899yzvlm5fNpCwMACJS8s4024xfwgdiEc1Nn68yDUJo9W6WlSQXiDgwAQMCIb8AvZS/WFgQhJF+Nu+DS6ZixUW1hgICj4Q4oVVkpLDamc2Nq5Ds5O0u4NC9hZDC27bTOPACAgMg/1yCsNsxZ5LPZtIVB6Mmb3BnjDgB6iA84Ly1aoi0IQujUzLmjUTFGqw6vh8muMDUa7gA73KEGYxPOT5V2vSXUSrf6AADCU95ZaYC7vLUKEUge4y6OOAAABMbQkKqvF9YvZdNwtwSP3XFSnOyax1QZmBkNd1hed7c6d05Y5zo1i2gU/4tOqKPhDgDmky/emFqXQcPdYuQd7jTcAUCDigrldhuuxsd3z+WIuVXUi2Pc5W0TQJij4Q7LE7e39yYkd6ZM05YFISTfm5pQW6UtCQAgICb3X5ne2yUUyI9aEYEKC6XV7m7V1qYrCgBYlfx0c8UKr8OhKwpCrF7c+iBvmwDCHA13WJ7YcJefuCKSyLODGCkDAKaTJ75Pu5KY0j55prYwCAvTpqnMTKmATe4AEGzyDdXyk1FEljpxuF9G17mYgT5tYYDAouEOy6uoEBbZ+2YdjXOyhavznFd62PUGAOYiN9wbeKZuTUyVAYDQkm+oli/bQGQ5Ny19IDbBaNXm881srtOZBwggGu6wPD8Nd25MtYq+uEkXU2dIFeK3CgAg3Cw+2yCs1mbkakuCMCLvnaThDgBB1durmpqkAvmxKCKL12aXN0DMbKzRFgYILBrusLYrV9SZM8I6DXdL8XOggYY7AJhKzjnpLX29eIoZEUtuuJeVKa9XVxQAsJ6yMuXzGa4mJals3oBbi/z72KyTTHaFWdFwh7WVlws/yxuMHQAAIABJREFU793JKX62PCOyNKZL96bScAcAE0nquDB54IpQwEgZiyooUHbjd0D9/erkSY1pAMBiSkqk1cJC6SUakahOvDeVHe4wL17LYG1iC3VwyTJhqDciT+NscT+FPG0QABBOZp2U3qF1pEy/PGmytjAII8nJfrZPMlUGAIJHfo3lxlTrkXe4J3W2q44ObWGAAKLhDmvz03Bfri0IwkHjHPEdeEeHam/XlQUAcEtmNZ4QVuXtVIhwjHEHgFCRX2MZ4G49l1Jn9CSmShX8XIY5OUMdAAgpueGev0y5tEVB6PUkpnamTJve22VYUVGh0tI0JgJC7PLlyxcvXjRajYuLW7Bggc48wPjNapSGftZxY6qVFRaq3/7WcJU39gAQJO3t6sIFqWD1al1REEbqM3I21h8zXC4pUffeqzEOEBg03GFhfX2qtVVYH1y8VFUMaouDcNA4O9tPw50f9rCSH/3oR9/97neNVpctW1ZVVaUzDzBeXu+M5jphnYa7pck73Kuq1OioionRlQYALEN+ojlzppozR1cUhJH6OYv8NNwBE6LhDgurqFBer+FqcvJI5jxVUasxEEKvMT1rU12R4TL3psJimpubQx0BmJCGhughw0fmXpu9MV2cIYbItny5iopSY2M3Xh0dVbW1qqBAbyYgwDijhnAkd07Z3m5V8hh3VVqqfD7F7XowGxrusDC5ebpyJa/pFuSnBUPDHRZzreH+uc997pFHHrl+ddKkSdoTAeMjvqVvmz5nIDZBWxaEndhYtWSJ9DO9pISGO8yOM2oIR3LDnRtTrcrPucOeHtXaqhYu1BUHCAwa7rCwykppdcUKXTkQRhrTF0nL586pzk41fbquOECItba2KqW2bdu2bdu2UGcBboZ4aN3PRipYQWGhn4b7V76iMQ0QeJxRQ9jx+VR5uVRAw92qriSmtE+eldZjeChHlZTQcIfp0HCHhfnd4Q7r6Uye2jMpdXL/FcOK4mJ1330aEwEh09HR0d/fr5TKzmb4BsymuFhYrM3M0xYEYWr1arVzp+Eq42JhfpxRQ9hpblZXjN9k2Wxq1SqNaRBeajNy/TTcP/MZjXGAAKDhDqsaHFQnT0oFNNytqiF90YaG44bLx4/TcIdFtLS0XPt/Fi0ST34A4WZkRNXUCOt17HCHPCm4oUH19qqUFF1pgMDjjBrCjvwsc/58NWWKrigIO/UZOXdV7Tdclq/bBcKSPdQBgBCprFQej+FqYqKiwWRVfnY+HjfuxQOR5drmuGnTptnt9u9973sPPvjgxo0bv/CFL/z4xz8+f/58qNMBxqqqDO/DVMrljGpJ46pAy8vNVcIOX5+PW1tgapxRQzgSD5+pNWt05UA48jPGvaJC+NUOCE/scIdVyW3T5cuVncdRFlUjN9xLS5XHoxwOXXGAkLnWcHe5XPPnz+/p6bn2h0VFRUqpf/qnf/r+97//+OOP2/xdLn1FODv8Z16v95bDmon3z/z+6+GGvO9zwwJbcbHwL9uStsDljApkIJ8vkJ9N+kKavo62L6TvX87n+/B3i81mW7nSdvCg4YcUF/s2bzZa9ftNCNl7r4H8AwYJZ9QQjuQd7vLBI0S6hvRsj93h8Brsibx2eJEhBDAVGu6wKrnhXlCgKwfCTl1Grtdmt/sM3gH296u6OrV0qd5QQAhce7t+9erVmJiYT3ziE4WFhU6n88SJE88991xfX99XvvIVj8fzta99Tf4kkydP9vuFrLZf/tKlS16v1+fzOXh0NyEDAwN9fX0DAwMDAwM3LJjy7rsJxh9ePTvb5XIFMM/QkC2wn9D4Cw0F6guNidvEBocGTfc3kl29evX615mU3Nwk44b78MGD3Q8/bLR67TtwaGior68vYCmtxOPxdHR02O12n7anLhbzoTNq5eXlly5dysrKWrp06Sc/+cn09PRQB4T1jI6qEyekAhru1jYSHds6c152e4thRUkJDXeYCw13WJXccF+3TlcOhJ3+uMQz0zPmd5wxrDh+nIY7rODa2/WZM2fu3bt3yZIl7/35N77xjXvvvffMmTPf/OY3d+zYMWfOHOGTpKamCqvX9r/bLXai6FqPyW63W+0vHih2u91mswn/gDGVlcKH18wRzyxPgLaTCrq+kM2m6TtT2xGPa98wH/rDsRUrhA+JqawU/hfq95sQMp/Pxz9gUAXkjBoQSCdOqNFRw9WoKCW+JsMK6jNy/DTcv/xljXGAW0XDHZbU1qYuXJAK1q7VFQXhqHZuntRwLy5WX/qSvjRAiDz99NOjo6OZmZmzZs16/5/n5+f/9Kc/veeee/r7+3ft2vXNb35T+CTvvc+/oWvv9q221c5ms3k8ntmzZ7PDfWL6+vri4+OTkpJSbnin5eXL6tw54cMbFiyJjo4OYJ74+PjoAR1jMeLj46IHjK+fuXlG/w4B/0JG4hPiowd1/NMlJyff4HXm7ruFD3F0dqbbbGr27Buu9vb29vX1paSkJCUlBSqkpXg8HpvN5nA4Zhv8C+MWcUbtZl28eFFZbwdAoIyNjXV2dkZHR7vdbqOaxL17hXuoXTk5nd3d7/3Hq1evRthBq6GhYeELeb1ej8djt9tvfcqW/IUCaGgw8P90J9Ky7jdeHTtypMPgBae3t3dwcHB4eDghQTjiCENdXV0ul8vj8URFBXToouXRcIclydvbZ81SmZm6oiAc1Wbk7Sh+3XCZe1NhDSuMtxpt3749LS2tvb29pqZGZyTAv+JiYTR4X9ykc1Ot9YAHhubMUbNmqYsXDQtKStQDD2gMBARMQM6oWeoWlmvTjSLmr6PZtUF58rUWUeJN1KMrVrz/Y/UNm4q4L+QzGosa8C8UhM9ZMydHWI1qaVG9vd4bPecez3cgBPwDBgkNd1gS82Qg8nNvakODunJFiYMygIiXk5PT3t7e0NAQ6iDAB4l3stVn5PiYooD3rF6t9uwxXD1+nIY7TErDGbVr+98j5ozatTZTxPx1NHO5XA6HIzo6eubMmUY19tpa4TMk3nFHwvv+8ZObR6OjhwIZ0UB8fHz0oI5WeHy8dKLr2vZ2u93udN5qgy4hPiEc/kYTc3ZO9lBMfPyowX/1Pt/sS5d8eTd4nx4fHz8wMDB58uTExMTARrIIp9PpcrlmzpwZ2DOgoOEOSzp2TFplnozltc6aNxibkDAyeONln0+Vlqq77tIbCggv145df+idPBB6xcXCYl1GoAe4w9Tkhrv4vQSEs4CcUZNvYbkmYmawXPuLRMxfRzP7+9y44soV1WI8m1sp25o1tvd9rL4LBvR9ITlF4GKY+V/Oa7c3pmevbK0y/KIlJbZt267/c//fgRDxDxgk/GvCekZHVZXhi7hSNNyhvDZ7/ZxFUgVTZRDpdu/enZOTk5eX19HRccOCa3vbFy9erDcXILr2QNSYnwNMsJo1a6TVsjJlPI8YMK+cnBz155/jgA4lJdJMleRktUh85wXLqM0UN0bwIBymQsMd1lNR4eeG9IICjWkQpvw0ZWi4I9Jt2rSptbW1oaHh5z//+fWre/bsuXDhglJqHTO4EFaam9Xly8J6fYY0HhSWs3q1Eu4uHhxUdXUa0wCacEYNusnnywsLFftqoZRSqjaD9+CIHLyuwXrkn/fLlqn4eF1REL5qM/Ol5WPH9N2xA4TCtGnT7r77bqXUv/zLv7z88svvXzp8+PBXv/pVpdQdd9zxAAOOEVbE7e3tk2f1JHL9Bt5n0iSVIz6DYTMdTIgzagg78mupfNgIVlIzV2y4d3aqtjZdWYBbRcMd1iM/F2WeDJRSfne49/aqpiZdWYDQ2LlzZ1pamtvtfuCBBzZu3Pj1r3/9r//6rzdv3nz77be3t7cnJyfv3Lkz1BmBDxLf0tcyTwbXkxs9NNxhQpxRQ3jxN+2Nhjve05U0tTN5qlTBz2WYBw13WA8Nd4zDlcSU81PSpApOtCHSzZo16/XXX1+zZo1Sqqio6D//8z9/+tOfHjx40Ofzbd++vba2NisrK9QZgQ8SX5n9DAaFNdFwR8ThjBrCi79pb2r1al1RYAJ+tkeUlOgKAtwqZ6gDAHq1t6tz56QC9nrgz2rm5qdfbjdcLi5Wn/+8xjhACCxbtuz48eP79u0rKSk5c+aMw+FYunTpihUr1vJsEmFoeFidOCGs18izwmBN8qtZfb3q7VUpKbrSAIGxc+fO8vLy9vb2Bx54YMOGDQUFBR6Pp7a29tChQz6fjzNq0Ep+cjlvnpoxQ1cUmEBdRu6W6kOGy2x6g3nQcIfFHD0qrU6frubP1xUF4a42I/fu8rcNl/lhD8vYtm3btm3bQp0C8Ke8XLlcRosuZ9TJ2ZzJwHXy89WkSaq//8arPp8qK1O8AMJsrp1Re/zxx4uLi4uKioqKit5b2r59+86dO9PT00MYD9bC+XLcDD+TXa/9shcdrSsOMHE03GEx/LzHuPnZC1ldrQYGVGKirjgAAJF4yrhpdpbLGaUtC0zD4VAFBerAAcOC4mIa7jAjzqghXPAGHDejfk6Ox+5weD03Xh4ZUSdOqMJCvaGAiaDhDovh5z3GrWn2wtGomJix0RsvezyqvFzdfrveUAAAA+KPeD8bpmBla9ZIDXcOtMHMOKOGEBseVjU1UgE3puKDRqJjW2bNX3Sh2bDi2DEa7jAFLk2FlYyNqYoKqYAB7ngft8PZmJ4tVfAmHADCBw13TIzc7jl+XPl8uqIAQGQpL1djY4arMTFq+XKNaWAOfn5n4z5zmAQNd1hJZaUaHjZcdTjUqlUa08AE/Pywp+EOAGHC36XotdyYCiPr10ur3d2qpUVXFACILPLbpeXLVUyMrigwjZq54u9svAeHSdBwh5XIL81LljCPGx9SKzfc5Tt4AQDaiC/IPYmp7ZNnassCk5kxQ82dKxUcO6YpCQBEGAa64ub52fR26pTq6NCVBZg4Gu6wEvnnPfNkcJ0T8xZLy52d6swZTVEAAALxfLGfrVKA3PRhMx0ATIz8wFI+YASrOjc1vTchWapgqgzMgEtTYSXyz3sesOM6XUlTO1OmTe/tMqw4ftzPtjgAgAbij3gGuMOPtWvVH/5guErDHQCUqr7Y19YzdP2fu93uK1euOp3O1Msf+PO49vPb2tuFT7gvdf5w3aXr//zKkPHYd1iAz2ary8jd0GD8w/f4cbVjh8ZEwETQcIdl+N2MTMMdN1KTmb+194DhcnGx+tSn9KUBAFzP5VLl5cK6n/lggHzMsaZGDQ6qhARdaQAgHP2p9tLLtTfoj/t8vrGxMZvNFhX1gV1Kd1Xt32b82bqSpv597ZCqbbp+adE0Br1aXU1mntRwZ9QbzICRMrAMedz2lCkqK0tXFJhJbUautMyuNwAIuYoKNTJitOi12+vn5OiMA/NZsULFxRmuut2qtFRjGgCIBEvO1AmrTHuDwM+3R2mpcrt1ZQEmiB3usAy/F7bYbLqiwEz8/LCvrFSjoyomRlccAMB1xI1OTWkLh2KMe6mwgLpL/Vt+5uee8/9My1rcWm20+tR/PPf7huj3/qPb7Xa73U6n0+n8wJupe/Nm/u3t828xLQBEhmVnaoVVP3dlwdpqM3K9drvd673x8uCgOnFCFRToDQXcHHa4wzIY4I4JaUjPHnNEGS6PjqrKSo1xAADXEZ+pM8Adbq+vb8Qt/1/VHOlAW3ZLzfuL+0c9Ay5v/6jnQ59kyMWGOwBQSqmYsdGsC61CAT+dIRiMTTg1Y65UwVQZhD0a7rAGt1ue7krDHUZGo2Ka08TdakyVAYDQkm9M5dA6xkFu/Sxpq7P5fNrCAIDZ5Z5vivIY3n065ohqTM/WmQemUy3//kbDHWGPhjusobpaDQ4artrtqrBQYxqYTG2m+MO+uFhXEADAdc6fV+fOCevVczm0Dv9qxO+T1IHeOd3ntYUBALNbKs6TOZme5XJGCwWAnw0T8hV9QBig4Q5rkJ9/5uer5GRdUWA+tZnivak8XQeAEBLfcfUkpp6fkqYtC8yrM3nqxdQZQoE8jBgA8H5L5RtTmScDf6rlTW9nzqiLF3VlASaChjuswe+NqYCxGvmHfVubam/XlQUA8EHiU89q7mTDuMnfLUvE5hEA4P3kHe5Me4NfZ6fN6U0Qt0Wy7w3hjYY7rIGGO27Buamzx6ZOkyqYKgMAoSIPcGcPHcbthDhVZtlpdrgDwLhkdJ2f3H9FKKiau0RbGJiUz2bzs++NhjvCGw13WEB3t2qVbkhX69bpigKzGlheIC3TcAeAkBgeVpWVwrqft2rA+8jj/ud1tE0aHtAWBgDMa0mbdCSoI2V6Z4q4mQlQSjHGHSZHwx0WcOyY8vkMV1NS1KJFGtPAlPw03OUjFACAICktVS6X0aLb4ayfw494jFdz2oKhmDijVbvPu6StXmceADAp+UiQfJwIeE+13HAvL1ejo7qyADeNhjssQG6Grlmj7PwPAX4MrFglLZeWKrdbVxYAwJ8dOSIsNqZnj0THassCs/PYHXUZ0jXpS7g3FQDGQR7gzvUqGKe6jFyvw2G4PDqqyso0xgFuDn1GWAAD3HHLBpYXKOGH/dCQqqnRGAcAoJTyd2Mq82Rwk+QZRIxxBwC/Jg0PzL90Rig4QcMd4zMcHdu5ULyMp6hIVxbgptFwR6TzePw89mSAO8bBk5Co8sQf9kyVAQDNfD654c5betws+Xtm8dl6h9ejLQwAmNGStnq7z2u0Ohwd25S2UGcemNqF/BXSMmPcEcZouCPS1daqvj7DVZtNrV6tMQ3MTD4Mwb2pAKBZY6O6fFlY59A6blbN3HyfzWa0Gj86nN3eojMPAJiOPH2rPiPHYzc+Nwx80IXF4lVqR49K1/UBIUXDHZFO3neck6NSU3VFgcmtWSOtssMdADQTB7j3zprTlTRVWxZEhr64SaenZwoFy08xQQ4AJNyYigA6Lzfcu7pUU5OuLMDNoeGOSCe3QZkng/GTd7g3NckbLQEAASaeI76Qv1JbEEQSearMstM03AHAkMPrWdJWJxRU03DHzRiYOkNlSg/CmSqDsEXDHZGOG1MRKHl5KiXFcNXnUyUlGtMAgOWJb7HaabhjQk7MWyKscm8qAAgWnW+Oc40YrXpt9uq53GeOm7Rhg7TKvakIVzTcEdF6e/2cMKLhjvGz2VRhoVTAVBkA0MXW1aWam4UCdrhjYqrmLxVWp/V1p/Vc1BYGAMxl+RnpGNDpGZl98UnawiBC0HCHOdFwR0Q7dkx5DW9IV5Mmqbw8jWlgfvIMIhruAKCL8/hx6Zqs5OSueVka4yBynJ+SdnnSZKGAMe4AYEQ+BiQ/0QRuTG64nzxp6+7WFQW4CTTcEdHkBuiaNcrBDem4GfK9qcXF0gMeAEDgOP3d0eKz8yMeE+RnqswZpsoAwI0tP1UtrMqXZAA3tnixSjI+GOHzRRUXa0wDjBcNd0Q0BrgjsNauVTab4erVq6qxUWMaALAuPw33jRt1BUEEqhJbQnI7CQAsK6Pr/JT+HqGgcv4ybWEQORwOuXXjpOGOsOQMdQDgpvUMje2uHsf0TJ/v88eKY4zX30yZf/ZYm/AJBlzumw6HyDZ5ssrKki4GOH6cOUUAEGy2oSFHtdj03LhReXSlQcSpmicNPZjfcSZ5qL8nJl5bHgAwhWXiAPfO5KkXU2doC4OIsnGj2rvXaNF57JjOLMA40XCH+XQPjj55XGqUXzP/0ukv9V81WvXZbD8Yntorfp65qbyVwnXWrpUa7sXF6tFHNaYBACuKqahQbuOH4tHRavVqdeyCxkSIKE2zFw5Hx8a5Rm64avP5lp+p3b9oteZUABDm/AxwF59lApLbbhMWnTU1tqEhNVm6fwXQj5EyiFhL2uqF1XNT03sTkrWFQeSQx7hzbyoABF9Maam0XFCg4uJ0ZUEEcjuctZnSebXlp7k3FQA+bAUD3BEkq1er6GjD1bGxmMpKjWmAcaHhjoglN9xrxPdRgCF59H9trerr0xUFACzKT8Nd3AYFjEeVeG/qytOMcQeAD5g80JvRdU4oYIA7Ji4+Xq1cKaz7+c0QCAUa7ohYS8/UCas1c/O1JUFEWbpUJSQYrnq9qqxMYxoAsB63288+pg0bdEVBxKpcIDWGcs83xY6NagsDAOFv5ekam89ntDoYm9Aya77OPIg04nYKGu4IQzTcEZkSRgbndkjz2aszabhjQpxOVVAgFTBVBgCCyXHihG1oyHDZZlMbN2qMg8hUk5nvdhhedhXlcS8926AzDwCEuQLx6M+JufleO90n3ALxt7uYykrpdh8gFHjJQ2RafLbB7vMarQ5Hx7bOmqczDyKKPFWGhjsABJOjqEhazsvj1izcuuHo2JOzs4SClWekuwEBwGpWipdbVDFPBrdowwZlsxkt2gYHHSdO6IwD+EXDHZFpiThPpmFOjsfu0BYGkUZuuBcXK+PTlACAW+Q8elRa3rRJVxBEuMr5S4XVFTTcAeDPEkcGsy+dEgrkV1TAvylTVG6usG6XN2QA2tFwR2Ra2iY13E/M5YZ03AK54d7ZqRobdUUBAIvxeh3HjkkF3JiKAJHbQ8va6h1ej7YwABDOVrTV2b2G58tdzqi6jBydeRCZxE0VDnlDBqAdDXdEIJvPly8O1qzNlB6NAn7MmqUyM6WC/ft1RQEAi6mpsfX2SgUMcEeAVM5f6rUZvleKdw3nXmjWmQcAwpY8T6Y2M8/ljNYWBhFL3FThOHpUGT/1AfSj4Y4IlNl1LnmwTyio4cZU3KL166XVd9/VlQMALObwYWl1wQI1Z46uKIhwffFJZ2ZIz9cLWhkXCwBK+bvWomoe82QQCOIOd9uVK6qWaW8IIzTcEYFWtVQKq+2TZ/VMStUWBpHpjjuk1QMHeLoOAEFx6JC0yjwZBJQ8VWblqWptSQAgbMWMjeafPykUMMAdgZGerubPlwrk3xIBvWi4IwIVNlcIq9Vz2d6OW7Zli7R6+bKq5k04AATBkSPSKjemIqAq5i8TVleerhZmFgOARSxtq4t2jxmteu32E/O4QQ0BIv+mJ/+WCOhFwx2Rxu7zFog73MsXrtAWBhFrwQLGuAOAbk1N6uJFqYCGOwKqYqHUcE8cGcxub9EWBgDCkzxfq3F21lBMvLYwiHDyWcaDB3XlAPyj4Y5Ik9XemjJ4VSgozVqpLQwimTxVhjHuABBwBw5Iq2lpasECTUlgDV1JU89OSxcKVp5ijDsAq1spNtwrFizXlgSRT95acemSamrSFQXwg4Y7Io08T+ZS6ozzU9K0hUEkkxvuBw8qt1tXFACwBnnjEtvbEQSV8lQZ7k0FYG3R7rElbfVCAQ13BNLChSpN7OfImzMAjWi4I9LIDfeS7AJtSRDhtm2TVvv7VXm5rigAYA1yw/3223XlgIWUi62ila0n7D7GuAOwrsVt9dFul9Gq12avmr9EZx5EPnmDBQ13hA2tDfe+vr6ysrJXXnmloaHBzd5PBIHD61l+ukYoKGOAOwIlLU1lZUkFjHEHgABqblYXLkgFmzdrSgIrqVgg7XBPGuqbf+mMriwAEHZWtlYJqy1p8/viJmkLA0ug4Q6T0NRwLy8vX7t2bXJycmFh4Y4dO/Ly8hISEh577LHu7m49AWARi9vqE0YGhYKyhQxwR+Bs2SKtMsYdAAJIfgc1c6ZatEhTEljJpdQZ7ZNnCgWrWiq1hQGAcCNP1ipbwHY3BJq8weLiRca4I0zoaLg//fTTq1evLi4uVkolJiYuWLDA4XC4XK6nn3560aJFJ04w+hABI8+TOT0jszN5qrYwiHzyGPeiIjU6qisKAEQ6ueG+ebOy2TQlgcX4G+Mu7e4EgAgW5Rlb2lYnFFSKh4SAicjJUTOlB+FsckeYCHrDvaOj44knnvB6vXPmzHn77bf7+vpaWlr6+/v/9V//NTY2tqen5+GHHx4ZGQl2DFhEYYvUcC/NYns7AuqOO6T+ztCQKi7WmAYAIho3piJEysWBhAWtVYxxB2BNi9saYl2GzRyfzVY5f6nOPLAEm83PtT003BEegt5w/+d//uerV68qpV588cVt27bZbDalVFxc3De+8Y0f//jHSqm6urpdu3YFOwasINrtWnJGuiGdeTIIsOnTVX6+VMAYdwAICAa4I3TKFkr3piYP9i1sP6UtDACED3mm1qkZc3sTkrWFgYXIv/XJWzQAXYLecH/zzTeVUtu2bVu9evWHlr785S9PnjxZKVVaWhrsGLCC5adq5BvS5WuvgIlgjDsAaCC/nE6frnJydEWB5bRPnuVnjHsrY9wBWNEq8Xx5WRYD3BEc8g739nbGuCMcBLfhPjY2durUKaVUQUHBDQvy8vKUUidPngxqDFiEPMC9afZCHrAj8OQx7sePq0HpFl8AwLjIDXcGuCPIysV7/1Y103AHYDmcL0fI+B3jzr43hIHgNtxHR0f/9m//9oknnrj//vtvWHD27FmlVHp6elBjwCLkAe4lWTd+6gPcks2blcNhuOpyqaIijWkAIBL5fP4b7kAwyfs0V5w6Yfcyxh2AtSw9U+fnfLl44zQwcX7HuDPZFWHAGdTPnpiY+IMf/MBo9Y9//OO1hvtm3ibhliWODOaek45KlIkXXgETlJKili9X5eWGBe++q+66S2MgAIg49fWqo0MqkA8bAbdM/jVy0vBAdntLY3q2tjwAEHLyAPeWtPlXE5K0hUGkujo89k5z9/V/PjtvVY56zuijXO/sP9zUdVPHH2cnx+ZMT5xIRMBAcBvugpKSkkcffVQplZmZ+cgjj8jFDz30kN9P2N19g/8RanPlypXBwUGfzzcyYnhJN25dT0+Pz+cbiVNut/tDS8ubyh1ej9EHeuyO8ozc6z9KNupy3eyHTMzo6Gj4fCGv1+t2u+32Wzr+Mjo6Ej5/o4Do7e3tTrjxN1jCunVxxg1399tv9z7xxPV/3tPTMzQ0ZLPZhoaGApYS1+np6VFKxcfHhzoIgFsgb29PS2OAO4KtI2X6+Slp6ZfbjQoKmytouAOwlFXiQFfmySAgzlwZ/sarN5hclDk2M1XUAAAgAElEQVQ8c7fxR0Vf7v7FU6+1zJo//i90/+KZ/9ed/BxHIIWg4T40NPT973//e9/73tjYWEpKyp49e6Kjo+UPeeGFF8bzaQMUcCKGh4dHRkautc9CGCPiDQ8PK6VGbCPe687tygPcqzNy+6Ni1U2e9vV4PNd/oWBwu8PoC3m9Xp/P5/V6byWSR9vfSNd/R6Ojo0NDNx4d4yssjDP+QGdV1cilS96kD+/vGBoauvai4fP5AhcTH3btIShPNQBzk88Fs70dWpQvXCE23Mt/e8endOYBgBCKdY3kn20UCjhfjqBqm57RmTx1+lXDfbeFzRU31XAHAk5rw93n8+3ateub3/zmhQsXlFK5ubm7du1atsz/YK/nn39eWL22/33q1KmByjkBDocjJiYmNTU1MZFDKEE0MjLi8/lG4lKdzg+/4Vlz6oTwgaVZK53Om/5uj4mOdjoNd80HUExMjNOpY5v2eL7Qtf613W6fwL/YB7+Qln+6aE3/dMnJyVOnGly6e/fdKjpauQwmGHo80xobPdu3f+iPr+1tnzJlCpuvg+raU7rQ/oAAcEu8XnXwoFRAwx1alC1c8bHi14xWV5yqjvKM6cwDACEkv+h57faKBQxwR3CVZa3cXrbXaLWwueLZTQ/qzAN8iL6Ge21t7eOPP3706FGlVHx8/BNPPPGtb30rJiZmPB/7yU9+0m9NaJtWIyMjHo8nPj6e3llQxcXF+Xw+FRv7oYEnkweuLLh0WvjAsuyCCcxIcTgctzhZZZyczvD6QvY/m/AXcjidYfU3unWxsbGG/+uOj1eFhcLlqDFHj6oHP/zD/tredl40gi0uLk6F+gcEgFtSVaV6eqSCLVt0RYGllWZJ4xHirm32XDZHWx4ACCH5fHljevZAbIK2MLCmsgUrhIb7ytYqu9fr1dIrAG5I0zffU089tWrVqqNHjzocji9+8YvNzc3f/va3x9ltB/xa1VJpM57LMRIdW5uZrzMPLEfeX8kl6QAwYfIA97lz1bx5uqLA0rqTppyekSkUrG4yvkEdACKL3HBnngw0KM0uEFYTRwZzzjdpCwNcT0fD/Te/+c2XvvSl0dHR5cuXl5aWPvnkk2lpaRq+LqxDvrDlxNzFLmeUtjCwIrnhXl2tQnqrMwCY2L590irb26FRaZb03r6wmYY7AEtIGupbdKFZKCgRXy2BgLiYOuP8FKm1WNgitYmAYAv6SJljx4791V/9lc/n++QnP7lr1y6/96MCEyBvKZKPAAPj8cMDrad7DC/ejHZ7342KiRkbvfGyz/eNv/t/31m2+f1/5na7vV6v03nqQyNxnv1sQdY0DmACgFJKKZdLHT4sFTDAHRqVZq186MhLRquL2xr2jgzrzAMAIbGqpdLu8xqtupxRVfOW6MwDyyrLWincZ76mqezXWz6jMw/wfkHf4f5v//Zvbrd72bJlv//97+m2IxhmXukQXmQVD9gRCMYji5RSyuWMrp4rjS1a1VI53i+kxK8EACbn8ynv+P+v6KgaHDT8XDabd8tWo4+VX7eBCShbuEKYBhvlGcuoZZM7gMgnb3ermZs/Eh2rLQysrHShtLdy2enaaLdLWxjgQ4K7w/3ChQuvvPKKUurrX/+606nvglZYympxnsxAbEJjera2MLCssoUrhFGG8pRDALCO7+xrern20jiLv/LGM39lvHpqxtyHnmtW6san2hdNS7z5dICkPy6xcXZW3rmTRgXzKo8q9ajOSACg32pxghbb3aBNafZKn81mdJ9fzNjo8tM1fEMiVIK7w72qqsrj8Sil/uZv/maqsS996UtBjYHIJg9wLxf3IgGBIk8umtt5dvpVxrgDwM2Rh2IXi5dlAcEgj3GfV3FUWxIACIkZvZ0ZXeeFAga6QpuexNSWWfOFAu4zRwgFtxF56tSpa//P1atXLxvr6+sLagxEtlXiVRj8vIcedRm5QzHxQkHBuKfKAACUUokjg/lnG4UCufUJBIP8i+WMU42qs1NbGADQb83JMmF1KCa+fk6OtjCAvIFdPo0BBFVwx7zk5eX94z/+o9+yxYsXBzUGIpjfjcPyVC8gUDx2R9X8Jesbio0KVrVUvlFwp85IAGBqBS2VDq/HaNVjd5QvWKYzD6CUqpy/1OWMNpwJ6/Opd95Rn/603lAAoM/aJqnhXrZwudvBMGHoU5Jd8PDB541Wc843JQ319cUn6YwEXBPcl8KtW7du3bo1qF8CFicfEepJTD01c66uLLC6soUrhIb7avF3UwDAh8ibkmoycgdjE7SFAa4ZjYqpmrdE+uZ8+20a7gAild3nlae9lXG+HHpVLFg+5nBGedw3XLV7vataKvcvvV1zKkAFe6QMEGyrxDEd1+7Q0BYGFicfM591pSOt56K2MABgdmvFQ+slvKVHiBQvWiUtv/22riAAoFv2hZbUgV6h4Hi2+AoJBNpwdGx1Zr5QIP8+CQQPDXeYmN3nXdlaJRSUMU8GGp2cndUXN0koWNXMGHcAGJdZVzoyO88KBcUMcEeIFMvtpPPnVUODriwAoNUa8cxuV9LU0zPm6soC/H+KF64QVteeLNWWBHg/Gu4wsewLLSmDV4UCtr9BJ6/NXrFwuVAgH8gAALxnXWOJsDoYE1+dkastDPB+TbMXXklIkSr27dOVBQC0km9MLV60ivPl0O+4uAkjrediRtd5bWGA99Bwh4kVNlcIq5dSZ1yYkqYtDKCUKhOfrnNJOgCMk7yHrnTBMu5kQ6h4bfYS8ce92rtXVxYA0Mc5OrL8dI1QcHxRobYwwHtq5+RcjZcOmrPJHSFBwx0mVtgiNdxLsjlsDt1KxSlGU/suzxUnJAAAlFJ2r7dQvBT9aBYjYhFKx+VfMt99V42O6soCAJpk1pRFu11Gqz6brYRpbwgFr91eOl86aE7DHSFBwx1m5fB6lp+SHrDLrU8gGE7NnHt50mShgKkyAOBX3rnGpOF+oeAYI+MQUn6uEBgcVEVFurIAgCbzyw4Lq00z5/dMStUWBni/o+KD8FUtlU6PW1sY4Boa7jCrxW318aNDQkG5fNoXCAKfzVa+QBzjLs5BAgAopdaJG5HaU2e2TU3XFga43sXUGWemzZEq3npLVxYA0GSB2HA/xvlyhI589jF+dGjpmTptYYBraLjDrFaLjcvTMzI7k6dqCwO8pyxLetJT2FJh93m1hQEAM5JP/h5bxDwZhF5Rtvh9+OabuoIAgBZnz0492yqsyxdXAkHVnjqjbZq0G4OpMtCPhjvMSr4xtZSf9wiRMnGWUfJg38KLp7SFAQDTSRruX9xWLxQckxudgBZ+Gu41Naq9XVcWAAg+8TniSFRMxbwl2rIA1zueLd3Zu/ZkibYkwDU03GFKsa6RxW3SmaAy5skgRM5OS7+YOkMoYKoMAAjWnCxzeD1Gq167vYQ7WhAGyuYvczmjDZd9PrV3r8Y4ABBk4qSs0vnLRoWXRCD45BOQOeebJ/df0RYGUDTcYVLLztRGu8eMVr02e8WCZTrzAO8n3x/AvakAIFjXWCys1mTm98clagsDGBmJiimfv1SqYIw7gIjhdqt33hHWj3L4DKFWtmDFmCPKaNXu865jkzv0ouEOU5LnyZycndWbkKwtDPAh8gGLla0n7F7GuAPADdh8vnWN0pDNozmrtYUBZH6mG+3dqzyGZzUAwEyOHVNXrwrrRxZJ0zwADYZi4k7MWywUrBe3dAABR8MdpuRvgDuHzRFK8ndg4shg7vmT2sIAgIlktbdO6+sWCo7lrNEWBpD5efzT06OOH9eVBQCCSTyyc2HyrLap0n2VgB5Hc6XfEteeLGXfG3Si4Q7zsff1yf3KMhruCKmOlOnnps4WCuQnRgBgWfLmo57E1Mb0LG1hAFnrjLmdKdOkijfe0JUFAILp9deFxWMcPkN4KMpZK6wmD/bln2vUFgag4Q7ziT96WHgy6XY4q7ghHaEmb3JnjDsA3JDccD+eU+i18bsrwkiRfORCbFEBgDm0t6uqKmH92CIa7ggLrbPmyQ/C1zdw8gz68KYF5hN/5JCwWpuROxQTpy0McEPyGPflp2tix0a1hQEAU0ga7l92ulYokDcuAfodzRW/J6uqVHu7riwAEBxvvKF8PqNFlzOqhPPlCBtHxQfhGxjjDo1ouMN85IY7A9wRDsoWrvTZbEarsa6RdU1lOvMAQPhb21ji8BpeMum12YsXiXdUAtoVZxeMOaIMl30+9eabGuMAQBCI07Eq5y9juxvCh9xwzznXNKW/R1sYWBwNd5iMo6MjprFeKKDhjnDQMyn19Iy5QsGW2iO6sgCAOWysl8751mfk9CYkawsDjMdQTHzl/KVSBVNlAJja2Jjat09YL8rj8BnCSHF2gdvhNFq1+7wbGtjkDk1ouMNk4vbuFU60jUTH1mbm68wDGDkiHjPf1HBM2MgJAFZj93rlAe5F8uwOIET8NJv27VNjY7qyAECgHTmirl4V1v1cZQHoNRibcGLeYqFgA2PcoQsNd5hMvHgyt2reEpfT+GAvoNGBJbcJq8lD/atOVWsLAwBhbvHZ+pRB6S39EfbQISzJp9fV1avqkDQLEQDC2muvCYvnp6S1Tc/QlgUYD3mLxtqTpVEeHoRDBxruMBN7b2/McemB5NEcbkhHuKjNzO1OmiIUbKkv0hYGAMLcbXXHhNXupCmNs7O1hQHG7/SMzPNT0qSKV1/VlQUAAu2VV4RF5skgDB3OWy+sJowMrmDfG7Sg4Q4zidu3z+Z2CwXynmJAJ6/Nfih/g1CwtbbIZjwfCQAsRT7heyRvnXATNRBaR+V5R2K7CgDC18mTqqlJWC/KXactCzBOp2dknps6WyiQLw0CAoWGO8wkTpwn05C+qH3yLG1hAL/eFZ8ATe/rzjt/UlsYAAhbM690ZF1sFQoO5/GWHuHrUL60mU61tqqGBl1ZACBwxAM6I9Gx5QuWacsCjN/RXGna28Z66VQlECg03GEeQ0Oxhw8L6+8uZXs7wktp1sr+uEShYHPtEW1hACBsbaqTTvy4nFGlWQU68wA3pWLB8qGYeKmCqTIAzEg8oFOSVTAaFaMtCzB+R8SzFxld5+Z2ntUWBpZFwx3m8frrtuFhYZ15Mgg3bodTfrq+hYY7ACi1qe6osFqxYPlQTJy2MMDNcjmjji9aJVUwVQaA6fT0qCLpxqmDi6XhmUAIlS9cIf/quKmW29QQdDTcYR5//KOweHbanFMz5uqKAozXu0s2CavzOtp4ug7A4hJGBgtaqoQCP/M6gDBwWP4uPXZMXb6sKwsABMKbbyrj69O8NnuRfH0FEDp+D0feXkfDHUFHwx0mMTamXn9dWH9n6e3asgDjdzRnjcsZLRRsrpEGJQFAxFvfWBLlGTNa9dls8gXUQDgoyl3rtRm/sXK7mSoDwGTEozkNcxZ1J03RlgW4WQfF3x6XtNWlDvRqCwNrouEOk9i3T/VKL4jy7ZRAqAzFxBVnS8fMGeMOwOJuF18Gm9IWXkqdoS0MMDE9ial1GTlSxZ49urIAwC0bG1Nvvimsc/gMYe5I/jqv3bDhafd6b+PqVAQZDXeYhDhPpjNlWsOcRdqyADflwJKNwmr+2YbpvV3awgBAWHF4PesbioUC3tLDLA7LRzH27lXiXUQAEEbeeUfe7uZnjhYQaj2JqbUZeULBbUyVQZDRcIcZeL3yibb9Szb5bDZtcYCbcnDxRo/dYbRq8/kYIQfAsgpaq5KG+4WCg4ulZ5ZA+Dgg3x84OKjefltXFgC4NeKhnEupM5pnLdCWBZgY+V7ftSdLY8ZGtYWBBdFwhxkcOaIuXRLW5XspgdDqTUg+MW+xUMAYdwCWtblGmifTmTz15OwsbWGAW3Fq5rye2ZlSBVNlAJiC16v+9Cdh/eDiDWx3Q/iTLwGKc42sPVmqLQwsiIY7zECcJ9ObkFw1f4m2LMAEHBB3aPrd4AkAEcnm822ulZ44Hs7nLT3MpGn9Nmn51VeVx6MrCwBMVHGxam8X1g8s5vo0mMDpGZlnp80RCu5g3xuCiYY7zEDcECTP6wDCwQFx6pHT497InS0ArCfvXKN8iYX8tBIINyfXbZWWOztVEUPkAIQ9cXt7X9ykyvlLtWUBboV8FdCmuqMOLw/CESw03BH2ysvV6dPC+rtLeMCOcNc+eWZzmjToUB6qAAARSd5Y1B+XWJa1QlsY4Nadz1+hpk+XKl56SVcWAJiol18WFo/kr3M7nNqyALdCbhYlDfUVtFZpCwOroeGOsCfOkxmKiS/JLtCWBZgw+ejl+sbiWNeItjAAEA7khvvhvPVjjihtYYBb57PZ1X33SRW7dyufT1ccALh5dXWqsVFY5/AZTKRmbv7lSZOFAm5TQ/DQcEfYE7cCHclb53JGa8sCTJj8dD3WNbK6uVxbGAAIufkdZzI7zwoFB5bwlh4mdP/90ur586qUK9oAhLEXXxQWR6NijuWs0ZYFuEVem/2g+Ihoc81hGw/CERw03BHemppUQ4OwzjwZmEVz2oLzU9KEgjuqeboOwEK2njgorPKWHmZ1550qKUkqYKoMgHAmvkYVZxcMR8dqywLcOrllNP1q9+KzUscJmDAa7ghv4gN2lzOqKJd34zCNA+IP+031RdzZAsA6tlRLDffi7FW8pYcpxcSoe+6RCnbv1hUFAG5Sc7OqrhbW9y+9XVsWICDKslb0xyUKBVtPHNCVBdZCwx3hTRzgfnxR4VBMvLYswC2SG+7Jg33LT9VoCwMAIZTZeTarvVUo2L90k7YwQIB9/OPSakuLOnFCVxQAuBniE0Gv03lo8QZtWYCAGHNEHclbJxTcWfUuU2UQDDTcEcbOn1fl0lTrA0t4Nw4zqfZ3Z8sdNYe0hQGAENombiZyO5yH8tfrygIE2vbtKiFBKhBPcAJAyIjzZE4vX9sXN0lbFiBQ3hUbRzN6O/POSRcFAxNDwx1hbPduZfyk0Wu3824c5uK1+fmm3VJzSPieB4CIsVWcJ1OSXdAXL07BBsJZfLy66y6p4PnndUUBgHE7fVqVlQnrjbd9VFsWIICO5K2VRyPIFwsBE0PDHWFMnCdTvmB5b0KytixAQMhTZab3dsVWV2kLAwAhMaf7QvaFFqFg39LNurIAwSFPlWlqUlX8uAcQZl54Qdr643CcXL9VYxogYFzO6CO5a4WCbScOsO8NAUfDHeGqu1sVFQnr8mXTQHgqzSoYjJWOmSe+8aq2MAAQEndWvSusuh3Og4s3agsDBMV996mYGKmATe4Aws1zz0mrmzYNJUuzMYFwtm/5ZmE1refirOY6XVlgFTTcEa5eflm53UaLPpuNd+MwI5czqihnjVCQ+Nor2sIAQEjcVfmOsFq2cMXVBObJwOSSk9VHxdkLNNwBhJXWVlVRIRU89JCuKEDgHc1ZMxwdKxTkH3xdWxhYBA13hCtxnkxdRm5HynRtWYAAOrBEelYUfbJBNTVpCwMAmk0927rw4imhYN+yzbqyAMH0yU9Kq62tqrxcVxQA8Efe3u5w+JmUBYS3kejYInGqTN6B15XXqy0PrICGO8JSf7/av19YZ54MzOtI3jqXM1qq2LNHVxYA0C3/XWlwlsfukO+6AExjxw4VFycVyO0tANBJfkW64w41ne1uMLd9y+8QVpO6LqqjR7WFgRXQcEdYevVVNTIirB9gngxMaygmvixrhVQhHu8AAFPLP/CasFqcXcCN6IgQkyapu++WCv7wBzbTAQgL9fWquloqYJ4MzO9I7tqhGPFB+B/+oCsLLIGGO8KS2HAczclrm56hLQsQcO8u2SQtFxer9nZdWQBAo7KyyRfahPW9K7ZqywIEnTxV5tw5deSIrigAYOzZZ6XVqCjmySACjETHHs5fL1W8+KLyeHTFQeSj4Y7wMzqq3nxTWB+4Z4e2LEAwHFy8wWs3fvn1etWf/qQxDgDoIm4dcjmjmCeDiHLffSohQSqQm1wAoIHP5+e1aOtWNWWKrjRAEL0lb+zo6JAnGwM3hYY7ws9bb6n+fmG9f/u92rIAwdCTmFqdkSdVvPyyriwAoIvHI7+lP5q7diBW7E4C5pKQoHaI20ReeEGNjelKAwA3UlysWlulgr/4C11RgOA6vmh1f1yiVPG73+nKgshHwx3hR5wn405PH128VFsWIEj2y/cQ7N+vrlzRlQUAtNi/X56X5WfbEWBGn/qUtHr5snrrLV1RAOBGfv97aTU2Vj3wgK4oQHC5nFHvLhWHu770khoa0hUHEY6GO8KMx6NefVVYH5KvnwJMYp88NmFsTL3xhq4sAKCFuGloODr2SN46bVkATT76UTV5slQgt7oAIKg8HvX881LBvfeqZC4zR+TYu3yLtNzfz3BXBAoNd4SZgwdVd7ewPvyRj2jLAgRPe+rMplnzpQqmygCIJEND6qWXhPUDS24bjo7VFgfQJDpaPfigVPDyy6qvT1caAPigvXtVR4dUIB/TAcymNGvl5Unig3CmyiBAaLgjzIjzZDzTpo0WFGjLAgTV/jzxkvRXXlE9PbqyAECQ7dkjX9DyRsFd2rIAWn3609Lq8LB64QVdUQDgg37zG2k1JUXdc4+uKIAOHrtj7wpxk/tbb6muLl1xEMlouCOceDxyw334rruUnW9aRIj9+eIY95ER9etf68oCAEEmbhfqmZRanM0DdUSoTZtUerpU8Nvf6ooCAO9z9aras0cq+PjHVSyHzxBp/GzyGBtTzz2nKwsiGb1LhJNXX1UXLgjrwwxwRwRpTFtwYfIsqWLnTuXz6YoDAEFz8aJ8M+RbK7Z67A5tcQCt7Hb12c9KBYcOqTNnNIUBgPe88IIaHpYKPvMZXVEAfernLDozPUOqYN8bAoGGO8LJzp3SakrK6DquU0NEeXvZZmn55El18KCmKAAQPLt2KbdbWH9j5Z3asgAh8LnPSas+H5vcAYSAPE8mPV3dcYeuKIBWbxSIv3mWlam6Ol1ZELFouCNsnDolb39T993ni4rSlQbQYffa+7w28XVYfgoFAKYgbhQ6Mz2jPiNHWxYgBPLy1KpVUsGvf82ZNgBanTqljhyRCj77Waa5IlK9UXCnz2aTKn71K01RELl4AUXY2LlTeb1Sgbw5CDChC1NmlWatlCpeekl1duqKAwBBUFoq7xJ6tfCj2rIAIfPII9Jqa6s6dEhXFAAYx3M++VULMLP2ybMq5y+VKvydzgT8ouGO8OBy+XmEuGCB2rpVUxhAo93rd0jLfv+nAQBhTnwR89rtr6/6iK4oQOh86lNKPqn5y1/qigLA8rxeP28xCgtVbq6mMEAovFooXhB46ZJ6801dWRCZaLgjPLzwgp9tvF/+MifaEJEOLt7YlTRVqvB7+AMAwtbwsHr2WWH9ePaqzmTxNRCIDNOmqe3bpYIXX1R9fbrSALC2t99WZ89KBWxvR6Tbt+z24ehYqeKZZ3RlQWSig4nw8POfS6sxMerzn9cVBdDKY3e8slp8un7qlHrnHV1xACCgdu9WV64I68yTgYV84QvS6tCQ+sMfdEUBYG3ykZqYGPXpT+uKAoTGUEz8/qW3SxWvvKI6OnTFQQSi4Y4wUF+vioqkgoceUtOm6UoD6PbSuvu88gEOrk4FYFK/+IWw2B+XeGDJbdqyACG2fbuaOVMqYKoMAA0uX1Z79kgFH/uYmjJFVxogZPxs+xgbU7/+ta4siEDOUAcAlPrpT/1c2PKVr+iKAoTApdQZxxat3tBw3LBizx7V3q7S0jSGAoBbdvKkOnxYWH9rxVaXM1pbHCDYOgZc/3HolFBw2x33FTxr/BSquPh3v3yta6H/ucm5MyZ9ZBGbUQBMyG9/q0ZHpYJHH9UVBQil8oXL2yfPTOu5ZFjx9NPqf/5PZbNpDIXIQcMdoTYwoHbtkgqWLlXr1ulKA4TG7vU7pIa7262eeUZ961saEwHALXv6afmB+p6192jLAmhweXD02JkeoaAo47YXlHTsI+bpX+x68G/9fqHtuTNouAOYoKeeklbT09W2bbqiAKHktdlfWb398TeNj5c1NalDh9Tt4uQZwAAjZRBqv/udnxuivvpVXVGAkDmSu+5i6gyp4sknlcejKw4A3LLRUfkc7snZWQ3pi7TFAcLB6RmZ1XPzhYK7K/bFuUa05QFgOQcPqro6qeALX1AOh640QIjtWb3dz3DXJ5/UlQWRhoY7Qk1+/Zo0iQtbYAVeu/2V1dulirNn1Vtv6YoDALds927V2Sms/3HdfdqyAOFjzxrpYEfCyOBdldyUDiBo5Hffdruf652ByNKZMu1ozhqpYvdu1dWlKw4iCg13hNSxY6qiQir43OdUUpKuNEAovbTuPrdDHPPF1akATORnPxMWR6Jj31zJiXVY0d4VWwdiE4SCTxz7k7YwAKylu1vt3i0VbN2q5s3TlQYICy+LD8LV6ChXmmNiaLgjpH7+cz8Fjz2mJQcQet1JU4py10oVr72m2tp0xQGAW1BTo44cEdb3Ldss9xyBSDUcHftGwZ1CQd7ZxryzjdryALCQZ57xc13q44/rigKEi8P567uTpkgVO3cqr1dXHEQOGu4InStX1IsvSgUbNqgVK3SlAUJv97od0rLHo555RlcWALgF/h6ov8Q8GViY33lKDxX9UU8SABbi9cqHz9TMmWqH+GYEiEQeu+OVwrulitOn1Ztv6oqDyCGOLwBuhsvjfbPxJoZbLfjVz/KHhoSCivs+c76u4/1/0t3d5/P5ohNtE4wIhLdjOavH5s6LOnPasOLJJ9W3vqWiojSGAoCb1N+vfvtbYb0pbWH13MXa4gDhpiltYU1m3pK2eqOCuyr3/z/3feVKYorOVAAi3GuvqdPG7zKUUo8+yrsMWNNL63f85bvP2rwew4qf/UxtF29cA65Dwx0BMzDq+fbek+Mstvl8u38tTcLqTUj+a3u264Of0OVyKaXmTBmccEggnPlstqufeWTqd/9vw4qLF9Xrr6uPfUxjKAC4Sc88o/r7hfXd69lAB6t7af0OoeEe7XZ9rPi1X219WGckABHuJwvr9PoAACAASURBVD+RVu129cUv6ooChJeLqTNaCjdlFb9rWPH666qpSWVnawwF02OkDEJjdXN5Rtc5oeBPa7a7nNHa8gBh4urDj/jZWsLVqQDCmder/uu/hPXR+MQ3Cu7SFgcIT3uXb7makCQUfOLoHjsTYwEEysmTat8+qeCjH1Vz52oKA4Sf8vs+LS37ncgEXIcd7giNB4teFlZ9NtvLa+7VFgYIH55p09X996sXXjCseOstdfq0mjdPYygAGLfXX1fNzcJ69Z33D8XEaYsDhKfRqJg9a+55ZP+zRgWzrnRsrj28f+ntOlMBMKP9zd3N3X6OgG/48b8u9vmEgje2fvLssTb5k3QNum46HGASrYW3qXnzpLFLzzyjvv1tNWmSxlAwNxruCIGpfZdvqz8mFBxfVHh2Wrq2PEB4efxxqeHu9aqnnlLf+Y7GQAAwbuL2dmWzVdz7KSXNmwGs4sX1H/vsgeeEbewPH3yBhjsAvw60Xn69oUMomDQ88Lk/PS8UnJs6+x/VXO9xPw337GkJE8kHmIHPZlePP67+/u8NK65eVb/5jfra1zSGgrkxUgYh8PFjf3J63ELBi+sZUQ0L27LFz3i4X/5SjY3pSgMA41Zfr/bulQq2bu3KzNKVBghr7ZNnHcldKxQsO12Td7ZRWx4Aker+46/Gjw4JBS9suN9rozUEy3vsMRUfLxX85CeKaW8YN15VoZvD67m/+DWhoDNl2pG8ddryAGHHZlOPPSYVXLqk9uzRlQYAxu1HP1LiiXX13/+7riiACTy/8eNywcOHpE2pAOCXw+v5iyMvCQUj0bGvrr5bWx4gfE2Zoh4Wrys/eVK9+qquNDA9Gu7QbVPd0em9XULBS2vv89gd2vIA4ejRR1VsrFTA1akAws2lS2rXLqlgwQJ1zz260gAmUJy96tSMuULB1hMH5V+bAUC29cSBmVekgTOvrfpIXxxjqQGl1Di2hvzgB1pyIBLQcIdu8nWpHrvjT2t4Nw7LmzJFfVzc9fbOO6qpSVcaABiHn/xEjY5KBf/tvyk7v3kC/z+fzfaHTQ8KBU6P++GDbHIHMHGfFV9DfDbbs+KrEGAtixerLVukgsOHVUmJrjQwN972QKv0y+2FzRVCwYElt3UmT9WWBwhfjz8urfp86qmndEUBAH8GB9XPfy4VJCWpv/xLTWEA83ht1V29CclCwQPHX00a5qJhABNR2FwhXwVxNGfNmekZ2vIAJsAmdwQIDXdo9WDRy3afdMvE7vU7tIUBwtqmTSo/Xyp45hk1MqIrDQCInnxS9fRIBV/8okqWuoqANY1Gxby0TvrtN350SD4eCgBGHnn3Wbngd5sf0pMEMI377lPZ2VLBSy+p1lZdaWBiNNyhT7TbdV/pG0LB2WlzSheu1JYHCHdf/KK02t2tXpJuQAIATVwu9aMfSQVOJ9elAkae3/jAmCNKKPjUod0xY+K8JgC4TnZ7y9qTpUJBy6z5vPsGPsxuV3/zN1KBx6P+/d91pYGJ0XCHPtuqDiQP9gkFu9fv8Nls2vIA4e6RR1RcnFTw7/+uvNKREQDQ4Te/UefPSwUPPaQyOLEO3Fh30pQ3Vt0pFEweuPKx4te15QEQGf7ynd/bfD6hYNfmv+DdN3ADn/+8mjZNKvjVr1R7u640MCsa7tDE5vN95tALQsFoVMwrhR/VlgcwgdRU9ZB4zLOqSj3r56AoAASXx6P+7d/81DzxhJYogFn9+o5Pe23S+7LP7/99lGdMWx4AZjen+8K2E+8KBZ0p095auVVbHsBM4uLUV78qFYyO+jncCdBwhzZ3Ve7POd8kFOxdvqUvPklbHsAc5KtTlVL/8A9qlGPmAELn+edVc7NUsG2bWsmJdUDSNj3j0OINQsGM3s57S9/SlgeA2T2299d28SDsrtsfkodZAZb2ta+p+HipYOdOdfmyrjQwJRru0CHaPfa1138h13BdKnAD69appUulgtOn1c9/risNAHyQ16u++10/Nd/8ppYogLk9s/VhueAv3/mdw+vREwaAqc2+3P7Rin1CQV980str79OWBzCfadPUY49JBQMD6oc/1JUGpkTDHTo8WPTHtJ6LQsHJ2Vm1mXna8gBm8j/+h5+C73xH9Um3IwBAsDz3nKqtlQrWrlVbtuhKA5hYXUZuxYLlQsHsy+3by/dqywPAvB7dt0t+Pvf8xgeGYsSbogD83d+p6Gip4Cc/Ud3dutLAfGi4I+gmDQ889vZv5ZrnNz6gJwxgPo88ovLEx1FdXdyTDiAEPB71z//sp+Z//S8tUYBI8NSdj8gFX3zrV0xyByCbfbn9njJpAtVwdOwfbvuEtjyAWc2Zoz77WamATe4Q0XBH0H1h366kIWn7bdv0jNdWfURbHsBkHA7/Ext++EN14YKWNADwZ889pxoapIKlS9W99+pKA5heSXZB9dx8oSCt59J9JW9oywPAjL701q+cHrdQ8OKG+3sTkrXlAUzsG99QDodU8F//pbq6dKWBydBwR3BN7+36iyMvyTU/uedLbodTTx7AlD72MbVBuktNDQ+r73xHVxoAUGpsTP3jP/qp+Yd/UDabljRAhHja/yb3X8eMcVk6gBub19F2d8XbQsFoVMxvN39KWx7A3LKz1UMPSQUDA+p739OVBiZDwx3B9devPym/K6jJzDu4eKO2PIBZ/fCHfvpWv/iFn62mABBATz+tWlqkgiVL1Mc/risNECGKctc2pC8SCqb1dX/i2J+05QFgLo+/+Uu71ysU7F63o2dSqrY8gOn90z/52eT+s5+ps2d1pYGZ0HBHEGW3t3y0XLoeXSn1Hzu+6mP7G+DXmjVqxw6pwO32v9sUAAJieFj9y7/4qfnf/1vZ+T0T+D/s3XdYFFf3B/Czy9J7EWmKKCj2giVij713jcYSoyYaY6yJxhaTmDfGkmg0ajT2bvS1K8YSK1bAoGJBEaQJ0suyLFt+fwzhx6swW5idbd/P45Nns3t25uxyd+7MmZl7Nbal50fsAR+f321TmM9LLgBgTOonPe0afYUloNjSevf7uLwdQBN169LIkWwBEgl99x1f2YAxwYEQ6NCMExuFSrYT7Bebdv4noDFv+QAYt59+IhHr4EuHD9PNm3xlAwBmbM0aFfNG4PJ2AG1dbRj6wJ9tsnSXwtz2h//gLR8AMBZfnNwkUCpZAg6HDnzj5MFbPgAmYvFiFRe579xJT57wlQ0YDRTcQVdCn9xp8+weS4DMQvRbn8m85QNg9OrVo/Hj2QKUSpo/n69sAMCkyBVKqUyhzr+SlNe0fDn70mRLlkoVVOHblay1AAAgoo29J7EHtD26k1JS+EkGAIxC6OPbrWIjWQLE1rY7u47mLR8A0xEcTKNGsQXIZDRvHl/ZgNHATJWgE0KlYtrpzewxR0IHvKrmx08+ACbiu+9o/34SiysNuHqVzp6l3r15zAkATMG3fz078zhNncj5h38elpfHEvCoZv2PXrkr112v8NW61ey1yQ/AnNypGxJZp1mLF/crC7AsltCSJfQHrnMHACIioUIx/fTv7DEHOgzNcsDo7QBa+fZbOniQSkoqDThxgi5fps6d+UsJDB6ucAed6HvvXL3kWJYAsbXd1m7jeMsHwET4+ND06Spi5s0j1rmSAAC0FpCWMPjWKfaY9X0/wewsAFX0Wx8VF7nT9u0UFcVLLgBg6AbeOROU8oIlIN/WYU8XjN4OoK3atWmyquEZ5s7FYTiUhyvcgXtWMumnYdvZY3Z0HY3p0QHeFZ8llsjY+mmLCdOCN2+xyM6qNOLBg8Tf/sgepmKXukF1R5EQFTEA0MzMExssFHKWgFv1Wt0NasFbPgCm6p+Axpcbd+j84FqlEQoFzZxJV9gmSAQAc2BTmD/ljIr7XXZ0/TDP1pGffABM06JFtGMH273mERG0e7eKMWDBnKDgDtwbfeVPr2y229LfOHns7zict3wAjMjaay/T8ovZY8a1H/HFyU0sAaJvlkyR1JGKLFli/vq0rZsdWwAAwFs6xIS3e3yLJUAhEP7WF7OzAHBjfd9POjwKZzvFdfUqHT5Mw4bxmBQAGJxO+ze4FWSzBKS5eB7oMJS3fABMk7c3zZxJ//kPW8z8+TR4MDk58ZUTGDQU3IFjTkX54/4+wB6zqffHRVY2/OQDYHoOdBg64vpRltNa3tlpw24c3ddpBJ9ZAYBps5KVzD62nj0mLKTbY796/OQDYPLiPWseb9NnyM2TbEFz51KfPmRnx1dSAGBgnj177/ge9pBNvT8utrTmJx0AIxWfLZ5woNKpUxi2gX2WO21yyqv8XvPXr8NGf35wzGyWhYTWcp38nr92SYJxQcEdODb53A4nMdtcai+r+59q1Yu3fABMj1RktbnnhCUHlrPETPpr16nWvXHrKABwZczlgzUyklkCii2tf+uDy9sBuLS554RekRfsiosqjUhIoB9+oB9+4DEpADAkn39uIat8IkeiWJ86p0N68pYOgJESS+XP3hSqDNvQ46P5h39mCegWtn9ro+4vq1daUq/hYqtNfmCEMGkqcMknK3Vo+HH2mLX9p8qFFvzkA2CqTrXq+cwnkCXAqSh/zN8HecsHAEybT1bqxxd2s8fs7TQizcWTn3wAzESGk/uOrmNUBK1aRU+f8pIOABiYQ4fo/Hn2kF8GTlMIUfYB4MbR9/qxFNOJSCSXzTvyi0Cp5C0lMFjY8gKXPj+12Yr1BHtknWbXG7TlLR8AU6UQCDf1nsge8+GVQ545b/jJBwBM2/wjv9hIJSwBGU7uO7qO5i0fAPOxp/OIFDcvtgiplKZNIxzbA5ib/HyazTZyBRFdadT+TlAIP+kAmAO50GLNgM/YY1o+j+oT8Rc/+YAhQ8EdOCOKuNf9n79ZApQCgcptEwCo6WrD0HuBzVkCrEuKJ53fxVs+AGCqety/FPr4NnvMr/2miK0xijQA96Qiq1/7T1URdPEi7dzJSzoAYDAWLKBktqHepCJLHH0DcO5G/feuNQhlj5l5YgP7SMtgDlBwB87YLvya/caZ883ej6mBudQAOLNB1XDJA2+frp0Wz0suAGCanMR5c46uY4+JrtXobEh3fvIBMEMXmna+G9RCRdCcOZRW6WzqAGBqbtygDRvYQ/Z3HJ7o4ctPOgBm5edBn0tFliwBrgU5s46r+IWCyUPBHThy7JjltSssr0tFluv7Yi41AC5F12p4uXEHlgALhfyH3d9ZlxTzlhIAmJi5x9a552exBCiEwhVDZigFAt5SAjBDK4bMLLFgO7anrCz64gu+0gEAvSoupsmTSaFgCUlz8dzafRxvGQGYlUQP372dRrLH9L97NvTJHX7yAcOEgjtwITGRJqsopv/ZbnCKmzc/6QCYj3V9P2GfhTgo5cWcY+t5ywcATEn7mJt97qkYg/Jw6MAnfnX5yQfAbL2s7r+38wgVQYcO0aFDvKQDAHq1dCk9fswesnrQ52JrW37SATBD27qPTXWtzh6z8NBKe0khP/mAAULBHaqspIRGjKCMDJaQfFuHbd3G8pYRgPlI8Kx5snVv9pghN0/0jLzITz4AYDKcxHkL/lzFHvPGyUPl2FYAwImt3cepPLanadPo9Wte0gEAPbl5k1auZA8JD259qUknftIBME9FVjYrhs5kj6mekz77+G/85AMGCAV3qLKvvqJbt9hDtncdk2vvxE86AOZmc88JEisb9piFf66q+SaRn3wAwDQs+HO1Zy7b2XQiWjV4eoGNPT/5AJi5Iiub5cNmqwjKyKBPP+UlHQDQB7GYPvqI5HKWEImVzYqhs3jLCMBsXWsQeqlJR/aYgbdPd3x0g598wNCg4A5Vc/w4rV3LHpLu7HGo/WB+0gEwQ+nOHvs7DGOPsSsWr9ixBIO5A4Ca+t471+2fy+wx1xqEXmzamY9sAICIiG7Uf+9ci64qgk6coN9/5yUdAODd7Nn07Bl7yO89JyS5+/CTDoCZWzXoi0JVl54sPrjCLT+bn3zAoKDgDlXw/DmNH09KJXvUb30/UXn5LQBUxfZuYxI8a7LHBKbG4Y42AFCHX2bKV/9VcTY939bhx+Fz+MkHAMqsHjRd9W2js2dTTAwv6QAAj/77X5Wn02Jq1NvbSdV8DwDAkXSXamv7T2GPcS3IWXrgR4GquhmYHhTcQVsSCY0YQbm57FHh9ducDenOT0YAZktsbTtv/LfFltbsYUPDj/eOOM9PSgBgpKxkJT/uXKpyiqdfBkxLd/bgJyUAKJPl4Lp60HQVQWIxjRpFRUW8ZAQAvEhMpMkqJk0psbBcNvIrhRBFHgD+HH2v/52gEPaY0Me3x14+wE8+YDiwLQZtTZtGUVHsIWkunktGL1QI0MwAdO65d+3Vgz5XGfb14dX+6a94yAcAjNQXJzfWT3rKHnMzuLXK6ZoBQEfOhPR4HKrqcpboaPpc9V4BABiHkhL64APKymKP+qPHuGc+gfxkBAAMpUCwbOSXYmtb9rDPzvzRJP4RPymBgUAlFLSybx9t28YeIrMQLRi7JMfemZ+MAOC/bQecCenBHmNXXLR811IM5g4AFepx/9LI6/9lj8mzc/p+xFdKgYCflADgXSemL6Vq1VQEbdtG27fzkg4A6NiXX1J4OHvIo5r1d3T9kJ90AKC8FDfvXwaqOMktkst+3LXUtSCHn5TAEKDgDpp7+FDl7WxEtGbAZ/8ENOYhHQAos3zY7HhVg7kHpbyYeWIDP/kAgBEJTI1bfOAnlUNM/jhsdrqLqkofAOhSoYu7WjOjTptGkZG6TwcAdOnQIVqrYmKVYkvrJaMXyIUW/GQEAG85+l6/qw3bscdUz0n/z+5vhXI5PymB3qHgDhoqKKARI0gsZo+60qj9wfZD+MkIAMqIrW3nqzGY+/Abx6wOYRQ5APh/tvm5K7cvspVK2MPOtOxxvlkXflICADaDB9Onn6qIKSqiwYMpLY2XhABAB+7fp48/Vhn188BpCaquuQEAnVo28sssR1f2mFaxkT22reInH9A7FNxBQ1On0uPH7CGJHr7fjF6Am80B9OK5d+1fBk5TGWY//TN6qmKYZgAwFyUlI3+YUSMjmT0qyd3npyEz+ckIAFT7+Wdq0EBFzKtXNGwYSaW8JAQAnEpPp0GDqFDFNOaPQ7sfCR3IT0YAUJksB9elH3ytsg4W+t/tGPDNTKDgDppYv5727GEPkYqs5o//tsDGnp+MAOBdh0MHng1RMZ2agLlbpaiIn5QAwKBNm1b7n1vsIVKR5dfjlxaifwcwHHZ2tH8/2dioCLt+nSZOJFWjRQGAYWHuUElIUBHm53ds5jJeEgIAFcLrt9nd+QPVcVOm0NWruk8H9AwFd1Db3bs0d67KqOVDZz31DeIhHQBg8eOwOapvLI2Opq++4iUdADBgP/5IW7aojPq1/9THfvV4SAcANNCkCa1frzpszx765hvdZwMAHFEoaNw4lROlkqUlHTxY5OjMS04AoNqGPpOiazVUESSV0pAh9OQJLxmB3qDgDurJyqIRI6i4mD3qVKteJ9r04ScjAGAhtrZdMHaJVGSpIm79ejp8mJeMAMAg7dxJCxeqjDrfrAumZgEwUBMn0oQJqsO+/16dU2sAYBDmzFFrF33FCgoN1X02AKAumYVowdhvsh1cVMRlZlKvXpSSwktSoB8ouIMaSkpo7FiKj2ePkjdouHzoLF4SAgDVnvoG/TLwc9Vx48fT2bO6TwcADM/JkzR5ssqBJl54BXw/ch6mZgEwXL/9Rs2aqQ6bOpX+/FP32QBA1SxbRmvWqA4bPpxmYmIVAIPz2rX6grHfyIUWKuISEqh3b8rK4iUp0AMU3EGVwkIaOJDOnFER5uBQsGe/xErVIJIAwKM/2w0Ka9FNRZBYTAMG0M6dvGQEAAbjwgUaMYJKStij8m0dvpywTGxty09SAKANW1s6doyqVVMRJpfTmDE4yw5g0Navp8WLVYc1aULbtuk+GwDQxt2gFuv7fqI6LjqaevemvDzdZwR6gII7sMrKoh491Nov37hRXi9Y9wkBgGb+M1yNwdxlMpowQa1LaQDANFy5QoMGkUTCHiUXWiwY+82ran78JAUA2vP3p8OHyVLVUHLMuLHnzvGSEwBoaNMm+uIL1WEeHnT8ODk46D4hANDSns4jz4T0UB135w7160cFBbrPCPiGgjtULiGBQkNVT9VCRNOm0Zgxuk8IADQmtrZbNGaR6sHclUqaNYuWLeMlKQDQq4sXqU8fKixUGbh60PSbwa15yAgAONCxI/32m+owiYQGDaKwMN0nBACa+P13+uwzleO8kZUVHT5MtWrxkRIAaEspECwb+WV0rUaqQ69dw3XuJgkFd6hETAx16EBPn6qObNWKVq/WfUIAoKXHfvXW9p+qVujixTR9OikUOs4IAPTnzBnq35/EYpWBBzsMOdR+MA8ZAQBnJk+mr79WHSaR0MCBdOSI7hMCAPWsXk1Tp6qutgsEtHUrderES04AUCVSkdXcj5eluHmpDr1+nXr2xHjuJgYFd6jI7dvUsSMlJqqOdHWlgwfJ2lr3OQGA9g52GHquRVe1Qtevp/HjVQ7rDABGac8eGjSIiopUBl5q0nH1wOk8ZAQAHPvhBxo1SnWYVEojR9LWrbpPCABYKZW0eDHNnau62k5E332HO8sBjEiWg+v0T1bm2DurDr11izp2pORk3ScFPEHBHd5x4gR16UKZmaojBQLatYsCAnSfEwBU1Y/D5ryqVkOt0D17aNgwlYM7A4CR+eknGjdOndNpkXWaLhqzWCHEXiKAgZIrlDlFJRX/k8hyNm6RdVNj3Fi5nCZNkixcnCOWVrY0cYlc958GwIyVlNDHH6s7qOPUqbRokY4TAgCOJXjWnDVpucTKRnXoo0fUrh09fKj7pIAPIn0nAAZm61aaMoVkMrWCf/iB+vXTcUIAwI0CG/tPpq1dt/nLoJQXqqNPnKDeven4cXJy0n1qAKBjJSX02Wf0xx/qxD7xqzvn4/9IRVa6TgoAtPYyS9xt002WANtuc357ntwk/pHKRdn8Z9mlc3eWjfyywl991yCPn/o10D5RAGCRnU0jRtCFC2oFjxpF69frOCEA0IkH/g2+Gv/d6m0LLeWqLnxJSKD27enQIeqhxolzMGy4dgnKWbuWJk9Wq9puYUEbNqg1RiQAGIwMJ/dPpv16P6CxWtGXL1OXLpSeruOkAEDH0tKoWzc1q+1xXgGff7oq39ZB10kBgE4VWdnMnPzTU98gdYL7RPy1+bcZ1fIydJ0VAPy/J0+oTRt1q+39+tHOnYQ7zwCMVnj9NgvGfSMXWqgOzc2lvn1pzRrdJwW6hSvcgYiIlEr66itatUqtYCsr2r2bRozQcU4AwL18W4fPP121YueS0Me3VUdHRlLbtnT+PNWurfvUAEAHbt6kESMoKUmd2HjPmlOn/qzWKJMAYPDybB0/m/Lzxo2z6qY8VxncKCFmz+rJC8Z+ExHYjIfcAMxBeHz2q+yKpyivceF062/nWhbmq7OclPbvX1/0q+JhpRfB5ErUuz0dAPTq78Ydloxe+P2+H4QKVcO1yWQ0axZFRNCmTWRvz0t2wD0U3IGouJg++ogOHFAr2MmJjh2jLl10nBMA6IrEymbOxz9cubPZ6s9DqqPj4qhzZ9q9mzp10n1qAMAdpZJWrqRFi9ScAzndP/CTj1dlObrqOi8A4E2uvdNnU3/esHG2OjV39/ysDZtm/95rwo73P8QUDgBVd/xh6sXYt28csZKVfHFyY7trR9RcSHj9NnMHLJCGJ7LE1K2G+9IAjMO5Fl2b1nAZsfIrtQaW2LOHIiPp4EFq1Ej3qQH3sC9l9s6do8aN1a22e3mVjjIBAMasxMKyYNsumjpVrejEROrShSZMoDdvdJwXAHAkKYl69qR589SstlPTptt/2oVqO4DpybF3njJtzQN/tcZht1DIPzvzx6aNs7yy03SdGIAZqv365Y41Uz5Qu9p+qUmnOR//IBVZ6jQrAODTw4596MABslJvtqSYGGrdmtavJ6VSx3kB91BwN2MpKTRuHPXqRbGxasUHBNDVq9S8uY7TAgBeCIW0YQMtX65WsFJJO3ZQvXq0di0pFDrODACqZvduatKEzp9XN75jR7p8udDZTZc5AYDe5Nk6Tpvy892gFmrGt3hx/+DKCYNvnRLg8B6AI0KFYvylfXt+/kSd200Yp1r1mj9uaYkFqu0AJmfoUDp5khzUuzelqIimT6eePSkhQcdpAcdQcDdLJSW0di0FB9Pu3eq+pXFjun6dgtSaeQkAjMa8ebRunbpTMGVn08yZ1LEjPXig47QAQCvx8dS7N40bR9nZ6r5l4EAKCyMXF12mBQB6Jra2nTF5xbkWXdWMt5cULjy08rdNczyS43WZF4BZCE56tuPXqdNP/W4lk6r5lh1dP/z2g/kY3AnAZPXoQRcvkoeHuvHnz1OjRvTrryRXNf47GAyM4W4W5p2KKXtcJ/r2oE3LPBPj1H/7iyZtdi38VRKZQ5E5LGEi7BAAGKPPPycnJ5o4Ua2B5Ijoxg0KCaFZs2jJEkzhAmAoJBJasYKWL6eiIg3eNWMGrV5NFhY6SwsADIVUZLnow8VpLp7jLu1X8y2tYyNaTB9MSV/R/Pno8QG04FSU/2nYtuE3jgnVvkNUIRSuGDLzcOhAnSYGAPrXujXdvEn9+tHTp2rFFxTQjBm0fTv99huFhuo4OeAACu5mgZmtxSMv84tTm3pHnNfo/tDLjTssGLNEmiwhkrBHOlrjfjcA4zRuHLm50YgR6pbqSkpoxQrau5fWrKFhw3ScHACwUiho/35auFCz+0xFIlq7lj77TGdpAYDBUQoEv/ab8rK6/9d/rraSqTXBg6hESsuW0fbttGwZjR2L83MA6iopCT21b8Gedc6Feeq/Kd/WYeHYb8KDW+suLwAwIIGBFB5Ow4bR33+r+5b796l9exo5kn78kWrV0mFuUGW4JNksWCjko64ePrJ8bJ97f2lUbf+z3aCvPvpOKlJvPgcAMF79Mxtw0gAAIABJREFU+lFYGDk7a/CW5GQaPpz698dwcgB6c/IkhYTQmDGa/Qw9PenCBVTbAczTyVa9p3y2JsPJXYP3JCfThAnUtCkdPYp52wBUkMtpzx4KDh74+w8aVdsTPGt+NGMjqu0A5sXNjf76i2bM0OAtSiUdOEDBwTR9OqWm6iwzqCoU3E2dXE6nTu35efKcY+vsJYUavXVTr49/GjpLIUAjATAPHTvSpUvk6anZu06dokaN6Ouv6cUL3aQFAO9QKOjwYWrZkgYMoPv3NXvve+9RRAR16qSbzADACETXavThnD8iAptp9rZHj2jIEGrWjA4exBiyABWQSmnHDmrQgMaOpTgNRnAlootNO4+buSnBs6aOUgMAwyUS0Zo1tGuXZqO3FRfT+vVUpw598QW9eqWz5EB7GFLGdMXF0fbttGMHJSVpOtWpXGjx09BZ/23bXyeJAYDBatGCrl2jDz+ke/c0eFdBAS1fTitW0Pvv0+TJNGgQWeG2GABuLAl7cvlFZtn/2hYX9b51ZtjlP/3eJGm6KKVAcKDrqC39P5EdTyB6+4r4mi52Vc0VAIxHpqPbZ1N+/jRs20eX9qk/ujQRUXQ0ffABBQTQF1/QhAma3RsHYKoyM2nrVvr1V0pO1vStUpHlun5TDnQYqhQIdJEaABiHsWMpJIRGjqSHDzV4V1ERrVtHmzbRsGE0axa1aqWz/EBjKLibnOJiOnGCdu2is2e1u/Ykpka95UNnx9QM5jw1ADAcG2/EK6jiu8IFP+xufOFEj03/sc3P1WCJCgVduEAXLkgcnGI69r47aGx6rSAiWty9LicJA5inYplCLJUTUb3k2CE3T/aKvKDp/WqMN04e330w72Zwa5JThbsHCgwTAWBm5EKLDX0m367b6rt9P1TPSdfszS9f0qxZtHgxjR5NH39MbdroJkcAg3fjBm3dSgcOaDZp+b/iqtdaNHbxM59AzvMCAMOUXiD9z8XYSl60FP20r+vvP4Wc3KfZAG4lJbR/P+3fn1qvcWS/Dx537iu1tQuu5jCkiTcXKYOWUHA3ITExtGsXbd1KGRnaLSDPzmlLj/EHOwzBMDIAJu9CbEZ+caUTph3zfm/D3B0zTm7sc+8vTZdsU5DX4szBFmcOPvard7Rtf2r3LdnhylkALblkvB779+E+EX8FpWg/atNfzd5fPmxWnp0Th4kBgGmICGz2wZfbZx9b3//uWY3fXFBAmzfT5s3UsCGNGUOjRpG/vw5yBDA8L1/S3r20dy89eaLdAhQC4f6Owzb0mVRsac1tagBgyPIkJf+NzmYJONT5k7ZezRYf/MkzV+PKnvfTB32fPuiyftmlJp3S+g+lhhMw27keoeBu/HJzad8+2rqVIiK0XoZCIPxv2/4b+k7Os3XkMDUAMF6Zjm5LRi8826L7vCO/+GWmaLGE+klP6//5lC5tp7Fjafx4atKEhDiZB6CeFy/o2DE6enR+eLhGs52/Jd3Z46ehs640as9hagBgYvJtHb4dNf9Cs87zD//snZ2mzSIePaKvv6YFC6hVKxo6lAYMoGDcLAumKCaGTpygI0c0G33xHS+r+38/8qvoWo24ygsATMnN4NYj5u364uTGwbdOaXEgYFdc1O9uGN0No/ULadAgGjSIunQhGxtdpAosUHA3TpmZdOMGXb1K169TRATJZFVZWEzN4OVDZ8fUqMdVdgBgMm4Gtx751Y4JF/eOu7TPSlbpFfFsMjNpzRpas4bc3al9e+rcmTp2pKZNcbId4G0FBXT5Ml24QGfP0rNnzHNaj+cqF1r82W7Qpt4TC2w0mX8JAMzVjfrvjZi365Nz20df+dNCodWcqEol3blDd+7QvHkUGEi9elGPHtSpEznh9howZrm5dPUqnTtHYWH0Qvu7zRjFltZbu4/d3eWDEgtLTrIDAJNUYGP/n+Fzw1p0n3fklzqvX2q5lPT00hvR7O2pa1fq0YO6daN6KP3xhO+Cu1QqlUgkTtjr0kJqKl2/Ttev040bFBVFGs1uVIk8W8ctPT862H6IApedAkAlii2tN/X6+HTLnvOO/PLe07vaLygzk44fp+PHiYgcHOi996hdO2rfnjp2xCSrRgE9uE68fk23btGNG3TtWtXPoJe5F9h81eAvnnvX5mRpAGAmiqxs1vaferJ179nH1lepxyei589p/Xpav54sLCgkpLTHb9OGfH05ShY0gB5cYykpdPs2Xb9O165RZKR2U6O962LTzmv7T01x8+JkaQBg8iLrNB09d+vI6/+ddG6nU1G+9gsqLKQTJ+jECSIiHx/q1InataN27ahRIxLhOmxd4embLSkpWb169fbt22NjY5VKpbOzc//+/ZcsWRIUFMRPAkYpO5ueP6foaLp6la5do5fantSqiFIgONG6z7p+n+bYO3O4WAAwVYkevtM/Wdk74vzMExvcCthGnVNLQQEzwyoRkaMjtWtHHTpQ06ZUty7VqkWWuOTHgKAH55JSSfHxNleuiB49Ej5/ThERlJjI7RpeVvdf12/K1Yah3C4WAMxHXPVan3+6KvTx7c9Pb66b8ryqi5PLSy97/+UXIiI/PwoJETRrZuvnp2jYkHx8SKD1nTygAnpwdSmVosREy8ePKTWVIiPp3j1KSuJ2DQ/8G6zrNyWyTlNuFwsAJk8utNjXcfiplj0n/bVr+I1jlnKtbjovLyWFmWGViMjOjpo3d6pfX1KvnqB9e2rSBLOvcYiPgnthYWG3bt1u3bpV9kxubu6ePXuOHj16/Pjxrl278pCDocvJoRcvKC7u7X+68cwncPmwWRgzDgA0ohQIzrTsca1h6Kdh20bcOCrk4j4bIqL8fAoLo7Cw0v8ViahmTapdu/RfgwbUsCH5+2MIGr1AD14laWn08iXFxdHz5/T0aem/ggJ33awtyd1nS8+PzrbojrvWAKDqwuu3uRXc6uMXNwYc3eKTmsDZcpOSKClJePx4NSIiKraySfYJSPX2F9QNCu3ehmrXpoAA8sL1vxxAD16p9HR6+ZJevKAXL0q75idPfAoKdLS2WJ86v/eccKVReyXOLQGAtvLsnH4e9PmBjsMmnd/Z9+45LUd+e5dYTDdu2N24UVplFwopIIDq16d69SgwkAIDKSCAatbE9XDa4aPgPnXqVKanHz169JgxY7y8vM6fP//9998XFBQMHz48JibGyxx2qvLyKC2NMjLozRvKyKD0dEpPp4wMev6cYmMpQ+PZh7WT4ua1p/PIw6GDcDQOANrJt3VYNfiLsyHdR109/H70VSuZlOMVyGQVnHG0saGgIKpdmzw9qXp1qlaNPDyoenXy9Cx9jFvhdAM9OBulkjIySnv2tDRKTaW0NEpKouRkSkqiV6+oqIifROK8Ana+P+pc864yC/wQAIAzCoHwcpue22q3637/748u7Q1Kqero1e+ylkpqxz+uHf+YbobRznWlz9rYkL8/+fqSnx/5+pKXF3l6krc3eXiUdvo4kFGDWffg5Q+6U1MpNZWSkyklhZKSKD6et975VZ2Gv3YchVI7AHAlxc3ru5HztnYbO+7vA/3vnNFyijUWCkXpychTp/7/SaGQvL3J3598fMjXl3x8yNubPD3Jy4s8PMjDg6ytOU7DVOj8wOzhw4d79uwhouHDh+/Zs0cgEBBR8+bNGzRoMHDgwOzs7BUrVvz888+6ToMDSiXl5BARlZRQQQHJZJSfT/n5JBZTYaF1SoogN9dKICCxmMRiKiqinBzKzS0tsmdkUHGxHnOXiiwvN+pw/L2+d4NaKATYQwWAqnpUs/6iMYudxHn97p0bdPNU7bR43a5PIqEHD+jBg0oDmIPwatXIzY3s7MjBgZydyc7OSSpVODlRjRpkZ0eOjuTkRHZ2ZGdHAgG5uBARWVvjvrnKmE4PziI3lxQKkkioqIiKi0t7cImEcnNJIqHCQsrJIbGY8vMpL49ycyknp/RfVhZlZZFSqd/07wSF7O807Hr9tjiYBwAdUQiF51p0/av5++89vfvhlUNtnt0T6HrTJ5GUXndcGXd3cnUlFxdycSl94OhIjo5kb8/0/mRjQy4upV28rS3Z2JT+19KSHBx0m7xhMPoeXCym4uLS427mv1IpFRZSfj5JJJSfTwUFVFhIeXmUl0fZ2ZSbS7m5lJ1N2dmUmcnJbGdaUwiEN+q/t6fzyJw2oS8yxXrMBABMUrK7z4/DZm/u+dGI60eH3DzhWpCj2/UpFJScTMnJlQbY25O7O7m5lfbIzs7k5FTaL5cdfTs5kaUlOTuXdsRl3bGzswmfRNd5wX379u1KpdLW1nbz5s2CckeD/fr1GzBgwLFjx3bv3r1q1SqhQX3FLVqUHmkzZ7/z81VOYmZPZM9HZhp77l37eJu+Z0J65NpjkhwA4FiendO+jsP3dRze9OWDwbdOdb//t3WJnk4uMqc2Hz9+62kX9Zfg6EgiEQmF5OxMjRqVTu5q3oyyB58+nZ48KS2aM8rOlxOVltTLPzBOBTb2Z1r2ONJ24AvvAH3nAgBmQSkQ3AxufTO4tX/6q+E3jvW591eVZm+rosxMyszU5o3t29O1a1xnY4iMsgcPDaUHD0hnQ7vwIMfe+VSrXofbDUpy9yGiOvrOBwBMWKaj28beE7d1G9Pj/qUh4ScaJ8ToLZXCQiospFevtF+ClRXZ2//PAyKytycrq9LHzBn0Bg1o7dqq5cornRfcw8LCiKhbt24uLm/XPfr373/s2LGMjIx79+61bt1a15loICWF0tL0nUSVFNrYn2v+/vE2fR/VrK/vXADA9P0T0PifgMarB03vHfHX4FundHHXuc7l/1s4yMyk6tX1moqhMMoePDKSwsP1nYSuKATCe0HNT7XqdalxR4mVjb7TAQBzlOBZc9XgL37tP6VL9LW+98Lee3aPszldeGBjLltOo+zBi4qMtNousxDdrNf6VKueVxu1K7HASMcAwJ9iS+uTrXqfbNW7TurLAXfO9I4875afre+kNCeVklSNgWr5GhCMK7otuBcXFz99+pSI2rRp8+6rvXr1Yh5ER0cbVmdfdhbFCD32q3e0bf+wFt3E1rb6zgUAzEu+rcOh9kMOtR9SP+np4Jsne0VesCs2sk6xlDH3Alwx1h7cFCfXVQiED2o1vNC084Vmnd84eeg7HQAAkoqszrXoeq5FV7f87G7//N3tnyvNXkYbQeXdPMaZNdYe3Nj2vhRCYUSdZhebdr7QtHOOvbO+0wEAs/bCO+CXgdPW9p/a6nlkj6hLnR5edynM1XdSXDO2Az3dFtzj4uLkcjkRBQRUcMuzj4+Pra1tUVFRbGysTtPQlFRkaVy9vcxCFFOj3r3A5qdb9kzwrKnvdADA3D32q/d4eL21/ad2eXCt5fOoFi/u+2S91ndSmjC2Qz5dMNIe3Oj2w1gUWdncDQp52rrT4VqtMh3d9J0OAEAFshxdmXPtbgXZ7R/d7BAT3uZZhF2xoY7ZZR5XuBtpD54kVvjpOwd1iK3tbtVrea1h6PX6bbMdNBi8EABA1xRC4e26LW/XbfnD8Lkj8+O6PQn3D7/kkvhS33lxxNgO9HRbcM/KymIeeHp6VhhQrVq1V69eZaoag2/+/Pkq15WTw9lEAQXFSsPv7IusbB74N4gMaBwV0CTav4HE8t/rNeRyfaUkkwvkOl47s/ySEqmuV8SQ8rYiaYnhrEihUMjlcqVSKajCFHwlUt7+Rjx9dSVcr0gulysUCoFAoPzfmcc4X1FlZDKd/2DzLG2Ot+h+vEV3IvLKSQ958U/LuH9C4v6pkVH5jCuG4VGWZPPhqApfqu5g9dl7vjznoxdG2oPbyBRGXU2RWYhi/Oreq9PsVt2W//g3lIosA1xt0rMlPHTu/G1Oq9zlyeVydZYg5asn4q/L425vgVlOZUur+t9ITTzu/3D8N6qsEZrgV6f2luGNrdPRlj2PtuwpksuaJMS0eR7Z6nlUo1ePLeUqpsLiU76cMlMzXGx1PqqqfhlpD16gNNzZv2UWooc1gu8GNr8VFBLt30Bm8W8TYv118LZXr/ceXKlUyuVygUDA1awA5taDc3IAzjDBbkiNv1FlR9YaMbGvTk50o0b9PQ4B1PJDv8zUNrERrZ9HhsT9426MA878K7OoxIK7TocHut3bKCwsZB7YVHI1ga2tbfmwyvz0008q15WXl6dhdpVysDPQmw2ltvavgxulNGye0rB5cqPmcksrIqpPZCDDtFsISa7jG0mzs7OJqJqbk0z7DakGrEWCYhkfs+HaiATtffmoEdlYCkJ9VKyopKSkoKDA0tLSgZk2WrsViYShPnwMamQjErRX9Yk4YS0SFMvsOFxgYWGhVCq1t7e3+t+LqUVCgUzBR/vm4Qf7v9yoQ3A8jYwnss/O8HkY5fswyifmvufzx1SFHSMdsba1DnCs+IDB2UbJYXdjyIy0B5dIZV5cLYsvYhe3tLoNU+s3Sa3f9HVw4xIbWyJqQNSAiIhsREKJH5cbn8rwtjm1EQna+Vapg5BIJEVFRTY2NkwjrHRFlsIqrkhNfHZ5KjtxNTE7VK6urhW+amspbMtPY1Bjt4QT1hbUjtO/UVFRkUQisbW1fWsLyWOr42nX0VokKNZiE9TMU0ydrxDdkBZXf/rQ92GU19MHXk8f2mVrNdMpd16JZdFx6e1qaL+LaxSMtAd3djCsY3Cxq/vreo1e12uc0qj563qNZFbWRNSYqLHaSzCfHlwul+fl5YlEIkdHR25WZGY9eHFxsVgstra2trOraoMxzx5cLBYXFxfb2dlZV2HcMJPuwd2oc8MYGhdD5Pbqpffjf3xi7ns9fej2Kk5g+GPBlVOiUBQa1ZG4bgvuZeeXKjtTxwTIZCoufFi+fDnLq8y593cnhNGavTMfNVZ1KHx8FLVrK+rUUTRpIgsNVdSv7yIQuPx7EG6GkpOtlEqlr69v1c/9QmWKiooyMzNtbGw8PDBSsA5lZmYWFRW5u7uzF4xMVAD1acU8yk9PF4WHCx88EL54wfwTqDr844F/deeP21ZwF7ZZMdIe3M7F4MsoIpG0Rg1JYKBlixbKpk0VTZsq/PzcidyJGuk7NWORn5+fm5vr6Ojo7Iwxc7WUlGRJRH5+hn9Lp4HKzc3Nz893dnbmqrpkyjoFEw0jIhlRQUqK8P59i0ePBA8eKKOjrRITBao6EW4F1fCo0dj0m72x9uDuTlwtSgtKC4uSmjUFTZooGjaUN26saNZM4ePjQeSB3lkNUqk0PT3d0tKyevXq+s7FKBUWFmZnZ9vb21d2IhzYZWdnFxYWurq62tsbSinPcLUNIHqfeVggFgujoy0ePiy+fdvq2TObFy8E+fn6zY6dh7O9mLtOhwe6LbiXNXeJRFJhQHFxcfmwysybN4/lVaazd3LirofWS/3L1ZVq16batalBA2rYkGrXprp1hY6VXGNprnJzc5VKpZOTEwruumNpaVlcXGxra8vlbwreIZVKLSwsHB0dq34hg3FzcqLAwP95Jjub4uLo0SOKiaG4OIqLo8ePSczraLCWDg6WZt/+jbUHN6gJ8aysqGZNqlWLAgIoMJACA6lePQoKevPmjVwu9/X1tTC2gQgNh1wud3R0RD+lNeYmNnyBWlMoFEqlEo1QY05OFBxMRHK5PDk5WaRU+ojF9PQpxcbSixcUF0fx8fTqFRUX62j9Vo6OVmbwJzPWHpy3XWJLy9LeuU4dqlOHgoKobt0kGxulpWXNmpgOTRtSqVQsFltZWWGTqB2hUFhSUuLg4IAvUDsymUwgEDg6OlblHn1z5OREXl7Uo0fO69e5UqmXl5dVRgY9fkyxsfT8Ob14QS9fUnw85RrK5Ksia2vj+o3otuBedsa7bCC5tzAjx3F4Ypwbupguz8qKPDyoWjXy9CRPT/LwIA8P8vSk6tWpVi0KCuJvDwMAwJC5ulJICIWE/P8zcjklJFB8PL1+TRkZ9OYNpadTejq9eUNv3lBaGvc7AZg01Xh7cJ5L2Pb25OFBXl5UrRpVq0Y+PlS9Ovn5kbc3+fuTlxfh9DAAQCWUIhHVr0/1/3d0TKWSXr+mxERKSaGkJEpLo+Tk0h4/PZ0yMqgq19+Zx6SpxtqDc7j3ZW9P7u6lx92enqW9s68v+fhQzZrk7U3vDDWufPWKs7UDABgpHx/y8aGuXf/nydxcSkykxERKTaXkZEpLo9TU0h45I4MyM/kbIdbYrlXSbcG9Tp06zMQFCQkJ776anZ1dUFBAREFBQTpNQ2OVXR/n6EgiEQkExOyduLiQrS3Z2ZGLS7GFRYlIZFWtmpWrK9nZkaMjOTqWHodXq0bVq5NRnYcBADAgFhalNwBVRiotPRTPyKDsbBKLSSymvDzKz89//VpQVORQUlL+SZLJSColZuyaggIqKXl7gSi4G28Prul+mJ0dWVuTtTXZ2ZGlJTk4kJUV2duTvT3Z2JCzc+ljR0dycSEnJ3JyIhcXcnEhV1dyczOsC+oBAEyAQEDe3uTtXWmAVEpZWZSdTVlZlJtLeXmUl0c5OVRQQAUFVFhIubkklVJ+PhUVkURChYUklZJYTMXFZGglZt0w1h68/N4X0y+LROToSBYW5ORU+tjWlmxsyNWVbG3J3p6cnMjZubR3dnYu7Zrd3MzkzAoAAB+cncnZmRpVMryWUkmZmZSTQ9nZlJNT+i8/n/LzS3vkwkIqLqacHCopoYICKi4msbj0YFwuJ43GZEfBvTxbW9vAwMDY2NiIiIh3Xy17slFlfzl92baNxOLSTp2IbGxUDjJTmJVVUFDg5uZmhXtYAAB4ZmVFvr7k6/vuK9mvXhGRg8obhJVKYmY8Z/p+DAxtvD34N9/QlCmlB+plnJ1Lr2Ur69mZo3cAADA6Vlbk5UVeRjdDNn+MtQf/7Tf65RczOSkCAGAiBILSATyqgjkpTlR6ppyRl0dyeelj5nlPzyqthXe6LbgTUc+ePWNjY8+fPy+VSq3+95rBU6dOEZGzs3NoaKiu09AMduAAAMyKQECYpOgdRtmDN25MjRvrOwkAAAB9Msoe3M4Og6wCAJijsu2/aR2S63xKznHjxhFRZmbm5s2byz+fmpq6Y8cOIho9erSlpaWu0wAAAACNoAcHAAAwRujBAQAA9EvnBfdWrVoNGjSIiL788sutW7fm5ubK5fLw8PB+/frl5uY6OjouWLBA1zkAAACAptCDAwAAGCP04AAAAPql84I7EW3btq1+/foSiWTSpEkeHh6urq7t2rWLjIy0srLat2+fn58fDzkAAACAptCDAwAAGCP04AAAAHrER8Hd1dX1zp07s2fPdnd3l8lk+fn5IpGoT58+t2/f7tevHw8JAAAAgBbQgwMAABgj9OAAAAB6pPNJUxkODg6rV69euXJlWlpaUVGRj4+PjY0NP6sGAAAAraEHBwAAMEbowQEAAPSFp4I7QygUent787lGAAAAqDr04AAAAMYIPTgAAAD/+BhSBgAAAAAAAAAAAADA5KHgDgAAAAAAAAAAAADAARTcAQAAAAAAAAAAAAA4gII7AAAAAAAAAAAAAAAHUHAHAAAAAAAAAAAAAOAACu4AAAAAAAAAAAAAABxAwR0AAAAAAAAAAAAAgAMouAMAAAAAAAAAAAAAcAAFdwAAAAAAAAAAAAAADqDgDgAAAAAAAAAAAADAARTcAQAAAAAAAAAAAAA4gII7AAAAAAAAAAAAAAAHUHAHAAAAAAAAAAAAAOAACu4AAAAAAAAAAAAAABxAwR0AAAAAAAAAAAAAgAMouAMAAAAAAAAAAAAAcECk7wQ4IxAI9J0CAAAAaAw9OAAAgDFCDw4AAFAhXOEOAAAAAAAAAAAAAMABUyi4Kw3AxIkTieiPP/7QdyImzs7OjogKCwv1nYgpO3bsGBENHDhQ34mYuA8++ICI9u/fr+9ETJlCoSAigUCg70RU0GsXqmf6/u71w8vLi4hSU1P1nYixWrlyJRHNnTtX34kYK2PZNhqyOXPmENGqVav0nYixSk5OJiIfHx99J8INvXakeqPvb51LcrmciIRCob4TMVZ37twholatWuk7EWO1ceNGIpoyZYq+EzFWkyZNIqItW7boOxFj1bx5cyKKjIzUdyJ6oNOO0hQK7gAAAAAAAAAAAAAAeoeCOwAAAAAAAAAAAAAAB1BwBwAAAAAAAAAAAADgAAruAAAAAAAAAAAAAAAcQMEdAAAAAAAAAAAAAIADKLgDAAAAAAAAAAAAAHAABXcAAAAAAAAAAAAAAA6g4A4AAAAAAAAAAAAAwAEU3AEAAAAAAAAAAAAAOCBQKpX6zgEAAAAAAAAAAAAAwOjhCncAAAAAAAAAAAAAAA6g4A4AAAAAAAAAAAAAwAEU3AEAAAAAAAAAAAAAOICCOwAAAAAAAAAAAAAAB1BwBwAAAAAAAAAAAADgAAruAAAAAAAAAAAAAAAcQMEdAAAAAAAAAAAAAIADKLgDAAAAAAAAAAAAAHAABXcAAAAAAAAAAAAAAA6g4A4AAAAAAAAAAAAAwAGLpUuX6jsHg1ZUVPT48eM7d+4UFBQ4OjpaW1trt5ykpKTbt28nJiba2to6ODhwm6QJSE5OvnfvXmxsrIWFhZOTk0Ag0GIhCoUiNjb2xo0bqamp9vb29vb2nOdpMoqLi48cOZKQkFC3bl1N35ucnHznzp2HDx8WFRVVr15duz+WmUhMTDx79mxRUZGvr692S7h8+XJERESDBg24TczEnD17NiIiok6dOpaWlhq9UaFQxMfH37lzJzk52dHR0c7OTkcZgpmQyWQRERH37t1LTU11cHCoYjcUExNz8eJFX19fW1tb3laqd5x0MXl5eXfu3ImKisrKyvLw8NB0y2AUOPmMmjYeE/timT38uLg4oVDo6uqq3ULMeaeI2/bw559/ZmVl+fv7s4eZ8xcO7DhpkJoeTprSVpGTHxeOx6t47KZpi+KkIzMoVfwC0Ueo2ZmyU/OvYEobQF1RQiUSEhIGDBjw1k+0Z8+eDx8+1Gg5e/fu9fPzK7+Q4ODg06dP6yiIhivLAAAgAElEQVRt46JQKLZu3VqtWrXy34+bm9svv/wilUrVX05BQcH06dPL9+gWFhb9+vWLi4vTXfJGbcaMGURUp04djd718uXLnj17lv9R1KxZc+/evTpK0thJpdJWrVoR0cSJE7VbgkQicXZ2tre35zYxE3P06FGmNSYmJqr/LolEsnTp0rcq7EFBQcePH9ddqmDa1q1b5+npWdacRCLR8OHD09PTtV5gz549ieju3bt8rlSPOOliCgsLP/vss/KnKJycnBYsWFDhTsWqVavcK9e5c2eOPhnHNPqMLDRqPFyt1EBcvHjxrcPI1q1bR0REaLQQ9VusXC739vZmaWxnzpzh6JPxhPP2cPPmTSLq27cvSwz2QqEynDRITQ8nTWmryMmPS6Mv0Ej7X5WqcuymaYvipCMzNFX5As25Uy6jTmeqkjp/BVPaAOoUCu4Vi4iIKLsO3cbGJigoqKwuY2FhcfnyZTWXM2nSpLIm6Onp6eLiUva/S5cu1elHMAqjRo0q+0K8vb1r1KhR9r/du3dXKBTqLOTZs2cBAQHMu0QiUe3atcvOrbm6uj569EjXn8LonDlzhumKNCq4P3/+3N3dvex7Ln8KfeXKlbrL1nh99dVXzPejdcF9+/btRISCO4ukpCQ3Nzfme1a/4F5YWFi2hyoQCPz9/csWUpW/F5gz5iwmw8PDQygsHbKvVq1a2pW/Y2NjRSIRsRbcOV+pHnHSxUgkkjZt2pS9sfzp/P79+8vl8rfix48fT5Vr2rQp15+SA5p+xspo1Hi4WqmBOHLkSNnndXR0tLGxYR5bW1tfv35dzYVo1GJfvnzJ0tKI6OjRo1x/Sh3SRXtgfowsNQLshUJlOGmQmh5OmtJWkZMfl6ZfoDH2v+rQ+thN0xbFSUdmgLT+As25Uy5PZWeqDpV/BVPaAOoaCu4VUCgU7733HhG5ubkdOnSIaTEKheLAgQPOzs5E5O/vn5+fr3I5Bw8eZJpdnz59yk7tRkdHt23bloiEQuHVq1d1+0kM29mzZ5nvZ+jQoampqcyTycnJgwYNYp7/9ddfVS5EoVB06NCBiGxtbdeuXVtUVKRUKiUSycaNG5kT7I0aNcJvvrzU1NSyK9o0Kri3bt2aabebNm3Kzc2Vy+W3b98OCgpinoyKitJdzsbo/PnzZSfYtSvghoWFOTo6arfPYSbkcnnnzp3LOnj1C+7z589n3vLpp5/m5OQwT0ZFRTFbfiLatWuXzrIGE3T69Gmm5YSGhkZHRyuVyjdv3nz77bfMk4MHD9Z0gTExMY0bN2beXlnBnfOV6hcnXUzZac4pU6YkJSUplcrY2NjBgwczT65du/at+NDQUCJq167dwoqsX7+e+89ZZZp+xgpp2ng4WamBSEtLYy6p8fDwuHjxolQqFYvFhw8fZq7S8vHxYfYkVdKoxf7111/MdzV//vwKG1tMTIxuPq5OcNseJBLJypUrmfey1AiwFwqVqXqD1OJw0pS2ilX/cWnxBRpj/6tSVY7dNGpRXHVkhqYqX6A5d8oMNTtTldT5K5jSBlDXUHCvwPnz55m2sn379rde2rJlC/PS2bNnVS6HuRm8du3aYrG4/PPp6enMObdJkyZxmLbRadeuHREFBga+deNJUVFRYGAgEbVp00blQnbu3FnZH6tsoImDBw9ymLZRUygUPXr0ICJNr3AvOzuyfPny8s8/e/aMOQs1bNgwHeRrrN68eePt7V32PWtUcN+wYcPkyZODg4PpXyi4V2bZsmVlXzKpXXBPTk62srIioj59+rz1Un5+fp06dYjI19dXB/mCyWKu8qhZs+ZblwZ/9tlnTBN98OCBOss5c+bMzJkz27dvX/5+2MoK7lyt1BBw0sVkZGQwNyP26dOn/IG9WCwOCQlhDkHf2t9gTj9v3LiRqw+ia1p8xgpp1Hi4WqmBmDdvHhGJRKK3rgE8dOgQ0wjVKfRo2mI3bNhARNWrV+fkI+gXV+0hOzt72bJlo0aNKj+uUWU1AuyFQmU4aZCaHk6a0laRkx+XFsfjRtf/sqj6sZumLYqTjsxwVP0LNOdOWaPOlIX6fwVT2gDyAAX3Cvz8889EZG1tLZPJ3nopIyOjwh9zhZi7WqZOnfruS3379iVjvluKE8zm7/vvv3/3pc8//5yI7OzsVF6cztw1U6dOnQrHn2FuJhg6dCg3GRs/5rRnrVq1hg8fTpoU3D/66CMi8vT0fHfrOXHiRCKysbF568SSOevXrx8RDRkyhKnealRwr169Ov0vFNwrdOvWLZFIZGlpOXPmTOaLUrPgvnv3bia+wjsu165dy7yakpLCdcpgmuLj45k28+4FHYmJicxLS5YsUWdRI0eOpHdUWHDncKWGgJMuZseOHcwH/+eff956qexXf+nSpbInc3NzmScvXrzIyafggaafsUKaNh5OVmo4atWqRZXcAsJ02R07dlS5EE1b7KxZs4ioQ4cOVUzeEHDVHh4/fvzu5q6yGgH2QqEynDRITQ8nTWmryMmPS9Mv0Bj7XxZVP3bTtEVx0pEZjqp/gebcKWvUmbJQ/69gShtAHgjf/fMA02oDAgIsLCzeesnZ2Zl5sqyfYFFUVEREcrn83ZcUCgURSSSSqmdrpFJSUpjvkLnT5y3MeMpFRUUlJSXsy/nnn3+IqFmzZhXOQM1cw3X16tWqJ2wCIiMjFy5caGFhsXfvXicnJ43ey9z20bNnz3fnnu7fvz8RSSSS69evc5WqUVu/fv2pU6d8fX3LbojRyNq1a7f/a+DAgZynZxry8vJGjx4tk8mWLVvGnEtX35MnT4hIIBA0b9783VcbNmzIPHj69GnV8wRzUHZXHHOmrTw/P79mzZoR0YULF9RZ1NSpU8t+/szlSzys1BBw0sUwC6lRo0aTJk3eeqlPnz7Mzlv57+T58+fMg3r16lUpex5p+hlZFkJqNx5OVmognj9/zpxvePez07+NLTw8nNmBZ6Fpi2UamxG1NBZctQdvb+/t5bB/OdgLhcpw0iA1PZw0pa0iJz8uTb9AY+x/WVT92E2jFsVVR2Y4uPoCzbNT1qgzZaH+X8GUNoA8EOk7AUO0Zs2aFStWMJOVvSUqKoopoDdq1Ejlctq0afP333+fPXs2Pz+fGQiJkZKScuPGDSJihpoyT15eXtnZ2URUNjlteffu3SOiwMBAa2tr9uVkZWURUWVhzEX0b968yczMLJtGwzwVFhaOGjVKKpUuXbo0NDR027Zt6r83Pz8/OTmZiCosUHbp0oV58OTJk+7du3OSrfF68ODBl19+KRQKd+3aVX4eTvWVv8Q1Pj7++PHj3GVnOqZOnRoXF9elS5e5c+fu27dPo/e2aNFizpw5Tk5OZVNhl5eQkMA88PPz4yBRMAMxMTFE5OzsXLt27Xdf7dKly/3795nTPCp16tSpU6dOzOPLly//9NNPPKxU77jqYpjvpMKFuLm5NWnSJCoqqvx3EhsbS0QODg6+vr43b96MiIh4/fp1UFBQkyZNmjRp8u4lF4ZA08/IshD1Gw8nKzUQzGehyhvbmjVrZDLZ8+fPyyZReJcWLZZpbMHBwdnZ2WFhYc+ePbO1tW3SpEmLFi3K3wNuFLhqD87Ozsw1iYwdO3ZUdp4be6HAgpMGqenhpMlsFbn6cWn6BRpj/8ui6sduGrUoTjoyg1LFL9DMO2X1O1N26v8VTGYDyA8U3CtgZ2f3biFGJpOdP39+xowZRBQUFDRs2DCVy1m+fHnnzp0TExP79u37yy+/NGvWTC6Xh4eHz5gxIy8vz93dffHixTr5AMZAKBS6uLi8+3xiYuK6devOnDlDRF9//bXK5TRo0ODVq1eV/aTv37/PPHj9+rWZF9ynT5/+7Nmz0NDQRYsWafreFy9eMA/8/f3ffdXJycnFxSUnJ6cszGwVFRWNGjVKIpHMmzfv/fff13c6JmvXrl379u1zc3PbvXu3UKjxfVpDhgwZMmRIhS/J5fLffvuNiGrWrBkQEFDVRME8xMXFEVHNmjUrfJXZbGZlZeXk5FTY6xnRSnWEqy6G+U4qXAjzfFRUVPmFMNc3OTo6du3a9dKlS+WDW7VqtXXrVgM8UtX0M7IsRP3Gw8lKDQTzWaiSj1P25IsXL1j++pq2WIVCwaz377//XrZsWU5OTlmwtbX14sWL582bV+FVPoaJ//aAvVBgwUmD1PRw0mS2ilz9uDT9Ao2x/9UpjVoUJx2ZKTHzTpl/JrMB5AeGlFHtgw8+CA4OdnFx6dOnT2xsbOfOnS9evMjMuceudevWFy5c8Pf3v3btWsuWLZk6fpcuXaKjo5s0aXLlypUKR1MxT5cvX27atKmfn5+/v//KlSudnZ3Xr18/YcIElW9kzq1FRka+O25MRETE6dOnmcf5+fmc52xEDh48uH37dicnp71792px1UBeXh7zoLLCDfO8OuMsmbbZs2c/evQoJCTk+++/13cuJuv58+fMHA9btmzx9fXlcMklJSUTJ06MjIwkImbwJQ4XDiaM2UKybx6J6y2kXlaqI1x1MUxHr/5CmOubUlNTL1265O7u3qtXr379+jFl6Lt374aEhLxVBTAEmn7GCmnaeDhZqYFgb2xq/nA0bbGvXr2SSqVEdPr06fz8/MaNG48cObJ169Y2NjbFxcWLFi3q3bu3UqnU5vPoA//tAXuhwIKTBqnp4aTJbBW5+nFp+gUaY/+rUxq1KE46MlNi5p0y/0xmA8gPFNxVe/LkydOnTwsLC4nI0tKyVatWNjY26r+9bLBsqVRaNp67q6urFhdmmrCcnJzo6Ojk5GRm61a7dm1mMhCVZsyYwQzcMXr06LJhSZVK5fHjxwcMGCCTyZhnKhxJ30wkJCR8+umnRLRx40Y1v9W3iMVi5kFlLd/W1paImN+I2Tp27NimTZvs7e337dv37vhxwImSkpLRo0fn5+dPnjy5sqvUtXP79u02bdrs3LmTiCZMmDB58mQOFw6mjdlCsm8eiestpF5WqiOcdDESiYSZHUf9hTAH/CKRaPPmzRkZGWfPnj158mRCQsLmzZvt7e1LSko++eQTgxoCVYvPWCGNGg9XKzUQzGe3tLSscCdczR+Opi2WaWlE1K5du/j4+Ojo6AMHDty+ffvZs2ddu3YlogsXLmg36Qv/9NIesBcKleGqQWp0OGlKW0WuflyaHo8bXf+rU5q2KE46MlNizp0y/0xpA8gP1HxV+/3338PCwn7//ffx48crFIqVK1e2atWq7F4eFgcPHuzYseODBw/q16+/efPm8PDwy5cvr127tkaNGleuXGnZsuW1a9d0n75xaNeu3fnz5//8888ff/wxKCgoKiqqX79+S5YsUfnG6tWrr1u3zsLCIjk5uUePHu7u7s2bN3d2dh40aFBKSkrZQF3lx9A3K3K5fPTo0bm5uWPGjBk9erR2Cym7qaqy8xbM3LYVzpNjJpKTk5k50NeuXVu3bl19p2OyFi1adPfu3Xr16q1Zs4arZb569erDDz9s27ZtVFSUhYXFvHnztmzZYs6NGTTFbCHZN4/E9RZSLyvVEU66GC0WMnbs2B9//PH06dNvnWCbPHkyc5fSixcvtm/fruan4AFXfbFGjcfEdgA4+eFo+p14e3v/+OOPK1asCAsLKz87SI0aNY4dO8bcqqXFcH96oZf2YGKNEDjEVdvQ6HDSlBqkXr5AMsL+V6c0/SuY0h4gJ8y5U+afKW0A+YHBiVRjZtYmok8++eTTTz/t1KlTQkLCl19+eeTIEZZ3JSYmjhs3Ti6X9+7d+8SJE2VNs1OnTpMmTWrfvn1UVNSQIUPi4+Pt7e11/hkMXrVq1bp168Y8njt37rBhw44fP/79998PGzbs3emP3zJ69OjAwMCJEyc+fPgwKyuLmbbFy8vr119/TUtLY06zM7O1mKHvvvsuPDw8ICCAGZlaO2VNVCKRVBjAPF/h/LfmQKFQjBkzJisra+jQoUzZHXTh4sWLK1eutLS03Lt3b4XznWpKJpOtWrXq+++/Z66MaN269bp168x5LmtgPHnyJCwsTGXYhx9+WK1aNfp3C8m+eSSut5B6Wan6duzYUX5MzArVqVOnf//+xFEXIxKJrKyspFKp+guZMmVKZUubPn36d999l5OTExUVxf4p+KTFZ6yQRo2Hq5UaCOazKxSKkpKSd+9FU/OHo2mLbdSoUaNGjSqMdHBwmDlz5pdffvnmzZvk5GRux0nTBb20B+yFQmU4bJDqH06a0laRwx+XRsfjRtf/6pSmLYqTjsyUmHOnzD9T2gDyAwV3zbRt23bcuHFbt249fvy4TCZjmU5hy5YtzOBQW7ZseSvMzs5uw4YNbdu2zcjIOHDgACp0bxGJROvXr2dmRj5y5IjKgjsRtW7d+sGDB8w9QRkZGQEBAR06dBCJRAsXLiQiGxubGjVq6Dxvg7Ry5UoiCgkJ2bBhQ/nno6OjiSgnJ2f58uVE5O3tPX78+MoWwhSViCgtLe3dV5VKZXp6OhF5eHhwl7gxuXfv3uXLl4modu3azPdZhik5RUdHM8+3adOmbKp00NTq1auVSmXjxo3Pnz9fdr8qlZuLacOGDcwQXnPmzFE5qk9aWtqQIUPCw8OJKCgo6Icffhg+fLjOcgdjcu/evVmzZqkM69y5M7NtZP5b4eaRiF6/fk1EAoGA24m79bJS9S1btkzldEkDBw5kCu5cdTHVqlVLTk5m/07U7KdEIlFwcPCtW7cePHigTjxvOPmMmjYeDr9YvSvf2Mpf18ZgPgup+jjc7hSVTWr34MEDozi25789YC8UWHDYINU/nDSZrSK3Py5OjscNtv/VKY1aFCcdmSkx806ZfyazAeQHCu5vKy4uZmqUffv2ZSYAeQvzpFwuT01NZek2mHm6a9asWeEPNSQkxNrauri4+PHjx5ylblTOnz9/+/ZtR0fHGTNmvPuqn5+fh4dHRkZGUlKS+susVavWW2OUMwf8wcHBZjtiPjPG1uHDhw8fPvzuq5mZmV9//TURhYSEsBTcAwICmDOZFY6klJyczJxbCg4O5ixvo8J8yfTv6Y3/a+/eYqOo/gCOn+22tJSKhWJLG4qXIpUIbXWpXIR2NVAaTSAYQwS5BETQAE81BqjYBkvgxfhSKGihxEJkpd5QifogiabYUsUSE7lIASUEG9CaktKWdHf/Dyf/yWZmd3anPbvd3X4/T82Zw8ycw5nzO/Pb3Rmjtra2trY2IURFRQUJ90GT/Xz27Fn5XlOj3bt3yz82b95snnDv7u4uLy9vb29PSkratm1bZWVlKO/BxgjhcDgCXcu+tOCen58vhLh+/brfrxpdvXpVCJGbm6vkZxmaYTlo6LZt29bV1WVeR3tvvKoQk5+ff+PGjUBP/JN9Enqckunm5OTkEOtHhpI2Wh08ajt2eMm2CyGuXLlizFPItohgzVG7KNI+2Ii2wRZI5McDq1CYUD4gQ7mdjJtZMRwX19Dvx6Mz/oaVpRGlJJDFkxEelCMvbibAyCDhrpecnFxbW9vZ2Xnnzh2/CXd5D5mYmJiZmWmyn3Hjxgkh5OVt5Ha75WOPRuyjTi5fvrxjx46EhIT169cbH6rjdrvl649zcnLM9/Pnn39evXo1ISGhpKREt6mnp0e+Fb2srEzdiceYkpISv4Pw4sWLf//9d0pKinxikha5/bLb7YWFhW1tbS0tLcatra2t8o8nn3xSxSnHnrFjx5aWlvrd1Nra2tfXN3HiRNnDeXl5kT21uFJQUOD3x2udnZ3yA87Zs2fLtZHdbjff1fLly9vb28eOHXvixIlA/3cYsaZNmzZt2rTQ6zscDiHEvXv3fv31V+MjieQMqXx6HJaDhs7ST/dUhRiHw/H999///PPPbrdbNwncvn1b3vBrOzl16pTL5UpISHj33Xe1N4z5unTpkhAi0I+Oh4ulNprsRFgZPEoOGiUKCgoSExMHBgZaWlqM60bZ9oyMjAcffNBkJ1ZHbEVFRU9Pz4IFC1588UVjfTnSRPQNtkAiPx5YhcKEkgFp9XYybmZFVReXpQ6M0fgbVpZGlJJAFk9GeFCOvLiZACPEC4PnnntOCFFcXOx3q3zvx/Tp0813sn//ftnDFy5cMG7Vnofw9ddfKzjjGHTmzBmTHmhubpZbm5qazPcjnzwjhDh79qxu0+HDh+WmM2fOKDvveCGzIXl5eSHWr66uFkKMGjXq9u3buk3Lli0TQkyePFn1OcYDmWF/5ZVXBvfPq6qqhBBjxoxRe1ZxprGxUV7p169fD6W+9giajz/+ONznhpHg7t278o6xoqJCt+n333+Xg+3QoUNWd3vq1Cn5b9va2iJ20OGiJMTIR3sJIb788kvdJu2hah0dHbJEfkonhDh8+LBxV7/99pv8It6BAwcG1aBwsdTGQKwOHiUHjR5Op1MI4XA4dOUDAwPySx6rV68OuhNLI/all14SQjzyyCNut9u4K1k/OzvbelOGR5jGg/zw+/nnn/e7lVUoAlEyIK3eTsbTrKjk4rLUgTEaf0M0uHs3qyNKSSCLToPrwJEclHXMg2mIzP8X4mkCjAAS7n7U1tbKgbJ//37dJi1m7NixQyvs7e2tq6urq6s7duyYVtjR0SHvZ+bMmdPd3e27k87OzilTpgghJkyY0NXVFda2RK3+/n4ZDx577DFdJ/z3339FRUVCiPHjx9+6dUsr7+jokP38ww8/aIU9PT2ynxcuXOg7af7yyy/y1wNlZWURaE7MMUm4u1wu2c93797VCv/66y/5zI3XXnvNt3JLS4v8YHPPnj1hP+kYFCjh7nfSMCLhHgqThPuPP/4o+/ny5cta4caNG7k5h1qvv/66vFR915cej0d7RvmdO3e08hAvf/OEu9WDRjmrIcbvpe12ux9//HEhRFFRUV9fn1be1dUlf3NdXl7uuxP5K8bMzMxr1675lv/zzz/yt18PP/xwT0+PynYOmdU2+l04eS0OHqsHjXIul0teWboLUHuQ1E8//aSrP8RFkZaKevPNN3Unc/ToUbmprq5OWQvDTNUg1DHPEbAKRSBKBqTV28l4mhWVxF+rHRiL8TdEQe/dlCxgrAayGBK0AwnK5syDqZIURDxNgBFAwt2PgYGBmTNnyovthRdeeP/990+ePHngwIGlS5fKwsLCwv7+fq3+rVu3ZHl+fr7vfvbu3SvLc3JyampqPvvss2PHjm3dulV7jMyJEyci3rgo8vnnn8t+yMrKeuedd5qamj755JOdO3dmZWXJcpfL5Vv/+PHjsnzjxo2+5VpomTVrVkNDQ1NT05YtW8aPHy+ESE9Pv3TpUmSbFRtMEu5yAhVC3Lx507d8+/btsnzlypVfffVVa2vrrl270tPThRBTp06N0VVRuAVKuAeaNHRIuIfCJOG+adMmuemjjz7SCuX0npSUlGHqjz/+iGw7EMNu3LghX9mUm5v73nvvtbe3u1wu+Ws5IcQHH3zgWznEyz9owt3SQaOfpRDj99L2er3ffPON/Gbc3LlzP/zww3PnztXV1cmgNnr06HPnzvlWPn36tLw9u//++ysrKz/99NPjx49XVVVpDwz89ttvI9Fyiyy1MdDCyergsXTQKOfxeObNmyeESE5O3r59++nTp7/77rvNmzfLBr788su6+kNfFHk8niVLlsjKzzzzTH19/cmTJ/ft26cVPv300x6PJxKNV0TJINQJ+qU8VqEIRMmAtHo7GU+zopL4a6kDYzT+hiLovZuSBYzVQBZDgnYgQdmceTBVlYKIpwkw3Ei4+3fhwgW/D3AXQpSVlV25csW3ssnA3b17t/EB5UKIjIyM+vr6CDYoSu3cudPv+yjS09Nra2t1lQOtkDwez7p164w7ycnJaW5ujmBrYskgEu5ut3vVqlXGfs7Ly+NTjUBIuEeA1YS7XP0Hdf78+ci2A7GtublZZjB92Wy2t956S1dTVcLd0kGjn6UQE+h+1ev17t271/gi0LS0tC+++MJ40CNHjqSlpRkPmpOTE81fiQi9jSa5TquDx1LHRrnOzk6/i/xFixb5fmNOUrIo6u7unj9/vrGyEGLVqlX//vtveBscBkoGoa+gCXdWoTAx9AE5iNvJuJkVlcRfqx0Yo/E3qEEn3L0WR5SlQBZDBp1wH+FBWROZhLs3jibAcLPLBx5BZ8KECa+++urkyZNTU1NTUlLsdntRUdGiRYvefvvtmpoa+UJUX0lJSU6n0+l06l4/NW/evDVr1qSkpIwbN87j8UycOLGkpGTFihWNjY1z586NYIOiVGlp6fLly8X/Xx4r+2fZsmWNjY3y2WQ6DzzwgOznqVOnaoU2m23JkiXz58+/d++ezWYbPXp0QUHBpk2b6uvrfatBJz8/3+l0yh/u6RQXF8t+lt8+kGw229KlSx0OR19fn8fjSU1NnTFjxpYtWw4ePJidnR3BE48xs2bNcjqdxtfSBpo0dB566CGn0xloTQApKytLdqbxA7xHH31UbpLfmnG73f39/aWlpc4QpKamDkdrEJNyc3NXr16dkpLS29trs9kmTZpUXl6+b9++NWvWGCuHePmnp6fLavfdd9/QDxrlrIYY3aWtKS4uXrx4scfj6e/vT0xMnDJlyooVKxoaGmbPnm3cSUFBwYYNG0aNGiVXepmZmc8+++zKlSsbGhoKCwvD1dQhs9RGvwsnYX3wWDpolBszZszatWuzs7N7e3u9Xm9GRsacOXOqq6v37NljvHsUKhZFycnJa9eufeqpp9xud2pqqt1uf+KJJxYvXlxTU/PGG2/4fW1glFMyCHWKioqcTueMGTP8bmUVChNDH5CDuJ2Mm1lRSfy12oExGn9DEfTeTckCxmogiyFBO5CgbM48mKpKQcTNBBhuNq/XO9znAAAAAAAAAABAzEsY7hMAAAAAAAAAACAekHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAE7S2kwAAAErSURBVAAKkHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAAAKkHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAAAKkHAHAAAAAAAAAEABEu4AAAAAAAAAAChAwh0AAAAAAAAAAAVIuAMAAAAAAAAAoAAJdwAAAAAAAAAAFCDhDgAAAAAAAACAAiTcAQAAAAAAAABQgIQ7AAAAAAAAAAAKkHAHAAAAAAAAAECB/wFidGzuFdBirAAAAABJRU5ErkJggg==\"/>" ] }, "execution_count": 11, @@ -953,8 +953,8 @@ "output_type": "stream", "text": [ "μ = 10.80 and μ½ = 11.50\n", - "1σ uncertainty for the mean: 1.76\n", - "1σ uncertainty for the median: 2.62\n" + "1σ uncertainty for the mean: 1.81\n", + "1σ uncertainty for the median: 2.57\n" ] } ], @@ -1097,9 +1097,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2BTZdvH8V93gYLsqWVPUUAQWcqWIXtvQR62oPiKiAjyAMqSJeIGGRVkLxGRKVs2sguUvUuhhbbQlfeP5Cm1i7RNe5L2+/nr5M6d5JeOXOdcOcPJZDIJAAAAAAAAAACkjLPRAQAAAAAAAAAASA9ouAMAAAAAAAAAYAM03AEAAAAAAAAAsAEa7gAAAAAAAAAA2AANdwAAAAAAAAAAbICGOwAAAAAAAAAANkDDHQAAAAAAAAAAG6DhDgAAAAAAAACADdBwBwAAAAAAAADABmi4AwAAAAAAAABgAzTcAQAAAAAAAACwARruAAAAAAAAAADYAA13AAAAAAAAAABsgIY7AAAAAAAAAAA2QMMdAAAAAAAAAAAboOEOAAAAAAAAAIAN0HAHAAAAAAAAAMAGaLgDAAAAAAAAAGADNNwBAAAAAAAAALABGu4AAAAAAAAAANgADXcAAAAAAAAAAGyAhjsAAAAAAAAAADZAwx0AAAAAAAAAABug4Q4AAAAAAAAAgA3QcAcAAAAAAAAAwAZouAMAAAAAAAAAYAM03AEAAAAAAAAAsAEa7gAAAAAAAAAA2AANdwAAAAAAAAAAbICGOwAAAAAAAAAANkDDHQAAAAAAAAAAG6DhDgAAAAAAAACADbgaHQBwDMHBwZMmTXry5MmNGzciIiImTpxYuHBho0PhXy5dujRjxgx3d3dfX98yZcqMGjUqS5YsRocCAKQp6rX9o14DABJBKTcKBRqwISeTyWR0BsABDBo0aOTIkQULFpT0f//3fytXrjx27Fi2bNmMzgWLkJCQ/v37//zzzy4uLmFhYXXq1ClQoMCKFSuMzgUASFPUaztHvQYAJI5SbggKNGBbnFIGeLYHDx78/vvv586dM9987733Ll26tHr1amNTIaZNmzZduHDh9u3bktzd3fv3779y5corV64YnQsAkHao1/aPeg0ASASl3CgUaMC2aLgDz2YymZ48eeLn52e+mTt3bklXr141NBT+JWvWrGfOnHnw4IH5Jr8jAMiAqNf2j3oNAEgEpdwoFGjAtjiHO/BsOXLkuHHjRvTNEydOSKpYsaJxiRBbvXr17t27F33zxIkT7u7uZcuWNTASACCN2W29DgsLc3d3NzqFXaBeAwASYbelPN2jQAO2xTncgSTr16/f4cOH9+/f7+TkZEiAu3fvnjt3rkaNGglNCAoKWrZs2b59+wICAl5++eVatWrVr1/f+uevVq1a5cqVmzVrVqJEiWzZsl27du3ChQtbtmzx9vYeOXJkQo86fvy4l5dX0aJFk/ZmUkFkZOTLL7/cuHHjqVOnGpUhIiLizz//bNq0aZIeNWjQIH9//5YtW1aoUCF37tz+/v4XL17ct2+fr6/v0qVL433I5cuXFyxYcPToUVdX1ypVqgwaNChz5sy2eAcA4PAMr9dmGzdufP/990+fPh1rPBmf+bEkqV4HBQUtXLjwwIEDkZGRefPm7datW6VKlWzzDpPLqHq9YMGCefPmtW7dumbNmvnz5w8NDb148eLx48dXrVq1Zs2aHDlyWP9U1lThyMjINWvW7Nu379y5cyVKlKhfv37jxo1t+oYAIN0yvJQ/c9P7mZ65mRwSEjJv3rzDhw/fu3evWLFizZo1q1u3brJfziaM3aD++++/f/nll6CgoMjIyDp16nTu3Dl5W7iJ/+5SvhoGPIMJQFIcOHCgQIECly5dMuTVw8PDV6xYUbBgwSZNmiQ059ChQ7Vq1Zo9e/bRo0dXrlzZsmVLSa1bt75x44aVr5I9e/a4nxUNGzZ89OhRvPMfPHgwZcoUDw+PSZMmJedd2drUqVNff/31J0+eGBXg77//rl69eqZMmZL6wFatWsX9yRcuXNjX1zfu5KioqLFjx3p7e8+bN+/u3bvBwcGrV69+/fXXQ0NDbfEmAMCxGVuvowUFBXl7excpUiTuXUn6zI+X9fX6yJEj3t7e48aNCwkJMZlMe/fuLVGixMiRI1P47lLIqHo9Y8aMuD83T0/PNWvWWP8kVlbhq1evvvLKKzVr1ty7d29YWNjhw4dLly7dvn37sLAwW78tAEhv7H/TO3HWbCbv2rWrZcuWa9euDQwMfPLkycGDB1u0aNGoUaPg4ODkBrcBowp0RETE0KFDy5Urd/ToUZPJ9PDhw48++qhMmTInT55M0vNY87tL+WoYkDga7kAShISE1K5d+9ChQ2n8upGRkT179mzUqFHVqlXfeOMNSY0bN4535t27d1966aUrV65Ej0RFRfXq1UtS1apVIyIirHm5HDlyuLpazjfl5ORUpkyZ+fPnR0ZGxpp26tSpbt26vfHGG7Vq1SpXrpykiRMnJvs92srZs2dr1aoVEBCQ9i/9xRdftGzZskqVKs2bNzdvuif1GVq1ahXznAP58uUbPXp0UFBQ3JnmX2u+fPkuX74cPfjNN98UL178+++/T9HbAADHZ1S9jmvAgAGSEmq4W/mZnxAr6/X9+/fz58//3nvvxRw8e/asi4vLDz/8kIw3ZRMG1usZM2bE/Ml7eXl169bt4sWL1j+DlVX48ePH5cqVK1iw4P3796MHDxw44OLi8v7779virQBAumX/m94JsX4z+ebNm7Vr1w4MDIw13qlTp7Zt2ybzDaSYgQV64sSJXl5eMbsZJpOpe/fuJUuWTGjnv5iS9LtL+WoYkDga7kAS9O/ff//+/eblBw8epOVL79y588KFCyaT6ddff02kcvTp02fx4sWxBu/evevp6SnJyj3QixQpEhwcfOzYsQMHDjx8+DChaffv39+zZ8+dO3dMJlP//v3toeEeGBjYvn37u3fvmkymsLAw8358aebo0aP//PNPRETErVu3kt1wP3jw4JkzZ/bu3Xv79u1EZv7yyy+SVq5cGXMwf/78koYNG5bk6ACQvhhYr2Pavn179+7dE2m4W/mZnxAr6/X7778v6erVq7HGmzRpkiVLFn9//2S8dAoZW69nzJgxffr0y5cv792718/PLyoqKqnPYGUVHj58uKShQ4fGenirVq1cXFzOnj2bvPwAkBHY/6Z3QqzfTB4xYsSYMWPijp85c8bZ2dmQlreBBfrGjRuZMmX6z3/+E2v877//lvTxxx9b8yTW/+5SvhoGJM457jEUAOL11VdfdejQ4dVXX5UUERGxePHitHz1WrVqFStW7JnT1q9fv2LFiqNHj8YczJ0795tvvilp7dq1Vr5c5syZX3755SpVqnh5eSU0J3v27NWrV8+TJ4+Vz5naTCbTp59+OmPGDPMV1ffu3Xvu3Lm0DFChQoWXXnrJxcUlJU/i6upaunTpatWq5c2bN6E5oaGhI0aMKFmyZKzj4MaOHdu4ceNu3bqlJAAAODpj63W00NDQKVOmjB49OpE51nzmJ86aer106VJvb+/nn38+1nj9+vWDg4MXLVqUvJdONsPrtSQnJydvb+9q1aoVLVo0qecFtrIKBwcHm89dE/c6OpUrV46MjJw/f34K3gEApGcOsemdEOs3k80XXYs7XqJECUlnzpxJdobkMbZAr1u3LjQ0NO4p16tWrerl5fXzzz9HREQ880mS9LtL+WoYkAga7oBV/vzzz9OnT4eFhW3cuHHDhg3Tpk0rUqSI0aFiCwoKunHjxvLlyz/++ONYd5UsWVLS0aNHo6KijIiWFj777LMSJUocP35848aN69evnzNnjnlNJf2ZNm3alStXmjZtGqtH0KdPnw0bNrz88stGBQMAw9lPvR49evSIESMyZcpkyKtHO3bs2I0bN8w7X8dSoEABSX/88UcaR3L0em1lFT5y5MiTJ08k5cyZM9YzFC5cWNL69evTJC8AOBj7KeWpzcnJ6aefftqxY0es8WPHjrm4uJQtWzaN8xhboDds2CApoTWW27dvHzlyJM3CACnnanQAwAHcu3evU6dO9+/f/+6776IHL1y4YGCkeGXLlq1ChQrHjh2L23KNjIyUlKRue0RExJkzZ/z8/CpWrOjt7W3LoKlgy5Yt48ePN5lM0SMvvPBC8q5mbg8uXbp04sSJwoULly9fPu6edwsWLJBUtWpVSX5+focOHSpSpEjFihXd3NwMyAoAdsN+6vXff/8dGRlZs2bN69evP3Ny4p/5z5R4vd6yZYsk865qseTLl0/SoUOHkvqKKWFX9drf3//YsWPu7u5Vq1b18PCw8lFWVuH79++bF8yn9Yspa9askk6dOvXkyRPrXxcAMgL7KeVpoEGDBlu3bq1fv/6HH344evRo85f0kZGRI0aMGDZsWLyXRk89hhfoxNdYzp07d+jQIfNBD7aVwtUwICHs4Y6MKDIyctq0aR07duzbt2/iuxd9+eWXYWFhuXLlinsCtZQcZZZ6/v7774sXL06ePDnW+OnTpyWVK1fO2dmq//qNGzf26tVr165dTk5OEydOfPHFF//55x/bx01YQEDARx991K5du/fff//EiRMJTQsJCYk+XjvWOVivXLmShnlt5uzZsz169Fi2bJnJZFq/fn2RIkWWLFkSc8KNGzd8fX0l5c2bd+rUqV9++aWzs/P+/ftffPFF848CANINB63XYWFh48aNGzdu3DNnPvMz/5meWa/NlxWJd0d786C/v3+SXjEWB63XgYGBH3zwwZdffvngwYPz58+/8sorw4cPN++dkDjrq3DRokXNC3EPgTe3M8LDwy9fvmyb9wMA9spBS3naGDJkSJkyZSIiIiZOnPjSSy9t2bLl0aNHXbt2LV68uDVrEYlzrAIdEhLy8OFDpeYaS1wpXw0DEsEe7siIPv3006pVq/br169OnTo//vjjJ5988vnnn8edNnHixGzZssW8dLX98/DwiHvA3Z07d7Zu3Spp4MCB1jxJYGDgkSNHFi5caL7ZvHnzwYMHV69eff369XXq1LFl3IT16NFj5syZUVFRVapU+eabb1avXt20adNYcyIiInr16vXhhx+mTaS0sWjRoiVLlpj3d2vevHnJkiXbtWt3+fLljz76yDzh0qVL5oWTJ0/myJHjm2++Md9s3LhxxYoVDx06FP2LAwBH56D1euzYsUOHDs2SJcszZz7zMz9x1tTrwMBASfFeX8Q8GBkZGRwcbE3aeDlovfbx8dmyZcsLL7xgvlmvXr3y5cufPHly3bp1ie/dZn0VLl26tJubW3h4eHBwcKwniT7uwfzbAYB0zEFLedrIkiXL9u3bu3btumXLlgsXLjRo0CBv3rwzZ87s1KlTyp/csQp0dEFMZI3F5kUzhathQOJouCMj6tixY8WKFSXNnDmzZs2aEyZMeOedd4oXLx5zzvz58wMDA+OeDP2ZNm/ePGDAgKQ+yt3dfdu2bal0sY4vv/wyPDy8evXqvXr1smb+nDlzWrduHXNk1KhRX3/99cCBA//55x9X11T/3DCZTJ9//rn5NzJ8+PCRI0cOGjTIz88v1jbwwIEDu3fvnozDyvz9/evUqWM+s2qSfP31140aNUrqo6w3cODAGjVqxDy6vG3btmXLlh09enS7du3Me3ZEf7G/atWq7du3R88sXrx4hw4d5s6d27Fjx2bNmqVeSABIM45Yr48ePRoQEBD3OplxWfOZnzhr6nVQUJCkeJvI0du0gYGByWu4O2i9rl+/ftOmTaO77ZIKFy7cvXv3b7/9dvHixV26dEk8knnhmVXYzc2tXbt2ixcvPnLkSKz9Ff766y/zgvm3AwDpmCOW8rSUL1++efPm1alT5+bNmyEhIXfu3Bk6dKirq2u7du1S8rQOV6CjC2Iiayy2bbinfDUMSBwNd2RE5pIvqUaNGq+++uqBAwfmzp0b85v2DRs2bN26dd68ecl48ho1avz0009JfZS7u7s11zFPhp07d06dOrVMmTJr1qyx8pRksbbeJeXNm7dcuXKnTp1avHhx9+7dUyHmvzg5OVWoUMG83K9fv/Hjx1+6dGnz5s0NGzaMnjNy5MjKlSsnr7OcK1eun376KRnrB1WqVEnGy1kv5huMVrdu3dOnT3/++edz5syRFH2K2MaNG8ea+frrr8+dO3fEiBE03AGkDw5XryMiIkaNGuXj42PNU1nzmZ84a+q1eW/BeC/iEn0GlWRfAsRB63X58uXjDtatW/fbb78dNWpU4g33JFXhKVOmrFu3bu3atUOHDo2edv369bt375qXk31gAQA4Cocr5Wls6dKl48aNmzdvXuHChQcNGrRu3bpbt261b99+1KhRY8eOTfbTOlyBjj64IZE1FttesSzlq2FA4mi4I6MbOHBgr169Fi5cOH78eHM/ev/+/bNnz165cmXyrpiROXPm2rVr2zpmMgUFBfXo0aNo0aKbN29O4VpFoUKFTp06tX///jRouMeUK1euDh06zJ8/f8GCBdFFcfbs2ZL69euXvOd0cnKqVq2azSKmskKFCknav3+/+eZzzz1nXihZsmSsmQULFpR06tSpkJAQx71gLADEyyHq9aRJk/r16xf9QZ0MsT7zk/cMMeu1+ZJrcU8jHnMwJYGjOXq9Nv/k/fz8/P39471im1mSqnChQoXWrVvXuXPnL7744pNPPpF07dq19957b8CAAead3O2n4wMAacAhSnlaWrhw4fDhw/fu3Vu4cGFJa9euXbly5eDBg2/cuDFu3LhXX321efPmKX8VhyjQ0VeITWSNxSarK4lL+WoYEI2LpiKja9Wqlbu7+9WrVw8cOCDJ19d3+PDhPj4+6eD8cVFRUT179syRI8euXbvMlcMaa9as2bhxY8yrk5uZd8I6efKkjVNaoWPHjpLWrVsXFhYmacWKFfv37x8/fnzaJ0lVhw4d8vHxefz4caxx80/+7Nmz5vWM6IMfc+bMGWum+YC4qKgoQ35NAJCq7L9enzp1ys/Pz8o9xaz8zE+ElfXavAUb7z5o5qrq4eFhq5+hQ9Tra9eu/fTTT7dv3441Hr2z+alTpxJ5eFKrcJ06dY4ePRoSEtKtW7c2bdp89tlns2bNMh8anz179ugLqwJARmD/pTwt3bx5c9CgQdOnTzd3283atGlz/PjxBg0aSJo2bZqtXsv+C3S2bNnMX7okssaSLVs2W71cylfDgGdiD3dkdNmzZ2/UqNG6detWrVrl7e39zjvvLF68OPr7VYc2ZMiQwMDAv/76K2vWrFY+ZMeOHa1atZK0adMmc5mPZi5yafCtclwNGjTImTNnQEDAtm3bPD09586du3r16uTtBGG3njx58vrrr4eGhp45cybWqo/5J58lSxbz2XiLFy+eNWvWhw8fxl0XiT7+jkPUAaQ/9l+vP/vss8jIyD59+sQcNF8w09/f3zxesWLFQYMGWf+ZnxDr67V5M/7OnTtxn+TWrVuSypYtm9R3mhCHqNc9evTYtm1bzZo1d+3aFXPc/HPTs1Z1klGF8+XLF+u37OfnJ6levXrOzuz8BCADsf9SnpY2b95sMpninqs9Z86cGzZsqFKlypEjR2z1WvZfoF1cXJ5//vmrV6+mwRpLylfDAGvwNwSoQ4cO69atW7Zs2Z49e2bPnh3zIlrJsGfPnpEjRyb1UR4eHj4+PokcwpxUEyZMuH79+oYNG2LuL/DVV18NGjQo3gt/m0Xv7Bb3GjL37t2TVLlyZVsltJ6bm1vr1q3nzJnz5ZdfPnnyZN26dSk8fdv9+/c7d+6cjFPOjR079vXXX0/JSyfEZDKFh4dLev7552PdFesn7+Tk9Nprr23evPny5cuxZprfkYeHR6lSpVIjJAAYy87r9ejRowMCAmIN7t+/f/HixV5eXt26dZNkfqD1n/kJsb5e16hRQ//bUo3l5s2bkpo0aZL4a1nPIeq1+UcX94/H/HPz8PB48cUXE3nmJFXhyMjIAwcOvPTSS7Fa8Hv37pVkPskMAGQodl7K09KZM2fy588f77a5q6tr165dp0yZYqvXcogCXaNGjSVLliS0xuLm5lavXr0kB41PylfDAGvQcAf01ltvubi4XLhw4fPPP4++tEiylSxZsmfPnkl9lLu7uw2/258/f/7hw4eXLl0aq47+9ttvQ4YMSeSBlSpVql69+tq1a2OtfwQFBR0+fNjJyenNN9+0Vcgkadmy5Zw5c/766y8/P7+U72WfLVu2nj17JmP9oHTp0il86YR4enpWrVr1p59+ivu9/bZt2/Tvi7N17dp18+bNx44dizXzzJkzkmrWrMkX8gDSJTuv1y+99FLcQfPRyp6enjFPMpukz/x4WV+vy5QpU6lSpX/++efBgwexkp84ccKa10oS+6/Xr7zyyoABA7p27Rpr3PyTb9CgwTNrqPVVeNKkSSNHjqxfv/7mzZujp927d2/Dhg1t27Zlex5ABmTnpTwtVa5cedKkSY8ePfLy8op77+PHj81fmduK/Rfozp07L1my5PTp07HGr1y58vDhw7p161p/4H7iUr4aBljFBMBkMl/x47vvvjM6yLP9+uuvkho3bpzQhD/++KN79+7h4eGxxs+ePduoUaNYM/v373/ixImYg7179z506FCsx86dO1fSoEGDEnrR/v37S5o4cWJCE6ZPn96/f/+AgICEJiTu0aNH5s3XM2fOJDQnMjLy0qVL+/fvDw4Ojh68fv168l4xJcxfy3t6eiY04fTp0wMGDPjtt99iDs6bN2/mzJmxZp4/f97Z2blixYphYWHRg6GhoSVKlChXrlxUVFTMyc2aNXN1dT127Jgt3gQA2CMHqtdmGzZskFSkSJFY49Z/5ptSXK8XL14sae7cuTEHw8PD8+TJU61atcjIyJjj6b5enz17tlOnTrEGHz9+XKpUqSxZsvj5+cUcj7deW1+Fhw8fLqlu3boxpw0aNChLliynT5+2zfsBAEfjQKXcmk3vuAU6pkQ2kwMCAvLmzTt27Ni4d4WEhFSoUGHbtm0xB9N9gY6IiChXrlzhwoVjldcZM2ZIWr9+fczBeAt0TIn/7pK0GgYkDw13wLR///5GjRpJat68udFZns18PfGqVavGe+/Bgwe9vLwKFCjwfAyFChXKnTu3s7Pz+++/Hz0zLCzM/MV+/fr1Yz7DrVu3atasuXv37uiRnTt3ZsqUqV69eg8fPkwoVfv27SV99NFH8d5rPnRaUt++fZP2bv9nzpw5VapUkTR16tSE5ty4cePdd9+VdPnyZfNIeHj4Cy+8cPDgweS9aLKZr5bm5OQUc00lpqZNm0ry8vIKCQmJHoyKimrVqtWPP/4YvYZx69atEiVKFC1aNO463J49e7JkyTJixIjokUWLFrm4uEybNs3W7wYA7IVj1WuzRYsWScqZM2dERETMces/821Sr3v27FmoUKGbN29GjwwbNixnzpyx2r4ZpF5Pnjx54MCB0TU6IiKiVatWWbJkWbp0aayZ8dZrk9VVeNeuXeXKlbt37575ZlRU1OTJk728vP7880/bvysAcASOVcoT3/ROqEDHlPhm8r59+7y8vKZOnRpzb7nLly83bdp08uTJMWdmkAJ9/PjxLFmyxPwS4vLly7ly5Ro4cGCsmQkV6GiJ/+6StOkNJI+TyWSy7S7zgGO5cOHC8uXLe/ToUahQIQ8Pj7t378Z7SJfhRo0adeXKlXv37m3fvt18BbZq1aoVL17c09Pzk08+KVasmKTQ0NBixYrFe9Yzs++//75v377RN2vXrr1jx46PPvpo0qRJMac9ePBgwIABgYGBxYsXv379+vHjx999990hQ4bEuqxKUFDQBx988OTJk6tXr+7YscNkMrm7u9etWzdfvnyZM2f+9ttvo2feuXOnVKlSQUFBFStWPHz4cFLf+7p160wmU0hISOfOnV9//fUdO3YkNHPnzp2dO3e+du2a+ebatWv79et37dq1RE5bb0M+Pj5bt259+PDh7t27zSfGLVGiRJUqVTJnztyuXbuYJ8kdPXr0uHHjqlat+vfff8d8hqioqP/+979//fVXyZIlIyIidu/eXb9+/SlTpsT7N3nw4MH33nsvIiKicuXKvr6+AQEBX331Va1atVL7bQKAIRylXkfr27fv/fv3t27daj6xe6VKlV588cVGjRqZT+aupHzmp7Bem19r2rRp8+fPb9euXZ48eX7//ffIyMhvv/22SJEiMadlkHotaeXKldOmTfP29s6RI8euXbsKFiz49ddfFy9ePNa0hOq1rK7C8+fPnzlzZuXKlZ2dnXft2lW8ePGpU6eWLFkyFd8bANgrRynl1mx6m8VboK3fTJZ06dKlsWPH7tmzp2LFirlz5/bz8wsODp44cWL16tVjTss4BdrX13fQoEFZs2Z98803r1+/vmrVqr59+8Y9L25CBdr6312SNr2BZKDhjgzN399/+vTp48ePd3Jyqlq16oEDB3799deOHTsanSsehw8fNplMrq6uzs7OTk5O5m/MIiMjnzx58uKLL5pPZxYWFhb91Xe8ypcvnytXruibUVFRfn5+JUqUiHdyRETEyZMnCxYsmCdPnngnhIeHHzx40MPDw9XV1cnJKTpVREREWFiY+VDBaMHBwQEBAZ9//vl3332XpDe+b9++kydP9u7dOzAwME+ePJGRkdeuXStQoEC8kydNmnT48OElS5aYb7Zs2bJ27doffPBBkl4x2c6fP//gwQM3N7eYv6OoqKjw8HDzMQcxJ1+4cKFIkSIJrbj4+vq6urrGXCFIyKNHj3x9fUuWLGmrU9oBgB1yoHodbdeuXa6urm5ubm5ubuZaYD6LS9xm6zM/81NYr2POPH36dEhISLFixRKanBHqdbRbt27duXOnXLlyiZy3PfF6bU0VDg8Pv3Tp0oMHD4oXL54zZ04b5AYAB+RApdyaTW+zeAt0kjaTzczncgkKCipbtqynp2e8qTJUgb59+/bFixezZs1apkyZhEpwvAXa+t9dNOs3vYGkSe1d6AG7FRISMmzYsMePH5tvTpgwQVLbtm2NTZW+xTynjTV8fX1jHkxnPvxw1qxZCc1v3rz5jBkzzMs7d+4sX758aGho8qICAOwE9TrtUa8BADZEKbcVCjTgKJyNbPYDxt//eQEAACAASURBVImMjPzvf/87YsQIDw8P80jXrl2dnZ3Xr19vPvQbNnfx4sUkHZ91586defPmffjhh9Ej3bt3l7Rw4cKEHrJnzx7zxdyDgoIGDx68YsWKhHYQAAA4BOp12qNeAwBsiFJuKxRowIHQcEcG9cUXX/Tv3z9HjhzRIy+88EK9evUeP348d+5cA4OlY7NmzRowYICVk4ODg6dMmfLZZ5/FPBFt69ats2XLtn///oMHD8Z9yJkzZ0JCQipWrHjv3r2ePXt+++23pUqVsk10AIBBqNdpj3oNALAhSrmtUKABB0LDHRnR119//dZbb8W6UJikoUOHSvryyy8DAwMlzZkz59SpU2kfL13atGlTjhw5ChYsaM3kyMjIsWPHjhw50t3dPeZ45syZ+/XrJ2nUqFHmkWHDhpn+dyGK3bt3V6lSZdOmTWPHjp0xY0a8Z8cDADgQ6nXao14DAGyIUm4rFGjAsbiMGTPG6AxAmlq+fHmBAgVef/31uHeZr3n1xx9/7Nmz5/z5876+vu+8807aJ0yXdu7cOXjw4Jjfridi/Pjxffv2zZcvX9y73njjjYsXL65aterOnTsrVqyoWLFi5cqVzXcdOHDA1dX11Vdf7dOnz3PPPWfL9ACANEe9NgT1GgBgK5RyG6JAA47FKfq7LCCDCAoKypYtWyITQkJCzp0799xzz8X9Hh5p45m/o4CAAD8/v6JFi+bKlSvNUgEA0hL12v5RrwEAiaCUG4UCDRjOmIb75MmTb9y4MWPGjETmPH78eNeuXb6+vn5+fvnz5y9fvny1atWyZ8+e0PyQkJA1a9acPHkyJCTE29u7WbNmJUqUSIXsAABkIDdu3Bg3blyePHnGjh0b74SoqKgtW7bs27fv3r17efPmrVOnjvlSSwmhXgMAkBrYygYAwE4Y0HC/d+9egQIF3N3dHz16lNCc33//ffDgwX5+fjEHc+bM+cUXX/Tp08fZOfap51evXt27d+9YV7ju06fPV199xSWVAQBIHpPJ1LBhwy1bthQvXvz8+fNxJ5w6dapTp07Hjx+POVizZs1FixZ5e3vHnU+9BgAgNbCVDQCA/XBN+5ecMmVKeHh4rEs3xLRixYp27dpJcnNzq1GjRsmSJS9fvrxnz56AgID+/fv/888/s2fPjjl/48aN7dq1i4yMdHZ2rlKlSv78+bdv3x4UFPTjjz8GBgYuWbIk1d8SAADp0eTJk7ds2ZLQvdeuXatXr97t27cllShRolKlSnv27Ll+/fru3bsbNmz4999/x9pjjnoNAEAqYSsbAAA7YkpDN27c+Pjjj80XeciSJUu8cx49evTCCy9I8vb2Pnz4cPT41atX69SpY868fv366PHHjx8XKlRIUvbs2U+dOmUeDAsLa9asmXny6tWrU/VNAQCQLu3fv9/Nzc1cTIsXLx53Qtu2bc33/vLLL9GDEyZMMA++//77MSdTrwEASA1sZQMAYG9iHzWWSrp3716qVKlChQpNnDjRlOhJbObNm3f16lVJ06dPr1SpUvT4888/v2zZsrx580r67rvvosd/+eWX69evmxfKli1rHnRzc1u8eHHRokUlTZkyJRXeEAAA6dnDhw87d+4cHh6e0AWXzp8/v3LlSknDhg3r0qVL9PjHH3/cvn17Sd9//31QUFD0OPUaAADbYisbAAD7lEYN902bNp07dy7xlQCzv/76S1LevHnbtGkT667cuXM3btxY0sGDB6MHV69eLalMmTJNmzaNOdnLy8u8wb937967d++m+B0AAJCBDBo06MKFC3Xr1o3ejT2WtWvXmkwmJyenoUOHxrqrV69ekkJDQzdt2hQ9SL0GAMC22MoGAMA+pVHD/cCBAxf/57333ktk5qVLlySVL18+3nvNx8HdvXs3MjLSPLJz505J9evXjzu5RYsWkqKionbt2pWi9AAAZCSLFi1auHBhzpw5Fy5cGPcSamY7duyQVK5cuQIFCsS6q169el5eXtFzzKjXAADYFlvZAADYpzS6aKq5hJvFuoRaLJMnT3706NHzzz8f771HjhyRVLRoURcXF0m3b99+8OCBElh1ePXVV52cnEwmk6+vb0rCAwCQcVy8eHHAgAGSfvzxR/P5W+N19uxZJVB/PTw8Xn755T179kTXX+o1AAA2x1Y2AAD2KY0a7taLvmZLXLt27dqwYYOk6MPbzeehkxTvqoO7u3uePHnu3Llz5coV2wcFACDdiYiI6NKlS1BQ0H/+85+4R53HZC7BCW26m8ej6y/1GgAAA7GVDQBAWrK7hntCtm7d2r59e5PJlCdPng8//NA8+OjRI/OC+dD1uLy8vO7cufPw4cPEn9x8SXcAAOyTNadntYnPPvts3759pUqVmjFjRuJ5QkJClGj9lRRdf6nXAICMIM3qta2wlQ0AyLBStWqn0TncU+L27dt9+/Zt0KBBQEBAtmzZ/vjjj1y5cpnvCg0NNS94eHjE+1jzuLkpAAAAErF9+/aJEye6ubktXrw4S5Ysicx8/Pixee3EyvpLvQYAwK6wlQ0AQOqx6z3cw8LCpk6dOmHCBPOX59WrV//5559Lly4dPcHT0zN6ZrzP8OTJE0nu7u6Jv1Di32mYv5l3uL0VUlVISIi/v3/mzJlz585tdBY74u/vHxISkjt37syZMxudxY6Yjzb19vY2Oogd4T8oXhnnPyg4WM2aaft2y83PP9cnnyQ4Oc32DgsICOjWrVtUVNSECRNeeeWVxCdHb4FbWX+p10bh0yZeGefTJkmo13HxHxQv/oPi5UB7c7OVbbf4zIkXnznxomrHxX9QvBz6P+joUdWqpeBgSWrYUL//LlcbtbHToGrbb8N99+7dvXv3Nl+TLX/+/GPGjOnTp4+z8792yY/e/y7Y/OOPI/ED3gEASGNBQWrcWHv3SpKTk6ZN0/vvG51JkvSf//zn+vXr9erViz6iPBHOzs6ZMmUKDQ21sv5SrwEAsAdsZQMAHMLt22rRwtJtL11aS5farNueNuw07Hfffffuu+9GRkZmzpz5448//uCDD+I9tr1QoULmhRs3bsS9NyIi4s6dO5IKFiyYqmkBALBGYKAaN9a+fZLk5KTp0/Xee0Zn+p/ff/9dUmBgYNOmTWOOnzx5UtLNmzcbN24sqVSpUl999ZWkQoUKnT9/Pt76K+n69euKUX+p1wAAGI6tbACAQwgPV4cOMl/DO1s2rVyp7NmNzpRE9thwX7Ro0cCBA00mU+3atefOnVusWLGEZhYqVMjLy+vRo0fmr+hjOX/+fFRUlKSyZcumYlwAAKzw4IEaN9bff0uSk5NmztTgwUZniuPQoUPxjoeEhGzcuFGSv7+/eaR06dLnz5+Pt/5KOnfunGLUX+o1AADGYisbAOAoBg7Ujh2S5OKiRYtUrpzRgZLO7hruly5d6tmzp8lk6tChg4+Pj5ubW+Lza9So8eeff+7cuTPuXdGDNWrUsH1QAACs9uCBGjXS/v2S5OSkWbM0aJDRmf7t008/jYiIiDu+du3aI0eO5MiRY8iQIYqxO1vNmjXXr19/7Nixhw8fZs2aNeZDzp07d+vWLfOc6EHqNQAARmErGwDgKKZN008/WZanTNFbbxmaJrnsruE+e/bs8PDwQoUKzZkz55nrAZJatmz5559//v3336dPn471Hfv8+fMlValS5YUXXkituAAAPMv9+2rUSAcOSJKTk77+WgMHGp0pjk8//TTe8WvXrh05ciRnzpxjxoyJOd6yZctPPvkkPDzcx8dnwIABMe+aN2+eJHd395hnp6FeAwBgFLayAQAOYdMmDR9uWe7RQ0OHGpomBZyfPSVtmet3rVq1Ll26dCIBMQ9te/vtt/PkySOpf//+jx8/jh7/7rvvdu/eLWnYsGFp/iYAALC4f19vvvm02z57tj1225OhXLlyTZo0kTRmzJjLly9Hjx85cmT69OmSevfunTNnzuhx6jUAAEZhKxsAYP/OnlWHDjIfd129un74wehAKWBfe7jfu3fv7t27kpYsWbJkyZKEpuXLl898rLqkLFmyfP311x07dtyxY8dLL73UqlWrPHnybN68efPmzZKaN2/evn37tAkPAEAsd++qfn0dPy5JLi6aM0dvv210JtuZOXPm3r1779y5U7ly5ZYtW1aoUGHPnj2//fZbaGhokSJFxo4dG3My9RoAAEOwlQ0AsH9BQWrTRg8eSFLBglq+XB4eRmdKAftquF+4cCEZj+rQocPDhw+HDBly/vz5L7/8Mnq8Y8eOP/30k5OTk+0CAgBgrTt31KDB02773Lnq0cPoTDZVsmTJDRs2dOrU6fLly3Pnzo0er1ix4tKlS3Pnzh1rPvUaAIC0x1Y2AMDORUaqSxedOiVJmTJp9Wr979phjsqAhnvPnj3r1Knj4uIS967ixYtv27btmc/g7u4ea6R3797NmjVbsmTJyZMnQ0NDvb29W7Zs+eqrr9omMQAASXT7tho00IkTkuTiop9/VvfuRmdKlmHDhnXr1i1Tpkzx3lutWrXTp0+vXr16z549AQEB+fLlq1u3bpMmTVxd41/BoF4DAJAa2MoGADiuYcO0fr0kOTlp7lylg1LjZDKZjM5g78zf3vODiikkJMTf3z9z5sxxd2DMyPz9/UNCQnLnzp05c2ajs9iRK1euSPL29jY6iB3hPyhe6ek/6PZt1atn+X7exUXz56tr12Q+FTXIevys4uLTJl7p6dPGhqjXcfEfFC/+g+JFDUoqfmJx8ZkTLz5z4kXVjov/oHg5xH/QggVPz7w6erT++99Uf8U0qEF2d9FUAAAc2q1b/+q2L1iQ/G47AAAAAADp1Z496tvXstyqlT77zNA0tmNf53AHAMChXb2qevV0/rwkubnp11/Vpo3RmQAAAAAAsDM3bqh9ez15Iknlymn+fDmnlz3DabgDAGAbV66oXj2Zr0zm7q4lS9SqldGZAAAAAACwM6GhatVKN25IUq5cWrdO2bIZncl2aLgDAGADV66obl35+UmSu7uWLlXLlkZnAgAAAADAzphMeucdHTggSW5uWr5cxYoZncmmaLgDAJBSly+rbl1dvChJ7u5atkwtWhidCQAAAAAA+zNunH791bI8a5bq1DEyTGqg4Q4AQIpcuqS6dXXpkiR5eGj5cjVrZnAkAAAAAADs0OrV+u9/LctDhqhfP0PTpA4a7gAAJN+5c6pXT9euSVKmTFqzRg0bGp0JAAAAAAD7c+yYundXVJQkNWigqVONDpQ60svFXwEASHO+vqpb19Jtz5xZa9fSbQcAIMO5ft3oBAAAOIJ799SmjR49kqSiRbV4sVzT6a7g6fRtAQCQys6eVb16louqZ86sdetUr57RmQAAQNoKCVHTpkaHAADA7oWHq107+flJUtasWrtWuXMbnSnVsIc7AABJduaM6ta1dNuzZNFvv9FtBwAgI+rXT//8Y3QIAADs3uDB2r5dkpydtWiRypc3OE+qouEOAEDSnD6tevV086b0v2573bpGZwIAAGlu1iz5+BgdAgAAuzdrlr7/3rI8YYKaNTM0TerjlDIAACTBsWNq0ED+/pL03HPasEHVqxudCQAApLl9+/Thh0aHAADA7m3erA8+sCx3766PPjI0TZpgD3cAAKx19Oi/uu1//EG3HQCAjOj2bbVrp7AwSapY0eg0AADYq/Pn1bGjIiIk6bXX9MMPRgdKEzTcAQCwypEjT7vt2bNr40ZVq2Z0JgAAkOYiItSxo65fl6ScObVypdGBAACwSw8fqnVrBQRIUoECWrFCnp5GZ0oTnFIGAIBnO3xYDRtaVhTM3faqVY3OBAAAjDB8uP76S5KcnfXLLypa1OhAAADYn6godemiEyckydNTq1erUCGjM6UV9nAHAOAZDh162m3PkUObNtFtBwAgg1q9WtOnW5bHjlXjxoamAQDAXn38sX77TZKcnDRnTsbaiKbhDgBAYvbsUb16lm57njzavl1VqhidCQAAGOHsWb39tkwmSWreXCNGGB0IAAC7tHChpkyxLI8YoS5dDE2T5mi4AwCQoN271aSJgoIkKW9ebdmil182OhMAADDCo0dq08ayVlCihBYskDPb0wAAxHHokPr1syw3aaKxYw1NYwTO4Q4AQPx27VLTpnr4UPpft718eaMzAQAAI5hMeucdnTolSZkyaelSZc9udCYAAOzPzZtq2VKhoZJUtqwWL5aLi9GZ0hwNdwDIcI4e1RdfSFLFivrkE6PT2KudO/XWW5Zue7582rJFL75odCYAAGCQyZO1bJll+dtvVamSoWkAALBLjx+rVStdvy5JOXNq7Vo995zRmYxAwx0AMpxbtyxbjOZuMuLasUNvvaVHjyQpf35t2aJy5YzOBAAADLJtmz791LI8ZIjeftvQNAAA2CWTSb17a/9+SXJz07JlKlHC6EwG4ZxzAAD8y6ZNatzY0m1//nnt2EG3HQCAjOvmTXXtqogISape/ekl4AAAQEwTJmjRIsvyzJmqV8/QNIai4Q4AwFMbNz4939wLL2j7dpUsaXQmAABgkPBwtW+vmzclKV8+LVsmd3ejMwEAYH82bNDo0Zbld97RgAGGpjEaDXcAACx+/12tWlm67YULa/t2FS9udCYAAGCc997T7t2S5OqqJUtUqJDRgQAAsD+nT6tzZ0VGSlKtWvr2W6MDGY2GOwAAkrRhg9q21ePHkuTtra1bVayY0ZkAAIBxfvnlactg8mTVrm1oGgAA7FJAgFq0UGCgJBUpopUrORqMhjsAANL69Wrd2tJtN+/bTrcdAICM7J9/1LevZbl1a73/vqFpAACwS+Zzr50/L0leXlq7VnnyGJ3JDtBwBwBkdL/9prZt9eSJJBUpou3bVbSo0ZkAAIBx7t9XmzYKCZGk0qU1b56cnIzOBACA/XnvPW3dKknOzvrlF730ktGB7AMNdwBAhrZ8udq0sXTbS5bUrl0qUsTgSAAAwEBRUerWTRcuSFLWrFq5UtmyGZ0JAAD78803T8+9Nn68WrQwNI09oeEOAMi4li1Tly4KD5ek0qW1bRsXQwMAIKMbO1a//y5JTk6aO1flyhkdCAAA+7Nzp4YOtSy3a6ePPzY0jZ1xNToAAADGWLpUXbsqIkKSSpfW1q0qWNDoTAAAwFCbNmn8eMvy8OFq187QNAAAJMuxY/L11cOHHsWKheXObfvnv3RJbdsqLEySKlXS/Pmce+1f2MMdAJAR/frr0257mTLato1uOwAAGd3ly+rcWZGRklS3rsaNMzoQAADJsmCBOnRQ795Zt2zJZPMnf/RILVro7l1Jyp9fa9cqc2abv4hjo+EOAMhwFi9W9+6WbnvZstq2TQUKGJ0JAAAY6vFjtW2re/ck6YUXtGSJXDkgHACAf4uKUteuOn5ckjw9tWqVnn/e6Ez2h4Y7ACBjmTtX3bpZuu0VKmjHDuXPb3QmAABgtIEDdeiQJLm5afFi5cljdCAAAOzPp59q7VrL8tdfq1o1Q9PYKxruAIAM5Kef1KePoqIkqWJFbd6s1DifHQAAcCzffquff7Ysz5qlmjUNTQMAgF1avlwTJ1qWP/pIvXsbmsaO0XAHAGQUP/6ofv0s3fZKlei2AwAASdq/X0OHWpa7dVO/foamAQDALh05orfflskkSY0a6YsvjA5kx2i4AwDsSMWKmZyc5OQkX18bP/MPPzzttr/yijZvVq5cNn4JAADgcO7dU8eOevJEkipU0PffGx0IAAD7c+uWWrRQSIgklS6tX3+Vi4vRmewYDXcAQPr33Xfq39/yVXzlytq0STlzGp0JAAAYLTJSXbro0iVJypFDK1cqc2aDIwEAYG8eP1br1rp2TZJy5NC6dcqe3ehM9o2GOwAgnZs+XQMGWLrtNWpo61a67QAAQJI++UR//ilJzs7y8VGxYkYHAgDA/rz7rvbtkyQXF/3yi0qWNDqQ3aPhDgBIz6ZO1QcfWJZr1tQffyhbNkMDAQAA+7BmjaZMsSyPHq2mTQ1NAwCAXZo8WXPmWJanT1eTJoamcRA03AEA6daUKfrwQ8tyrVrasEFZsxoaCAAA2Adf36dXfmvYUJ9+anQgAADsz8aN+uQTy3LPnho82NA0joOGOwAgfZo8WR99ZFl+/XW67QAAwOLRI7Vpo8BASSpcWIsXc+U3AABiO3NGnTopMlKSatbUd98ZHchx0HAHAKRDkyZp+HDL8htv6Pff5eVlaCAAAGA3evfWyZOS5OmplSuVK5fRgQAAsDP376tFCz14IEmFC2vlSnl4GJ3JcdBwBwCkN2PG6OOPLctvvqk//qDbDgAALKZO1dKlluVvvtErrxiaBgAA+xMZqa5dde6cJGXKpBUrlDev0ZkciqvRAQAAsKXRozVunGW5USOtWqVMmQwNBABAeuHvr6++yhQe7urt7TpggNFpkmXPHo0YYVkeOFC9ehmaBgAAuzR0qDZskCQnJ82bp8qVjQ7kaGi4AwDSj1GjNH68ZblxY61aJU9PQwMBAJCO3L6tceOySCpbNsoRG+63bql9e4WHS9Jrr2naNKMDAQBgf+bN06xZluUxY9Shg6FpHBOnlAEApBMjRz7ttjdtSrcdAAA8FR6uDh1044Yk5c2r5cs5Fy0AALHt3q3+/S3Lbdpo1ChD0zgs9nAHADg8k0kffKAZMyw333pLK1awFQ0AAJ76v//Tzp2S5OIiHx89/7zRgQAAsDOXL6tNGz15IkkVK2rBAjk5GZ3JMbGHOwDAsZlMGjr0abe9bVutWkW3HQAAPLV48dOj4ydMUMOGhqYBAMD+hIaqbVvduSNJ+fJp7VplyWJ0JofFHu4AAAdmMum9955uQrdrp0WL5OZmaCYAAGBPjh9Xnz6W5ZYt9eGHhqYBAMD+mEzq2VOHDkmSm5uWLNELLxidyZHRcAcAOCqTSYMHa/Zsy80OHfTLL3KlsgEAgP95+FAdOig4WJJKldL8+RwdDwBAbJ99pqVLLcuzZ6t2bUPTOD5OKQMAcEgmk95992m3vWNHuu0AAOBfzPvrnTkjSV5eWrlSzz1ndCYAAOzMypUaP96yPHTo08PCkGx0JgAAjicqSv/5j37+2XKzUyctXEi3HQAA/Mvnn2vlSklyctKcOXrxRaMDAQBgZ44eVY8eMpkkqWFDTZ5sdKB0gT3cAQAOJjJS77zztNveqxf7tgMAgNi2bNGYMZbl//s/dehgZBgAAOzQ7dtq0eLpideWLGHL2jZouAMAHIm52z5/vuVm79766Sc5U80AAEAMV66oUydFRkpSjRr64gujAwEAYGfCw9Wxo65elaRs2bRypXLkMDpTesHXFgAAhxEZqZ495eNjufmf/+j77+m2AwCQ1swHntutx4/Vtq38/SUpf34tWyY3N6MzAQBgZwYN0l9/SZKzsxYt4sRrtkSXAgDgGCIj9fbbT7vtffrQbQcAII0EBWnMGDVtarl59qzzG29o2TJDMyXs3Xd18KAkublp6VIVLGh0IAAA7My0afrxR8vyl1/qrbcMTZPusIc7AMABREaqe3ctXmy52a+fvv1WTk6GZgIAIGPw9VWTJvLzezpiMmnnTu3cqY4dtXChfe0//uOPmjPHsjx9ul5/3dA0AADYn02bNHy4ZblHDw0damia9Ig9AwEA9i48XO3bP+229+9Ptx0AgDQSEqLGjf/VbY9pyRJ9+GHaBkrU0aN67z3LcpcuGjTI0DQAANgfX1916KCICEmqXl0//GB0oPSIhjsAwK6FhalDB61aZbn5wQd02wEASDtff62LFxObMHu2LlxIqzSJCghQmzYKDZWkl156eqQ8AAAwCwpS69Z68ECSChbU8uXy8DA6U3pEwx0AMhCTSb//ri+/tNw8cECTJ+vePUMzJSosTO3ba/Vqy80PP9TUqYYGAgAgg3nmidojI59+L26gqCh17Wr5biB7dq1cqcyZjc4EAIA9iYpSly46dUqSMmXS6tVc5iS10HAHgIzizh01aKC33tKWLZaRe/c0fLhKlLCL7eS4wsLUrp3WrrXcHDZMU6YYGggAgIzn7FnbzElto0bpjz8kyclJc+eqRAmjAwEAYGc+/FDr10v/q5Wvvmp0oPSLhjsAZAhPnqhJE23dGs9dDx6oQwdt3JjmmRIVFqa2bbVuneXm8OGaPNnQQAAAZEiPHz97TkhI6udI1Lp1mjDBsvzpp2rd2tA0AADYnwULNH26ZXnUKHXqZGia9I6GOwBkCLNm6fDhBO+NiNCAAQoPT8NAz9Kvn377zbI8fLgmTjQ0DQAAGVX+/M+eY+wB6efPq0cPmUyS1KCBPvvMyDAAANihvXvVt69luVUramWqo+EOABnC3LnPmHDxov76K02iWGfPHsvCf/9Ltx0AAMPUr2+bOakkNFQdOlgu/ubtrcWL5eJiWBgAAOzQzZtO7drpyRNJKldO8+fLmX5wKuMHDADpX2ioTp9+9rSDB1M/yrOYd0+LNnasRo82KAoAAJDef/8ZLewXX1SDBmmVJo4BA3TkiCR5emrFCuXObVgSAADsUESEU8eOHjduSFKuXFq7VtmyGZ0pA6DhDgDp3/37Vk0LCEjlHM8SEuJ0/bpT9M3x4zVqlIFxAACAKlTQF18keO9zz2nRIrm6pmGgGGbO1Pz5luWvv1aVKsbEAADAbq1bl/nQIWdJbm5avlzFixsdKGOg4Q4A6V/OnFZNy5UrlXMkKiTEqVevPKGhlpsffKCRI43MAwAAzD76SD4+8ZzMvVYt7dunl182IpO0e7eGDbMs9+mj3r2NiQEAgD07edLdvPD116pTx9AoGQkNdwBI/zw9rdoYrlYt9aMkIDBQbds+t2+fZ/RIv36GhQEAALF07apLlzR7tuVmvnymgwe1c6fKlDEmz+3b6tDBcr33V1/VrFnGxAAAwCEMHvz0oqlIAzTcASBDeOZuX6VKqWbNNIkSx4MHevNNHTxo0OHoAADACh4eql3bspwzp6lyZcOSRESoY0eZT0ebO7eWL5eHh2FhAACwQ3fvPl2uqkyFeQAAIABJREFUUydy2jTjomRINNwBIEMYMEA1aiR4r7u7fvjBmBOw3r+vhg21f78kOTkpb17Tsx4BAAAytOHD9ddfkuTsLB8feXsbHQgAAHty757WrrUsZ88etWBBmFFXW8mwjGm4P3jw4M6dO9bMjIqKevDggclkbf8lLCwsKCgoBdEAIH1yc9Nvv6lFi3juyptXa9Y83WctLT14oEaNdPCgJDk5aezYgOeeMyAGAABwFKtWafp0y/Lnn6tRI0PTAABgZ8LD1a6dAgMtNzt2fJQrF7u1pTUDGu4mk6lixYrFihVLfNqyZctq1qzp4eGRI0cOT0/PN998888//0xocnh4+MSJE0uXLu3p6fncc89lz569e/fu586ds3V2AHBgOXJozRpt365mzSwj+fJp9mxduKDGjQ3IY963/cABSXJy0qRJj3r0eGRADgAA4CDOnlXPnjLvjtWihYYPNzoQAAB2ZvBgbd/+9GaePJGGRcnADGi479ix4/Lly4nPGTJkSIcOHfbs2RMRESEpLCxs06ZNjRs3njBhQtzJwcHBb7zxxogRI3x9fc37wgcGBvr4+FSqVGnLli2p8RYAwHHVrq1BgyzLlSpp4EB5eRkQ4+5d1alj2bfd2Vlz56pXr8eXL7tGH6R05IiiogwIBgAA7NOjR2rTRuZVhZIltWCBnJyMzgQAgD2ZNUvff290CKR9w/3evXt9+vRJfM7cuXNnzZol6bXXXvPx8Tl58uSPP/5YunRpk8k0cuTIP/74I9b8AQMG7Nu3T1KXLl1+//33w4cPT5o0ycvLKzg4uH379rdu3Uql9wIASJ47d1S/vv75R5JcXDR3rurWVadO2WrXLnj7tmXTuVMnlSunjRuNzAkAAOyEyaRevXTqlCRlyaKVK8Vp6AAAiGnLFn3wgWW5bFlDo2R4aXTO/GPHjp08eXLnzp0+Pj6PHiV2xoAnT56MHj1aUqlSpTZs2JAjRw5J5cqVa9CgwWuvvXbnzp2RI0c2jnHugxMnTvj4+Ehq3769j4+Pk5OTpEqVKpUrV65ly5b379+fPHnyNK7FCwB2w9xtP3FCklxc9PPPqlJFVarI39891syzZ9WkiebOVc+eaR8TAADYkcmTtXy5Zfnbb1W+vKFpAACwMxcvqlMnRURIUuXKqllTp08bnSkDS6M93Bs1atS1a9fvvvsu8W67pD///PP69euSvvrqK3O33axIkSKffPKJpMOHD/9j3itSkvTzzz+bTKZMmTL98MMPTjEOKWzWrFmLFi0kLVy4MIqzEgCAfbh9W/XqPe22z5unrl3Vvbv8/eOfbzKpXz/5+qZlRgAAYF+2bdOnn1qWhw5V9+6GpgEAwM48fKgWLSyb1QUKaPx4y+lbJe3d6+nra8AZxTO4NPqJd+zY8e3/qVChQiIzzWeMyZ49e8OGDWPd1bx585hzYi43aNAge/bs8c739/c/GP1XBgAwzq1bqldPJ09KkouLFixQt27auFGHDiX2qLAwzZqVNgEBAIDduXpVHTtadtmrXl0TJxodCAAAexIVpS5dLLu1eXioaFE1aaI9eyz3btmS6ZVXPLt3V/T10pAG0uiUMjNnzoxeHjNmzLFjxxKaab6rSpUqzs6xvwwoVqxYyZIlz507F72H+5MnT86ePSvptddei/tU0Wee+eeff6pWrZqydwAASJFr11S3rs6flyQ3N/36q9q0kaRNm5792D//TN1sAADAPoWHq3Nn3b0rSfnyaflyucc+BR0AABnaxx/rt98kyclJOXI8bbVHM5nk46Pz57V1qzJlSvuAGZHdHVNw7tw5SUWLFo333uLFi0fPkeTn5xcZGZnQ/IIFC2bKlCnmfACAIa5efdptd3fXkiWWbrukGzee/fBr11IxGwAAsJKLi7JnNz33XFS2bGn0ikOGaPduSXJz09KlKlgwjV4XAACH4OOjKVMsyy+9pFu3Epy5b58mTUqbUEirPdytFxAQIClv3rzx3msev3fvXszJiczPkyfPlStXoucn5IcffnhmsGeefT5DCQkJCQ4ONplMnp6eRmexI8HBwSEhIZ6enlw2IKbg4GDxH/Rvhv8HhYa66P/Zu9OAqKo+DODPsO8igrsoiQvmkqll+uZuqSEoCrhvuGVlYlpmWmbmvuRW7luiiclmaiouiWLo25uZhgJpiqIii4DOsA3zfri3gdhEA84w8/w+nXvmP5dnkAH8c+85sASgVqsfP1ZV9IeLj1e89ZblzZtGAMzMsGtXZu/eudqvCCMji6f+MDI31zx+/KSicxIREVHpmjdHbGyyUql0dHQErCr6wwUEYMMGebx8Obp0qegPSEREVJX88gsmTZLHPXsiIuIp9d98g7lzYWxc0blIxxru2dnZubm5AEpqQklXrEv9u4KDMtaXZJL2y7Nk2uY+AVCpVGlpaVlZWQU3qqXU1NTMzEwjI6PMzEzRWXRIWloaAGtra9FBdIjwd1BGhoXUcM/Jyanob25375oMGVLz9m0jAKammq+/TnrtNVXBj1mnTjWgWuknadiwwnMSERGRTvntN0ycKI+HDMHUqULTEBER6Zh79+DpCaUSANzcMGkSTpx4ylMSE3HtGl58sRLSGTrdarhrNBppUFITSiqQmvLPUV+Sidpf5YojXf9uY2NT+kkMirGxcVZWlqWlJT8tBWVlZRkZGdnY2FhyTawCrKyswHfQPwl/B1lammqTVGiG27eNhg61k7rt5ubYtu1xnz7GwD8+4oABWLUKf387L17//rn8EiIiIjIcqanw8pKbCC1bYssW0YGIiIh0SWYmBgzA3bsA4OCAsDCcPVumJ96/z4Z7ZdCthru5ubmxsbFarS7pAuGsrCwUuFRWOyhjfUk2btxYyqNSw93BwaH0kxgUpVKpVqutrKz4aSkoLy/P3Ny8evXqUouZJNJiMvxSKUj4O8jWVh6YmppWXIbYWPTvLy+/bmmJ0FD07m1btOz11zF8OHbvLvE8zs748EMrGxu+rYiIiAxCXh5GjMCNGwBga4vAQPBWSSIiqkKePEFAAABYW2P48PI/v0YDPz9cuAAAJibYvx+urrh0qUzPrfaU28upfOhWwx2Avb19cnJySUsHJCUlSTXaYmlQUr20eru2jIiIKkdMDHr0kP/ebmWF0FD06lVi8caNSEjAyZPFPFS3Lg4dAq9uJyIiMhzz5+PwYQBQKLB9O9zcRAciIiJ6Fqmp8tLq9etXSMN90SLs2SOP16xBjx4AynTduqkpmjQp/zxUlJHoAIU1adIEwK1bt4p9ND4+XlsDoHHjxtJiMsXWp6amSpfWNuFXExFRJbp+Hd2753fbw8JK67ZLNceOYcmSx40b52gnq1fHtGn47Te0bFnBcYmIiEhnHD+OBQvk8ccfY9AgoWmIiIh0zJEj+PRTeTxuHN5+Wx67uaFt26c89623eIV7JdG5hnurVq0A/PLLL0UfUqlU0dHRAFr+3X2xtLR0dXUtqV472ZLdGiKiynLtGnr0QEICAFhb4+BB9Oz59GcZG2PcuMyTJ++5uMiruUdGYtUqODpWZFYiIiLSJbduYehQqNUA0LMn5s8XHYiIiEiXREfn/6D8z3/wzTf/ePSrr2BS8lImtrZYvLhi45GWzi0p8+abb27evPn+/fu//PJLu3btCj509OjRnJwcAP369StYHxsbe/z48ezsbDMzs4L1P/zwA4Bq1ap16tSpUrITERk6qdt+7x4AWFvjhx/QrduznUH7+4GRzv1FmIiIiCpQZiYGDUJyMgA0aIC9e2FsLDpTlbJ06dKEhISvvvqqlJq8vLwTJ078/PPPycnJNWvW7NatW+n/WVYqlaGhoVevXlUqlc7Ozu7u7tIVb0REVPlSUuDhgbQ0AGjUCEFB+GcfFF26ICAA48bhyZPCz3Vywr59aNaskqKSzjXc+/bt6+Tk9PDhw0WLFn3//ffa+by8vCVLlgBo0aJF+/bttfOjRo1at25dcnLypk2b3n33Xe38vXv3duzYAWDYsGGmpqaV9wKIiAxVdDR69MD9+wBgbY1Dh9C1q+hMREREVEVMmQLpFmVzcxw4ACcn0YGqlOTk5Dlz5piZmZXScP/jjz+GDBny+++/F5zs3Lnznj17nJ2di9aHhIT4+fkV3C/N399/woQJa9assbCwKMfwRET0VLm58PZGXBwA2NggLKz4H5Q+PnjlFaxahW+/RWoqADg5qceOzZsxw5Q/WCuTzl1AaGVl9cknnwA4cODAjBkzpEXbr127Nnr06J9//hnAwoULpXXbJR06dBgwYACAmTNnbt26NS0tTa1WR0ZGuru7p6Wl2drazp49W9BLISIyIJcuoUsXudterRrCw9ltJyIiorL6+mts3y6P165Fhw5C01RBy5Ytk24HL8mdO3d69OghddtdXV29vb3r1asH4Ny5c71793706FGh+qNHjw4ePDglJcXIyOiVV17x8PCws7MDsHnz5tGjR1fY6yAiouJNnYqTJwFAocC2bWjVqsTKRo2wejXGjpUPJ01K/+yzHHbbK5nONdwBTJ06dejQoQBWrFjh7Ozs4ODg5ua2e/duALNnz/b09CxUv23bNjc3t8zMzPHjxzs6OlavXr1z587/+9//zMzM9uzZU79+fQGvgYjIkFy6hF69kJQEANWq4ehRdOwoOhMRERFVEVFRmD5dHo8ciQkThKapau7du/fxxx8vXbq09LJp06Y9ePAAQEBAQGxsbGBg4J07dxYtWgQgJibm888/L1iclZXl5+enVqvt7e2vXLkSFRUVGhqalJTk7u4OIDAwMDQ0tMJeEBERFbZtW/5y7QsWwNtbaBoqAwEN90aNGnXt2vX1118vqUChUAQEBKxfv75p06YAUlNTAbz88sv79+//8ssvi9ZXr179woUL06dPr1GjRm5ubkZGhomJSb9+/aKioqRfCIiIqOL8+it69ZJXXLW3x7FjePVV0ZmIiIioikhMxODByMoCgJdewsaNogNVHSNHjmzatGm9evUWL16s0WhKqYyLiwsKCgIwc+bMYcOGaednzZrl7e0NYOPGjenp6dr5gICAu3fvSgM3Nzdp0tTUdO/evS4uLgCWLVtWAS+IiIiKcfYs3n5bHg8ejI8/FpqGykZAw33MmDGnT58+cuRIKTUKhWLKlCnXr19PSkqKiYlJS0v75ZdfBg8eXFK9jY3NihUrEhMTExIS/vzzz4yMjEOHDr300ksVEJ+IiPL98kt+t716dRw7hldeEZ2JiIiIqgi1GiNH4s4dAHBwQFAQLC1FZ6o6jh8/HhsbW3qrXRIWFqbRaBQKhb+/f6GHxo4dC0ClUh0/flw7GRISAqB58+b9+vUrWGxjYyM16M+fP//w4cN//xKIiKh0f/0FLy9kZwNA27bYuRMFltkm3aWLS8oUVKNGjSZNmkirxT2VkZFRnTp1XnjhBW7hQkRUCX75Bb17Q9pJS+q2c8VVIiIiKruPP8axYwBgZITdu+HiIjpQlXLx4sWbf3v//fdLqTxz5gyAFi1a1KlTp9BDPXr0sLGx0dZIIiIiAPTs2bPoqTw8PADk5eWdPXv2X78CIiIqzePH8PCA9PfN2rURGgorK9GZqGxMRAcgIqIqKTISfftCuvnYyQnh4WjdWnQmIiIiqjpCQ7F8uTz+/HP07Ss0TRXUoEED7dje3r6UyuvXrwNo2bJl0YfMzc1bt24dGRkZExMjzTx48EDaQ7XY+g4dOigUCo1Go60nIqKKkJeHESPw++8AYGGB4GAU+K5Puk7Xr3AnIiIddO4c+vSRu+01a+LECXbbiYiI6BnExGD0aEirobi7Y/Zs0YH0Wnx8PID69esX+6g0f/v27YLFJdWbmZk5OTkVrCciooowdy60G1SvW4eOHYWmoWfEK9yJiOjZnD2Lfv2QkQEAtWohPBzFXf9EREREVLzHj+HlhbQ0AHB1xbffwohXglUYjUajVCoBSEvHFCXNZ0i/2wGPHz8uOF9sfWJiora+JIoyLDPMrn1BKpUqNTXVwsJC+vciSUpKSmZmpkqlsuQODwUkJCSIjqBzdOoddO+eMVAPgFqtvn377nOc4fBhq0WLHKXxpEnpvXs/etbvlxkZ1QFbAOnp6fHxmXwHVTI23ImI6BlERKBfP0j/EatVCydO4MUXRWciIiKiqkOjgZ8frl4FAEtLBAai1NVQ6N/KzMyUNlY1NzcvtkCa17aoVCpVwfmn1hMRUfm6etVs+vQa0k1gXbtmfvTRI9GJ6Jmx4U5ERGX1009wd5e77bVr48QJtGghOhMRERFVKStWIDBQHn/zDdq2FZrGAGj75tnZ2cUWZGVlATAzM5MOLSwsnqm+JFKXvyTS9e/Ozs6ln8SgKJVKS0tLKysrR0dH0Vl0iJWVlVKpdHR0tOJmkUXwHVSQTr2DtLdtGRsbP+s/0/37mDgR0p8+mzVDSIiFvf3z/EPb2soDOzu7Bg2c+A6qZLxzj4iIyuTYMfTtK3fbGzRARAS77URERPRsIiPzl2t/7z2MHi00jWEwMjKSVhJ48uRJsQWFFpyxtraWBmWsJyKi8pKZiYEDcecOAFSvjoMHeRNYVcWGOxERPd3Ro/D0lP/M3qABTp2Cq6voTERERFSl3L+PwYORkwMAHTti+XLRgQxGvXr1UPKiz3fv3gVQt27dgsUl1efm5iYmJhasJyKi8vLuu/j5ZwAwNkZAAJo0ER2Inhcb7kRE9BRHjmDAAGRmAoCzM06dQuPGojMRERFRlZKTAx8f3LsHALVq4fvv8bQlSajcNGvWDMD169eLfTQ2NhaAm5ubdFivXj3p6vVi6+Pi4vLy8grWExFRuVi2DFu3yuOVK9G3r9A09O+w4U5ERKU5fBheXnK3vWFDnD7NbjsRERE9M39/REQAgIkJ9u3D31dRU2Xo3LkzgN9++y0jI6PQQ7Gxsffv39fWSDp16gQgQvoH+yftpFRDRETl4uhRfPyxPB4zBlOnCk1D/xob7kREVKJDh/K77Y0a4dQpuLiIzkRERERVzZ49WL9eHi9Zgq5dhaYxPJ6engBycnJ2795d6KEdO3YAMDMz69evX6H6qKio6OjoQvU7d+4E0L59+wYNGlRkZCIiA3L9OoYMgVoNAJ07Y8MG0YHoX2PDnYiIinfgAAYORFYWADRpgogIdtuJiIjomf3+OyZMkMcDBsDfX2gag9SiRYu+ffsCmDdv3q1bt7Tzv/7666pVqwD4+fk5ODho50ePHu3k5ARg8uTJmdKVFwCADRs2nDt3DsDMmTMrLTwRkX5LTUX//nj0CAAaNkRQEMzNRWeif81EdAAiItJF33+PYcPkbc2aNsXJk7z1m4iIiJ7Zo0fw8oJSCQDNmmHnTigUojMZpNWrV58/fz4xMbFdu3aenp5t2rSJjIz84YcfVCpVo0aN5s+fX7DY2tp63bp1vr6+Z86cadWq1YABA5ycnMLDw8PDwwH079/f29tb0OsgItIrajWGD0dsLABYWuLAAdSsKToTlQc23ImIqLDAQAwfjtxcAGjWDCdPom5d0ZmIiIioqtFoMG4c4uIAwMYGQUGwsxOdyVA1adLkyJEjQ4YMuXXr1rZt27TzL730UmBgoKOjY6F6Hx+fjIyMqVOnxsXFLV++XDvv6+u7ZcsWBf9sQkRUHvz9ceQIACgU2LED7dqJDkTlhA13IiL6h337MGKE3G1v3hwnTrDbTkRERM9jwQIEBwOAQoHt29GihehA+mvMmDHdunUzNjYupaZjx47R0dEhISGRkZEpKSm1atXq3r173759TUyKbwv4+fm5u7vv27fv6tWrKpXK2dnZ09OzQ4cOFfMKiIgMzo4dWLtWHs+bBx8foWmoXLHhTkRE+b77DiNHyt12NzecOIE6dURnIiIioiooPByffy6PP/wQgwcLTaPvGjVq1KhRo6eWWVpaDh06dOjQoWU8ba1ataZOnfqvkhERUXHOncPkyfLYywtz5wpNQ+WNm6YSEZFs+/b8lWTatMFPP7HbTkRERM/j9m0MHQq1GgC6d8eCBaIDERER6Yxbt+DlhawsAHjpJezaxQ1O9A0b7kREBABbt2L8eOTlAcBLLyE8HE5OojMRERFRFZSZiUGDkJQEAPXr47vvUMKaJURERAZHpcKgQUhMBABHRwQFwdpadCYqb2y4ExERtmzBxIlyt71tW4SHo8jWWURERERl8u67+O9/AcDUFN99h5o1RQciIiLSDRoNxozBL78AgKkpvv8eLi6iM1EF4JUGREQGp0EDTJwIAC++CACbN2PyZLnb/vLLOHYMNWqIjEdERERV16ZN2LpVHq9Zg86dhaYhIiLSJfPmITBQHq9fj65dhaahCsOGOxGRwXnxRWzcKI83bsTbb0OjAYB27XDsGBwcBEYjIiKiKuzXXzFtmjwePjx/OzgiIiIKCsIXX8hjf39MmCA0DVUkLilDRGS4NmzI77a3b4/jx9ltJyIioueUkoJBg6BSAUDr1ti0SXQgIiIinXHpEkaNkv/33bs3li4VHYgqEhvuREQGauXK/G57p044cQLVq4vORERERFVTXh6GDcPNmwBQvTqCgmBlJToTERGRbnjwAJ6eePIEAJo2xb593E5cz7HhTkRkiJYvxwcfyOPOnfHjj7CzExqIiIiIqrI5c3D0KAAYGWH3bjRuLDoQERGRbsjJga8vbt8GADs7BAXxWjf9x4Y7EZHBWbYMM2fK49dfx5EjsLUVGoiIiIiqsoMHsXixPP70U/TrJzQNERGRLnnnHfz0EwAYGWHPHrz4ouhAVPHYcCciMixLluDDD+Vxly44fJjddiIiInp+sbEYOTJ/Udo5c0QHIiIi0hmrVmHzZnm8bBneektoGqosbLgTERmQJUswa5Y87toVhw7BxkZoICIiIqrKnjyBlxfS0gCgYUPs3QtjY9GZiIiIdENmZv7lbqNGYfp0oWmoErHhTkRkKD77LL/b/sYbOHKE3XYiIiL6V6ZMwZUrAGBhgQMHUKOG6EBEREQ6IyUFubkA8Npr2LRJdBqqRGy4ExEZhE8/xfz58rhPH4SGwtJSaCAiIiKq4r76Crt2yeOvv0a7dkLTEBER6Zi8PACoWxf798PcXHQaqkQmogMQEVGFmzMHX34pj/v2RVAQLCyEBiIiIqIq7vx5fPSRPH77bYwdKzQNERGRzpD67BJLS4SEoF49cWlIBDbciYj03CefYOFCedyvHw4c0Olu+6uvqhs2NAFgZSU6ChEREZUgMVHh7Y3sbAB49VWsWiU6EBERGbyzZy2OHrWxsECvXvD2FplkwYL88dat6NBBXBQShA13IiK9pdFg+nR89ZV8+NZbOHBA129k27gx28qKP5uIiIh0V24uRo82v3sXAGrWxPff6/pvF0REZAiuXTPdtcsCgLW1yIb7jh3YvFke29lh6FBhSUggruFORKSfNBpMm5bfbR80CMHB/P8wERER/Vtffln97FkjAMbG+PZb1K8vOhAREZFuiIzE5Mn5h3Z24qKQUGy4ExHpIY0G77+PNWvkQ29v7N0LU1OhmYiIiKjqCw4237bNVhovXIg33hAbh4iISFfEx2PQIGRlic5BOoANdyIifaPR4L33sHatfOjjgz172G0nIiKif+vKFUybZiONvbwwc6bYOERERLpCpcKgQbh/HwCqVxedhkRjw52ISK9oNHj3XaxfLx/6+iIgACZcFJ2IiIj+nbQ0eHlBqVQAaNIkb/t2KBSiMxEREekAjQbjxuHiRQAwNkbt2vJ8QgIGDMDx4wKjkRhsuBMR6Y+8PPj54euv5cOhQ7F7N7vtRERE9G9pNPDzQ2wsAFhba/buzea6tERERJIFC/Ddd/JYrUZ0tDzOy0NoKN54A+PGITdXVDoSgA13IiI9oVZj3Dhs3y4fjhvHbjsRERGVj4ULceCAPF66NNnNLU9oHCIiIl0REoJ5855Ss30712EzLGy4ExHpA6nbvnOnfOjnh82bYcTv8URERPSvnTiBzz6Tx2+/rXJ3VwqNQ0REpCv++AOjRyOvDH+GXrsW169XfCDSDWzGEBFVeWo1xozBrl3y4YQJ2LSJ3XYiIiIqB/HxGDoUajUAdOqEOXOeiE5ERESkE5KT4eGB9HQAsLR8SrFajf37KyEU6QT2Y4iIqja1GqNHY/du+XDiRGzYwG47ERERlYOsLAwahIcPAaB2bezfDzMz0ZmIiIh0QE4OvL3x558AYGsLe/unP+Xq1YoORbqCLRkioiosJwc+PggIkA8nTWK3nYiIiMrNe+/h4kUAMDVFYCDq1hUdiIiISDe89x5OnQIAIyMEBCA7++lPycio6FD52rSBtzc8PLJeeIG7tQrA3fSIiKqq7GwMGYLgYPnQ3x8rVkChEJqJiIiI9MW332LzZnm8YgVef11oGiIiIp2xbh02bpTHixahf3/UrInk5Kc8q1atis6Vb9QojBqFpKQMpVIFWFfeByYAvMKdiKiKys6Gr29+t336dKxcyW47ERERlY9LlzBpkjweOhTvvSc0DRERkc44cwYffCCPR4zAhx8CQNeuT39iWWpIP7DhTkRU9WRnw9sbISHy4YwZWLFCaCAiIiLSIykp8PKCSgUArVrlX+dORERk4G7exKBB8gIyL7+cf5375MkwNi7tiXXrwsurwuORjmDDnYioisnKwuDBCAuTDz/8EMuWCQ1EREREeiQvDyNG4OZNALC1RWAgrHknOhEREZCRAQ8PJCUBQJ06CA2FlZX8UJs2+PzzEp9oaopt22BjUxkhSRew4U5EVJVI3faDB+XDjz7CkiVCAxEREZF++ewzHDkCAAoFduxA8+aiAxEREemAvDwMH44rVwDAwgLBwahf/x8Fn3yCb75BtWqFn+jigqNH8eablZSTdAEb7kREVYZSCXd3/PCDfPjRR1i8WGggIiIi0i8//ICFC+XxJ5/w5nciIiLZxx/nX/q2ZQtefbWYmsmTcfs2Vq6UD21tERqKmBh0715JIUlHmIhaoiQ5AAAgAElEQVQOQEREZaJUwsMDJ07Ih59/jk8/FRqI9FReXl5kZGR0dHRsbKydnV3Tpk07duzo7OxcSv2JEyd+/vnn5OTkmjVrduvWrVOnTqWcX6lUhoaGXr16ValUOjs7u7u7u7q6VsDrICKiZxYXh5EjkZcHAD17Yt48wXmIiIh0xO7dWLpUHs+aheHDS6y0s4O3N6ZPB4Bq1eDhURnxSNew4U5EVAUolejfHydPyodffIE5c4QGIj11+fLliRMnRkVFFZw0MzN77733PvvsM1tb20L1f/zxx5AhQ37//feCk507d96zZ0+xPfqQkBA/P7+UlBTtjL+//4QJE9asWWNhYVF+r4OIiJ6ZSgUfHzx6BADOzvjuu6ds/kZERGQg/vc/TJokj/v0wYIFQtNQVcCGOxGRrnvyBP3749Qp+XDBAnzyidBApKdu3brVsWNHlUqlUCg6derUrFmzR48enTt37sGDBytWrIiPj9+3b1/B+jt37vTo0ePBgwcAXF1d27ZtGxkZeffu3XPnzvXu3TsqKsre3r5g/dGjRwcPHqxWq42MjNq3b1+7du3Tp0+np6dv3rw5LS2t0MmJiKiSvf02fv0VAMzN8f33cHQUHYiIiEgH3LsHT08olQDQvDn/IE1lwjXciYh02pMncHfP77YvXMhuO1WUadOmqVQqW1vbkydPnj17duvWrQcOHIiLixs0aBCAwMDAkJCQQvVStz0gICA2NjYwMPDOnTuLFi0CEBMT8/nnnxcszsrK8vPzU6vV9vb2V65ciYqKCg0NTUpKcnd3l04eGhpaeS+ViIj+ae1a7Nwpj9etQ4cOQtMQERHphsxMDByIO3cAwMEBBw8WsycqUVFsuBMR6a60NPTqhdOnAUChwFdf4eOPBUcifZWSkiL10z/44INu3bpp521sbLZs2WJtbQ0gPDxcOx8XFxcUFARg5syZw4YN087PmjXL29sbwMaNG9PT07XzAQEBd+/elQZubm7SpKmp6d69e11cXAAsW7asAl8eERGV7OefMWOGPJ4wAePHC01DRESkGzQajB8PablNExPs3w9uPkVlxIY7EZGOSkvDm2/i55+Bv7vt778vOhPpr+joaGngUWRbH3t7+5YtWwK4fPmydjIsLEyj0SgUCn9//0L1Y8eOBaBSqY4fP66dlLr5zZs379evX8FiGxsbqUF//vz5hw8fltfLISKiMnrwAIMHIzsbAF56CatXiw5ERESkGxYvRkCAPF69Gj16CE1DVQob7kREuujRI7zxhvy3dIUCa9Zg6lTRmUivJScnt2nTpk2bNo0bNy76qEajAWBikr/1y5kzZwC0aNGiTp06hYp79OhhY2OjrZFEREQA6NmzZ9GTSy3+vLy8s2fP/vsXQkREZZebC19f3L0LAA4OCAqCpaXoTERERDrgxx8xd648HjsWU6YITUNVDRvuREQ6R+q2X7gAAAoF1q7Fu++KzkT6zsPD49KlS5cuXbKzsyv00M2bN69cuQKgU6dO2snr168DkK58L8Tc3Lx169YAYmJipJkHDx48evSopPoOHTooFIqC9UREVDk++gg//QQARkYICICLi+hAREREOuDaNQwZArUaAP7zH2zYIDoQVTVsuBMR6ZbUVPTujYsXAUChwPr1eOcd0ZnI8GRlZSUlJV25cmXlypU9e/ZUKpWNGzeeNm2atiA+Ph5A/fr1i326NH/79u2CxSXVm5mZOTk5FawnIqKCliyBgwMcHLBkSXmeNiQEq1bJ4/nz0adPeZ6ciIioikpJQf/+SEsDgIYNERQEMzPRmaiqMXl6CRERVZaHD9GrF6SFso2MsHUrxowRHIkM00cffbS6wDq+Q4YMWblypaOjo3So0WiUSiUAaemYoqT5jIwM6fDx48cF54utT0xM1NaXRLoQvnTs2hekUqlSU1MtLCykfy+SpKSkZGZmqlQqS66dUUBCQoLoCDpHd95B9+9XS02tBuD+/bTbt9PK5Zw3bpiOHFlLozEC0KuXavjwh2X89sl3EBER6bHcXHh7Iy4OAGxsEBYGJyfRmagK4hXuRES6IjERPXvK3XZjY2zbxm476Ypz584dOnRIe5iZmSmt6m5ubl5svTSvbVGpVKqC80+tJyKiCvXkiWLiRMfHj40ANGqUu2pVshH/X0hERAS8/z5OngQAhQLbtqF1a9GBqGriFe5ERDpB6rZfuQIAxsbYvh0jR4rORAZs5cqVy5cvv3fv3tWrVxctWnTmzJkJEyYkJibOnj0bBfrm2dnZxT49KysLgNnf915aWFg8U31JpC5/SaTr352dnUs/iUFRKpWWlpZWVlbauxMIgJWVlVKpdHR0tLKyEp1F5/AdVJDuvIOqVdMOqjk7Vyu19uk0Gvj6IjYWACwtERRk0rJl8euDFYvvICIi0lfbt+Prr+XxF1/A21toGqrKeCUDERmKO3ewZAmWLEFAgOgoRTx4gB498rvtO3aw206CGRkZmZiYNGjQoE+fPqdOneratSuABQsWJCUlSY9KKwk8efKk2KcXWnDG2tpaGpSxnoiIKs7Spdi/Xx5/8w3athWahoiISDecPYvJk+XxoEGYPVtoGqri2HAnIkNx8yZmzcKsWdi4UXSUf7p/Hz164OpVADA2xs6dGDFCdCaiAoyMjGbOnAlApVJduHBBmqxXrx5KXvT57t27AOrWrVuwuKT63NzcxMTEgvVERFRBTp3CnDnyeOpUjB4tNA0REZFu+OsveHlBuh23bVvs2oUy7B5FVCI23ImIRLpzB6+/jj/+AABTUwQGYvhw0ZnIIL333nu9evWaP39+sY+6urpKg+TkZGnQrFkzANevXy+2PjY2FoCbm5t0WK9ePenq9WLr4+Li8vLyCtYTEVFFuHcPw4cjNxcAOnbEsmWiAxEREemAx4/h4YGHDwGgdm2EhoKrptG/xIY7EZEw8fHo3l3eAN3MDPv2wctLdCYyVCqV6sSJE4GBgcU++tdff0mDpk2bSoPOnTsD+O233zIyMgoVx8bG3r9/X1sj6dSpE4CIiIiiJ9dOSjVERFQRcnLg7Y179wCgVi18/z2etnEGERGR/tNoMG4cfv8dAMzMEBiIBg1EZ6Kqjw13IiIx7twxKtRtHzhQdCYyYO3btwdw7dq136VfNv/pwIEDAIyMjFq1aiXNeHp6AsjJydm9e3eh4h07dgAwMzPr16+fdlKqj4qKio6OLlS/c+dOKUAD/m5LRFRh3n8f584BgIkJ9u3D32t9ERERGbS5c/O3Nlm/Hq+/LjQN6Qs23ImIBLh712TAgGp//gkAZmbYvx8DBojORIbN09OzWrVqarV63Lhx8fHx2nmNRrNly5YtW7YAGDdunNXfd1e2aNGib9++AObNm3fr1i1t/a+//rpq1SoAfn5+Dg4O2vnRo0c7OTkBmDx5cmZmpnZ+w4YN586dAyAtE09ERBUhIADffCOPly5F165C0xAREemGAwewcKE8njED48cLTUN6xER0ACIig3PjhmLw4JoJCcYALCwQHIw+fURnIoNXp06dpUuXTpo06b///a+bm9sbb7zRuHHj1NTUixcvXr58GYCLi4vUSddavXr1+fPnExMT27Vr5+np2aZNm8jIyB9++EGlUjVq1KjQcvDW1tbr1q3z9fU9c+ZMq1atBgwY4OTkFB4eHh4eDqB///7e3t6V+XqJiAzH5cuYOFEeDxyIadOEpiEiItINv/6KUaOg0QDAG29g8WLRgUiPsOFORFSp4uLQp49FQoICgKUlQkLwxhuiMxEBACZMmJCTkzN37tzU1NTg4GDtvEKhGD169OLFi6WNT7WaNGly5MiRIUOG3Lp1a9u2bdr5l156KTAw0NHRsdD5fXx8MjIypk6dGhcXt3z5cu28r6/vli1bFApFxbwsIiKDlpoKLy8olQDQrBl27AC/3RIREd2/D0/P/J+P+/bB2Fh0JtIjbLgTEVWemBj06IG7d6VuuyYsTNGrl+hMRH9TKBTvvPPOkCFDDh06FBcXd+vWrZo1azZv3rxjx44vvvhisU/p2LFjdHR0SEhIZGRkSkpKrVq1unfv3rdvXxOT4n/B8PPzc3d337dv39WrV1UqlbOzs6enZ4cOHSryZRERVW3Z2bh9Wx7fvo3s7GfY7DQvDyNGQFrCzsYGQUGws6uQkERERFVIdjZ8fCCto1m9OsLCYG8vOhPpFzbciYgqyfXr6NEDCQkAYGmp2b07vVevaqJDERVWo0aNUaNGlb3e0tJy6NChQ4cOLWN9rVq1pk6d+lzRiIgMi0aD1auxaBESE+WZ7dtx6BBmz8bUqWW6UH3+fBw+DAAKBbZvR4sWFZiWiIioqnjnHUREAICxMXbvRtOmogOR3uGmqUREleHatfxuu7U1tm172KVLjuhQREREpKPy8jB8OPz987vtksRETJuGESOQl/eUMxw/jgUL5PFHH2Hw4ArJSUREVLUsX44tW+TxihXo109oGtJTunuFe1ZW1unTp6Ojo+Pj41944YUWLVp06dLFuOQVlZRKZWho6NWrV5VKpbOzs7u7u6ura2UGJiIqidRtv3cPAKytceBAlptbJmAlOhcRERHpqHXrsHdviY/u2YPXXsO775ZYcOsWhg2DWg0A3bvjiy/KPyEREVGVc+wYZs2Sx6NH4/33haYh/aWjDfewsDB/f/8bN24UnGzduvWaNWu6du1atD4kJMTPzy8lJUU74+/vP2HChDVr1lhYWFR4XCKikkVHo0cP3L8PANbWOHQIHTqok5JExyIiIiJdlZeHxYufUrNoEaZMgVFxdyxnZmLQIEi/bDRogH37UMLOGkRERAbk+nX4+sp/je7UCRs3ig5E+ksXl5Q5ePCgp6fnjRs3zMzMunfvPnLkyM6dOxsZGV2+fLl3794XL14sVH/06NHBgwenpKQYGRm98sorHh4ednZ2ADZv3jx69GgRr4CISHbpErp0kbvt1aohPBzF/dGQiIiIKN9vv8k3xpUiIQG//178Q1Om4JdfAMDUFHv3wsmpnOMRERFVOamp6N8fjx4BgLMzgoJgbi46E+kvnWu4p6enjx07FkDjxo1///33kydP7tq16+zZsxcuXHB0dMzJyRk6dKhGo9HWZ2Vl+fn5qdVqe3v7K1euREVFhYaGJiUlubu7AwgMDAwNDRX2YojIsF26hF695OvLqlXD0aPo2FF0JiIiItJ5d+6Uqez27WImv/kG27fL47Vr0blzuaUiIiKqotRqjBiB2FgAsLTEgQOoVUt0JtJrOtdwj4qKSk5OBrB+/fqmBfYJbteu3cKFCwH8+eef169f184HBATcvXtXGri5uUmTpqame/fudXFxAbBs2bLKzE9EJPnf/9CrF5KTAcDeHseO4dVXRWciIiKiqqDkjav+wdS08MyFC/D3l8cjRmDSpPJMRUREVEV98AEOHwYAhQLbt6N9e9GBSN/pXMP9119/lQavvfZaoYc6depUqAZASEgIgObNm/f7577CNjY23t7eAM6fP//w4cOKC0xEVNQvv6B3b7nbXr06jh3DK6+IzkRERERVhIvL85QlJ8PXF1lZANCmDZemJSIiA5KYqLh82UwaX7nyj5vAdu7E6tXy+NNP4etb6eHI8Ohcw127x+mDBw8KPaSdsbS01E5GREQA6NmzZ9FTeXh4AMjLyzt79mxFRCUiKtZ//4vevSHt4ix12zt0EJ2JiIiIqg43NxS417d4zZqhWbP8Q7Uaw4bhr78AoHp1BAXByqriAhIREemKrCzMmIHmzS1DQ62lmePH0bgx/PyQno7IyPz7vQYOxKefCstJBkXnGu59+/ZVKBQAli9fXuihlStXArCysurSpYs08+DBg0ePHgFo2bJl0VN16NBBOlVMTEyFZiYi0oqMRM+eSE0FACcnnD7Nu9WIiIjomS1Y8GwFs2fj2DEAMDLC7t144YWKCkZERKQ7cnLg6YkVK+QbvLRyc7FtG15/HQMH5t/79e23MNK5PijpJ537QmvSpMmSJUsAbNq0ydPTMzg4+OLFi/v27evSpcuhQ4eMjIw2bdrk4OAgFcfHx0uD+vXrFz2VmZmZk5MTgNvFbidERFTezp1Dnz5ITweAmjVx4gRatxadiYiIiKogb2/MnVv8QwoFPvsMgwfnz4SGQrtx1aef4p9rbRIREemtVatw9GiJj16+jMREAKhRA0FBsLautFxk6ExEByjGzJkzGzZsOHz48LCwsLCwMO28vb19cHBwt27dtDOPHz+WBjY2NsWeysbGJjExMSMjo/SP2Lhx46emSkhIeGqN4VCpVCkpKZaWltnZ2aKz6JCUlBSVSpWTk1Nw1SOSFoMyMRH/3SYpyQxwBJCdnZ2QkFTu54+KMhs1qsbjxwoATk55e/cm1aiRW+x3Dr6DisV3EBERUUHz5+O11/D554iKyp989VXMm4c+ffJnYmIwejQ0GgDo3Rtz5lR2TiIiIiE0Gqxd+/QyU1McOMB7v6hSiW+BFXXt2rXVq1fn5uZKh7a2tlLH/NGjR6tWrWrWrFmdOnWkh1QqlTQwNzcv9lTSvFKpLP0j3rhx46mptHkIQG5urlqtzs3N5aelIH5aiqVWq6Eb7yC12lgaaDSacs8TFWU+dmyNJ08UABwd1Xv2JLq65pT0QfilUix+WoiIiArp2xd9+2LGDKxYAQAzZuRfyS55/BheXkhLA4CGDbF3L4yNBeQkIiKqfNeu4c6dp5e98w66dq34NEQF6FzDPSYmpmvXromJiS4uLkuWLHnzzTft7OxSUlKCgoI++eSTsLCwa9euRURE1KxZEwV2WC3pKtGsrCwAZmZmpX/QP//8s5RHpevf69at+xwvR18plUpTU1MrKytHR0fRWXSImZmZUql0dHS04h5VBUjNU114Bzk6KqSBmZlZ+eY5c0YxbpzxkycAULs2jh2Dm5tTKfV8BxWL7yAiIqJiae/mLXovvJ8frl4FAAsLBAWhRo1KDUZERCTQvXtlKmvbtoJzEBWhcw33adOmJSYmOjg4RERE1KtXT5p0cHAYP378K6+88sorr8TExMybN+/rr78GYP33r5xPpEZXEdK17SUtOKP1QhluLNGFBTF0h0kBorPoEH5aiiV9NnThc6K94EuhUJRjnmPHMGAApPttGjTAyZNwdX3KpWX8UikWPy1ERETPZMUKBAbK46+/xssvC01DRERUucq4Fikv6KLKp1ubpj569OjIkSMAJk2apO22a7Vu3Xrw4MEAAgICpBltTbELrOfm5iYmJkI3Lq0lIr3044/w9JS77c7OOHUKrq6iMxEREZEBiIzExx/L4ylTMHas0DRERESVztUVRmXoazZrVvFRiP5Jtxrut2/flgatWrUqtqB169YA0tPTU1NTAdSrV0+6ev369etFi+Pi4vLy8gC4ublVUGAiMmRHjmDgQGRmAn9328uwATMRERHRv3X/Pry9kZMDAK++ipUrRQciIiKqdE5O6NbtKTXNm6OEFiNRBdKthnujRo0UCgVKuGJdO29vb29vby/NdOrUCUBERETRYu2kVENEVI4OH4aXl9xtb9gQp09z03MiIiKqDDk58PGB9B+mmjXx/fcwNxediYiISIQlS1DKvo0KhbzrOFEl062Gu52dnaurK4CgoCDp4vSCVCrV4cOHAbz88stSXx6Ap6cngKioqOjo6EL1O3fuBNC+ffsGDRpUdHIiMiiHDuV32xs1wunTcHF55pPk5iI8HOHhOH26vPMRERGR/vrgA0hXFhkbY/du1K8vOhAREZEg7dtj9+7iV2k3NcW6dejXr9IzEelawx3A5MmTAURGRvr7+2dK3SwAQGpq6pgxY2JjYwFMnDhROz969GgnJyfpiQXrN2zYcO7cOQAzZ86stPBEZAi+/x4DByIrCwCaNEFEBBo1ep7zqFSK3r3Ruzc8Pcs1HxEREemvvXuxdq08XrQIvXsLTUNERCSatzfWr8ff1+UCgJkZfH1x4QKmTBEXiwybiegAhfn7+//444/Hjx9fs2ZNcHBwly5d6tate/PmzZMnT6akpAAYO3asr6+vtt7a2nrdunW+vr5nzpxp1arVgAEDnJycwsPDw8PDAfTv39/b21vYiyEivbN/P4YPl5dMbdoUJ0+iyAbPRERERBUiMRHLl8tjT0/MmCE0DRERkQ6IjcX06dBo8memTMGqVeICEelgw12hUAQHBy9cuHDFihXx8fEBAQHah+zs7D799NOpU6cWeoqPj09GRsbUqVPj4uKWa38DBXx9fbds2aIo+EcuIqJ/ITAQw4cjNxcAmjXDyZOoW1d0JiIiIjIY+/fjyRMAaNoUO3eC/9EhIiIDl5GBgQORmgoANjZ5jx8bAfz5SOLpXMMdgLW19Zdffjlp0qSffvopOjr6zp07Li4ubm5uPXv2lFaPKcrPz8/d3X3fvn1Xr15VqVTOzs6enp4dOnSo5OREpMe++w4jR8rd9ubNcfIk6tQRnYmIiIgMSVISANjYICgI1aqJTkNERCRUXh6GDcPVqwBgYQFf3ydbt9qKDkUE6GbDXeLs7Dxy5Miy19eqVavoxe9EROVi716MGiV3293ccOIEu+1EREQkgEKBrVvx4ouicxAREYn24Yf44QcAUCjwzTdZN27kik4kq1//H0vckAHSuU1TiYh0zbZtGDFC7ra3aYMzZ9htJyIiosqTnp5/d/wHH8DHR2gaIiIiHfDtt1ixQh7Png0fH7XQOET/wIY7EVFptm7FhAnIywOAl15CeDgcHUVnIiIiIoNx+za+/Va+UK5TJyxcKDoQERGRaOfPY8IEeezpifnzhaYhKoINdyKiEm3ejIkT5W5727bsthMREVGlyszEoEHy0u21a2P/fpiais5EREQkVEICvL2RlQUAbm7YtQtG7G6SjuGXJBFR8TZtwuTJcrf95ZcRHo4aNURnIiIiIkPy7rv4738BwNQUgYGoW1d0ICIiIqFUKgwYgLt3AaBGDRw8CDs70ZmIimDDnYioGBs25Hfb27XD8eNwcBCdiYiIiAzJ5s3YulUer1yJ118XmoaIiEg0jQZ+frh4EQBMTbF/Pxo3Fp2JqDhsuBMRFbZqFaZMyV8s9eRJdtuJiIioUl26hPffl8fDhuHdd4WmISIi0gFffom9e+XxmjXo3l1oGqKSseFORPovNxe7d+Ojj+TD//0P06YhLq744hUrMH263G3v3BlHjvAONSIiIqpUKSnw8oJKBQCtWmHzZtGBiIiIRAsNxWefyeN33sHkyULTEJWKDXci0nMJCfjPfzByJM6fl2eePMHq1XjxRaxbV7h4+XLMmCGP//MfdtuJiIiosuXlYfhw3LwJAPb2CAqClZXoTEREREL98QdGjZIXfX39daxcKToQUanYcCcifZaZiTffRFRUMQ9lZ+O997BrV/7M0qWYOVMev/46jhyBrW1lhCQiIiLSmjsXP/4IAAoFtm2Dq6voQEREREIlJ8PDA+npANCoEQ4cgJmZ6ExEpTIRHYCIqAKtXYsrV0or+OADeHnBxgZLlmDWLHmySxccOgQbm0oISERERJTv4EEsWiSP58zBwIFC05DeycrKOn36dHR0dHx8/AsvvNCiRYsuXboYGxuXVK9UKkNDQ69evapUKp2dnd3d3V35JyAiqlw5OfD2xp9/AoCtLQ4ehJOT6ExET8OGOxHps927n1KQlIQjR3D1Kj7/XJ554w2EhMDSsqKjEREREf1DXBxGjZI3kunVK3+lWqJyERYW5u/vf+PGjYKTrVu3XrNmTdeuXYvWh4SE+Pn5paSkaGf8/f0nTJiwZs0aCwuLCo9LRFXH++/j3j0AWL0adeqU88mnTsWpUwBgZITdu9GyZTmfn6gisOFORHorN/cpl7dL1q5FRIQ8fvNNBAez205ERESVTaWCjw8ePQIAZ2fs3YuSLzsmemYHDx709PQEYGZm1rlz5/r169+4ceP8+fOXL1/u3bv3uXPnOnToULD+6NGjgwcPVqvVRkZG7du3r1279unTp9PT0zdv3pyWlrZv3z5Br4OIdNGPPyImBgAWLCjnhvv69diwQR4vXAgPj/I8OVHF4RruRKS3Hj+W91Qpnbbb3qcPr20nIiIiMd5+G7/+CgAWFjhwAI6OogORHklPTx87diyAxo0b//777ydPnty1a9fZs2cvXLjg6OiYk5MzdOhQjXRvBQAgKyvLz89PrVbb29tfuXIlKioqNDQ0KSnJ3d0dQGBgYGhoqLAXQ0QGIyIC06fLY29vfPih0DREz4INdyKqDFeuwMcHPj6YP7/yPmi1as+wlUrfvggOBu+OJSIiosq3Zg127pTH69ahfXuhaUjvREVFJScnA1i/fn3Tpk218+3atVu4cCGAP//88/r169r5gICAu3fvSgM3Nzdp0tTUdO/evS4uLgCWLVtWmfmJyAD99Re8vJCdDQAvv4wdO6BQiM5EVGZsuBNRZUhMxP792L8fP/1UeR9UocBrr5Wp8q232G0nIiIiMc6fx8yZ8njiRPj5CU1D+uhX6e4J4LUivxx36tSpUA2AkJAQAM2bN+/Xr1/BYhsbG29vbwDnz59/+PBhxQUmIgOXkYH+/ZGUBAC1ayM0FFZWojMRPQs23IlIn02a9PSat97CgQMwN6/4NERERET/9OABvL3lK/heeglffSU6EOkj7R6nDx48KPSQdsaywLqKERERAHr27Fn0VB4eHgDy8vLOnj1bEVGJiPLyMHy4vB+bhQVCQlC/vuhMRM+IDXci0mdDhsDLq7SC7t0RHMxuOxEREQmQmwtfX9y9CwAODggK4l4yVCH69u2rUCgALF++vNBDK1euBGBlZdWlSxdp5sGDB48ePQLQsmXLoqfq0KGDdKoYaYdEIqLyNns2Dh6Ux+vX49VXhaYhei5suBORPlMoEBCAKVNgVNx3u+7dcewYTE0rPRYRERER8OGH8mp7RkbYswcuLqIDkZ5q0qTJkiVLAGzatMnT0zM4OPjixYv79m6wLl8AACAASURBVO3r0qXLoUOHjIyMNm3a5ODgIBXHx8dLg/rFXVNqZmbm5OQE4Pbt25UVn4gMyP79WLpUHn/0EcaNE5qG6HmZiA5ARFSxLCywfj3efx9Ll2Lr1vx5b2/s2QMTfhckIiIiEfbtw6pV8njBArz5ptA0pO9mzpzZsGHD4cOHh4WFhYWFaeft7e2Dg4O7deumnXn8+LE0sLGxKfZUNjY2iYmJGRkZpX9ERRn2N2TXviCVSpWammphYaFUKkVn0SEpKSmZmZkqlcqSdwAVkJCQIDrCP+Tm1pUajAkJCRYWuc99nitXzEaPrqXRKAB065Y5aVJi2b9JqFSq9HQLoDqAjIyM27dTnzuGPuE7SBRe4U5EBsHVFffv5x+OHIm9e9ltJyIiIjGuX8fEifK4f3/MmiU0DRmAa9eurV69OjdXboTZ2tpKg0ePHq1aterevXvaSpVKJQ3MS1h1UZpnU5iIyldiovH48U4qlQJA48Y569YlGRuLzkT0vNhtIiL9p1bDzw+HDsmHtWphx47iF5khIiIiqmgZGRg4EOnpANCkCb79FmW4FJjo+cXExHTt2jUxMdHFxWXJkiVvvvmmnZ1dSkpKUFDQJ598EhYWdu3atYiIiJo1a6LADqvZ0ma+RWRlZQEwMzMr/YNqNJpSHpWuf3d2dn6Ol6OvlEqlpaWllZWVo6Oj6Cw6xMrKSqlUOjo6WllZic6ic3TnHaS9lK1u3brPFyozEz4+kP725+CAH380dXV9tp1SlUqlnV2WNLa1tXV2tn2eHHqH7yBR2HAiIj2nVmPMGOzcmT/TtCm77URERCSGRoNx4xAdDQDW1ggKQrVqojORvps2bVpiYqKDg0NERIS3t7ednR0ABweH8ePHHz9+3NzcPCYmZt68eVKxtbW1NHjy5EmxZ5OubS9pwRkioucwfjyiogDAxASBgXB1FR2I6N9hz4mI9JlajbFjsXu36BxEREREAIAlS/D99/L466/RsqXQNGQAHj16dOTIEQCTJk2qV69eoUdbt249ePBgAAEBAdKMtqbYRaJzc3MTExMB1K1bt+IyE5FBWbwYf38HwldfoWdPoWmIygMb7kSkt6Rr27/9Vj7s319oGiIiIjJ4p05h7lx5PG0aRo0SmoYMg3Zj0latWhVb0Lp1awDp6empqakA6tWrJ129fv369aLFcXFxeXl5ANzc3CooMBEZlB9/xJw58njsWLzzjtA0ROWEDXci0k9qNUaNyr+2fdIkzJghNBAREREZtvh4+PpC2rTytdewZInoQGQYGjVqJC2YXuwV69p5e3t7e3t7aaZTp04AIiIiihZrJ6UaIqJ/49o1DBkCtRoA/vMfbNggOhBROWHDnYj0UE4OfHywZ498OHkyvvmG25ERERGRMDk5GDoUDx8CQK1a2L8fT9tykqh82NnZubq6AggKCpIuTi9IpVIdPnwYwMsvv6z4+9dlT09PAFFRUdHSbgMF7Ny5E0D79u0bNGhQ0cmJSL+lpKB/f6SlAUDDhjhwgD8ZSX+w4U5E+iY7Gz4+CAqSD6dPZ7ediIiIBHvvPZw7B/y9HVyRlbSJKtDkyZMBREZG+vv7Z2ZmaudTU1PHjBkTGxsLYOLEidr50aNHOzk5SU8sWL9hw4Zz584BmDlzZqWFJyK9lJsLHx/ExQGAjQ3CwlCzpuhMROXHRHQAIqLyJHXbQ0Plww8+wPLlQgMRERGRwdu9Gxs3yuNly9Cli9A0ZHj8/f1//PHH48ePr1mzJjg4uEuXLnXr1r158+bJkydTUlIAjB071tfXV1tvbW29bt06X1/fM2fOtGrVasCAAU5OTuHh4eHh4QD69+/v7e0t7MUQkV6YNg0nTgCAQoGtW9G6tehAROWKDXci0h/Z2fD2RliYfDhzJpYuFRqIiIiIDN5vv2HSJHk8ZAimTROahgySQqEIDg5euHDhihUr4uPjAwICtA/Z2dl9+umnU6dOLfQUHx+fjIyMqVOnxsXFLS9wAYuvr++WLVsUvHuUiP6F7duxfr08/uIL+PgITUNUAdhwJyI9kZWFwYPxww/y4Ycfci8yIiIiEiw1FV5eUCoBoHlzbNokOhAZKmtr6y+//HLSpEk//fRTdHT0nTt3XFxc3NzcevbsKa0eU5Sfn5+7u/u+ffuuXr2qUqmcnZ09PT07dOhQycmJqKCICGRlITHR4pVXskRneU5nz2LyZHk8aBBmzxaahqhisOFORPpApYKnJ44flw8/+giLFwsNRERERAYvLw8jRuDGDQCwtUVQEGxtRWciw+bs7Dxy5Miy19eqVavoxe9EJNCwYbhzB0DNn3++6+oqOs2zu3ULXl7IzgaAtm2xcye3WyP9xE1TiajKUyrh4ZHfbZ83r2p021NT5d8scnORkSE2CxEREZW/zz/H4cMAoFBg+3a4uYkOREREJM7jx/DwwMOHAFCrFkJDYW0tOhNRxWDDnYiqNqUS/fsjPFw+nD8fn30mNFAZ3LypmDjRsUMHB+lQqUSNGhg7FomJYnMRERFRuTl+HF9+KY9nzcKgQULTEBERCaXRYNw4XL4MAGZmCAxEgwaiMxFVGDbciagKe/IE7u44eVI+/OILzJ0rNFAZXLiATp0sjh61ysvLn8zJwY4daNsWcXHikhEREVE5uXULQ4dCrQaAHj3wxReiAxEREQk1dy7275fH69ejSxehaYgqGBvuRFRVSd32U6fkwy+/xJw5QgOVwePHGDgQ6enFL1OXkIBBg+T/nBMREVEVlZkJLy8kJwNAgwb47jsYG4vOREREJM6BA1i4UB5/8AHGjxeahqjiseFORFVSWhp698bp0wCgUGDVqqqxufmWLUhIKK3g8mUE/5+9+w5o6vrbAP4kYQ8FFbFacI/WrdVaqa24F6IIDtyrWq3+HHXv1bpXXa3WhQsUFPf2te5V996DiiigIpsk7x+5AsoUk5yEPJ+/zr335N4HNFz45txztuorDREREelAv374918AMDfHpk1wchIdiIiISJyLF9G1K9RqAGjUCDNmiA5EpHssuBOR8XnzBk2a4NQp4H21fdAg0ZmyZ9eurPtoVlcjIiIiY7RkCVatktqLFqF2baFpiIiIhAoNhacnoqMBoGxZ+PvzqS8yCWaiAxARfZrXr9GkCc6cAQCZDAsWYMAA0Zmy7dEj7fQhIiIiA3TmDIYMkdqdOuGnn4SmISIiEiohAW3b4ulTAHB0xPbtcHAQnYlIL1hwJyJj8vo1GjfG2bMAIJPhjz/Qv7/oTJ9Cno3HimTpT/BOREREBi0sDN7eiI8HgMqV8eefogMREREJ1b8/jh0DAIUC69ahTBnRgYj0hVPKEJHRiIxEo0Yp1fZFi4ys2g6gaNGs+xQrpvMYREREpF1KJTp1wrNnAODoiKAg2NiIzkRERCTO7NlYsUJqz5mDZs2EpiHSLxbcicg4REaiYUOcOwcAMhmWLEG/fqIzfboWLbTTh4iIiPTpxQs8eIAHD6RZaNMaNQoHDgCAXI7161GihD7TERERGZb9+zFypNTu2hX/+5/QNER6x4I7ERmBly/x44+4cAEAFAqsWoW+fUVnypGePeHiklmHatXg6amvNERERJQ9AweiZEmULJn++ufBwZg9W2pPnIimTfUZjYiIyLDcvo127aBUAkDt2pxjjUwR53AnIkMXFoYGDXD1KgAoFFi5El26iM6UU7a22LYNDRqoIyPTmandxQWBgdma552IiIgMxJ076NoVajUAtGiBMWNEByIiIhInMhIeHnj9GgBcXREUBEtLPV26XbtoT084OjrmzaunKxJlhHUdIjJoL16gXr2Uavvq1UZcbdeoVg2nTsV5esaYpfrE08oKffrg4kVO4E5ERGRM3r1D69Z48wYAihXD6tX84JyIiEyXZkWTu3cBwNoagYFwdtbf1e3tVUWLKkuUQP78+rsoUbr4+yARGS5Ntf36dQBQKLBmDTp1Ep1JG1xc1AsXvrp4MUKzaWuLiAgsW8ZfC4iIiIyJWo2ePXHjBgBYWSEwkLdyIiIyadOnY/duAJDJsGoVvvlGdCAiQVhwJyIDFRqKevWkP2IVCqxdi44dRWfSKltbtaahUMDaWmwWIiIi+mRz5iAgQGovXYpq1YSmISIiEm3tWqkxYQLatRMahUgozuFORIbo6VPUq4d79wDA3Bz+/mjdWnQmIiIiovdOnsTo0VL7l1/QrZvIMERERIajdWuMHy86BJFQHOFORAbnyRO4u0vVdgsLBASw2k5EREQGJDQU3t5ITASAWrUwZ47oQEREROIkJaW0K1eGnx9kMnFpiAwAR7gTkWHRVNsfPADeV9s9PUVnIiIiInovMRE+Pnj+HAAKFsTmzbCwEJ2JiIhIkNhY/Pef1HZwQFAQbG2FBiIyACy4E5EBefwY7u54+BAALCywZQs8PERnIiIiIkpl8GAcPw4ACgXWrcOXX4oOREREJIhaje7dERcnbf7xB0qUEBqIyDBwShkiMhSPHqFuXanabmmJwEBW24mIiMiwHD+OxYul9vTpaNhQaBoiIiKhJk2Cv3/KZs2a4qIQGRIW3IlI565ds/jrL6l94wZWrkRs7Md97t5FnTp49AgAbGywYwdatNBnRiIiIqKsJf9K06oVhg4VGoWIiEioLVswebLoEEQGiQV3ItKh6GgMGpS/efNCyR96h4aiZ0+UKoVDh1K63bkDd3c8ewYANjbYvp3jxYiIiMhQPH4srS4DID4eAMqWxZo1XBGOiIhM16VL6NYNajUA2NiITkNkYFhwJyJdUSrRujW2bk1nwZT//kPz5vjnHwC4fRvu7ggJAd6Pba9fX79BiYiIiNITGSnv08e+RAmcP5+yUyaDpyfs7cXFIiIiEurVK7Rpg+hoACheHF98IToQkYFhwZ2IdGX1ahw4kOHR+Hj07o3r1+HuLq1pbmuLnTtRr57eAhIRERFl6OVLmZdXoaAgS5Xqg/1qNWbORJ8+gmIREREJlZgIb2/p2S97e+zYAYVCdCYiA8OCOxHpSvIkpxm5cwc//IDnz4H31XZ3dz3kIiIiIsra0KEWDx6YZXR0+XIEBuozDhERkUH45RccPQoAcjk2bED58lAqpUMffURNZLJYcCcinVAqceFC1t0iIgAgb14cOIC6dXWciYiIiCh7nj1DUFAWA/Zmz9ZPFiIiIkMxf37K0Lrp0/HoEcqVw/370p7vvsOgQXj5UlQ6IkOR4ZANIqLPERmZ8il35vLmxd69qFVLx4GAihWlKW4cHHR+LSIiIjJqBw9KC8Fl4uxZREVxMnciIjIVBw5g2DCp3aED9uzBkSMfdHj9GgsWICAA+/ahYkX9ByQyFCy4E5FO5M0LuTzrB8qsrLB/P2rW1EckBwc0aKCPCxEREZGx00x5lzmVCs+fs+BOREQm4eFD+PoiKQkAvvsOavXH1fZkz5+jeXPcuAE7O30GJDIgnFKGiHTC3Bzly2fdbdo0PVXbiYiIiLLP0jJb3WxsdJyDiIjIAERFwcMDr14BQOHCmDwZ/v6Z9X/6FIsW6ScakSFiwZ2IdKVLlyw6ODnh55/1EoWIiIjoU8hkWffJkwfOzrqPQkREJJRKBV9fXL8OAFZW2LYNJ05kPfHa1q16iEZkoFhwJyJdGTAAVapkeFQux7JlsLbWYyAiIiKibHj1CvPmZd3N0xPm5rpPQ0REJNTw4di5EwBkMqxciRo1cO9e1q+6e1fXuYgMFwvuRKQrlpbYswc1a8anPWRlhZUr4eWl/1BEREREmVGp0KkTnj7NopudHSZO1EceIiIigfz8MGeO1B4zBh06AEBiYtYvjE+nEkBkKlhwJyIdKlQI/v4vfv31jUIh7ZHJ0KcP7t1D165CkxERERGlZ+xY7NsHADIZGjWKSbdP3rwICkKJEnoNRkREpGenTqF3b6nt6YlJk6R2kSJZv9bFRVepiAwfC+5EpFvnz1suXZpHqZQ2a9bEsmXZuj0TERER6dmOHZg+XWqPGpW4fPmrzZvfNGwI+fs/m+zt8dNPuHIFDRuKykhERKQP//0HHx9poPpXX2Ht2pS7YXZugrxRkiljwZ2IdOiff9CtW8Ho6JR1x2xtBcYhIiIiytDdu+jcWVoFrkEDjByZCKBu3cT9+1PmwVu+HH/+CVdXcSmJiIh0LzYWrVohJAQA8ufHjh3IkyflaKNG+OabzF5uYYGBA3WbkMiQseBORLpy9CiaNYOm2p4vn+g0RERERBmLjoaXF968AYCiRbFxI5InxANSxvTJZOm8loiIKDdRq9GzJ86dAwBzc2zejJIlP+ggl8PPD05O6b9cJsNff6F0aZ3nJDJYLLgTkU7s24emTREdDQCFCyvnzxcdiIiIiChj/frh2jUAsLJCYCAKFBAdiIiISJBp07Bxo9ReuBDu7un0KVcO58+jRYuPP4r+6ivs28c128jUseBORNq3dy9atUJsLAAULpy0adMLTtpOREREBmv+fKxdK7UXL0b16kLTEBERiRMcjAkTpHb//ujbN8Oerq7YsQP376NQIWnP5s24do2ztxOx4E5E2rZnD1q3RlwcALi6wt8/rGjRJNGhiIiIiNJ36hRGjJDaffuiRw+haYiIiMS5eRNdukClAoA6dTB3btYvKV48ZXr3SpVSJmEjMmVmogMQUa6yaxfatJHWMS9aFEeOQKFgtZ2IiIgM1IsX8PFBQgIA1KwJToJHREQmKzwcHh54+xYAihVDYCAsLERnIjJOhltwV6lU27dv37Jly/379xUKRfny5X18fBo0aJBR/1OnTq1evfr69esxMTGurq4eHh6dOnWytLTUZ2YiE7dzJ7y9pWp7sWI4cgTFiuHJE9GxiIiIiNKTlIS2bRESAgD58sHfH/zrgYiITFNiInx8cP8+ANjbY8eODNdEJaIsGWjBPTQ0tH379kePHk3ec+LEib/++qt9+/Z+fn5mZh/HHjp06NxUD7pcvHgxODh4wYIFO3bsKFq0qJ5CE5m2LVvg64vERAAoXRpHjoDzthMREZEh+/VX/PMPAMjl2LABxYoJzkNERCTKwIE4cgQA5HKsW4cKFUQHIjJmhlhwj42NbdGixYULF+RyeePGjevXrw/A39//3LlzmzZtcnFxmTlzZur+M2fO1FTby5Qp06pVq0KFCh04cGDPnj1Xr1718PA4e/aslZWVmK+EdObnn3HuHAAsXYoaNUSnIWDzZnTsKFXby5bFoUOsthMREZFB27QJCxZI7WnT0Lix0DRERETiLF6MZcuk9rRpaNlSaBoi42eIaxlMnz79woULMpls+fLlu3fvHjp06NChQ0+fPt2uXTsAs2fPfvjwYXLnsLCwSZMmAahQocL58+dnzJgxePDg3bt3T5gwAcDVq1f/+usvUV8I6c6dO7hwARcuICpKdBQCAgJSxraXLYvDh1ltJyIiIoN26xZ++klqt2yZsmgqERGRqTl2DEOGSG0fH94TibTA4Aru7969mz9/PoB+/fr16NEjeb9cLl+4cKFCoVCr1du3b0/e//fff8fExMhksi1bttjb2yfvnzhxYq1atQD88ccfeoxPZHI2bULHjkhKAoBy5XDkCAoXFp2JiIiIKGNRUfDyksZtlC6NtWshk4nOREREJMKjR2jTRlo8vFo1rF7NeyKRFhjclDL79u17+/YtgF69en10qGDBgrt373779m3qadl37twJwM3NrWzZsh/19/LyOn369L179+7evVu6dGkdBycyRRs3oksXqdr+1Vc4fBiFConORERERJQxtRrdu+PmTQCwtcXWrcibN+tXlSiB6tUBwNFRt/GIiIj0JioKHh54+RIAChVCcDBsbERnIsoVDLHgDqBs2bJVqlRJe7RRo0apN1Uq1b///gvg+++/T9u5RYsWw4cPB3D27FkW3Im0buVK9O4NlQoAKlfGwYMoUEB0JiIiIqJM/f47AgOl9tKlKF8+u6/6/XfdhSIiItI3lQqdOuHaNQCwssK2bfjyS9GZiHILg5tS5tq1awCSh6vfv39/z549R44ciYiISNv5yZMncXFxAMqUKZP2aNmyZc3MzADcvXtXh4mJTNLff6dU26tUYbWdiIiIjMDhwxg/XmoPHozOnYWmISIiyrZbtzBkCMLCpM1p0xyPHv2sE44Zg+QJmxcvxrffftbZiCg1gxvhfu/ePQCFChW6ePFiv379Tp8+nXyoQoUKy5Ytc3NzS94TGhqqaXzxxRdpTyWXy52dnUNCQp4/f575RQ8ePJhlME1lnzTi4uLi4+MVCoWob4tKZaH5uCghISEuTiUkQ1rx8fHx8fFxcXFyucF9lKVdK1cqBgwwfz+2XbVrV6KdnTqj/wvx8fEAEhISAAsAKpUqLi5Bf1kNkuYdpFSapd4jMI+BMJ13EBERCfH0Kdq3h1IJAN99h+nTRQciIiLKnqlTMXGidAvT2LHDZscOtG+PlSthbf3JJ9y8GTNmSO0RI5BqCUUi0gKDK7i/fv0awKNHj77//vuYmBgAhQsXjoiIiIuLu3bt2g8//DBnzpxBgwZpOkdHR2saNhnMMmVtbZ26W0YaNmyYZbCw5I8RCYiNjY2MjIyOjlam/nmvRwkJBQErAK9fvw4LM5RKpeY/qkqlss7B7c54bNhgN3p0PrUaACpUSFi7NiwpSZXJ+yM8PBzA69d5gYIAEhIS+G7SvIOUyjigMACVSsXvCUzmHURERELEx6NNm5RpardsgYWF6ExERETZMGMGxo1L/9CmTUhISJkqLZv+/RfdukHzR33jxpg27XMTEtFHDKvgnpCQkJiYCGD//v1WVlbTpk375Zdf8uTJo1QqDx8+3KdPn4cPH44cObJJkyblypWDNGYWADRTx6Sl2Z/l0NEGDRpkclQz/t3KyurTv6BcS61WW1paWllZifq2JA+AtbCwMJx/GSsrK7VaLfDbogdr1liPHm2vuTFXrpwUEPDWwSGLv1YtLS0BWLz/o1Yul+fi7082ad5BFhYWmze/BmBmxp8wgGm8g4iISJSBA3HuHACYmyMgAIULiw5ERESUDU+fYuLEzDoEBWHXLjRvnt0ThobC0xMxMQBQrhz8/aFQfGZGIvqYYRXcU1u8eHGP98+0KBSKhg0b7t27t0KFCvHx8ePHjw8ICECqge2aOSvS0pTasxwseeDAgUyOymQyAAULFvzEryA3i4mJkclkNjY2BQTN2508IsnBwcFw/mXkcnlMTEyBAgUyeuTC2M2bhxEjpI/Ba9fGnj1mefJk/R9A8zaMjHTQbFpYWPDdlPwOKl/eQXQWA5Lr30FERCSKnx/++ktqz56NOnWEpiEiIso2f39kOf/omjXZLbjHxaFVKzx7BgD58mHHDuTN+7kJiSgtw5on18LCwtzcHEDx4sV7pJlBqkyZMl5eXgDOnz+v2WNvb69pvH37Nt0TavYndyOiHJszB0OGSNV2Nzfs3Ys8eURnIiIiIsrK5cvo00dqt2+PgQOFpiEiIvoU//6rnT4a/fvjzBkAMDNDQABKlcp5MCLKhGEV3PF+IHmVKlXSPVq+fHkAjx49evfuHYDixYtr9j/TfDz3odjY2IiIiNTdiChnZs/Gr79K7e+/x5494MdYREREZPgiI+HlhdhYAKhQAStWiA5ERET0Kd68ybpPZGS2TjVjBlaulNrz5qF+/ZynIqLMGVzBXTM5e0azrmtmd7GwsNDM8Ovo6Ojs7AzgypUraTtfvXpV0/jqq690lJbIFMyciWHDpHadOqy2ExERkXFQqdCxIx48AAB7ewQEwNZWdCYiIqJPkT9/1n2yM9fvvn0YM0Zqd++OX375rFRElDmDK7i7ubkBuHTpklKpTHv04sWLAL7++uvkVVLr1asH4PDhw2k7Hzp0CIC5ufkPP/ygu8BEAKKjMWMGFi60XrMmt5WiZ8zAiBFS+4cfsHs37OyEBiIiIiLKnokTsWcPAMhkWL0aHIRDRERG59tvs+5Tu3YWHW7dQrt20JTZ3NywbJkWghFRJgyu4K6Zpf358+eLFy/+6NDly5eDg4MBfP/998k7fXx8ANy7d2/v3r2pO8fHx69YsQJAkyZN8nCqadKxqCiMHIkpU2z/+CNX/WebOBEjR0rtRo2wdy+r7URERGQcdu7EtGlSe/RoeHkJTUNERJQjbdtmva5pmjUQPxARAQ8PaWqaokURFAQLC63FI6J0GVzBvXLlyi1atAAwfPjwuXPnJo9zP3TokIeHh1KpLFiw4MSJE5P7t2rVqmLFigD69Olz9+5dzc6EhIS+ffs+ePBAJpONHTtW318DUa4wYQImTZLajRtj2zZYWwsNRERERJQ9jx6hWzeoVABQv37KrzRERETGxckJ8+dDJsuwQ79+qFMnw6NJSWjbFvfuAYCdHbZvR8GC2g9JRB8xuII7gGXLlrm4uMTHxw8dOtTe3r569eoFCxZs0KDB06dPra2tV6xYkS9fvuTOMpls/fr1dnZ2T548KVu2bI0aNZo1a5Y/f/7Vq1cDmDBhQs2aNYV9JURGa9w4TJ4stZs0YbWdiIiIjEZsLNq0QXg4ALi4YONGKBSiMxEREeVUt25YtSqdpdQUCgwfjoULM3vtoEE4dAgAZDL8/TcqVdJVSCJKzRAL7kWKFDlx4oSHh4dMJouNjf33339fvnwJoG7duleuXPHw8Piof8WKFU+cOFGtWjW1Wn3+/Pk9e/a8e/fO0dFxyZIlEyZMEPEVEBm3MWMwdarUbtoUW7fCykpoICIiIqJs69cP//4LAJaWCAyEk5PoQERERJ+na1c8fIh581JGwvXqFXX7NmbMyOxD5VWrkDxb8+TJaNtW5zmJSMNMdID0ubi4bN++PSQk5OzZs+Hh4SVKlKhcuXL+jNdmrlSp0oULF65cuXL9+vXY2FhXV9c6depYWlrqMzNR7jB6NH7/XWo3b47AQPCdRERERMZi0SKsXp3SrlFDZBgiIiJtyZ8fgwZhzhw8ewYAvXq9LVkyzaD3VI4fR9++UtvLC2PGT6zSAAAAIABJREFU6D4iEb1noAV3jSJFirRu3Tr7/StVqlSJj8cQ5ZRajcGDsWCBtNmiBbZsYbWdiIiIjMbp0xg6VGp37oxevYSmISIiEuTxY7Rpg4QEAKhSBWvXZjYLPBFpnSFOKUNE+qdW43//S6m2e3sjKIjVdiIiIjIaL17AxyeluPDnn6IDERFR7lKuHPLlQ758CAsTHSVT796hZUsppLMztm+Hra3oTEQmxqBHuBORfqjVGDgQixZJmz4+2LABZvzxQEREREYiKQnt2klP2efLh6AgrvdORERa9uYNIiMBQKUSHSVjajV69sSVKwBgbo6AALi4iM5EZHo4wp3I1KnV+OWXlGp7u3asthMREZGRGTkSR48CgFyOdetQvLjoQERERCKMH4+AAKm9ZAl++EFoGiJTxYI7kUlTq9G/P5YskTbbt8e6day2ExERkTHZtg1z50rtSZPQtKnQNERERIIEBWHaNKk9ZAjXMiEShnU1ItOlVKJXL6xeLW126AA/PygUIiMRERERfZLbt9G1K9RqAGjRAqNHiw5EREQkwqVL6NJFuiE2aoQZM0QHIjJhHOFOZKKUSvTokVJt79ED69ax2k5ERETG5N07eHnh7VsAKFUKfn6Q8+8bIiIyPS9eoGVLREcDQNmy8Pfnk+tEIvEXUiJTpFSie3esXStt9uqF5cv5ByoREREZE7UaPXrgxg0AsLZGQAAcHERnIiIi0rvERLRti6dPASBPHgQF8YZIJBgLbEQmR6lEt27w85M2e/fGn3+y2k5ERERGZtYsbN4stZcuRdWqQtMQEREJ0q8f/vkHABQKbNyIr78WHYjI5PEJEyLTolSiSxds2CBt9umDpUshk+n8uvb2qF4dAMqU0fm1iIiIKNc7cgRjxkjtAQPQtavQNERERILMmYMVK6T27Nlo1kxoGiICwII7kUlJTET79ggKkjb79sWSJfqotgOoUQPnz+vjQkRERJTrPX+Ojh2RlAQAtWph9mzRgYiIiETYvx8jR0rtLl0waJDQNET0HmeRIDIVCQlo2zal2j54sJ7GthMRERFpkWam2ufPAcDZGVu2wMJCdCYiIiK9u30b7dpJHz/Xro2//hIdiIjeY8GdyCRoqu3btkmbQ4di7lyhgYiIiIhy5H//w/HjAGBmBn9/FCkiOhAREZHeRUfLvLzw+jUAFC6MzZthaSk6ExG9xylliHKVpCRERQGAmRns7aWdCQnw8cH27dLmsGGYOVNMPCIiIqLPsX49li6V2jNm4McfhaYhIiISZNy4fDduAIC1NbZtQ+HCogMRUSoc4U6Uq5w7h3z5kC8fGjeW9sTHo02blGr78OGsthMREZFRunIFP/0ktVu1wuDBQtMQERGJc/KkFQCZDCtXokYN0WmI6EMc4U6Um8XGwtMTBw5ImyNGYPp0oYGIiIiIciQyEl5eiIkBgLJlsWYNl6IhIiJTN24c2rcXHYKI0uAId6JcKyYGLVumVNsnTmS1nYiIiIySSoXOnXH/PgDY2SEoCHnyiM5ERESkdwkJKW0vL0ycKCwJEWWCI9yJcieVCh4eOHxY2pw8GePGCQ1ERERElFNTpmDXLgCQybBqFb7+WnQgIiIivXvyBOHhUrt06cQ1a8z5sBeRYWLBnYxPdDQiIqT206dCoxiwW7fw5o3UnjIFY8cKTUNERESUUwcOYMoUqT18OLy9haYhIiISITYWbdpAqZQ2p0+PsLNzFpqIiDLEKWXImERHY8gQODvj0iVpT7duqF4dR44IjWWQkqvts2ax2k5ERETG6vFj+PpK9QV3d0ydKjoQERGR3qnV6NED58+n7ClSJElcHCLKAgvuZDQiI+HmhnnzEB39wf5//0WDBlixQlAsA5P6myOTYd48/PqruDREREREnyEuDm3a4NUrAPjyS2zaBDM+oEtERKZn8mRs2iQ6BBFlGwvuZDR+/hmXL6d/SKXCzz/j6lX9BjI8b95g0KCUzQULPtgkIiIiMi79++PCBQAwN8emTShYUHQgIiIivdu6FZMnS207O6FRMpAnDxwd4egIhUJ0FCLDwII7GYc7dxAQkFmHpCT8/ru+0hik16/RuDGuX5c2ixfHgAFCAxERERF9hmXLsHKl1F64EG5uQtMQERGJcPkyOneGSgUADRrAwUF0oPScO4eICEREoGRJ0VGIDAML7mQc9u6FWp1Fnz179BLFIGmq7WfOpOwpVEhcGiIiIqLPc/ZsyoN6HTuib1+haYiIiEQID4eXlzRzbPHi2LhRdCAiyh4W3Mk4PHmSdZ/Xr1NWCjUpkZFo2BBnzwKATCY6DREREdHnCQ9Hu3aIjweASpXw11+iAxEREeldYiK8vfHgAQDY22PHDhQoIDoTEWUPVx0i45DNicBMcL6wly/RoAGuXAEAuRyjRmHaNNGZiMjI3blz5+LFi3fu3ImOjv76668rV65cuXLljDqrVKpDhw6dPn06PDy8YMGCdevWrV27diYnj4mJCQ4Ovn79ekxMjKura4sWLUqVKqWDL4KIjJVKBV9fPHoEAI6OCAqCjY3gSES5ycuXL4ODg+/fv69QKMqXL9+gQQMnJ6eMOvOuTSTQL7/g//4PAORybNiA8uUF5yGi7GPBnYxDsWJZ93FyMtD1Q3QnLAwNGkirxSoU+PtvlCnDgjsR5VxkZOSoUaOWL1+u0swT+V6zZs3++OOPEiVKfNT/xo0b7du3v/rhotVubm4bNmxwdXVNe/5t27b17NkzIiIiec/gwYN79+69cOFCKysr7X0dRGTExozB/v0AIJdj3TrOBkukNUlJSZMmTZoxY0ZiYmLyTgcHh+nTp/fp0ydtf961iQRauDDlAa/p09GihdA0RPSJWHAn49CsGRQKKJWZ9fHw0FcawxAWhvr1ce0aACgUWLkSXbrg1CnRsYjIaCmVynr16l26dAlAsWLFatSoYWVlde7cuVu3bu3evfvYsWOXLl1KXXN/9uxZvXr1Xrx4AaBUqVJVq1Y9efJkSEjIiRMnGjZseObMGYcPF3Xat2+ft7e3UqmUy+XffPNNoUKF/u///u/t27fLly9/8+aNv7+/nr9eIjJAW7dixgypPW4cmjUTmoYod+nVq9eaNWsA5MmT54cffgBw9OjR169f9+3b197e3tfXN3Vn3rWJBDp4EEOHSu3OnTFsmNA0RPTpOIc7GYeiRdGzZ2YdrK0xZoy+0hiAFy9Qr15KtX31anTpIjoTERm5xYsXa6rtQ4YMuXPnTkBAwNq1a2/evLl69Wpzc/OoqKhOnTopU33yOWjQIE21ff369Xfv3g0ICHj27Nnvv/8O4M6dO5MmTUp98vj4+J49eyqVSgcHh2vXrp05cyY4OPjVq1ctWrQAEBAQEBwcrNevlogMz5076NYNajUANG2K8eNFByLKRfz8/DTV9h49eoSHh+/YsWPHjh23b9/WzBrXt2/fyMjI5M68axMJ9PAhOnRAUhIAVK+OP/8UHYiIPh0L7mQ05s+Hu3v6h6yssGED0kx1oCd376YMxXrzRr5ggfnLl7q9Ymgo6tXD9esAoFBgzRp06qTbKxJRrqdWq6dNmwagcuXKs2bNMjc3Tz7UtWvXcePGATh16tTly5c1O+/duxcUFARg2LBhqcfEjRw50sfHB8Cff/759u3b5P3r168PCQnRNL766ivNTnNz840bNxYvXhzArFmzdPwlEpFBe/cOXl7Q/NgoWhR+fpDzLxUiLVEqlRMmTADQuHHj5cuXm5lJT7p/8cUXa9euBRAVFbVr167k/rxrE4kSFQUPD7x6BQBffIHgYFhbi85ERJ+Ov8aS0bC2xv79mDkTX3yRslMuR/PmOHMGrVoJiKRUYvhwlCuH+fOlPQkJstGjzYsVw4oVurqoptp+4wYAKBTw80PHjrq6FhGZjps3b4aFhQH46aef5GmqXJ3ef6x34cIFTWP79u1qtVomkw0ePPijzt27dwcQGxt74MCB5J3btm0DUK5cuWYfzhBhZ2enKdCfOnXqpa4/riQiA9avnzSYwMoKgYHIn190IKJc5NixYw8fPgQwePDgj+7ylSpVGjduXP/+/ZOr8OBdm0gQzbLhyXfDbdtQpIjoTESUIyy4kzExM8OwYQgJwbffSnu2bsXOnahUSUyeAQMwaxY+XFkQAGJi0Lu3TmruT5+iTh3cvAkA5ubYvBkdOmj/KkRkgh49eqRpVKxYMe3RL7/8UiaTAXj+/Llmzz///APg66+//iL1p6AAgHr16tnZ2SX30Th27BiA+vXrpz15y5YtAahUquPHj3/ul0FExmnuXPj5Se0lS1C9utA0RLmOZvS6s7NzgwYN0h6dPHnyokWL2rdvn7yHd20iIUaMwM6dACCT4e+/UbOm6EBElFMsuJPxkclgayu17eyExTh+HEuXZtZhyBC8eKHNKz55And33LsHABYWCAhA69baPD8RmbIqVapopnOtnl6h69KlS2q1GkCpUqU0e27fvg2gQoUKaTtbWlpWqlQJwJ07dzR7Xrx48fr164z616hRQ1PNT+5PRCbl5EmMGiW1f/4Z3bsLTUOUG2nWaKlatapCodDsiYmJSUhISLcz79pEQvj5YfZsqT1qFD5cxpiIjAwL7kQ5lOUA9qgo+Ptr7XKaavv9+wBgYYHNm8XMokNEuVXhwoVbtGjRokULGxubjw6pVCrNHO52dnaNGzfW7Hz69CmAL7/8Mt2zafY/efIkdeeM+ltYWDg5OaXuT0SmIzQUPj7Q1P2+/Rbz5okORJQb3bp1C0ChQoWioqJGjRrl6upqa2trZ2dXqVKlAQMGpF4uFbxrE4lw4QL69JHaTZti8mShaYjos5ll3YWI0nP2bNZ9zpzRzrUeP4a7Ox4+BAALC2zZAg8P7ZyZiChz0dHRffr02bdvH4Bhw4blz58fgFqtjomJAWCXwXNGmv1RUVGazXfv3qXen27/sLCw5P4Z0Qypyxz//k8tNjY2MjLSyspK8+9FGhEREXFxcbGxsdZchiyV//77T/8XTUqSdehQ8L//LAE4Oqrmzg198SJJ/zEywndQuvgOMkbJ861Xr1797t27mnZiYuLVq1evXr26ZcuWDRs2uLu7a/bzri0Kf+aky6B+5iiVRQAFgJCQkIQEpbZOGxam8PAoFBurAFCqVOKsWS9CQtJMXJsmw4sXL5480VqGXIDvoHQZ1DvIpHCEO1EOhYdn3UeztvhnevQIdetK1XZLSwQGstpORHoSFBRUsWLF9evXA+jcubNmnDuAuLg4zQwzlpaW6b5Qsz/5l93Y2NjU+7PsT0QmYsoUh7NnLQEoFFi48NWXXxpQtZ0o11AqlfHx8QDWrFlz9+7dRo0aBQcH37lz5/jx46NHjzY3Nw8NDfX19dVMIwPetYn0Kz5e1ru3U2ioAoCDg+rvv1/a22dYbSciY8ER7kQ55OCAsLAs+uTL97lXuXsX7u4ICQEAGxsEByO9hY6IiLTs4sWLgwYN0qx6am1tPXny5CFDhiQPVUv+Czyj6V81f9hbWFhoNq2srD6pf0Y0Vf6MaOK5urpmfhKTEhMTY21tbWNjU6BAAdFZDIiNjU1MTEyBAgXSTqBE+nwHbdyI1aul9m+/oVOngnq7dDbxHZQuvoOMTmJioqahVqsHDhy4YMECzWbp0qXd3Nzc3NyaN28eGho6YcIEzSHetUXhz5x0GdTPnPeLIKBIkSKFCmnhhGo1OnXCpUsAYG6OoCD5Dz8UzmYGZ2dnV9ciWgiRW/AdlC6DegeZFI5wJ8qhatWy7lO16mdd4vbtD6rt27ez2k5EOhcXFzd48OAaNWpoqu1eXl5Xrlz59ddf5fKU3xnkcrnmmcTo6Oh0T/LRhDO275e6zmZ/Isr1rl5F795S29MTw4YJTUOUq1lZWWlu4gUKFJg+ffpHR5s1a1a/fn0Ahw8f1uzhXZtIb377DRs2SO0FC/B+YiciMnosuBPlUNeuWXSwskL79jk//+3bqFcvpdq+Ywfq18/52YiIsuPVq1e1atWaP3++UqmsXbv2qVOnAgMDS5UqlbZnkSJFkPGkzyEhIQAKFy6cunNG/ZOSksLCwlL3J6LcLSoKbdtCU8orUwZr1iAbUz0TUc45OjoCqFatWrpz+NaoUQPA7du3NWPhedcm0o89ezBhgtTu1w8//yw0DRFpFQvuRDnUpAnats2sw4QJyPEjkrduwd0dml9xbW2xcyfq1cvhqYiIsundu3dNmza9fPmytbX1okWLjh8/XqtWrYw6ly1bFsDt27fTPapZkO2rr77SbBYpUkQzDi7d/vfu3VOpVKn7E1EuplajWzfcugUAdnYICkLevKIzEeV2ZcqUAWBvb5/u0Xz58gFQKpXJBXfetYl07eZNdOgApRIA6tTBvHmiAxGRVrHgTpRza9agU6d09isUmDwZI0fm8LQ3b8LdHc+fA++r7XyyjIj0YMiQIefPn7ezsztw4ED//v1lmY44dXNzA3D58uWoqKiPDt29ezc0NDS5j0bt2rUBHDt2LO2pkndq+hBR7vbbbwgKktp//43y5YWmITIN1atXB3D9+vV0j968eRNAyZIlk2f45V2bSKciItCyJd68AYBixRAYiKzWRCAiI8OCO1HOWVnBzw/Hj8PXV9pjbq4eODDpxg2MG5fDc16+jB9+QGgoAOTNi4MHUbeuVsISEWUmPDzcz88PwNSpU1MXyjPi6ekJIDExcd26dR8dWr16NQALC4tmzZp91P/MmTOav+pTW7NmDYBvvvnGxcXlc74EIjJ8hw6lPD4/dGgWDwsSkba0bNkSwK1bt/bv3//RobCwsODgYADVUi1Rxbs2ke4kJsLbG/fuAYCdHbZvh5OT6ExEpG0suBN9Ljc3zJkjtR0cVL//nlCmTA5PdekSGjTAq1cAkDcv9u1DxtM5EBFpk7+/f1xcHICqVatey1hkZKSm/9dff920aVMAEydOfPz4cfJ5Ll68OG/ePAA9e/bUPKKu0bVrVycnJwB9+/bVXEhj2bJlJ06cADCMayYS5XZPnqB9e+nx+dq18fvvogMRmYz69etXrFgRQK9evc6ePZu8PywszNfXNyIiwsLCYuzYscn7edcm0p3//Q9HjgCAXI7161GxouhARKQDZqIDEJHk4kU0bIjwcABwcMC+fahZU3QmIjIZyUPYfvzxx0y6LV26tG/fvpr2ggULTp06FRYWVr16dU9Pz8qVK588eXLnzp2xsbHFihWbPHly6hfa2touWrSoXbt2//zzT8WKFVu1auXk5HTw4MGDBw8C8PDw8PHx0c1XRkQGIT4e3t7SqIJChbB5M8zNRWciMhlyuXzZsmX16tV7+vSpm5ubu7t7xYoVnz59eujQoYiICABjx46tUKFCcn/etYl0ZMkSLF0qtadORcuWQtMQkc6w4E5kEP79Fw0bIiICABwcsH8/atQQnYmITMn9+/c/9SWlS5fes2dP+/btHz9+vHLlyuT9VapUCQgIKFCgwEf927ZtGxUVNXDgwHv37s2ePTt5f7t27VasWJH5lPFEZOx++QXnzgGAuTkCAlC4sOhARCamdu3awcHB3bt3f/78+YEDBw4cOKDZnz9//gULFnTs2PGj/rxrE2ndsWMYPFhqe3vnfNU3IjJ8LLgTiXfhAho1kqrtjo7Yvx/ffCM6ExGZmClTpgwfPjzLbmU+nDOrVq1aN2/e3LZt28mTJyMiIpydnd3d3Zs2bWpmlv4vGD179mzRooW/v//169djY2NdXV09PT1r8ANGotzOzw8rVkjtuXNRp47QNESmqnHjxnfv3g0ODj5z5kx4eHiJEiUqV65ct27d/Pnzp9ufd20iLXr0CG3aICEBAKpWxZo14OdWRLkYC+5Egp08iaZN8fYtADg54eBBVKokOhMRmZ7q1avn7IXW1tYdOnTo0KFDNvs7OzsPHDgwZ9ciImN06RL69JHaHTrgl1+EpiEybba2tr6+vr6+vtnsz7s2kVa8e4eWLfHyJQAUKoTt22FjIzoTEekSF00lEunECTRpIlXbCxbEoUOsthMREVHuEREBLy/ExgJAxYpYvlx0ICIiok938SL69JFWIgHQrx/278/ua1UqdOyIq1cBwMoKW7fiyy9znuTECdy/j2PH/nNyUub8LESkYxzhTiTM8eNo1gxRUQDg7IyDB5FqpSIiIiIi46YpMTx8CAD29ggIgK1t1q8KDUVMDAAUKsQBgEREJJhajVGjMHMm1OqUnVu3YutWtGmDtWuzvlWNHYvt26X2okWoVeuz8ri6AoCZWdJnnYWIdIwj3InEOHYMTZumVNsPHWK1nYiIiHKV8eOxdy8AyGRYvRrlymXrVb17o2RJlCyJw4d1mo6IiChrEyZgxowPqu3JAgOR5fxMW7Zg+nSpPXw4evbUcjwiMkwsuBMJcPQomjXDu3cAUKgQDh9G+fKiMxERERFpz86d+P13qT1mDLy8hKYhIiL6dA8epJTL0xUcjJ07Mzx68SK6dpWK9Y0b47fftByPiAwWC+5E+rZ/P5o2lartLi44dgxffy06ExEREZH23LuHzp2hUgFA/fqYOFFwHiIiohzYtAmJiVn0Wbcu/f2hoWjZUpokrVw5bNoEhULL8YjIYHEOdyK92rcPrVohLg4AXFxw5AhKlhSdiYiIiEh7YmPRti1evwYAV1eWGIiIyFhdvJjDPnFxaN0az54BgKMjtm+Hg4OWsxGRIeMIdyL92bMnpdru6qrlantsLP74Az/9JG1euIBOnXD2rNbOT0RERJQdP/8sVR+srBAYiAIFRAciIiLKkbdvs+6j+YD5I/374/RpAFAosH49SpfWcjAiMnAsuBPpye7d8PKSqu1Fi2q52v7wIWrUwMCBuHZN2pOQgPXr8d13GDdOa1chIiIiytzChVizRmovWoRvvhGahoiI6DNk5zNjJ6eP98yciZUrpfa8eWjaVMupiMjwseBOpA+7dqVU24sVw5EjKFFCayePiUGTJrh+PZ1DKhWmTsX8+Vq7FhEREVFGTp/GsGFSu3dv9OwpNA0REdHn+e67rPu4uX2wuW8fRo+W2t26YcAA7aciIsPHgjuRzgUGonVrxMcDQOnSOHYMxYtr8/wLF+LOncw6jB+PiAhtXpGIiIjoIy9ewNsbCQkAUKUKFiwQHYiIiOjztGuHvHkz6yCTffDp8q1baN8eSiUAuLlh2TLdxiMig8WCO5FubdmCDh2klc3LlMGRI/jySy1fYsOGLDpERWHnTi1flIiIiChZUhLatUNICADky4egIFhbi85ERET0eZycsHAhZLIMOwwdipo1pXZkJFq2lKZ0L1oUQUGwtNRHSCIyQCy4E+lQQEBKtb1sWRw5giJFtHwJlQo3b2bdLXludyIiIiKtGz4cR48CgFyO9eu1/DAfERGRKF26wM8vnXHuFhaYNAkzZkibSiU6dsTduwBgbY3AQBQsqNecRGRQWHAn0hV/f3TsiKQkAChXDocPo3Bh7V8lLk66ROaiorR/aSIiIiIAW7emLBgzZQqaNBGahoiISKs6dsTjx1i8GFZW0p7Ro3H/PsaPh/x9UW3QIOzZAwAyGVavRvXqYqISkYFgwZ1IJzZtQqdOUin8q690VW0HYGMDO7usuzk76+TqREREZOJu30a3blCrAcDDA6NG5fxUISEYNw7Hj0ubU6di48ZsDSwgIiLSqbx50a8fHBykzQEDPpgqdvVqLFoktSdNQtu2+o5HRIaGBXci7Vu5MmVse+XKOHoUX3yhw8v98EPWfX78UYcBiIiIyDS9ewcvL7x9CwClSmHt2swmus3c+vUoWxZTp0qz3wI4cwa+vnBzw7Nn2klLRERG4ckTPHiABw+M4zPXEyfQt6/U9vLC2LFC0xCRYWDBnUjL1qwx690bKhUAVKmCgwfh5KTbK/bvn0WHihWzVZQnIiIiyj61Gt2748YNALC2RkBAytC/T7V9O7p0QXR0OofOnkWjRukfIiKiXOnHH1GyJEqWNIIPXB8/hpcX4uMBoEqVz/rgmYhyExbcibQpLk72yy8Wmmp71ao4eBAFCuj8os2aoXfvDI/a2WHVKigUOo9BREREJmXmTGzZIrWXLUPVqjk8T2IiBgyQBiuk6+ZNzJ2bw5MTERHpyLt3aNkSYWEA4OyM7dthays6ExEZBhbcibQpKkqu+XPxm29w6BDy59fTdZcuxaRJKUu4JKtQAUePcsEWIiIi0rIjR1Kemv/f/9ClS85P9X//hydPsuizdm3Oz09ERKR1ajV69sSVKwBgbg5/f7i4iM5ERAaDBXci7fv2Wxw4AEdH/V1RocD48Xj0CMOGSXsKF8a+fbh8GdWq6S8GERERmYKnT9GunTS17nffYebMzzrbv/9m3efePURFfdZViIiItGjCBAQESO3Fi7lqGhF9gAV3Ii1Yvjyl/e23qn37cj6H6edwdkbr1lK7aFE0agQ53+JERESkVYmJ6NABL18CgLMzNm+GhcVnnVCz5mqWIiM/6ypERETasns3pk6V2kOGZDbFKxGZJlbjiD7X3LkYP15qm5urg4Pj8+YVGoiIiIhIZwYOxIkTAGBmBn9/FCnyuSfM5hR8ul6FnoiIKJsGDIBaDQANG2LGDNFpiMjwmIkOQJQT1apJY7fz5ROcZPbslFlcAOTNq7K3V4uLQ0RERKRD69dj2TKpPWuWdp6g/+67rPtUrQpray1ci4iI6PPFxABAmTIICIAZ62pElAZ/MJBRmjVLdAIAwKxZGD78gz0ymaAoRERERDp25Qp++klqt2uHQYO0c9pvv0WlStK6cxnp1Us71yIiItKKPHkQFCRmLlkiMnycUoYoh2bMSKm216olNAoRERGRjkVGwstLGtNXtiz++ktrZ5bLsXw5bGwy7ODunlLoJyIiEiV50RG5HBs2oHx5oWmIyIAZTcH9woULmzZtevz4cSZ9QkJCDh48uH379kuXLqnVnNaDdGjGDIwcKbV//BHr1glNQ0RERKRLKhU6dcLUm/qKAAAgAElEQVT9+wBgb4+tW5EnjzbPX7Mm9u9H0aLpHPL1RXAwH9gnIiLB5s2TPnUGMGECmjcXmoaIDJtxFNwfP35cv379Dh06HDt2LN0Ojx49atKkiYuLS8OGDT09PatWrVqsWLENGzboOSeZiAkTUqrtjRphzx7Y2goNRERERKRLkydj924AkMmwciW++kr7l3Bzw507WLcOLi7SHm9vXLiA9ethb6/9yxEREWXfvn0fLN7G566IKHNGUHBXKpW+vr5v3rzJqMP9+/e/+eabffv2qdVqMzMzR0dHAE+ePOnYsePs2bP1mJRMwvjxmDxZajdpguBgLuFFREREudmBA5g6VWqPGAFvb11dyMICHTuicmVps2tXVKumq2sRERFl0+3baN8eSqXoHERkPIyg4D5p0qSTJ09m0sHX1zc8PFwuly9btiw8PPzVq1dnzpwpXbo0gBEjRly6dElfSSn3GzsWU6ZI7aZNsXUrrKyEBiIiIiLSpceP0aGDVGWoVy/lFyEiIiJT8PYtvLzw+jUAyI2ghEZEBsHQf1ocO3bst99+k8lkGXXYu3fv2bNnAfz22299+vTJkyePXC6vWbPmrl278ubNq1Kppk2bpse8lJuNHo3k/03NmrHaTkRERLlcXBzatEF4OAC4uGDTJs6lTkREJkSphK8vbtwAAGtrODqKDkRERsKgC+6RkZEdO3ZUKpW//vprRn38/f0BFCxYcMiQIan3ly5d2tvbG8DOnTtjY2N1HZVyN7Uagwfj99+lzebNERQES8uUDra2GDECAwfGdu0aJSQhERERkdb164cLFwDA3BwbN8LJSXQgIiIiPRo2DLt2Ae+XMDE3Fx2IiIyEQRfce/fu/fTp02bNmg0cODCjPgcOHADQuHFj8zQ/+Tw8PADExcUdP35cpzkpd1OrMWgQ5s+XNr29sXXrB9V2APb2mD4d48ZFDxjwVv8JiYiIiLRuyRKsWiW1//gDbm5C0xAREenX2rWYN09qjxuH9u2FpiEio2K4Bffly5cHBgYWLFhwVfJv+mlERUWFhIQAqFq1atqj7u7umsatW7d0FJJyPbUaAwdi4UJp08cHGzbwY20iIiLK5c6cQfLjo506oU8foWmIiIj069Qp/PST1G7VChMmCE1DRMbGQAvut27dGjRoEIDVq1cXLFgwo27379/XNIoWLZr2aJ48eRwcHFJ3I/okajUGDMCiRdJm27asthMREVHuFxYGb2/ExwNA5cr480/RgYiIiPTov/9S7oNff401a7hcKhF9GkNc9ig+Pr5Dhw4xMTEDBw5s2rRpJj3fvpWm79AU1tNycHB4/fr1mzdvMr9iw4YNs0wVFhaWZR/TERsbGxERERMTo1KpRGfRFbUao0bZr1plrdls1Spu3ry3ERGZvSQiIiI2NlatVltbW+sjYnoiI80BRwCJiYlhYZGiYqQWHh4OwIorzKZiCu+gHDCEdxARESmV6NwZz54BgKMjgoJgYyM6ExERkb7ExqJVK/z3HwDkz48dO5Anj+hMRGRsDLHgPmLEiEuXLlWsWHHGjBmZ94yJidE0Mqrlaao20dHRmZ/n4MGDWaaKi4vLso/piIuLi4+Pl8lkufXbolJh+PD8mzdLVT9Pz5g5c14lJSEpKbNXab4tcXFxMplMHynTk5Cg1jRUKpWB/OvEx8eD76AP5fp3UM4YwjuIiIhGj8b+/QAgl2P9epQoIToQERGRvqjV6NED584BgLk5tmzhfZCIcsLgCu67d+9euHChlZXVhg0bshwSa2Ym5Vcqlel2SExMBJBl7Uaz8mpGNOPfM5nZxgTFxMTI5XIbG5v8+fOLzqJ9SiX69jXfvFmh2ezaVblkiVwuz/o/gEKhiImJyZ8/v424kWCOjtKjbubm5gbyn1ZTcDeQMAYid7+DcswQ3kFERCYuOBizZkntCROQ6bOmREREuc2UKdi0SWr/8Qfq1hUZhoiMl2EV3ENDQ7t3765Wq2fNmlWhQoUs+9va2moaGY0S1ey3s7PL/DwNGjTI8lqcECM1lUplaWlpaWmZ+74tSiX69MG6ddJmz5746y+FXK7IzmstLS2VSqWVlZXAb4uFhdSQy+UG8q9jaWkJvoM+lIvfQZ/DEN5BRESm7MEDs65doVYDQPPmGDtWdCAiIiI92rYNkyZJ7QEDuGA4EeWcYRXc165dGxYW5ujo+O7du+nTpyfvT56rfefOnc+ePQPg4+NTsmRJJycnzf4XL16kPZtardZMvF6gQAGdR6dcQalEt24p1fbevbFsGVdHISIiotwvOlrWp4+TZuWjokVFLhC3Y4eY6xIRkSm7fBmdO0Ozxlb9+pg7V3QgIjJmhlVw16wfGBkZOWrUqHQ7+Pv7+/v7A6hQoULJkiWLFy9uYWGRkJDw4MGDtJ1DQkISEhIAlCtXTpepKZdQKtG1K9avlzZ/+glLl7LaTkRERCZh+PD8d+6YA7CyQlAQOOcZERGZjvBweHnh3TsAKF4cmzbBzLCqZURkZAzrR4irq+uPP/6Ydn98fPzp06cBlCtXztnZGYBm4mOFQlG5cuVz585pjn7kzJkzmka1atV0GJpyhcREtG+PoCBps29fLFkCLtxIREREpmDOHOzcKa2fsXQp+LszERGZjsREeHtDM4zT3h7bt4OzJBDRZzKsgruvr6+vr2/a/c+ePXNxcQEwZsyYTp06pT7UvHnzc+fOHTp0KDw8/KPlBwMCAgC4urpWrlxZl6nJ6CUkoH17bN0qbQ4ejDlzWG0nIiIik3DyJJIfLu3fH926iQxDRESkZwMG4P/+DwDkcmzYgGysJ0hElAWjny+jR48emlllxn64rtOZM2cCAwMB9OvXT1A0Mg4JCWjXLqXaPmQI5s5ltZ2IiIhMQmgovL2RmAgAVasmzJkjOhAREZEeLVyIP/+U2tOno0ULoWmIKLcw+oK7i4vLr7/+CmDZsmWdO3fetWvX2bNnf/vttyZNmiiVyjJlygwYMEB0RjJcCQnw8cG2bdLmr7+Cf2cSERGRiUhMRNu2eP4cAPLnVy5d+tLSUnQmIiIifTl4EEOHSu1OnTBsmNA0RJSLGNaUMjkzZcqUp0+f+vn5rVu3bt26dcn7S5YsuXPnThsbG4HZyJDFx8PHBzt2SJvDh2PGDKGBiIiIiPRoyBAcOwYACgUWLAj/4gul6ERERER68vAhOnRAUhIAVK+eMs6diOjzGUfBPU+ePBMmTABQqVKltEflcvnatWt9fHxWrVp1/fr12NhYV1dXT0/Pn3/+2c7OTu9hyTjEx8PbGzt3SpsjRmD6dKGBiIiIiPRo40YsWiS1p09HnTpxQuMQERHpT1QUWrbEq1cA8MUXCA4Gx2oSkRYZTcF94sSJmffx8PDw8PDQSxwyejEx8PTEwYPSJqvtREREZFKuXkXv3lLb0xNDh+LpU6GBiIiI9EWlgq8vrl0DACsrbNuGIkVEZyKi3MXo53An+lQxMWjZMqXaPmkSq+1ERERkQqKi0LYtoqMBoEwZrF3L5eKJiMiEjBwpPewuk+Hvv1GzpuhARJTrGMcIdyJtiYmBhwcOH5Y2p0zB2LFCAxERERHpkVqNrl1x6xYA2NkhKAh58ojOREREpC9+fpg1S2qPGgVfX6FpiCiXYsGdTEh0NDw8cOSItDl1KsaMERqIiIiISL+mTsXWrcD7YX3ly4sOREREpC8XLqBPH6ndtCkmTxaahohyLxbcyVRER6N5cxw9Km3+9htGjRIaiIiI6P/Zu/MAG8v+j+OfM5sxxpox1kFPtkIp1GOpLC2KwTBjD80jKsqSUj9KUfZESMRj300GZZes6RGVJEsS2QZjG7PPnN8f525GzIZz5j7nzPv11/e+7su5PzMZM33nOtcF5K5Nm/T++0Y9YIDCwkxNAwBALjpzRi1bKi5OkqpV08KF8vQ0OxMAN0XDHXnClSt69ll9950kWSwaP16vv252JgAAgFx04oTat1dKiiTVr6+PPjI7EAAAuSU+Xq1a6dQpSSpWTCtXqnBhszMBcF803OH+rlzRM89o925Jslj0ySd67TWzMwEAAOSi+Hi1aaMLFySpZEktXSpvb7MzAQCQK6xWhYfr++8lydtbS5fqvvvMzgTArdFwh5u7fFnPPGN8Z7VYNHGievc2OxMAAEDu6t1be/ZIfzcaSpUyOxAAALllxAgtWGDUEyaocWNT0wDIA2i4w51dvqynn9b//idJFosmTdIrr5idCQAAIHdNm6YZM4x6/Hg1aGBqGgAActGaNXr3XaN+8UW9/LKpaQDkDTTccRuuXdPatZLk4+NZq5bZabJz6ZKeftpYzGWxaPJkvrMCAIA858cf1bevUXfsqFdfNTUNAAC56OBBdehgnF/SoIE++8zsQADyBhruuA1nzigsTJIqVfLZuNHsNFk6f15Nm+rnnyXJw0MzZqhbN5MjAQAA5LLoaIWEKC5OkmrU0PTpZgcCACC3REcrOFhXrkhShQqKiJCPj9mZAOQNHmYHAOwvKkpNmhjddk9PzZxJtx0AAOQ5qanq1El//CFJRYooIkJ+fmZnAgAgVyQlKTRUR49Kkr+/Vq5UQIDZmQDkGaxwh7s5d05Nm+qXXyTJ01P//a+6dDE7Uy665x6FhkpS5cpmRwEAAKYaMsTYDNBi0cyZuu8+swMBAJBbXn9dmzdLkoeH5s1TjRpmBwKQl9Bwh1s5d05NmujAAUny9NSsWerc2exMuatyZS1ZYnYIAABgtlWrNGKEUQ8ZotatTU0DAEAumjkzfbv24cPVsqV9XrZmTZUpI0ne3vZ5QQDuioY73MfZs2rSRL/+KkmenpozRx07mp0JAAAg1x05oi5dZLVKUtOmevddswMBAJBbtm3Tyy8bddu2GjTIbq+8bp3dXgqAe2MPd7iJkyfVsKHRbff21pIldNsBAEBeFBendu2MM+KCgrRwoTw9zc4EAEDOREcbZ31L+uuv2/7jx4+rTRslJkpSrVqaPVsWiz3jAUBO0HCHOzh5Uo0aGceh+Pho8WKFhJidCQAAwAy9emnfPkny9dXy5Spe3OxAAADkQFSUXnhBgYE6d84YadhQLVsWPnDAJ4evEBOj4GCdPy9JJUtq5UpOCwdgDhrucHknTqhRI/3+uyT5+GjJEnYpBQAAedSECZozx6gnTVLt2qamAQAgZ44f1yOPaO5cJSf/Y3znTu9WrQLXrcv+vVqpqerUSfv3S5Kvr778UmXLOiYrAGSHhjtc259//qPbvnSp3Y5DAQAAcC27dunNN426Z0+Fh5uaBgCAnLFa1a5dphvIJCZaunb1SVv2npnBg7VypVFPmqTHHrNnQgC4LTTc4cKOH1ejRjp2TJLy5dOyZQoONjsTAACAGc6dU2ho+q6148ebHQgAgJxZv17ff5/VhGvXLBMnZjVh2TKNHGnUAwfyK2cAJqPhDld15IgaNtQff0hS/vxatUotWpidCQAAwAzJyQoL06lTklSsmJYvV/78ZmcCACBn1qy5qzn79qlrV1mtkvTMMxoxwm7BAODO0HCHSzp8WI0aGe848/PTypV66imzMwEAAJhk4EBt3SpJHh5asEAVK5odCACAHDt5Mvs5f/6Z8fjZswoOVmysJFWpokWL5Jn9fu8A4FheZgcAbtuhQ2rcWKdPS39325s0MTsTAACASRYv1iefGPWHH+qZZ0xNAwDAbcpJizzDOfHxat3aWIpXtKhWrVKRInbOBgB3gBXucDG//ZbebS9QQKtX020HAAB516FDeuklow4O1ltvmZoGAIDbV6FC9nPuvTeDwd699d13kuTpqfnzVamSfXMBwB2i4Q5Xcmu3vVEjszMBAACY5No1tW6tq1clqVIlzZkji8XsTAAA3Kbg4Ozn3Hpm2+jRmjHDqMePV7Nmdk4FAHeMhjtcxsGDatRIZ85Ikr+/vvpKTz5pciQAAACzWK3q3l0HD0pSgQKKiFDhwmZnAgDg9jVokM1+aIGB1t69/zGybp3eeceou3VTnz6OygYAd4CGO1zDjz/q8cd19qwkFS6sDRv0xBNmZwIAADDPyJFavtyop0xR9ep3+DqffiqLReXLB733XlF7ZQMA4LbMm6eaNTO+Vbhw6pIlCTf+UvnQIbVvr5QUSapfX1On5kZCAMg5Gu5wAT/+qKZNdeGCJBUurHXr9NhjZmcCAAAwz+bNGjLEqPv21QsvmJoGAIC7U7y4vvtO//d/uuee9EEfH4WFJaxde6Z27dS0wUuX1KKFLl+WpPLlFRGhfPlyPS4AZImGO5zd3r1q2lQXL0pSkSJav16PPmp2JgAAAPOcPJm+su/f/9aoUWYHAgDgruXPr+HDde6cSpc2Rn76SZMnXytdOiVtTkqKOnXSkSPG/OXLVaKEGVkBIEs03OHUfvhBTz1ldNuLFtX69apb1+xMAAAA5klKUocOOn9ekgIDtWyZfHzMzgQAgJ14eqZ/X/P1vfluv35as0aSLBbNmqVHHsnVbACQQ15mBwAyZeu2X7ok/d1tr13b7EwAAACm6t1bO3ZIkpeXlixJXwYIAIB7mzVLn35q1EOHKizM1DQAkDlWuMNJ7dypxo2NbntAgLZsodsOAADyunnzNG2aUY8dq8cfNzUNAAC5ZccO9epl1CEh6QeZAIATouEOZ7Rjh559VlevSlKJEtq0KdPzygEAAPKIn35Sz55G3b69Xn/d1DQAAOSWEycsISFKSJCkhx7SnDmyWMzOBACZo+EOp7N9u5o107VrkhQYqE2bVKOG2ZkAAABMdemSQkIUGytJVaumr3MHAMC9xcdbOnbMFxUlSYGBioxUgQJmZwKALNFwh3PZuvXmbnv16mZnAgAAMFVqqjp10rFjklSwoCIiVLCg2ZkAAHA8q1UDBtyzb5+HJG9vLV6soCCzMwFAdmi4w4l8+62ef14xMZJUsqQ2b9YDD5idCQAAwGzvv681ayTJYtF//6tq1cwOBABArhg92m/1aj9b/fnneuIJc+MAQI7QcIezWL9ezZoZ3fZy5bRtm+6/3+xMAAAAZlu9WsOHG/Xbb6tNG1PTAACQW77+WuPGGd32fv3Uvbu5cQAgp2i4wymsXauWLRUXJ0lBQfrmG913n9mZAAAAzHb8uLp1U2qqJDVurA8+sPPrx8Xpt9+M+uRJrytX7Pz6AADcsTfekNUqSU2bpowZY3YaAMgxGu4w35o1at1a8fHS3932f/3L7EwAAABmi49Xmza6eFGSypXTokXy9LTbi1ut+vhjlSunKVOMkU2b8pcpo7ffVkKC3Z4CAMAds63Ju/fe5NmzE+34HRAAHI2GO0z29dcKCTG67eXLa8sW3Xuv2ZkAAACcwMsva+9eScqXT8uXKyDAbq9staprVw0YYHTz01y/rpEj1ayZ8bMZACAPGjpUFossFg0dak4A26p2m4IFrZ9/fr5IEWvm0wHA6dBwh5m++iq9216hgr75RhUrmp0JAADACUyerFmzjPrTT1Wnjj1ffMYMzZ2b6d1vvtGwYfZ8HAAAORcdbRQeHvr882uVKyeZGgcAbpuX2QGQdy1frg4dlJQkSZUqafNmlS1rdiYAAAAnsHu3Bgww6i5d1KOHnV9/9OhsJkyYoMGDlT+/nZ8LwKlMnz79hx9+ePHFF+vWrZvhhNjY2MjIyAMHDsTGxgYFBTVv3vw+ztqCg40fr2vXjPqdd/TUU4mxsaYGAoDbR8Md5li2TB07Gt32ypW1ebPKlDE7EwAAgBOIilLbtsZG6g8+qM8/t/Pr//GHjhzJZs7169qxQ02b2vnRAJzHli1bevXqlZqa2qBBgwwb7itWrAgPD49OW2ws9evXr0ePHhMnTvT19c3FpMhDNmzQm2+mX4aHmxcFAO4CW8rABEuWpK9tr1JF33xDtx0AAECSUlLUubP++kuSihZVRIT9l5nbXjxbJ0/a+bkAnEd0dHTnzp1TU1Mzm7Bu3bq2bdtGR0d7eHjUrVs3ODi4UKFCkqZPn961a9dcTIo85PBhhYUpOdnsHABw12i4I7ctXqxOnYxvolWravNmlS5tdiYAAADnMGiQNmyQJA8PzZ/vkMPkfXxyNC1fPvs/GoCTCA8PP3XqVGZ3ExISwsPDU1JSihQp8ssvv+zevTsyMvLChQvNmzeXtGTJksjIyFwMizzh6lW1bq3LlyXJ09PsNABwd2i4I1ctWqTOnY1ue7VqdNsBAADSRUZq3DijHjpUzZo55CkVK8ojB/8T8K9/OeTpAEz32WefrVixwrZiPUPz58+3tePnz59frVo126C3t/fChQsrVqwoacyYMbkTFXlEaqo6dtSvv0pS/vwqUcLsQABwd2i4I/fMnJm+tv3BB/XttypVyuxMAAAAzuHwYb3wgqxWSWreXP/3f456UIkSql8/mzlly6pOHUcFAGCiAwcODBgwwMPD49NPP81szooVKyRVrVr1ueeeu3Hc398/NDRU0q5du86fP+/oqMg73nhDX30lSRaLZs7kLVYAXB4Nd+SSGTPUo4dsmwQ+9JA2blRAgNmZAAAAnENMjFq31tWrklShgmbNytEi9Dv24YfZvGH/o48cGwCAKeLj4zt06BAXFzdw4MDGjRtnNm3btm2SmjRpcuut4OBgSampqdu3b3dcTuQpc+Zo/HijHjxY7dubmgYA7IGfo5EbvvhCL71kdNtr1dLGjSpe3OxMAAAAzsFqVXi48VZ6X18tX6577nHsExs21NSp8vLK4JbFosGD1aWLYwMAMMUbb7yxf//+Rx55ZNiwYZnNOXfu3OXLlyVVr1791rt16tSxWCySDh8+7LicyDt27dJLLxl1q1YaOtTMMABgLzTc4XDTpqlnT6Pb/vDD2rDB4f8PCQAA4ELGjtWSJUb92Wd6+OHceOh//qNdu9S8efpSd4tFjz+utWuVeSMOgAtbvXr15MmTCxQosGDBAm9v78ymnTx50laULVv21rs+Pj4BAQGSTpw44aCcyDtOn1bbtkpIkKT779fs2by5CoCbyGhZC5CRnTuVtsvfX39ZPvmkcPfuKdkuVP/8c738srEb6SOPaP16FSvm2JwAAAAuZMsWvfOOUffurW7dcu/RtWtr1SqNG6c33pCkjh1j5s3zz73HA8hFZ86c6d69u6QJEyZUrlw5i5kxMTG2wt8/438Q/P39o6Kirl27lvUTbQvhs0bX/kZxcXGXLl3y9fWNjY01N8mVK4WlwpKuXLly4sQVBz0lPt4SFhZ4+rSPpKJFU6dOPXv5cvLly5KUnFza1q06ffq0n19UfHx8XFxc/vz5HZTEFZ0+fdrsCE7Heb6CnEp0dDRfQabgt4fIXlycOnVS/fpatCh9ZPz4wnXqFP3886z+4NSp6d322rW1YQPddgAAgHRnz6pjR+NI+cce07hxJmTw8TEKb2+rCY8H4HhWq7VLly4XLlxo06ZNeHh41pPj4uJsRb5MTq60jdPSwt2wWjVw4D0//eQjycvLOnXqhfLlk80OBQB2wwp3ZK99e61cmcF4QoKlVy95e+vFFzO4+/HHGjDAqOvV05o1KlTIgSEBAABcS1KSQkN15owkBQZq2bL03jcA2NHo0aM3bdpUpkyZadOmZTvZ19fXViQmJmY4ISEhQZJPdv9gWa1Z/Q7Ptv49KCgo2zx5R2xsbP78+f38/IqbfeJZ4cJpReGgoMJZzr1DH3yQ3mSYNMkSFlbixrtpR4yULl3a398nNja2ePHifn5+jkji0vgKupHzfAU5FT8/P76CTMEKd2QjIiLjbnua/v118eLNg2PHpnfbGzTQ2rV02wEAAP6hf39t3y5JXl5atEhlypgdCIA72rNnz5AhQzw8PObOnVssB+84LlCggK24fv16hhNsa9sz23AGyNaKFXr/faPu00c9e5qaBgAcgBXuyMbMmdlMuHJFX36p//wnfWTMGL35plE3bKivvlLBgo6KBwAA4Irmz9ekSUY9YoSefNLMMADc2MaNG5OSkgoXLjxq1KhRo0aljdsWqksaM2bMvHnzJH3wwQd169Yt8/dv/zLcJDo5OTkqKkpS6dKlHR4d7ujXX9W1q1JTJalJE338sdmBAMABaLgjG3v2ZD/nf/9Lb7iPGqVBg4z68cf11Vdi6QMAAMCNfv5ZL71k1KGh6e8LBAAHuXLlyrp16zK89fPPP//888+SevfuLalMmTL+/v4xMTGHDh26dfLRo0dTU1MlVatWzZF54Z4uXlRwsK5elaSKFbVoUfruMQDgTvi3DdmwnRKetehoo7ix2/7EE1q9mm47AADAP1y+rDZtZDtusEoVffGFLBazMwFwXw0aNHjvvfduHb969er48eMltW7dumbNmpIqV65su1WvXr3169dv27bt1j+VNlivXj1HJYabSkpS27b6/XdJKlhQK1eKrbYBuCsa7shGsWLGWV5ZsH2bfO89ffCBMfL001qxQvnzOzYbAACAa7Fa9eKLOnpUkvz9FRHBOTcAHKtBgwYNGjS4dfyvv/6yNdxDQkI6d+58462WLVuuX79+9+7dBw8evGkl++zZsyXVrl27XLlyjkwNN9Snj7ZskSQPD82fr+rVTc4DAI7DoanIRp062c+pW1fvvpvebX/2WUVG0m0HAAC42fDh+vJLSbJY9N//6v77zQ4EALfo2rVrQECApF69esXHx6eNT506dceOHZIGDhxoWji4pk8/1eefG/WIEWrRwtQ0AOBgrHBHNl58UStXZjWhaFEdOKBx44zLZs0UESFf31yIBgAA4Eo2btT77xv1m2+qbVtT0wBAJgoUKDBp0qR27dpt3bq1Ro0arVq1CggI2Lhx48aNGyW1aNEiNDTU7IxwJZs2qX9/o+7cWW++aWoaAHA8Gu7IRsuWattWy5ZlfNdiUYMG6d32555TRITy5cu1dAAAAK7hxAl16KCUFElq1EjDh5sdCAAyFxYWdu3atddee+3o0aNjx45NG2/Xrt0XX3xh4egJ5Ngff6h9eyUnS9LDD6evcwcAN0bDHdmbOzyX+XsAACAASURBVFeFCmnmzJvH/fys9etbVq0yLp9/XsuX020HAAC4WXy82rTRhQuSVLasFi2Sl9P8GF6ihB55RImJiaVLp5idBUDuCQgI+OabbyTdtEt7mvDw8ObNmy9evPjAgQNxcXFBQUEtW7ask5MtR4G/Xbum4GDj21+pUoqMlJ+f2ZkAwPGc5id9ODFfX82YoVdf1YQJmjNHkvz81Lv35TNnfOfONfaOadtWCxbI29vMnAAAAM6pd2/t2SNJ3t5atEglSpgd6Abt2qldO504cVaSVMTkNAByS758+Z588sms5wQGBr722mu5EgduKDVVnTrpl18kyddXK1aobFmzMwFAruDQVOTUww/r//7PqMuUsZ4755nWbQ8NpdsOAACQsWnTNGOGUU+cqPr1TU0DAECuePtt2d4Qb7FoxgzVrWt2IADILTTccSeioiyzZxe01R060G0HAADI2L596tvXqDt1Uq9epqYBACBXzJun0aONetAgdexoahoAyF003HEnrlwxis6dNXeuE21CCgAA4Dyio9WmjeLiJKlmTU2bZnYgAAAc74cf1LOnUT/7rIYNMzUNAOQ6Gu64Damp/7hs3z5h1ix5epqUBgAAwImlpqpjR/3xhyQVLaqICE6KAwC4vzNn1LKlYmMlqVo1LVpE0wBAnkPDHTmVkqJ33km/DAuLmTDhGt84AQAAMjR4sNatkyQPD82bp3/9y+xAAAA4WHy8WrXSqVOSVKyYVq5U4cJmZwKAXEfDHTmSkqLu3fXll8ZloUIaNSrag78+AAAAGVm1SiNHGvW77+q550xNAwCA41mtCg/X999LkpeXli7VffeZnQkAzMDe28heSoq6ddO8eekjgYFWuu0AAAAZOnJEXbrIapWkp57S4MFmBwIAwPFGjtSCBUY9caIaNzY1DQCYh4Y7spGSoq5dNX++2TkAAABcwfXrCgkxTpgvX14LF7J3LQDA/a1dqyFDjPrFF/Xyy6amAQBTsUoZWUlKUlhYere9fXtT0wAAADi9V17RL79Ikq+vli/XPfeYHQgAAAc7eFDt2yslRZIaNNBnn5kdCABM5bwr3A8cOLBw4cLDhw8fO3asZMmS1atXb9as2RNPPJHZ/F27ds2aNevAgQOxsbFBQUEtWrTo3Llzvnz5cjOzm0lMVPv26fu29+unnj21aJGpmQAAAJzYJ59ozhyjnjJFjzxiahoAABwvOlrBwcZbuypUUESEfHzMzgQApnLGhntiYuKQIUM+/vjj5OTktMGvvvpq1KhR7du3nzBhQokSJW76IwMGDPj444/TLvft2xcZGTlhwoRVq1aVL18+l3K7l8REtWunFSuMywEDNHasDh82NRMAAIAT27VLb71l1C+/rO7dTU0DAIDjJScrNFRHj0qSv79WrlRAgNmZAMBszthwHzt27OjRoyVVrFjxhRdeqFSp0p9//rl8+fK9e/cuWrTozJkzmzdv9rjhyM7Ro0fbuu2VK1du1apVyZIlN2zYsGbNmv3797do0eL777/39fU17YNxTYmJCg3VypXG5RtvaMwYUwMBAAA4t3PnFBqqxERJevRRjR9vdiAAABzvtde0ebMkWSyaOVM1atjhNX/8UampklS4sKKj7fCCAJDLnG4P9xMnTnz44YeSGjZs+NNPPw0dOrRTp07vvPPO999/37dvX0nffvvtxIkT0+ZHRUW9//77kqpXr75nz55Ro0b169fv66+/fu+99yTt379/2rRpJn0oriohQW3bpnfb33yTbjsAAEBWkpMVFqZTpySpRAktWyb2NQQAuL2ZM9O3ax8+XKGh9nnZwoVVtKiKFpWH07WsACBHnO5fr9mzZ8fGxloslgkTJhQsWDBt3NPTc8yYMdWqVZMUGRmZNj5jxgzb/GXLlt04f+jQoY899pikTz/9NBfju7y4OLVooVWrjMu33tKoUaYGAgAAcHpvvKGtWyXJ01Nz56psWbMDAQDgYNu36+WXjbpNG739tqlpAMCZOF3D/bvvvpNUsWLFWrVq3XTLy8urcePGkvbu3Wu1Wm2Dq1evllS/fv0qVarcND8kJETS0aNHjxw54ujY7iE2VsHB2rDBuBw6VCNHmhoIAADA6S1apAkTjPqjj/T006amAQDA8Y4fV0iIsZFarVqaM0cWi9mZAMBpOF3D/fTp05Luv//+DO/6+flJSkpKsl2mpqbu3btXUoMGDW6d3Lx5c1vx/fffOyKqm7F12zduNC7ff1/vvWdqIAAAAKf322966SWjbtlSAweamgYAAMeLiVFwsM6fl6SSJRUZKT8/szMBgDNxukNTd+zYkZqa6u3tneHdjRs3SqpatarFYpF04sSJ+Ph4SZUrV751cpUqVby8vJKTk1nhnq3r19Wihb75xrgcNkyDB5saCAAAwOldu6aQEF27JkmVK2v2bNb3AQDcXGqqOnfW/v2S5OurL79UuXJmZwIAJ+N0DXe/zH8xOmnSpH379knq2bOnbeTs2bO2olSpUrfO9/DwCAwMPHXq1JkzZ7J+6LFjx7INlpycnO0cF3X9ulq29Pz2W+N/EIcNSx00KDXDDzclxSJ5SrJarcl/y82oTi75BmZncSK2zwafkxvxVyVDfFoAuBarVd276+BBSfL3V0SEChc2OxMAAA42ZIjSjtWbNEmPPWZqGgBwSk7XcM9QcnLy8OHDhw0bJqlu3brdu3e3jV+/ft1WZNamz58//43TMvOvf/0r2wy2vW7cz/XrlhdfLPHdd8bfhDffvPzCC1cz+1jPnfOSSktKTk6Oiory9fVNtO3ZBklSdHR0fHx8UlKS7S8ebKKioiR5ebnGvza5Iy4u7tKlS3wF3YSvIACuZcQILV9u1DNm6IEHTE0DAIDjLVumESOMeuBAhYebmgYAnJULtMDWrFkzYMCAgwcPSnrwwQe//vprHx8f2620XlVmvTzbuG3bmSzce++9Wdy1rX93y3bhtWsenTsX27vXR5LFoqFDr/znP7FZ/K1I+yRYLBZPT08vLy+3/LTcMS8vLz4tt/L09JSbfgXdMf6qZIhPCwAXsnmz3n3XqAcMUFiYqWkAAHC8ffvUtausVkl65pn0zjsA4CZO3dQ4fPhwnz591q9fL8nT03PAgAEffPBBvnz50iakLWxPSEjI8BVsrfZsF0v+/vvvWdy17RdfunTp28nuAq5cUUiI9u6VJItFEyaoT5/CUlbvhY6JMQovL6/AwEA/P7/ixYs7PqnL8PHxiY2NLV68eBY7I+VBtu1B3O8r6G7ExsZ6e3vzFXQTvoIAuIqTJ9W+vVJSJKlePToOAAA7+Ogj7z/+KObl5TVihJzwf57OnlXLloqNlaQqVbRokTw9zc4EAM7Kw+wAGbNaraNGjapRo4at296iRYuffvpp1KhRN3bbJRUsWNBWXL16NcPXsY2nTUOay5f19NPavVuSLBZNnKg+fczOBAAA4PQSEtSmjc6fl6SSJbV0qby9b/tFOndWsWIqVkxff233gAAAlxQR4blggf+cOb6XLpkd5Rbx8WrdWidPSlLRolq1SkWKmJ0JAJyYM65wt1qtnTt3XrBggaSaNWtOmjSpYcOGGc6sWLGirfjrr79uvRsXFxcdHX3jNNhcuqRnntH//idJFosmTdIrr5idCQAAwBX06WP8EOXtrSVL7nAR4vXrsvVTOMsDAOD8evfWd99Jkqen5s9XpUpmBwIA5+aMK9xff/11W7f9nXfe2bNnT2bddklFixYNDAyU9PPPP996d//+/baiWrVqjknqki5d0tNPp3fbJ0+m2w4AAJAjc+dq+nSj/vhjZf5TKgAAbmLMGM2YYdQff6xmzUxNAwCuwOka7rt27fr0008ljRkz5sMPP/TO7j26jRs3lrR58+Zbb23atEmSt7f3448/7oCkLun8eT35pPbskSRPT82cqZdfNjsTAACAK/jpJ/XsadQdOqh3b1PTAADgACdPGie9Sdq7V/Pm6e23jctu3fTaa2blAgBX4nQNd1u3vVatWgMGDMjJ/NDQUElHjx5du3btjeMJCQlffPGFpGeffbZQoUIOSOp6oqLUpIlsbwawddu7dTM5EgAAgEu4dEkhIYqLk6QaNdLXuQMA4B5iYtSzp+69V6tWGSOrVqlLl/RDwqdONTEdALgS59rD3Wq1rlixQlLRokUnT56c2bQCBQp0797dVrdq1apGjRr79+/v2bPnxo0bK1WqJCkxMbFXr17Hjh2zWCyDBw/OnfBO7tw5NW2qX36RJE9P/fe/6tLF7EwAAACuIDVVnTrp2DFJKlJEEREqUMDsTAAA2E9srJ55Rjt3Znw3Xz4tXKh8+XI3EwC4LOdquJ86dSouLk7S5s2bM9wlxiYwMDCt4W6xWObPn1+vXr0TJ05UqVLlkUceCQgI2LZtW0xMjKT33nuvbt26uRPemZ07p8aN9euvkuTpqVmz1Lmz2ZkAAABcxHvvac0aSbJYNHOm7rvP7EAAANjV8OGZdtslJSRo2jQNH56LgQDAlTnXljK///77HfypGjVq7Nix4+GHH7ZarXv27FmzZk1MTEzRokWnTJny3nvv2T2kyzl79h/d9jlz6LYDAADk1OrV+ugjox48WK1bm5oGAAB7S0rSZ59lM2fSJCUm5koaAHB9zrXC/YknnrBarXfwB2vWrPnDDz/8/PPPBw4ciIuLCwoKatiwYT7e7ySdPKnGjXX0qCR5e2vRIoWEmJ0JAADARRw/rm7dlJoqSU2aiLUcAAD388MPunw5mzlXrujHH8UOAgCQE87VcL9LNWvWrFmzptkpnMiJE2rcWLa3Dfj4aPFitWpldiYAAAAXERenNm108aIkBQVp0SJ5epqdCQAAezt7NkfTTp92cA4AcBdu1XDHjU6cUKNGxulePj5askQtW5qdCQAAwHW88or27pUkX18tX67ixc0OBACAA+TPn6Np/v4OzgEA7oKGu3v68081aqQ//pAkHx8tXargYLMzAQBczejRo0+fPv3JJ59kMSc1NXXTpk3ffffdxYsXS5Qo8eSTT9arVy+L+bGxsZGRkQcOHIiNjQ0KCmrevPl9HEAJpzRpkmbNSq9r17bni6ekGMUdbaYIAIA9Va2ao2mVKzs4BwC4Cxrubuj4cTVqpOPHJSlfPi1bpubNTY4EAHA5Fy9eHDx4sI+PTxYN919//bV9+/b79++/cbB+/foLFiwICgq6df6KFSvCw8Ojo6PTRvr169ejR4+JEyf6+vraMTxwl777TgMGGPVLLyk83G6vvHatxo7VN98Yl926af16/d//qWxZuz0CAIDbUr68Hn1Uu3dnNeexx5TRD3cAgAx4mB0AdnbkiBo2NLrt+fNr1Sq67QCAOzFmzJikpKQsJvz111+NGze2ddvvu+++0NDQMmXKSNqxY8dTTz11+Zazt9atW9e2bdvo6GgPD4+6desGBwcXKlRI0vTp07t27eqwjwO4befOqW1bJSZK0kMPKcv3eNwGq1V9+6pZM23aZJzCKunqVU2dqpo1tWWLfZ4CAMAdqFYtq7teXhozJreiAIDro+HuVg4fVqNG+usvSfLz08qVeuopszMBAFzNmTNn3n777dGjR2c9rW/fvufOnZM0f/78I0eOLFmy5K+//hoxYoSkw4cPv//++zdOTkhICA8PT0lJKVKkyC+//LJ79+7IyMgLFy40b95c0pIlSyIjIx32AQG3ITlZ7drp1ClJKlZMERE53dk2W+PHa8KEjG9duqSWLXXihH0eBADAbYmI0OzZmd7Nn1+zZqlBg1wMBAAujoa7+zh0SI0aGf9/6OenVavUtKnZmQAALqVLly6VK1cuU6bMyJEjrVnuLX306NGIiAhJAwcO7NixY9r4oEGDQkNDJX3++edXr15NG58/f/6pU6dsRbW/11B5e3svXLiwYsWKksawbgrOYdAgffutJHl4aP58Vaxon5eNidE/fwl1s6tX9cEH9nkWAAA59+OPeuEF40yRevX0wgvy8zNu+fmpe3ft26dOnUwMCACuh4a7m/jtNzVqpNOnJalAAa1ercaNzc4EAHA1GzZsOHLkSNatdpuVK1darVaLxdKvX7+bbnXv3l1SXFzchg0b0gZXrFghqWrVqs8999yNk/39/W0N+l27dp0/f/7uPwTgbqxYoY8/Nurhw/Xss3Z75fXrdcNvoDIWEZG+1QwAALngwgWFhOj6dUmqXFmrV2v2bA0caNwdOFAzZ6pKFRMDAoBLouHuDg4eVKNGOnNG+rvb3qiR2ZkAAC7of//73x9/e/3117OYuXXrVkn3339/qVKlbrrVuHFjf3//tDk227Ztk9SkSZNbXyo4OFhSamrq9u3b7/ojALLRrZsCAoqXLx80f77XTbcOHVLXrsYSvxYtNGiQPZ97+HD2cy5dEr91AgDkmqQktW2rP/6QpEKFFBGhokXNzgQAbuHm/9OAy/npJzVtqgsXJKlwYa1Zo3//2+xMAADXVK5cubS6SJEiWcw8dOiQpOrVq996K1++fDVr1ty5c+fhv1uM586ds52hmuH8OnXqWCwWq9V6OCctScAxYmIUEmIsQq9USXPnymKx5+snJORoWlycPR8KAEAWXn01fRe1BQv0wANmBwIAd0HD3bX9+KOeeiq92752rR57zIGPK1VKS5ZIko9PogMfAwBweidPnpRUtmzZDO/axk/8fQSkbXJm8318fAICAqKiok5wZCRMYrXqxRf166+SVKCAIiJUuLCdH3HLW0Ey4OmpkiXt/FwAADI0frymTzfqMWP0/POmpgEA90LD3YXt26enntLFi5JUpIjWrVPduo59YsGCCg2VpNjYFFuXHwCQB1mt1tjYWEm2rWNuZRu/du2a7TImJubG8QznR0VFpc3PjCUHS47p2t8oLi7u0qVLvr6+tv9ekHT9+j1SAUnR0dEnThgLCKZOLbR0qfGWjmHDLhYqdN3uf4+qV/eSSmc9p06dhKioc3Z+cI6dtp0FhBvwFZSh6Ojo+Pj4uLi4/Pnzm50FwB3asEFvvmnUXbqof39T0wCA22EPd1e1d6+aNk3vtq9f7/BuOwAANvHx8baDVfPly5fhBNt4Wosq7u9tMnI4H8hNu3b5jhljdNvDw6+1aXPdEU8pWzb5mWey+Rv+0kvZHasKAMBdO3xY7dopOVmS/v3v9HXuAAB7YYW7S/rhBz39tKKjJaloUa1fr9q1zc4EAMgz0vrmiYkZ7zCWkJAgycfHx3bp6+t7W/MzY+vyZ8a2/j0oKCjrF8lTYmNj8+fP7+fnV7x4cbOzOIsCBYyiWLFiQUE+Z86oX7/0psOUKQV9fAo66NGzZqlBA/3+e8Z3e/dW9+4BDnp0zvEVdCO+gjLk5+cXGxtbvHhxPz8/s7MAuG1XryokRJcuSVLp0lq6VJkshwAA3DlWuLuenTvVuLHRbQ8I0JYtdNsBALnKw8PDtpPA9esZrwW+acOZAn/3OHM4H8gdSUkKDdWZM5IUGKilS5XdL33uSsmS2rVLYWHy+OcP4Pfco4kTNXGiAx8NAICk1FR17KgDByQpf36tWKEyZczOBADuiIa7i9mxQ82a6epVSSpRQps2qWZNszMBAPKeMmXKKPNNn0+dOiWpdOnSN07ObH5ycnJUVNSN84Hc8frr2rFDkry8tGRJbjQdAgK0eLGOHtVDDxkjb7+tP/9Unz7KwQkFAADclYED9dVXkmSxaMYM1aljdiAAcFM03F3J9u03d9tr1DA7EwAgT6pSpYqkQ4cOZXj3yJEjkqpVq2a7LFOmjG31eobzjx49mpqaeuN8IBfs3u3x2WdGPWaMHn889x5dsaIqVDDqunXTd7kBAMBx5szRxx8b9eDB6tDB1DQA4NZouLuMbdvUrJmuXZOkwEBt3qzq1c3OBADIq+rXry/pp59+umb7znSDI0eOnD17Nm2OTb169SRt27bt1pdKG7TNAXLH3LnGUUbt26tvX3OzAADgWLt26aWXjLpVKw0damYYAHB7NNxdw6ZNevZZxcRIUunS+vZbPfCA2ZkAAHlYy5YtJSUlJc2bN++mW7NmzZLk4+Pz3HPP3TR/9+7dBw8evGn+7NmzJdWuXbtcuXKOjAz8g+0E36pVNW2a2VEAAHCk06cVGqqEBEm6/37Nnn3zaSIAAPviX1kXsGGDWrRQbKwklS2rLVtUpYrZmQAAedv999/frFkzSUOHDv3zzz/Txvft2zd+/HhJ4eHhxYoVSxvv2rVrQECApF69esXHx6eNT506dceOHZIGDhyYa+GRl1mt6XWhQoqMVMGC5qUBAMDB4uLUqpVOnZKke+7RypUqVMjsTADg7rzMDoBsrFun1q0VFydJ5cpp82bdd5/ZmQAAkCZMmLBr166oqKhHHnmkZcuWDz744M6dO1evXh0XF1ehQoUPPvjgxskFChSYNGlSu3bttm7dWqNGjVatWgUEBGzcuHHjxo2SWrRoERoaatLHgbzl55+NwmLR7NmqXNnUNAAAOJLVqvBw/e9/kuTtraVL9a9/mZ0JAPIAGu5Obe1atW4t20LAoCBt3sx3RwCAs6hUqdKaNWvat2//559/zpw5M238oYceWrJkSfHixW+aHxYWdu3atddee+3o0aNjx45NG2/Xrt0XX3xhsVhyKTfyqh9+UP/++vFH49LXV9u369FHVaqUqbEAAHCY4cO1cKFRf/qpGjUyNQ0A5Bk03J3XmjUKCTG67eXLa/Nm3Xuv2ZkAAHlGt27dnnzySU9PzyzmPPbYYwcPHlyxYsXOnTujo6MDAwMbNWrUrFkzL6+Mf8AIDw9v3rz54sWLDxw4EBcXFxQU1LJlyzp16jjmIwDSjRunt95SSkr6SFycxo3T7NlatkxPPGFeMgAAHGPFivTDUXv3Vs+eZoYBgDyFhruT+uortWljnGpSvry++UYVK5qdCQCQl1SoUKFChQrZTsufP3+HDh06dOiQw5cNDAx87bXX7ioZcJsWLtQbb2R868IFBQfrxx/5QQsA4FZ+/VVduyo1VZIaNtS4cWYHAoC8hENTndHq1end9goVtGUL/xMIAABwJ5KTlfWJvFev6t13cysNAACOd/GigoN19aokVayoiAj5+JidCQDyEhruTmfZMoWEGN32ypW1fbtysL4QAAAAGdixQ6dOZTNnxQrjRy8AAFxdUpJCQ/X775JUsKBWrtQtB+sAAByLhrtzWbpUHTooKUmSqlTRN9+oTBmzMwEAALisr7/Ofk5MjE6edHwUAAAcr08fffONJHl4aP58Va9udiAAyHvYw92JLFmiTp2UnCxJVapo82aVLm12JgAAAJcVFaXPP8/RzOvXHRzlnwYOVMeOksSZwQAAO5o0Kf0b34gRatHC1DQAkFfRcHcWixapSxej2161qjZvVqlSZmcCAABwWSkp6tJFV67kaHIu/9xVr16uPg4AkBds3aoBA4y6c2e9+aapaQAgD2NLGaewcKE6dza67dWq6Ztv6LYDAADclXfe0fr1OZpZvbpKlHBwGgAAHOmPP9SmjRITJenhh3P6Bi8AgCPQcDffzJnq3FkpKZL04IPaulUlS5qdCQAAwJVFRmrMGKPOdvvavn0dHQcAAAe6dk3BwbpwQZJKlVJkpPz8zM4EAHkYDXeTffGFevRQaqokPfSQNm7kAHEAAIC7cviwunaV1SpJzz+vdet0772ZTg4JUffuuRYNAAA7S01Vp0765RdJ8vXVl1+qbFmzMwFA3kbD3UzTp6tnT6PbXqsW3XYAAIC7FROjkBBj6/by5TV7tkqX1o4dCg6+eaavr95+W4sWyYOfiAEALuvtt7VqlVF/8YUefdTUNAAAGu4mmjYtvdv+8MPauFH33GN2JgAAABcXHq4DByTJ11cREcbPVyVLKjJSBw6oTh1jWteuyceP66OP5O1tWlQAAO7SvHkaPdqoBw1Sp06mpgEASKLhbpapU9Wrl/FO50ce0YYNKlbM7EwAAAAubtw4LVli1FOm6OGH/3H3/vt1//1GXb9+amBgrmYDAMC+9u5Vz55G/eyzGj7c1DQAgL/RcDfB+PF6+WWj216vnjZvptsOAABwt3bu1NtvG/Wrr7IzOwDAnZ05o5YtFRsrSVWratEieXqanQkAIImGe+4bN079+xt1/fpau1aFCpkaCAAAwPWdPavQUCUlSdKjj2rcOLMDAQDgMPHxatVKf/0lScWKadUqFS5sdiYAwN9ouOeqMWP0xhtG3aCB1qxRwYKmBgIAAHB9SUkKC9Pp05JUooSWLVO+fGZnAgAgZ1JS9PXXioqy2C6//FLR0VnNt1r1n//o++8lyctLS5fqvvscnxIAkGM03HPP6NF6802jbtiQbjsAAIB99O+vbdskydNT8+apbFmzAwEAkDO7dqlaNT3/vC5eNBruQ4aofHmNH2/sQ3urkSM1f75RT5igxo1zJSgAIMe8zA6QV4wapUGDjPrxx/XVV/L3NzUQAACAW1i4UJMmGfWIEXrqKVPTAACQY1u36plnFB9/83hMjPr3V1SURoy4+dbatRoyxKi7d9crrzg8JADgdrHCPTcMHZrebX/6aa1dS7cdAADADvbvV48eRt2yZfrefQAAOLmEBHXvnkG3Pc2oUdq16x8jv/2m9u2VkiJJDRpo6lTHJgQA3Bka7g737rt6/32jfuYZrVih/PlNDQQAAOAWrl1TWJiuX5ekypU1Z44sFrMzAQCQM6tX69ixrCZYrZo8Of0yOlotWujKFUmqUEEREfLxcWxCAMCdYUsZxxoyRMOHG/Wzz+rLL+Xra2ogAAAAt2C1qls3/fabJPn7KyJChQqZnQkAgByznT6StW+/NYrkZIWG6uhRSfL318qVCghwYDYAwN1ghbsD/d//pXfbn3uObjsAAIDdDB+uiAhJslg0Y4YeeMDsQAAA3I5z525jzuuva/NmSbJYNHOmatRwYDAAwF1ihbtDWK3q31+ffGJcPv+8li9XvnymZgIAAHAXmzalb9k3YIDCwkxNOZc0OwAAIABJREFUAwDA7StYMKdzZs7UlCnGyLBhCg11YCoAwN1jhbv9Wa3q1y+9296mjb78km47AACAfZw4kX5kXP36+ugjswMBAHD77r8/R3O2b9fLLxuXbdronXccGgoAYAescLczq1Wvv65PPzUu27bVggXy9jY1EwAAgLuIj1ebNrpwQZJKltTSpbf3g9Zzz6lw4bikpKQHHuCkOQCAmdq00VtvKTExqzlPP62QEGNOrVocDw4AroGGuz1ZrerTJ/0Y8bAwzZ8vLz7HAAAAdtK7t/bskSRvby1dqlKlbu+Ph4WpcePrsbGxxYsXd0Q8AAByqFw5vfWWhg3LdELNmlqyROfPS1LJkoqMlJ9frqUDANw5tpSxG6tVvXund9vbtaPbDgAAYE/TpmnGDKMeP14NGpiaBgCAuzN0qHr3zvjWI48oKEi//CJJPj5askTlyuVmNADAnaPhbh9Wq159Nf0Yk/btNW8e3XYAAAC7+fFH9e1r1B076tVXTU0DAMBd8/DQp59qyxa1aSNPT2OwVi1NnaqnntLq1cbIlClq2NCsjACA20bD3Q5SUtS9uz77zLjs2JFuOwAAgD1FRyskRHFxklSjhqZPNzsQAAB28sQTWrZMlSun2i7nzlXx4ho1yrj7xhsKDzctGwDgDtBwv1spKXrxRc2ebVy++KLmzk3/1TQAAADuUmqqOnXSH39IUpEiiohgE1sAgNs6eFAvvCCrVZKeflojR5odCABwm2i43xXb2vY5c4zL//xH06fLg08qAACA/QwZorVrJcli0cyZuu8+swMBAOAwffooNlaSqlTR4sWs5wMA18O+J3cuJUVdu2r+fOOyRw9NnUq3HQAAwJ5WrdKIEUY9ZIhatzY1DQAADnb2rCQVLapVq1SkiNlpAAC3j/bwHUpJ0QsvpHfbe/bU55/TbQcAALCnI0fUpYvxtvqmTfXuu2YHAgDA8Tw9NW+eKlUyOwcA4I6wwv1OJCWpfXtFRBiXvXppyhRZLI56nNWqvXslyWLRww876ikAAABOJS5O7drpyhVJCgrSwoW8rR4A4LYuXkzvKYwbp+eeMy1JgwZ66y2jAADcARruty0xUe3aacUK47J/f40b59gnJierdm1J8vZWYqJjnwUAAOAkevXSvn2S5Our5ctVvLjZgQDAxcXHx2/fvv3w4cPHjh0rWbJk9erVH3vssSKZ71oSGxsbGRl54MCB2NjYoKCg5s2b38cxGo6xZo2iooyGe0iIXn/dzDBNm6ppUzMDAICro+F+exITFRamyEjjcsAAjR1raiAAAAB3NGFC+rn0kyYZiw8AAHfs66+/7tOnz7Fjx24cLFas2EcffdSjRw+PWzZIXbFiRXh4eHR0dNpIv379evToMXHiRF9f39xInGf89ps6dEi/HDLEvCgAAHug4X4bEhMVGqqVK43LgQM1erSpgQAAANzRrl16802j7tlT4eGmpgEA17d8+fK2bdtK8vb2rlevXqVKlf7888+dO3dGR0f36tXr559/njx58o3z161b17Zt25SUFA8Pj9q1a5csWXLLli1Xr16dPn36lStXFi9ebNLH4YYuXVJwsLF/mo23t3lpAAD2wCmfOZWQoDZt0rvtb71Ftx0AAMD+zp1TaKixjV6tWho/3uxAAODirl+/3q9fP0lBQUG7d+/esmXL9OnT169f/9tvvz355JOSpkyZ8vXXX6fNT0hICA8PT0lJKVKkyC+//LJ79+7IyMgLFy40b95c0pIlSyLT3vSNu5OSok6ddOSIJAceCwcAyGU03HOqRQutXm3Ub72lkSNNTQMAAOCOkpMVFqZTpySpWDEtX678+c3OBAAubtasWSdPnpQ0fvz4WrVqpY2XLVt26dKlJUqUkDR16tS08fnz5586dcpWVKtWzTbo7e29cOHCihUrShozZkxu5ndj/ftrzRpJslhUurTV7DgAAPug4Z5TGzYYxQcf0G0HAABwiIEDtXWrJHl4aMECVaxodiAAcH3ffvutpBIlSoSEhNx0q3jx4s8++6ykPXv2pA2uWLFCUtWqVZ977rkbJ/v7+4eGhkratWvX+fPnHR3b7c2erYkTjfq991SoEA13AHATNNxvz4cfcoAJAACAQyxerE8+Merhw/XMM6amAQB3cfz4cUnVq1fP8G65cuUknT9/PiUlxTaybds2SU2aNLl1cnBwsKTU1NTt27c7JmxesXOnevY06pAQvfuuqWkAAHbFoam3YdSo9PO7AAAAYEeHDumll4w6OFiDBpmaBgDcyOjRo2NiYsqWLZvh3X379kmqWLGip6enpHPnzl2+fFmZNOjr1KljsVisVuvhw4cdGdnNnTih1q2VkCBJDz6oOXPYwB0A3AoN95waN079+5sdAgAAwB1du6bWrXX1qiRVqkTrAQDsyXYyaoa2b9++Zs0aSW3atLGN2HZ7l5Rhg97HxycgICAqKurEiRP2D5o3xMWpTRtFRUlS8eKKiFCBAmZnAgDYFQ33nKLbDgAA4AhWq158UQcPSlKBAoqIUOHCZmcCgDxg8+bNoaGhVqs1ICDgjTfesA3GxMTYCn9//wz/lL+/f1RU1LVr17J+cUsOfnGaB7v2Vqv69Cm+Z4+fJC8v6+TJUV5eCbZPQ1JSoJRP0pkzZwoWTDI3p/OIjo6Oj4+Pi4vLzynqNzh9+rTZEZxOXFzcpUuXfH19Y2Njzc7iRPgKMgt7uAMAAMBMI0dq2TKjnjJFmWwyDACwm3Pnzr300ktNmzaNjo4uVKjQ2rVr77nnHtutuLg4W5EvX74M/6xtnJbWnfnkk8KrVvnZ6mHDLj32WIK5eQAAjsAKdwAAAJhm8+b0E+n79tULL5iaBgDcXWJi4rhx40aMGGFbov7vf//7v//9b5UqVdIm+Pr6ps3M8BUSEhIk+fj4ZP0gq9WaxV3b+vegoKDbye7yIiI0YYJR9+2rQYOKScXS7np7p9qKUqVK5bFPTFb8/PxiY2OLFy/u5+dndhank9e+grIWGxubP39+Pz+/4sWLm53FifAVZBYa7gAAADDHyZNq314pKZL0739r1CizAwGAW9uxY0d4ePihQ4cklSxZcujQoT169PDw+Mcb3wv8vaH49evXM3wR29r2zDacQWZ++kkvvCDbryGeekpjxpgdCADgMDTcAQAAYIKkJHXooPPnJSkwUMuWKbvlkgCAOzd16tTevXunpKT4+fkNGjSof//+BTI6rLNMmTK2IsNNopOTk6OioiSVLl3aoWndzIULCgmR7VcY996rBQvkRTMGANwX/8YDAADABH36aMcOSfLy0pIlonUDAI6zYMGCV155xWq1PvHEEzNnzrz33nszm1mmTBl/f/+YmBjbQvibHD16NDU1VVK1atUcGNe9JCWpbVsdOyZJBQtq5Uqx4wUAuDd3OzQ1MTHx6tWrZqcAAABAVubN0+efG/XYsXr8cVPTAIBbO378eLdu3axWa1hY2IYNG7LottvUq1dP0rZt2269lTZom4OcePVVffutJHl4aMECPfCA2YEAAA7mJg33pKSkkSNHVqlSxdfXt3DhwkWKFOnSpcuRI0fMzgUAAICb/fSTevY06vbt9frrpqYBAHc3efLkpKSkMmXKzJgxw9vbO9v5LVu2lLR79+6DBw/edGv27NmSateuXa5cOUdEdT+ffKLp04169Gg1b25qGgBArnCHLWWuX7/etGnT7777Lm3kypUr8+bN+/LLLyMjI5s0aWJiNgAAANzo0iWFhCg2VpKqVtW0aWYHAgB3Z+uSN2jQ4Pjx45nN8fb2rlKliq3u2rXr0KFDz58/36tXr3Xr1vn6+trGp06dumPHDkkDBw50eGi3sGGD0j5VXbpowABT0wAAcos7NNxffvllW7e9Y8eOnTt3Llmy5IYNG4YNGxYTExMaGvrrr7+WLFnS7IwAAABQaqo6dUrfxzYiQgULmp0JANzaxYsXz58/L2nx4sWLFy/ObFpgYODZs2dtdYECBSZNmtSuXbutW7fWqFGjVatWAQEBGzdu3Ljx/9u788CmyvTt41e6sbVlLcpWxIpsgq8K6DAo8sMRRBZZylJEQETZRBFBBR1XUFkUF1zYpVBsscjioIgMzoAgKODGohQEUaTsUOhG27x/nEyoTZqGNs1Jmu/nr4dzTk8uM0+eO3MnOecLSV27do2NjfVOeL924IDi4pSTI0l/+9ul77kDAMo8v2+4//TTT4sXL5YUGxu7ePFii8Ui6YYbbmjatGn37t1Pnz49derU1157zeyYAAAA0PPP69NPJcli0YIF4pZ7AFDa9u/fX4y/6tOnT1pa2pgxY1JSUqZPn27f3rdv37lz5xr/vxsupKWpWzedOCFJtWtr2TKVK2d2JgCAt/h9w33BggVWq7VChQqzZ8/OX/W7dOnSrVu3FStWxMfHT58+PSiojFytHgAAwE998oleesk2fuop9eplahoACAwxMTEbNmwo8rCwsLACW4YOHdqlS5fExMRdu3ZlZGRER0d37969VatWpROzTMnLU1ycdu2SpAoVtGKF6tQxOxMAwIv8vuH+2WefSbrjjjuqVKlSYFfXrl1XrFhx4sSJb7/9tnXr1makAwAAgCQdPKjBg5WXJ0n/93964QWzAwFAYKhevfrtt99evL+94oorxowZ49E4AWH8eH3yiSRZLJo3T3xIAQCBxr+/952VlfXzzz9Luvnmmx33durUyRj88MMPXo0FAACAfDIz1auXTp6UpHr19OGHCg42OxMAAKUgPl72i9pOmqT+/U1NAwAwg3833A8cOJCbmyupQYMGjntr165doUIFSfv27fN2MgAAAPzPiBHasUOSypVTcrKioswOBABAKdiyRcOG2cbdu+v5501NAwAwiX9fUubUqVPGoGbNmk4PiIqK+u23304a36cq3EMPPeT+Y3nfxYuSqpkeI7+MjIwzZ85kZWVxcfz8Tp8+nZGRERwcnJmZaXYWH3LmzBlJ4eHhZgfxIbyCnOIVBJRVs2Zp4ULb+K23+GU9AKBsOnJEsbHKypKkpk21aJF4sw8Agcm/G+4XLlwwBuXLl3d6gPENd/thhZk9e3aRj3X+/PnLTOcxOTkWo+FutVpNjJFfRkZGenp6Xl5eOW61ns+FCxcyMzPLlStn/PAChvT0dJn6CvJBvIKc4hUElElbt2rcONt44MBL3/sDAKAsycjQPffojz8kqXp1rVqlyEizMwEATOLfDXer1WoMLBaLiwNycnJcn+f99993sdf4/nu1atWKE9ETLl60DSwWi4kx8jN6hRUrVvSRPD7CarWmp6dXrVq1YsWKZmfxIcYnXkyV/HgFOcUrCCh7jh1T79627/pdf71cvuECAMBfWa0aOlTffCNJoaFatkwxMWZnAgCYx78b7pUqVTIGhV1/ICsrK/9hhXnwwQdd7DUa7iZeEMPecDc3Rn5BQUGZmZkVK1b0kTw+IjMz02KxhIeH0y7Mz3gBMlXy4xXkFK8goIzJzdW99+r33yWpalUtX64KFczOBABAKZg8WUuX2sZvvqn27U1NAwAwm39fUaxKlSrGoLArmxtXb7cfBgAAAO948kmtWydJQUFaskRXX212IAAASsGKFXr2Wdt49GgNH25qGgCAD/DvhntMTIxxMZlDhw457j19+rRx2eiGDRt6OxkAAEAAW7lSM2bYxs89p7vuMjUNAAClY/duDRqkvDxJuvXWS7UPABDI/LvhXqFChWuuuUbS9u3bHffaN1533XVejQUAABDAfvlF990n41Y7Xbpo0iSzAwEAUApOnlS3bjp3TpKuukrLlysszOxMAAAf4N8Nd0kdO3aUtG7duuzs7AK7PvnkE0mVK1du06aNCckAAAACz/nz6tHjUvdh4UIF+f37TQAACrp4UbGx2r9fkiIitHq1atQwOxMAwDf4/f8Buu+++ySdPHly9uzZ+bf/+eefCxculBQXFxcaGmpKNgAAgIBitWroUO3eLUnly2vqVE2cqIce0ptvmp0MAACPGjNGGzZI/7tVCb+rBwDY+X3DvVWrVvfcc4+k8ePHz5s37+zZs7m5uZs3b+7SpcvZs2cjIiImTpxodkYAAICAMH26kpJs43ffVUSEZs/W7Nn69FNTYwEA4FFvv6333rONp0xR166mpgEA+Bi/b7hLmj9/fpMmTTIzMx944IEaNWpUrVr173//+44dO8LCwhISEurWrWt2QAAAgLLvyy9l/57D6NEaPNjMMAAAlJKNGzVunG0cG6sJE0xNAwDwPWWh4V61atVt27Y99thj1atXz8nJSUtLCwkJ6dy589atW7t06WJ2OgAAgLLv6FHFxSknR5JuuUUzZpgdCACAUvDrr+rZU8Yt5G68UQsXymIxOxMAwMeEmB3AM8LDw2fMmDFt2rTU1NSMjIzatWuXL1/e7FAAAAABwbhx3J9/StIVV2jZMoWFmZ0JAABPS0tTt246cUKSatXSypWqWNHsTAAA31NGGu6GoKCgWrVqmZ3C8/btsw3y8rR/v2JiTE0DAADwV2PHatMmSQoJUWKiuJ4fAKDsycvTgAH66SdJKl9eH39MvQMAOFcWLilThv34o267Tc2a2f6Zm6trrtEdd+jnn02NBQAA8D8JCZo1yzZ+5RW1a2dqGgAASsfEiVq92jaeO1c332xqGgCAD6Ph7rv+8x/dfLM2biy4ff16tWyprVvNyAQAAJDPDz9o2DDb+J579NhjpqYBAKB0LFumqVNt4yef1IABpqYBAPg2Gu4+Ki1N/fopI8P53vPn1bu3LlzwbiYAAIB8zpxRz55KT5ekRo30wQfcOA4A4GdycnT6tE6fVlpaocfs2KHBg2W1SlKnTnrpJa+lAwD4JRruPmrePB096uqA339XQoK30gAAAPyV1ar779f+/ZIUHq7lyxUZWejBeXleywUAwGXYskXVqqlaNd19t/MD/vxT3bvbPl1u3Fgffqjg4FJJ8u23mYcO/Xb8+An7RWUBAH6KhruPWru26GM+/7z0cwAAADjz4ov6+GNJslg0f76aNv3L3tRUPf64Bg60/fOLL9Spk9at83ZIAABKIjNTPXro998lqVo1rV6typXNzgQA8Hk03H2UUdFdO3y49HMAAAA4+OILvfCCbTx+vGJj/7J361a1aKEZM3TihG1LXp7WrtWdd2rsWNtP8gEA8H0PPGC7fVpIiJKSdM01ZgcCAPgDGu4+KjS06GPCwko/BwAAwF8dOqT+/ZWbK0nt22vy5L/sPXpUd9+tY8ec/+3MmXrttVJPCABAyb3yipYssY1nzlSHDqamAQD4DxruPiompuhjrr669HMAAADkk5mpXr1sX12vVUtLligk5C8HTJmikyddneH553X2bCkmBACg5D77TE8/bRsPGaJRo0xNAwDwKzTcfVT37kUfc889pZ8DAAAgn1GjtH27JIWGKilJtWoVPGDZsiLOkJamzz4rlWwAAHjE3r3q18/2W662bfXee2YHAgD4FRruPqpfP11/vasDbrlF3bp5Kw0AAID0/vuaP982fuMNtW1b8IAzZ3T0aNHn2bvXw8EAAPCUU6fUtavtx1j16ys5mau5AgAuDw13HxUSopUrC71oTOPGSk5WEP/rAQAAb9m2TY88YhsPGKARI5wck5np1qkyMjyWCgAAD8rJUZ8+SkmRpPBwrVqlmjXNzgQA8De0bH1X/frauVMTJqhGjUsba9bU00/r229Vu7Z5yQAAQIA5dUr9+ikrS5JatNDs2c4Pq1HDrRu/8zYGAOCbHnlE69dLksWi+fPVooXZgQAAfoiGu0+LjNSrr+r3323/DAnR0aN68UVVqmRqLAAAEEjy8hQXp19/laSqVbV8uSpWdH5kSIhuu63oE3bo4Ml4AAB4xIIFeucd2/jFFxUba2oaAIDfouHuB+yXjrFYZLGYGgUAAASeSZO0dq0kBQUpPl4xMa4OHju2iLN16KBmzTyWDQAAjzh3TsOH28a9emniRFPTAAD8GQ13AAAAFGrVKr36qm38zDO6++4ijr/7bo0aVejeOnUu3XYVAADfsXu3srMl6YYb9MEHfNcNAFB8NNwBAADg3L59uu8+Wa2S9I9/6Jln3Pqrt97Sa6+pSpWC2+++W19/rehoD4cEAKDkLl6UpCuu0MqVXMQVAFAiNNwBAADgxIUL6tlTZ89KUv36SkhQcLBbf2ixaOxYHTqkSZNsW5o21a5d+uQT1a1bWmkBACgG40NlQ1iYkpJUr555aQAAZQINdwAAADgxcqR++kmSypdXcrJq1Li8P4+MVNu2tnF0tJo29XA8AABKbt68S+PZs9269TcAAK7RcAcAAEBBr7+uRYts41mzdNNNpqYBAKAUJCYqPt42rltXgwaZmgYAUFbQcAcAAMBfbNmiJ5+0jYcP1/33m5oGAIBSsH277r//0iVlrrrKzDAAgLKEhjsAAAAuSU1V797Kzpak1q01c6bZgQAA8LSjR9Wjh9LTL22xWMxLAwAoW2i4AwAAwCYnR3366MgRSapeXYmJKlfO7EwAAHhUdrb69NHhw5IUEWF2GgBAmUPDHQAAADaPP67//leSgoKUkMDv6wEAZdCoUdq4UZKCg/XMM2anAQCUOSFmBwAAAIBP+PBDvfGGbTxliu6809Q0AACUgunTNXeubTxjhm680dQ0AICyiG+4AwAAQHv36sEHbeNu3TRhgqlpAAAoBZ9/fumu4IMG6ZFHTE0DACijaLgDAAAEurQ09eyptDRJathQixZx7zgAQFnz88/q21e5uZLUpo3ef9/sQACAMopLygAAAAQ0q1VDhmjPHkmqVEkff6zKlT1z5k6dZLV65lQAAJTE6dPq2lVnzkhSdLSWL+eu4ACA0sI33AEAAALayy8rOdk2fvddNWtmahoAADwtN1f33qt9+ySpQgUlJ+uKK8zOBAAou2i4AwAABK5//1v//Kdt/NhjGjjQ1DQAAJSCceO0Zo0kWSxasEAtW5odCABQptFwBwAACFCHD6tfv0tXs335ZbMDAQDgaR98oDfesI3/+U/17WtqGgBAAOAa7gAAAGXE998rJ0eSrr9eIUW9y8vKUq9eOn5ckq68UsuWKSys1BMCAOBNmzfroYds4x49Lv2oCwCA0kPDHQAAoIz4v//TqVOSdPKkqlUr4uCHH9Y330hSaKiSklS7dqnHAwDAm377TT17KitLkq6/XvHxCuJH/gCA0ke1AQAACDjx8ZozxzaeMUO33mpqGgAAPC0jQ716KTVVkqpX1/LlqlTJ7EwAgMBAwx0AACCwfP/9pd/X9++vhx82NQ0AAJ5mtWrIEH37rSSFhio5WVdfbXYmAEDAoOEOAAAQQE6fVs+eysiQpObNL33PHQCAMuP555WYaBu//bbatTM1DQAgwNBwBwAACBR5eRowQAcOSFJEhJKS+H09AKCs+fhjvfCCbfzII3rwQVPTAAACDw13AACAQPHss/r0U0myWLRwoRo3NjsQAAAe9f33GjhQVqsk3XGHpk83OxAAIPDQcAcAAAgIn3yiKVNs44kT1bOnqWkAAPC0kyfVs6cuXJCkBg20dKlCQszOBAAIPDTcAQAAygjjC31OHTyowYOVlydJHTro+ee9FgoAAG+4eFG9el26bNrq1apRw+xMAICARMMdAADAv+Xmau5ctWyp06dtW/72N02bpsxM2z8zMtSrl06elKToaH34oYKDzYkKAEApGT1a//mPJAUFKSFBzZqZHQgAEKhouAMAAPix8+d1550aNkzbt1/a+MsvmjBBt91W/tixYEkjR2rHDkkqV04ffcQ3/gAAZc3MmZo92zaeOlVdupiaBgAQ2LieGQAAgB8bPFj//rfzXbt2BQ0dGtW378WFC21b3n5brVp5KxkAAF6xbp3Gj7eNBw7UuHGmpgEABDwa7gAAAP5q82YlJ7s64IcfwnbvDjPGAwfqgQe8kQoAAK/59VfFxSknR5Juuknvv292IABAwOOSMgAAAP7qo4+KPsboQfy//0cPAgBQ1qSlqWtXnTghSbVqaeVKVahgdiYAQMCj4Q4AAOCvfv7ZrcOqV9fHH9ODAACUKXl5iovTrl2SVL68VqxQnTrFOYnB+HwaAICSo+EOAADgrzIy3DpsyRJddVXpJgEAwMsmTNAnn0iSxaL589W69eX9+e+/a/hwde1q++eWLWrVSgkJHg4JAAhANNwBAAD8Va1aRR9Tp05ex46lHwUAAC+Kj9eMGbbxpEnq3//y/vyrr3T99Xr/faWlXdr47bcaMED9+/NtdwBAidBwBwAA8FcdOhR9TJ8+maUfBAAA79myRcOG2cbdu+v55y/vz1NT1bWrTp1yvvfDD/X00yWKBwAIcDTcAQAA/FW/foqOdnVAuXLWgQNpuAMAyo4jRxQbq6wsSWrSRIsWKegyGxuvvKLTp10d8Prr+vPP4icEAAQ4Gu4AAAAe8N132r5d27crN9d7D1qxoj74QOXLO99rsejVV0/Vq5fnfDcAAP4mI0P33KM//pCk6tW1erUiIy/7JMuXF3FAdrbt6vAAABQDDXc/EBoqq1VWq7KzzY4CAAAK0a6dWrZUy5a6cMGrj3v77dq4UddfX3B7VJSWL8/q0cO7aQAAKDVWq4YO1TffSFJoqJYtU0zMZZ8kK0uHDxd92L59l31mAAAMNNwBAAD8W8uW2rlTb711acvdd+vIEd15pxe/bA8AQCmbPFlLl9rGb76p9u2Lc5LsbFmtRR9mXLIGAIBioOEOAADg944e1ZQpl/45d65CQsxLAwCAp61cqWeftY1HjdLw4cU8T0SEIiKKPqxOnWKeHwAAGu4AAAD+7eJFxcb+5fZuYWHmpQEAwNN279Z99ykvT5JuvVWvvVais/3jH545BgAAp2i4AwAA+LdHHtFXX5kdAgCA0nHypLp107lzknTVVUpOLunnyuPHy2JxdUCHDrrhhhI9BAAgkNFwBwAA8GNLlujdd23jihVNjQIAgKcZv+Lav1+SIiLpfGTyAAAc0klEQVS0erWiokp6zltu0YsvFro3OloLF5b0IQAAgYyGOwAAgL/64Qc9+KBt3KOHypc3NQ0AAJ42Zow2bJCkoCAtXqzrrvPMaSdN0pIlqlv3LxuDghQbq23bCm4HAOCy0HAHAAAokYwMJSQoM9P2z8WLbT97L22nT6tnT6WnS1KjRnwdDwBQ1syapffes40nT1a3bp48eVyc9u/XzJm2fzZqpAMHlJSkK67w5KMAAAIQDXcAAIDi+/hjXXWVBgxQdrZty6hRio7WvHml+7h5eRo40PYT+/BwLV+uyMjSfUQAALxp40Y99phtHBurJ57w/EOEhenGG23jmjVVv77nHwIAEIBCzA4AAADgrxISdO+9sloLbj97Vg88oLQ0PfpoaT30Cy/oX/+SJItFCxaoaVNJ6t5d589LKund5AAAMNfBg+rVy/Zh9o03auHCIm5zCgCA76DhDgAAUBzHj2vkSCfddrsnntDdd6thQ88/9Lp1eukl23jCBPXubRvPn+/5xwIAwMvS0tS1q44fl6Qrr9TKldwVHADgT7ikDAAAQHHEx+vsWVcHZGdrzhzPP+6hQ4qLU26uJLVvf6nzDgBAGZCXp3vv1U8/SVL58lqxgluYAgD8DA13AACA4ti0qehjNm708INmZqpXL504IUn16ikxUSH8XhEAUIZMnKhVq2zjWbN0882mpgEA4PLRcAcAACiOY8eKPiY11cMPOmqUtm+XpNBQLV2qqCgPnx8AABMtW6apU23jJ57Q/febmgYAgGKh4Q4AAFAcERFFHxMZ6clHfPfdS1dpf/NN/f3vnjw5AADm2rFDgwfbbo7SsaMmTzY7EAAAxULDHQAAoDiuu84zx7hp2zaNHWsbDxig4cM9dmYAAEx39Ki6d1d6uiQ1bqzERAUHm50JAIBioeEOAABQHP37y2Ip4pi4OM881smT6ttXWVmS1KKFZs/2zGkBAPAFmZm65x79/rskVaum1atVubLZmQAAKC4a7gAAAMVx44164AFXB3Ttqs6dPfBAeXmKi9PBg5JUtaqWL1fFih44LQAAPmLUKG3dKkkhIUpK0jXXmB0IAIASoOEOAABQTLNm6d57ne/q3FkJCZ55lIkT9fnnkhQUpMWLFRPjmdMCAOALXn310h1KZs5Uhw6mpgEAoMRouAMAABRTaKji47V2rXr0uHR5mTvvVHKyPvlE4eEeeIiVKzV1qm38z3965ivzAAD4iM8+06RJtvGQIRo1ytQ0AAB4QojZAQqVmZm5adOmX3755cCBA1deeeV11113yy23VKlSpbDj09PTV65cuWvXrvT09Ojo6C5dulzD79AAAPAxZbJe33mn7rxTlSvr3DlJWrZMkZGeOfMvv2jQIFmtkvSPf+jppz1zWgAA3FHaVXvvXvXrp9xcSWrbVu+958FzAwBgGh9tuK9Zs+bhhx8+cOBA/o3VqlWbMmXKsGHDgoIKfjF/xYoVQ4cOPXXqlH3L2LFjhw0b9uabb5YvX94biQEAQFGo15fl/Hn17KmzZyWpfn0tXargYLMzAQAChheqdteul8pccrLCwjxyVgAATOaLDffk5OTevXtLCg0NbdOmTcOGDQ8dOrR58+ZTp04NHz78hx9+mDVrVv7j165d27t379zc3KCgoJYtW1555ZVffvnluXPn5syZc/bs2cTERJP+OwAAwCXU68s1dKh27ZKk8uWVnKzq1c0OBAAIGN6p2ikpkhQerlWrVLOmR04JAID5fO4a7hcuXBg7dqyk6OjorVu3fvnll3PmzPn888/37t17++23S3rnnXfWrFljPz4rK2vo0KG5ublVqlT56aeftm7dunLlyhMnTnTp0kVSUlLSypUrTfpPAQAANtTry/Xaa0pKso3feUc33WRqGgBAIPFm1bZYNG+eWrTw1PkAADCfzzXcFy5cePjwYUmvv/76DTfcYN9et27dZcuW1axZU9J7+S7ttmTJkj/++MMYNGnSxNgYGhq6dOnSBg0aSJo2bZo38wMAAEfU68uyebOeeso2HjlSQ4aYmgYAEGC8WbVfeEF9+njqZAAA+ASfa7j/5z//kVSzZs2ePXsW2FWjRo1OnTpJ+vbbb+0bV6xYIalx48adO3fOf3B4eHhsbKykLVu2HD9+vLRjAwAAF6jX7jt6VLGxys6WpJtv1muvmR0IABBgvFa1+/TRpEklPw0AAL7F5xruBw8elHTdddc53VuvXj1Jx48fzzVuZC5t3LhRUocOHRwP7tatm6S8vLxNmzaVTlgAAOAW6rWbLl5Unz46ckSSatbURx+pXDmzMwEAAozXqnZCgiyWkp8GAADf4nM3TZ06der58+fr1q3rdO/OnTslNWjQIDg4WFJqauqZM2dUSIO+VatWFovFarX+8ssvpRkZAAC4EiD1+tFHlZUlqUQt8nHjtHGjJAUHKz5ehbwhAgCgtHizagcHl/wcAAD4HJ9ruBt3RnVq06ZNn376qaRevXoZW4yrvUty2qAPCwuLioo6duzYb7/95vmgAADAPQFSr59/vqRnWLpUb71lG7/8su68s6QnBADgcgVI1QYAoPT4XMO9MP/+979jY2OtVmtUVNTjjz9ubDx//rwxCA8Pd/pX4eHhx44dS0tLc31yixs/Y3PnGAAA4Ih6XQwTJmjCBLNDAAACT8BW7Y0bub4NAMAzfO4a7o5SU1MffPDBO+6449SpU5GRkZ999ln16tWNXRkZGcagXCE/3ja2p6eneycqAABwRL0GAMBfULUBACghn264Z2dnv/zyyw0bNpwzZ47Vav3b3/62bdu2G2+80X5A+fLl7Uc6PUNWVpaksLAw1w9kdcmdYwJNUlKSJOM3B7CLjY2VlJSUZHYQ38IryBGvIKd4BTlVgirqQ6jXZmG1cYrVxileQY54BTnFK8ipktdK30HVNgtrjlOsOU7xCnLEK8gpXkFOlbxWFqnULykza9asdevWuT6mUqVKS5YsKbDxq6++Gjp06M8//yzpyiuvfO6554YNGxYUFFTgD43BhQsXnJ7Z+NS9sJ/CAQAAL6BeAwDgL6jaAACUUKk33Hfu3Lly5UrXx1SuXLnAlvfee2/06NG5ubkVK1Z88sknH3vsMXvVz69OnTrG4MiRI457c3Jyjh07Jql27drFiQ4AADyBeg0AgL+gagMAUEKl3nB/5plnhg8fXkSIkL/ESEhIGDlypNVqbdeu3fz586+++urC/rBOnTrh4eHnz583vghfQEpKSl5enqQmTZoUKzsAAPAA6jUAAP6Cqg0AQAmVesO9fv369evXd//4gwcPDh482Gq19unTZ/HixaGhoa6Pb9Omzeeff75x40bHXfaNbdq0cT8AAADwOOo1AAD+gqoNAEBJ+NxNU2fNmnXx4sU6derMmzevyG67pO7du0vaunXrnj17Cuz64IMPJLVs2bJevXqlERUAALiJeg0AgL+gagMAUBI+13A36nfbtm0PHjz4UyHy/7Rt0KBBUVFRkoYPH56ZmWnf/t5773311VeSxo8f7/X/CAAA8BfUawAA/AVVGwCAkij1S8pclpMnTx4/flxSYmJiYmJiYYddccUVR48eNcaVKlV6++23+/bt+9///rd58+b33HNPVFTUF1988cUXX0jq2rVrbGysd8IDAIDCUK8BAPAXVG0AAErCtxru+/fvL8Zf9enTJy0tbcyYMSkpKdOnT7dv79u379y5cy0Wi+cCAgCAYqJeAwDgL6jaAAAUm2813GNiYjZs2FDkYWFhYQW2DB06tEuXLomJibt27crIyIiOju7evXurVq1KJyYAACgO6jUAAP6Cqg0AQPFYrFar2RkAAAAAAAAAAPB7PnfTVAAAAAAAAAAA/BENdwAAAAAAAAAAPICGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8IPi5554zO4NP27Nnz7Zt2w4cOBAUFFS1alWz4/iEvLy8gwcPbtu27Y8//oiIiKhYsaLZiXzOp59+un379piYmNDQULOzmOzChQvbt2/fuXNnVlZWlSpVQkJCzE5kvtzc3JSUlC1btpw5cyYyMrJcuXJmJzLBiRMnVq1aFRoaWqNGDddHBtQivHv37vXr19epU6dChQouDmMRdiqgpoqbmCpFol7bUa8dUa9FvS4E9brkAmrCuIkJUySqth1V2xFVW1TtQphWta0oxPr165s2bZr/uWrduvX27dvNzmWmzMzM5557rsC0a9iw4cqVK82O5kM+/vhj45k5fPiw2VnMlJaWNmrUqEqVKtmnSqVKlV555ZXs7Gyzo5kmPT3d8RXUsWPH3bt3mx3N215++WVJ06ZNc3FMAC7CHTt2lPTNN98UdgCLsFMBOFWKxFRxB/XaQL12RL22o147Rb0uiQCcMEViwriDqm2gajuiattRtZ0yq2rTcHcuOTk5KMh2vZ2IiIjy5csb43Llym3atMnsdOa4cOGC/WVpsVjq169frVo1+1wcOnSo2QF9wu+//25/WgL5rcCpU6eaNGliny21a9e2v6B69+5tdjpzpKent2jRwv6c1K1b1/75akhIyBdffGF2QO/JzMxs1KiR67cCAbgI79u3z/hySmFvBViEnQrAqVIkpoo7qNcG6rUj6rUd9dop6nVJBOCEKRITxh1UbQNV2xFV246q7ZSJVZuGuxOpqanh4eGSatSosX79+uzs7PT09I8++sh43dauXTsjI8PsjCZ48sknjQn30EMPnTlzxti4c+fOW265xdi+aNEicxOaLjc39/bbb7e/MgP5rUDnzp2N1eq11147duyY1Wo9ceJEXFyc8czMmzfP7IAmGDFihPGfP2HChLNnz1qt1tzc3NWrV9euXVtSrVq1Tpw4YXZGbzh+/Hj//v2Np6KwtwIBuAjv3r27efPmxtNS2FsBFmFHAThV3MFUKRL12o567Yh6baBeO0W9LokAnDDuYMIUiaptR9V2RNU2ULWdMrdq03B34oknnpAUEhJS4BOepKQk4+l+++23zcpmlj/++CMsLExS586dC+xKS0uLiYmRVKdOHVOy+Y6XXnrJqH8B/lZg/fr1Tl8pFy9evOmmmyTdfPPNZmUzS05OjvG7v/79+xfYtW7dOuPpWrx4sSnZvOOnn36aNGlSly5d7J+iu3grEDiL8Jo1ax599NG2bdva143C3gqwCDsVOFPFfUwVd1CvDdRrR9Rr6rVT1GuPCJwJ4z4mjDuo2gaqtiOqNlXbKR+p2jTcnbjqqqsk9ejRw3GX8XTfdttt3k9lrvj4eGOOOv2ZyRtvvGHsPXLkiPez+Yivv/46JCQkNDT00UcfDfC3Ar169ZLUoEEDx11Llixp1qxZ8+bNjQ+fA8ePP/5ozIrExMQCu/Ly8iIiIiQ98sgjpmTzjnfffVcOCnsrEDiLcN++fR2fFqdvBViEnQqcqeI+pkqRqNd21GtH1GvqtVPUa48InAnjPiZMkajadlRtR1RtqrZTPlK1uZdxQSkpKQcPHpTUpUsXx71du3adOXPm5s2bMzIyXN/ftozZu3evJIvFcsMNNzjubdasmTH4+eefa9Wq5dVkvuHcuXNxcXE5OTmvvvqq8dulgJWdnb127VpJ9957r+PeuLg4+0/eAkpGRoYxyM3NLbDLWIslZWZmejuWF7Vv337BggX2fw4ZMqSwIwNqER4xYkSnTp2M8d69e1999dXCjmQRdhRQU8V9TBXXqNd21GunqNfUa6eo1yUXUBPGfUwY16jadlRtp6jaVG2nfKRq03AvaPfu3cbA6dPdvn37mTNn5uTkpKSk2K8EFAhuvPHGcePGRUZGFrhvr+HQoUPGoG7dut7N5StGjBhx4MCB9u3bP/744wkJCWbHMdOuXbvOnz8v6Y477jA7iw9p0qRJREREWlpaUlKS/dpqhjVr1hjPWOvWrU1K5w2NGjUybuFicPFWIKAW4Xbt2rVr184Yf/nlly7eCrAIOwqoqeI+popr1Gs76rVT1GvqtVPU65ILqAnjPiaMa1RtO6q2U1RtqrZTPlK1abgXdODAAWNQv359x732jfv37y8Ds9B9PXv27Nmzp9Ndubm5s2bNkhQdHd2gQQPv5vIJixYtSkhIqFatWnx8vP2OzwFrz549xqBWrVrHjx+fM2fOhg0bTp48ec0111x//fWDBg0KzPeL4eHhU6ZMefjhh1esWPHggw9OmjSpfv3658+fX758+WOPPSapdevWgfmtBEcswk6xCDtiqjjFVHGBep0f9dop6rX7WISdYhEuDBPGKSaMC1Tt/KjaTlG13cci7FSpLsI03As6d+6cMahSpYrjXvvGs2fPei+TD7t48eKwYcN27NghadKkScHBwWYn8raUlJTRo0dLmjNnTp06dcyOY74jR44Yg717995///0nTpww/rlz585ly5ZNnTp1xowZDzzwgHkBTTN69Ohy5co9+uijc+bMmTNnToUKFey/gOvdu/ecOXPy3+ckkLEIX5ZAXoSZKpclkKeKgXpdAPW6MNRrN7EIXxYWYSbMZWHCULULoGoXhqrtJhbhy+KRRZiGe0Hp6emSQkNDnX6Iar+Y0YULF7wayydt3bp1xIgRO3fulDRkyJBhw4aZncjbLl68GBcXl5aWNmzYsMI+Fgs0aWlpkiwWy4ABA9LS0jp37nzrrbdWrVr1xx9//OCDD86dOzds2LCoqKju3bubndQEYWFhFSpUMBYZ+/sASdWrVzcuMAexCF+OAF+EmSruC/CpIuq1M9RrF6jX7mARdh+LsJgwl4MJQ9V2RNV2gartDhZh93lqEabhXlBISIic3XLBcPHiRWNgsVi8l8n3/Pbbb0899dTSpUutVmtwcPDjjz8+efLkAHxOnn766W+++aZRo0YzZ840O4uvMO5JYrVaL1y4sHz58h49eth3jRs3rl27docPHx41alSHDh3Cw8PNi2mC0aNHG79Iuuuuu+67776GDRseO3Zs06ZNM2fOfP/99zds2PDll18G5t2QCmARdgeLsJgq7mGqGKjXjqjXhaFeu4lF2B0swnZMGHcwYQxUbUdU7cJQtd3EIuwOzy7CgX4lLEeVKlWSlJeXZ59w+dlvcBxoq5hdTk7OK6+80qRJk4SEBKvV2rp1682bN7/yyisB+DO39evXT5s2LTQ0dMmSJU5vsBCY7B+Njhw5Mv/7AEkNGjSYOnWqpD/++OOrr74yIZx5EhMTjfcBkydPXrNmTb9+/W666aa77rpr8uTJO3fujIiI+OWXX+6//36zY/oEFmHXWITtmCquMVXsqNdOUa+dol67j0XYNRbhApgwrjFh7KjaTlG1naJqu49F2LXSWIT5hntBUVFRxiA1NdXxvhNHjx41BjVq1PBqLN+Qmpras2fPzZs3S2rYsOHkyZNjY2PNDmWaGTNmWK3W5s2br1u3bt26dfbt3333nTF45513IiMjJY0bNy40NNSclF4XERFhDJz+nK1jx47G4IcffrCPA4HxPuDaa6998sknC+y69tprJ06c+NRTT3322Wf79++PiYkxI6APYRF2gUU4P6aKC0yV/KjXTlGvnaJeu49F2AUWYUdMGBeYMPlRtZ2iajtF1XYfi7ALpbQI03AvqFGjRsbgwIEDjrPw119/NQaNGzf2aiwfcO7cuU6dOn333XehoaFPPfXUpEmTwsLCzA5lpry8PEk7duwwbqTg6OWXXzYGo0ePDpy3AvZKVq9ePce9VatWjYiISEtLs9/1JUDs3btX0i233OL0imlt2rQxBnv27OGtAItwYViEC2CqFIapUgD12inqtVPUa/exCBeGRdgpJkxhmDAFULWdomo7RdV2H4twYUpvEabhXlCLFi1CQkJycnK+/vrr2267rcDerVu3SqpevXr9+vXNSGem/v37f/fdd5GRkatWrWrXrp3ZcczXokUL++9u8ktNTbWv++XKlZMUUL8EbN68uTHYt2+ffU23O3nypHG/lyZNmng7mamqVq16/Pjx7Oxsp3vt2ytXruzFUD6KRbgwLMIFMFUKw1QpgHrtFPXaKeq1+1iEC8Mi7BQTpjBMmAKo2k5RtZ2iaruPRbgwpbgIW+Hg9ttvl3TTTTcV2J6Tk1O7dm1J9913nynBTGT/AVdSUpLZWXxdfHy88VwdPnzY7CzmuPbaayUNGjTIcdeCBQuMJ+frr7/2ei4z9evXT1L9+vWzsrIc906aNElSUFBQWlqa97OZwpgG06ZNc7o3MBfhDRs2GE/LN99847iXRdipwJwqrjFV3Ee9pl47ol4XQL12RL0utsCcMK4xYdxH1aZqO6JqF0DVdmRi1eamqU6MGDFC0vbt2xMTE/Nvf/31141f6BgHBJR3331XUnR0dCBfTg5uGjp0qKRFixZ99NFH+benpKRMmDBBUsuWLVu2bGlOOJMY19o7dOjQ+PHjjZ9J2m3ZsmX69OmS2rdvH7C3KCmARdgRi7BTTBVHTBW4j3rtiHp9WViEHbEIu8CEccSEgfuo2o6o2peFRdhR6S7CHm/hlwF5eXlt27aVVK5cuYkTJ27evPnzzz8fPXq0cVmoAQMGmB3QBMbCHRoaWt2lffv2mZ3UfHz2np6ebnz8Lql///4LFixITk5+4oknjPtih4aGfv/992ZnNEGfPn2M56Rly5ZvvPHGv/71r/nz5w8ePNhYWKpWrfrbb7+ZndF7jKeisM/eA3MRdv3ZO4uwU4E5VVxjqriPek29dop6nR/12hH1utgCc8K4xoRxH1Wbqu0UVTs/qrYjE6s2DXfnUlNTb7jhBsfPJzp27Jienm52OhNUq1bN9Sc3hj179pid1Hy8FbBarSkpKQ0bNnScIdHR0WvXrjU7nTnOnDkzaNAgi8Xi+LQ0a9bsq6++MjugV7l+K2ANyEXY9VsBFuHCBOBUcY2p4j7qtZV67Qz1Oj/jP5x6nR/1uiQCcMK4xoRxH1XbStV2hqqdn/EfTtXOz8SqzU1TnatZs+bXX389d+7cjz766MCBA8HBwY0bNx4wYED//v2dvpLLttzc3DFjxlj/9+p1oUaNGl7I4+NatGjx7LPPSoqMjDQ7i2liYmK+//77uXPnrlix4tdffw0NDW3RokWrVq1GjhwZsL/nqly58sKFC0eOHBkfH79nz56UlJSoqKgmTZrcdtttgwcPDgkJrNXYeI3YbxzvKAAX4auuusp4Wowr6OXHIuxCAE4VF5gql4V6Leq1M9Tr/KjXjqjXJRGAE8YFJsxloWqLqu0MVTs/qrYjE6u2xZ1TAwAAAAAAAAAA17hpKgAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8gIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAPoOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLgDAAAAAAAAAOABNNwBAAAAAAAAAPAAGu4AAAAAAAAAAHgADXcAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwANouAMAAAAAAAAA4AE03AEAAAAAAAAA8AAa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8gIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAP+P+2dhQ+cmj4/QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2BT1fvH8U93gYLsqWVPUUAQWcqWIXtvQb5sQfEnIiLIF1CWLBE3yKgge4nIRvYesguUvUtpC22hK78/km+pXaRt2pu279dfJycnuU+SNs+9T84918FkMgkAAAAAAAAAACSPo9EBAAAAAAAAAACQHlBwBwAAAAAAAADABii4AwAAAAAAAABgAxTcAQAAAAAAAACwAQruAAAAAAAAAADYAAV3AAAAAAAAAABsgII7AAAAAAAAAAA2QMEdAAAAAAAAAAAboOAOAAAAAAAAAIANUHAHAAAAAAAAAMAGKLgDAAAAAAAAAGADFNwBAAAAAAAAALABCu4AAAAAAAAAANgABXcAAAAAAAAAAGyAgjsAAAAAAAAAADZAwR0AAAAAAAAAABug4A4AAAAAAAAAgA1QcAcAAAAAAAAAwAYouAMAAAAAAAAAYAMU3AEAAAAAAAAAsAEK7gAAAAAAAAAA2AAFdwAAAAAAAAAAbICCOwAAAAAAAAAANkDBHQAAAAAAAAAAG6DgDgAAAAAAAACADVBwBwAAAAAAAADABii4AwAAAAAAAABgAxTcAQAAAAAAAACwAQruAAAAAAAAAADYAAV3AAAAAAAAAABsgII7AAAAAAAAAAA2QMEdAAAAAAAAAAAbcDY6ACBtCAoKmjRp0tOnT2/duhUeHj5x4sTChQsbHRT+5cqVKzNmzHB1dfX29i5TpsyoUaOyZMlidFAAgFRFvrZ/5GsAQAJI5UYhQQM25GAymYyOAUgDBg0aNHLkyIIFC0r6v//7v5UrV544cSJbtmxGxwWL4ODg/v37//rrr05OTqGhoXXq1ClQoMCKFSuMjgsAkKrI13aOfA0ASBip3BAkaMC2WFIGeD5/f/8///zzwoUL5psffPDBlStXVq9ebWxUiG7z5s2XLl26e/euJFdX1/79+69cufLatWtGxwUASD3ka/tHvgYAJIBUbhQSNGBbFNyB5zOZTE+fPvXx8THfzJ07t6Tr168bGhT+JWvWrOfOnfP39zff5DMCgAyIfG3/yNcAgASQyo1CggZsizXcgefLkSPHrVu3om6eOnVKUsWKFY2LCDHVq1fvwYMHUTdPnTrl6upatmxZA0MCAKQyu83XoaGhrq6uRkdhF8jXAIAE2G0qT/dI0IBtsYY7kGj9+vU7evTowYMHHRwcDAng/v37Fy5cqFGjRnwDAgMDly1btn//fj8/v1dffbVWrVr169e3/vmrVatWuXLlZs2alShRIlu2bDdu3Lh06dLWrVs9PT1HjhwZ36NOnjzp4eFRtGjRxL2YFBAREfHqq682btx46tSpRsUQHh6+adOmpk2bJupRgwYN8vX1bdmyZYUKFXLnzu3r63v58uX9+/d7e3svXbo0zodcvXp1wYIFx48fd3Z2rlKlyqBBgzJnzmyLVwAAaZ7h+dps48aNH3744dmzZ2P0J+E7P4ZE5evAwMCFCxceOnQoIiIib9683bp1q1Spkm1eYVIZla8XLFgwb9681q1b16xZM3/+/CEhIZcvXz558uSqVavWrFmTI0cO65/KmiwcERGxZs2a/fv3X7hwoUSJEvXr12/cuLFNXxAApFuGp/LnHno/13MPk4ODg+fNm3f06NEHDx4UK1asWbNmdevWTfLmbMLYA+oDBw789ttvgYGBERERderU6dy5c9KOcBP+7JK/GwY8hwlAYhw6dKhAgQJXrlwxZOthYWErVqwoWLBgkyZN4htz5MiRWrVqzZ49+/jx4ytXrmzZsqWk1q1b37p1y8qtZM+ePfZ3RcOGDR8/fhzneH9//ylTpri5uU2aNCkpr8rWpk6d+uabbz59+tSoAA4cOFC9evVMmTIl9oGtWrWK/c4XLlzY29s79uDIyMixY8d6enrOmzfv/v37QUFBq1evfvPNN0NCQmzxIgAgbTM2X0cJDAz09PQsUqRI7LsS9Z0fJ+vz9bFjxzw9PceNGxccHGwymfbt21eiRImRI0cm89Ulk1H5esaMGbHfN3d39zVr1lj/JFZm4evXr7/22ms1a9bct29faGjo0aNHS5cu3b59+9DQUFu/LABIb+z/0Dth1hwm7969u2XLlmvXrg0ICHj69Onhw4dbtGjRqFGjoKCgpAZuA0Yl6PDw8KFDh5YrV+748eMmk+nRo0effPJJmTJlTp8+najnseazS/5uGJAwCu5AIgQHB9euXfvIkSOpvN2IiIiePXs2atSoatWqb731lqTGjRvHOfL+/fuvvPLKtWvXonoiIyN79eolqWrVquHh4dZsLkeOHM7OlvWmHBwcypQpM3/+/IiIiBjDzpw5061bt7feeqtWrVrlypWTNHHixCS/Rls5f/58rVq1/Pz8Un/TX331VcuWLatUqdK8eXPzoXtin6FVq1bR1xzIly/f6NGjAwMDY480f6z58uW7evVqVOd3331XvHjxH3/8MVkvAwDSPqPydWwDBgyQFF/B3crv/PhYma8fPnyYP3/+Dz74IHrn+fPnnZycfvrppyS8KJswMF/PmDEj+jvv4eHRrVu3y5cvW/8MVmbhJ0+elCtXrmDBgg8fPozqPHTokJOT04cffmiLlwIA6Zb9H3rHx/rD5Nu3b9euXTsgICBGf6dOndq2bZvEF5BsBiboiRMnenh4RK9mmEym7t27lyxZMr7Jf9El6rNL/m4YkDAK7kAi9O/f/+DBg+a2v79/am56165dly5dMplMv//+ewKZo0+fPosXL47Ref/+fXd3d0lWzkAvUqRIUFDQiRMnDh069OjRo/iGPXz4cO/evffu3TOZTP3797eHgntAQED79u3v379vMplCQ0PN8/hSzfHjx//555/w8PA7d+4kueB++PDhc+fO7du37+7duwmM/O233yStXLkyemf+/PklDRs2LNGhA0D6YmC+jm7Hjh3du3dPoOBu5Xd+fKzM1x9++KGk69evx+hv0qRJlixZfH19k7DpZDI2X8+YMWP69OlXr17dt2+fj49PZGRkYp/Byiw8fPhwSUOHDo3x8FatWjk5OZ0/fz5p8QNARmD/h97xsf4wecSIEWPGjIndf+7cOUdHR0NK3gYm6Fu3bmXKlOk///lPjP4DBw5I+vTTT615Eus/u+TvhgEJc4x9DgWAOH3zzTcdOnR4/fXXJYWHhy9evDg1t16rVq1ixYo9d9j69etXrFhx/Pjx6J25c+d+++23Ja1du9bKzWXOnPnVV1+tUqWKh4dHfGOyZ89evXr1PHnyWPmcKc1kMn3++eczZswwX1F93759Fy5cSM0AKlSo8Morrzg5OSXnSZydnUuXLl2tWrW8efPGNyYkJGTEiBElS5aMcR7c2LFjGzdu3K1bt+QEAABpnbH5OkpISMiUKVNGjx6dwBhrvvMTZk2+Xrp0qaen54svvhijv379+kFBQYsWLUrappPM8HwtycHBwdPTs1q1akWLFk3susBWZuGgoCDz2jWxr6NTuXLliIiI+fPnJ+MVAEB6liYOveNj/WGy+aJrsftLlCgh6dy5c0mOIWmMTdDr1q0LCQmJveR61apVPTw8fv311/Dw8Oc+SaI+u+TvhgEJoOAOWGXTpk1nz54NDQ3duHHjhg0bpk2bVqRIEaODiikwMPDWrVvLly//9NNPY9xVsmRJScePH4+MjDQitNTwxRdflChR4uTJkxs3bly/fv2cOXPMeyrpz7Rp065du9a0adMYNYI+ffps2LDh1VdfNSowADCc/eTr0aNHjxgxIlOmTIZsPcqJEydu3bplnnwdQ4ECBST99ddfqRxSWs/XVmbhY8eOPX36VFLOnDljPEPhwoUlrV+/PlXiBYA0xn5SeUpzcHD45Zdfdu7cGaP/xIkTTk5OZcuWTeV4jE3QGzZskBTfHsvdu3ePHTuWasEAyedsdABAGvDgwYNOnTo9fPjwhx9+iOq8dOmSgSHFKVu2bBUqVDhx4kTskmtERISkRFXbw8PDz5075+PjU7FiRU9PT1sGmgK2bt06fvx4k8kU1fPSSy8l7Wrm9uDKlSunTp0qXLhw+fLlY8+8W7BggaSqVatK8vHxOXLkSJEiRSpWrOji4mJArABgN+wnXx84cCAiIqJmzZo3b9587uCEv/OfK+F8vXXrVknmqWox5MuXT9KRI0cSu8XksKt87evre+LECVdX16pVq7q5uVn5KCuz8MOHD80N87J+0WXNmlXSmTNnnj59av12ASAjsJ9UngoaNGiwbdu2+vXrf/zxx6NHjzb/SB8RETFixIhhw4bFeWn0lGN4gk54j+XChQtHjhwxn/RgW8ncDQPiwwx3ZEQRERHTpk3r2LFj3759E55e9PXXX4eGhubKlSv2AmrJOcss5Rw4cODy5cuTJ0+O0X/27FlJ5cqVc3S06r9+48aNvXr12r17t4ODw8SJE19++eV//vnH9uHGz8/P75NPPmnXrt2HH3546tSp+IYFBwdHna8dYw3Wa9eupWK8NnP+/PkePXosW7bMZDKtX7++SJEiS5YsiT7g1q1b3t7ekvLmzTt16tSvv/7a0dHx4MGDL7/8svmtAIB0I43m69DQ0HHjxo0bN+65I5/7nf9cz83X5suKxDnR3tzp6+ubqC3GkEbzdUBAwEcfffT111/7+/tfvHjxtddeGz58uHl2QsKsz8JFixY1N2KfAm8uZ4SFhV29etU2rwcA7FUaTeWpY8iQIWXKlAkPD584ceIrr7yydevWx48fd+3atXjx4tbsRSQsbSXo4ODgR48eKSX3WGJL/m4YkABmuCMj+vzzz6tWrdqvX786der8/PPPn3322Zdffhl72MSJE7Nlyxb90tX2z83NLfYJd/fu3du2bZukgQMHWvMkAQEBx44dW7hwoflm8+bNBw8eXL169fXr19epU8eW4cavR48eM2fOjIyMrFKlynfffbd69eqmTZvGGBMeHt6rV6+PP/44dUJKHYsWLVqyZIl5vlvz5s1LlizZrl27q1evfvLJJ+YBV65cMTdOnz6dI0eO7777znyzcePGFStWPHLkSNQHBwBpXRrN12PHjh06dGiWLFmeO/K53/kJsyZfBwQESIrz+iLmzoiIiKCgIGuijVMazddeXl5bt2596aWXzDfr1atXvnz506dPr1u3LuHZbdZn4dKlS7u4uISFhQUFBcV4kqjzHsyfDgCkY2k0laeOLFmy7Nixo2vXrlu3br106VKDBg3y5s07c+bMTp06Jf/J01aCjkqICeyx2DxpJnM3DEgYBXdkRB07dqxYsaKkmTNn1qxZc8KECe+9917x4sWjj5k/f35AQEDsxdCfa8uWLQMGDEjso1xdXbdv355CF+v4+uuvw8LCqlev3qtXL2vGz5kzp3Xr1tF7Ro0a9e233w4cOPCff/5xdk7x7w2TyfTll1+aP5Hhw4ePHDly0KBBPj4+MY6BBw4c2L179yScVubr61unTh3zyqqJ8u233zZq1Cixj7LewIEDa9SoEf3s8rZt25YtW3b06NHt2rUzz+yI+mF/1apVO3bsiBpZvHjxDh06zJ07t2PHjs2aNUu5IAEg1aTFfH38+HE/P7/Y18mMzZrv/IRZk68DAwMlxVlEjjqmDQgISFrBPY3m6/r16zdt2jSq2i6pcOHC3bt3//777xcvXtylS5eEQzI3npuFXVxc2rVrt3jx4mPHjsWYr/D333+bG+ZPBwDSsbSYylNTvnz55s2bV6dOndu3bwcHB9+7d2/o0KHOzs7t2rVLztOmuQQdlRAT2GOxbcE9+bthQMIouCMjMqd8STVq1Hj99dcPHTo0d+7c6L+0b9iwYdu2bfPmzUvCk9eoUeOXX35J7KNcXV2tuY55EuzatWvq1KllypRZs2aNlUuSxTh6l5Q3b95y5cqdOXNm8eLF3bt3T4Ew/8XBwaFChQrmdr9+/caPH3/lypUtW7Y0bNgwaszIkSMrV66ctMpyrly5fvnllyTsH1SpUiUJm7Ne9BcYpW7dumfPnv3yyy/nzJkjKWqJ2MaNG8cY+eabb86dO3fEiBEU3AGkD2kuX4eHh48aNcrLy8uap7LmOz9h1uRr82zBOC/iErWCSpIvAZJG83X58uVjd9atW/f7778fNWpUwgX3RGXhKVOmrFu3bu3atUOHDo0advPmzfv375vbST6xAADSijSXylPZ0qVLx40bN2/evMKFCw8aNGjdunV37txp3779qFGjxo4dm+SnTXMJOurkhgT2WGx7xbLk74YBCaPgjoxu4MCBvXr1Wrhw4fjx48316IMHD86ePXvlypVJu2JG5syZa9eubeswkygwMLBHjx5FixbdsmVLMvcqChUqdObMmYMHD6ZCwT26XLlydejQYf78+QsWLIhKirNnz5bUr1+/pD2ng4NDtWrVbBZiCitUqJCkgwcPmm++8MIL5kbJkiVjjCxYsKCkM2fOBAcHp90LxgJAnNJEvp40aVK/fv2ivqiTIMZ3ftKeIXq+Nl9yLfYy4tE7kxNwlLSer83vvI+Pj6+vb5xXbDNLVBYuVKjQunXrOnfu/NVXX3322WeSbty48cEHHwwYMMA8yd1+Kj4AkArSRCpPTQsXLhw+fPi+ffsKFy4sae3atStXrhw8ePCtW7fGjRv3+uuvN2/ePPlbSRMJOuoKsQnssdhkdyVhyd8NA6Jw0VRkdK1atXJ1db1+/fqhQ4ckeXt7Dx8+3MvLKx2sHxcZGdmzZ88cOXLs3r3bnDmssWbNmo0bN0a/OrmZeRLW6dOnbRylFTp27Chp3bp1oaGhklasWHHw4MHx48enfiQp6siRI15eXk+ePInRb37nz58/b97PiDr5MWfOnDFGmk+Ii4yMNORjAoAUZf/5+syZMz4+PlbOFLPyOz8BVuZr8xFsnHPQzFnVzc3NVu9hmsjXN27c+OWXX+7evRujP2qy+ZkzZxJ4eGKzcJ06dY4fPx4cHNytW7c2bdp88cUXs2bNMp8anz179qgLqwJARmD/qTw13b59e9CgQdOnTzdX283atGlz8uTJBg0aSJo2bZqttmX/CTpbtmzmH10S2GPJli2brTaX/N0w4LmY4Y6MLnv27I0aNVq3bt2qVas8PT3fe++9xYsXR/2+mqYNGTIkICDg77//zpo1q5UP2blzZ6tWrSRt3rzZnOajmJNcKvyqHFuDBg1y5szp5+e3fft2d3f3uXPnrl69OmmTIOzW06dP33zzzZCQkHPnzsXY9TG/81myZDGvxlu8ePGsWbM+evQo9r5I1Pl3nKIOIP2x/3z9xRdfRERE9OnTJ3qn+YKZvr6+5v6KFSsOGjTI+u/8+Fifr82H8ffu3Yv9JHfu3JFUtmzZxL7S+KSJfN2jR4/t27fXrFlz9+7d0fvN75uet6uThCycL1++GJ+yj4+PpHr16jk6MvkJQAZi/6k8NW3ZssVkMsVeqz1nzpwbNmyoUqXKsWPHbLUt+0/QTk5OL7744vXr11NhjyX5u2GANfgbAtShQ4d169YtW7Zs7969s2fPjn4RrSTYu3fvyJEjE/soNzc3Ly+vBE5hTqwJEybcvHlzw4YN0ecLfPPNN4MGDYrzwt9mUZPdYl9D5sGDB5IqV65sqwit5+Li0rp16zlz5nz99ddPnz5dt25dMpdve/jwYefOnZOw5NzYsWPffPPN5Gw6PiaTKSwsTNKLL74Y464Y77yDg8Mbb7yxZcuWq1evxhhpfkVubm6lSpVKiSABwFh2nq9Hjx7t5+cXo/PgwYOLFy/28PDo1q2bJPMDrf/Oj4/1+bpGjRr635FqDLdv35bUpEmThLdlvTSRr81vXew/HvP75ubm9vLLLyfwzInKwhEREYcOHXrllVdilOD37dsnybzIDABkKHaeylPTuXPn8ufPH+exubOzc9euXadMmWKrbaWJBF2jRo0lS5bEt8fi4uJSr169RAcal+TvhgHWoOAO6J133nFycrp06dKXX34ZdWmRJCtZsmTPnj0T+yhXV1cb/rY/f/78o0ePLl26NEYe/eOPP4YMGZLAAytVqlS9evW1a9fG2P8IDAw8evSog4PD22+/basgE6Vly5Zz5sz5+++/fXx8kj/LPlu2bD179kzC/kHp0qWTuen4uLu7V61a9Zdffon9u/327dv174uzde3adcuWLSdOnIgx8ty5c5Jq1qzJD/IA0iU7z9evvPJK7E7z2cru7u7RF5lN1Hd+nKzP12XKlKlUqdI///zj7+8fI/JTp05Zs61Esf98/dprrw0YMKBr164x+s3vfIMGDZ6bQ63PwpMmTRo5cmT9+vW3bNkSNezBgwcbNmxo27Ytx/MAMiA7T+WpqXLlypMmTXr8+LGHh0fse588eWL+ydxW7D9Bd+7cecmSJWfPno3Rf+3atUePHtWtW9f6E/cTlvzdMMAqJgAmk/mKHz/88IPRgTzf77//Lqlx48bxDfjrr7+6d+8eFhYWo//8+fONGjWKMbJ///6nTp2K3tm7d+8jR47EeOzcuXMlDRo0KL6N9u/fX9LEiRPjGzB9+vT+/fv7+fnFNyBhjx8/Nh++njt3Lr4xERERV65cOXjwYFBQUFTnzZs3k7bF5DD/LO/u7h7fgLNnzw4YMOCPP/6I3jlv3ryZM2fGGHnx4kVHR8eKFSuGhoZGdYaEhJQoUaJcuXKRkZHRBzdr1szZ2fnEiRO2eBEAYI/SUL4227Bhg6QiRYrE6Lf+O9+U7Hy9ePFiSXPnzo3eGRYWlidPnmrVqkVERETvT/f5+vz58506dYrR+eTJk1KlSmXJksXHxyd6f5z52vosPHz4cEl169aNPmzQoEFZsmQ5e/asbV4PAKQ1aSiVW3PoHTtBR5fAYbKfn1/evHnHjh0b+67g4OAKFSps3749eme6T9Dh4eHlypUrXLhwjPQ6Y8YMSevXr4/eGWeCji7hzy5Ru2FA0lBwB0wHDx5s1KiRpObNmxsdy/OZrydetWrVOO89fPiwh4dHgQIFXoymUKFCuXPndnR0/PDDD6NGhoaGmn/Yr1+/fvRnuHPnTs2aNffs2RPVs2vXrkyZMtWrV+/Ro0fxRdW+fXtJn3zySZz3mk+dltS3b9/Evdr/mTNnTpUqVSRNnTo1vjG3bt16//33JV29etXcExYW9tJLLx0+fDhpG00y89XSHBwcou+pRNe0aVNJHh4ewcHBUZ2RkZGtWrX6+eefo/Yw7ty5U6JEiaJFi8beh9u7d2+WLFlGjBgR1bNo0SInJ6dp06bZ+tUAgL1IW/nabNGiRZJy5swZHh4evd/673yb5OuePXsWKlTo9u3bUT3Dhg3LmTNnjLJvBsnXkydPHjhwYFSODg8Pb9WqVZYsWZYuXRpjZJz52mR1Ft69e3e5cuUePHhgvhkZGTl58mQPD49NmzbZ/lUBQFqQtlJ5wofe8SXo6BI+TN6/f7+Hh8fUqVOjz5a7evVq06ZNJ0+eHH1kBknQJ0+ezJIlS/QfIa5evZorV66BAwfGGBlfgo6S8GeXqENvIGkcTCaTbafMA2nLpUuXli9f3qNHj0KFCrm5ud2/fz/OU7oMN2rUqGvXrj148GDHjh3mK7BVq1atePHi7u7un332WbFixSSFhIQUK1YszlXPzH788ce+fftG3axdu/bOnTs/+eSTSZMmRR/m7+8/YMCAgICA4sWL37x58+TJk++///6QIUNiXFYlMDDwo48+evr06fXr13fu3GkymVxdXevWrZsvX77MmTN///33USPv3btXqlSpwMDAihUrHj16NLGvfd26dSaTKTg4uHPnzm+++ebOnTvjG7lr167OnTvfuHHDfHPt2rX9+vW7ceNGAsvW25CXl9e2bdsePXq0Z88e88K4JUqUqFKlSubMmdu1axd9kdzRo0ePGzeuatWqBw4ciP4MkZGR//3vf//++++SJUuGh4fv2bOnfv36U6ZMifNv8vDhwx988EF4eHjlypW9vb39/Py++eabWrVqpfTLBABDpJV8HaVv374PHz7ctm2beWH3SpUqvfzyy40aNTIv5q7EfOcnM1+btzVt2rT58+e3a9cuT548f/75Z0RExPfff1+kSJHowzJIvpa0cuXKadOmeXp65siRY/fu3QULFvz222+LFy8eY1h8+VpWZ+H58+fPnDmzcuXKjo6Ou3fvLl68+NSpU0uWLJmCrw0A7FVaSeXWHHqbxZmgrT9MlnTlypWxY8fu3bu3YsWKuXPn9vHxCQoKmjhxYvXq1aMPyzgJ2tvbe9CgQVmzZn377bdv3ry5atWqvn37xl4XN74Ebf1nl6hDbyAJKLgjQ/P19Z0+ffr48eMdHByqVq166NCh33//vWPHjkbHFYejR4+aTCZnZ2dHR0cHBwfzL2YRERFPnz59+eWXzcuZhYaGRv30Hafy5cvnypUr6mZkZKSPj0+JEiXiHBweHn769OmCBQvmyZMnzgFhYWGHDx92c3NzdnZ2cHCIiio8PDw0NNR8qmCUoKAgPz+/L7/88ocffkjUC9+/f//p06d79+4dEBCQJ0+eiIiIGzduFChQIM7BkyZNOnr06JIlS8w3W7ZsWbt27Y8++ihRW0yyixcv+vv7u7i4RP+MIiMjw8LCzOccRB986dKlIkWKxLfj4u3t7ezsHH2HID6PHz/29vYuWbKkrZa0AwA7lIbydZTdu3c7Ozu7uLi4uLiYc4F5FZfYxdbnfucnM19HH3n27Nng4OBixYrFNzgj5Osod+7cuXfvXrly5RJYtz3hfG1NFg4LC7ty5Yq/v3/x4sVz5sxpg7gBIA1KQ6ncmkNvszgTdKIOk83Ma7kEBgaWLVvW3d09zqgyVIK+e/fu5cuXs2bNWqZMmfhScJwJ2vrPLor1h95A4qT0FHrAbgUHBw8bNuzJkyfmmxMmTJDUtm1bY6NK36KvaWMNb2/v6CfTmU8/nDVrVnzjmzdvPmPGDHN7165d5cuXDwkJSVqoAAA7Qb5OfeRrAIANkcpthQQNpBWORhb7AeNERET897//HammDMMAACAASURBVDFihJubm7mna9eujo6O69evN5/6DZu7fPlyos7Punfv3rx58z7++OOonu7du0tauHBhfA/Zu3ev+WLugYGBgwcPXrFiRXwTBAAAaQL5OvWRrwEANkQqtxUSNJCGUHBHBvXVV1/1798/R44cUT0vvfRSvXr1njx5MnfuXAMDS8dmzZo1YMAAKwcHBQVNmTLliy++iL4QbevWrbNly3bw4MHDhw/Hfsi5c+eCg4MrVqz44MGDnj17fv/996VKlbJN6AAAg5CvUx/5GgBgQ6RyWyFBA2kIBXdkRN9+++0777wT40JhkoYOHSrp66+/DggIkDRnzpwzZ86kfnjp0ubNm3PkyFGwYEFrBkdERIwdO3bkyJGurq7R+zNnztyvXz9Jo0aNMvcMGzbM9L8LUezZs6dKlSqbN28eO3bsjBkz4lwdDwCQhpCvUx/5GgBgQ6RyWyFBA2mL05gxY4yOAUhVy5cvL1CgwJtvvhn7LvM1r/7666+9e/devHjR29v7vffeS/0I06Vdu3YNHjw4+q/rCRg/fnzfvn3z5csX+6633nrr8uXLq1atunfv3ooVKypWrFi5cmXzXYcOHXJ2dn799df79Onzwgsv2DJ6AECqI18bgnwNALAVUrkNkaCBtMUh6rcsIIMIDAzMli1bAgOCg4MvXLjwwgsvxP4dHqnjuZ+Rn5+fj49P0aJFc+XKlWpRAQBSE/na/pGvAQAJIJUbhQQNGM6YgvvkyZNv3bo1Y8aMBMY8efJk9+7d3t7ePj4++fPnL1++fLVq1bJnzx7f+ODg4DVr1pw+fTo4ONjT07NZs2YlSpRIgdgBAMhAbt26NW7cuDx58owdOzbOAZGRkVu3bt2/f/+DBw/y5s1bp04d86WW4kO+BgAgJXCUDQCAnTCg4P7gwYMCBQq4uro+fvw4vjF//vnn4MGDfXx8onfmzJnzq6++6tOnj6NjzKXnV69e3bt37xhXuO7Tp88333zDJZUBAEgak8nUsGHDrVu3Fi9e/OLFi7EHnDlzplOnTidPnozeWbNmzUWLFnl6esYeT74GACAlcJQNAID9cE79TU6ZMiUsLCzGpRuiW7FiRbt27SS5uLjUqFGjZMmSV69e3bt3r5+fX//+/f/555/Zs2dHH79x48Z27dpFREQ4OjpWqVIlf/78O3bsCAwM/PnnnwMCApYsWZLiLwkAgPRo8uTJW7duje/eGzdu1KtX7+7du5JKlChRqVKlvXv33rx5c8+ePQ0bNjxw4ECMGXPkawAAUghH2QAA2BFTKrp169ann35qvshDlixZ4hzz+PHjl156SZKnp+fRo0ej+q9fv16nTh1zzOvXr4/qf/LkSaFChSRlz579zJkz5s7Q0NBmzZqZB69evTpFXxQAAOnSwYMHXVxczMm0ePHisQe0bdvWfO9vv/0W1TlhwgRz54cffhh9MPkaAICUwFE2AAD2JuZZYymke/fupUqVKlSo0MSJE00JLmIzb96869evS5o+fXqlSpWi+l988cVly5blzZtX0g8//BDV/9tvv928edPcKFu2rLnTxcVl8eLFRYsWlTRlypQUeEEAAKRnjx496ty5c1hYWHwXXLp48eLKlSslDRs2rEuXLlH9n376afv27SX9+OOPgYGBUf3kawAAbIujbAAA7FMqFdw3b9584cKFhHcCzP7++29JefPmbdOmTYy7cufO3bhxY0mHDx+O6ly9erWkMmXKNG3aNPpgDw8P8wH/vn377t+/n+xXAABABjJo0KBLly7VrVs3ahp7DGvXrjWZTA4ODkOHDo1xV69evSSFhIRs3rw5qpN8DQCAbXGUDQCAfUqlgvuhQ4cu/88HH3yQwMgrV65IKl++fJz3ms+Du3//fkREhLln165dkurXrx97cIsWLSRFRkbu3r07WdEDAJCRLFq0aOHChTlz5ly4cGHsS6iZ7dy5U1K5cuUKFCgQ46569ep5eHhEjTEjXwMAYFscZQMAYJ9S6aKp5hRuFuMSajFMnjz58ePHL774Ypz3Hjt2TFLRokWdnJwk3b1719/fX/HsOrz++usODg4mk8nb2zs5wQMAkHFcvnx5wIABkn7++Wfz+q1xOn/+vOLJv25ubq+++urevXuj8i/5GgAAm+MoGwAA+5RKBXfrRV2zJbbdu3dv2LBBUtTp7eZ16CTFuevg6uqaJ0+ee/fuXbt2zfaBAgCQ7oSHh3fp0iUwMPA///lP7LPOozOn4PgO3c39UfmXfA0AgIE4ygYAIDXZXcE9Ptu2bWvfvr3JZMqTJ8/HH39s7nz8+LG5YT51PTYPD4979+49evQo4Sc3X9IdAAD7ZM3yrDbxxRdf7N+/v1SpUjNmzEg4nuDgYCWYfyVF5V/yNQAgI0i1fG0rHGUDADKsFM3aqbSGe3LcvXu3b9++DRo08PPzy5Yt219//ZUrVy7zXSEhIeaGm5tbnI8195uLAgAAIAE7duyYOHGii4vL4sWLs2TJksDIJ0+emPdOrMy/5GsAAOwKR9kAAKQcu57hHhoaOnXq1AkTJph/PK9evfqvv/5aunTpqAHu7u5RI+N8hqdPn0pydXVNeEMJ/6Zh/mU+zc1WSFHBwcG+vr6ZM2fOnTu30bHYEV9f3+Dg4Ny5c2fOnNnoWOyI+WxTT09PowOxI/wHxSnj/Ac9eqSmTRV1pbGpU/XRR/EOTrXZYX5+ft26dYuMjJwwYcJrr72W8OCoI3Ar8y/52ih828Qp43zbJAr5Ojb+g+LEf1Cc0tBsbo6y7RbfOXHiOydOZO3Y+A+KU5r+Dzp+XLVqKShIkho21J9/ytlGZexUyNr2W3Dfs2dP7969zddky58//5gxY/r06ePo+K8p+VHz74LMb38sCZ/wDgBAKgsMVOPG2rdPkhwcNG2aPvzQ6JgkSf/5z39u3rxZr169qDPKE+Do6JgpU6aQkBAr8y/5GgAAe8BRNgAgTbh7Vy1aWKrtpUtr6VKbVdtTh50G+8MPP7z//vsRERGZM2f+9NNPP/roozjPbS9UqJC5cevWrdj3hoeH37t3T1LBggVTNFoAAKwREKDGjbV/vyQ5OGj6dH3wgdEx/c+ff/4pKSAgoGnTptH7T58+Len27duNGzeWVKpUqW+++UZSoUKFLl68GGf+lXTz5k1Fy7/kawAADMdRNgAgTQgLU4cOMl/DO1s2rVyp7NmNjimR7LHgvmjRooEDB5pMptq1a8+dO7dYsWLxjSxUqJCHh8fjx4/NP9HHcPHixcjISElly5ZNwXABALCCv78aN9aBA5Lk4KCZMzV4sNExxXLkyJE4+4ODgzdu3CjJ19fX3FO6dOmLFy/GmX8lXbhwQdHyL/kaAABjcZQNAEgrBg3Szp2S5OSkRYtUrpzRASWe3RXcr1y50rNnT5PJ1KFDBy8vLxcXl4TH16hRY9OmTbt27Yp9V1RnjRo1bB8oAABW8/dXo0Y6eFCSHBw0a5YGDTI6pn/7/PPPw8PDY/evXbv22LFjOXLkGDJkiKJNZ6tZs+b69etPnDjx6NGjrFmzRn/IhQsX7ty5Yx4T1Um+BgDAKBxlAwDSimnT9PPPlvaUKXrnHUOjSSq7K7jPnj07LCysUKFCc+bMee5+gKSWLVtu2rTpwIEDZ8+ejfEb+/z58yVVqVLlpZdeSqlwAQB4nocP1aiRDh2SJAcHffutBg40OqZYPv/88zj7b9y4cezYsZw5c44ZMyZ6f8uWLT/77LOwsDAvL68BAwZEv2vevHmSXF1do69OQ74GAMAoHGUDANKEzZs1fLil3aOHhg41NJpkcHz+kNRlzt+1atW6cuXKqXhEP7Xt3XffzZMnj6T+/fs/efIkqv+HH37Ys2ePpGHDhqX6iwAAwOLhQzVs+Kza/t139lhtT4Jy5co1adJE0pgxY65evRrVf+zYsenTp0vq3bt3zpw5o/rJ1wAAGIWjbACA/Tt/Xh06yHzedfXq+uknowNKBvua4f7gwYP79+9LWrJkyZIlS+Ibli9fPvO56pKyZMny7bffduzYcefOna+88kqrVq3y5MmzZcuWLVu2SGrevHn79u1TJ3gAAGK4f1/16+vkSUlyctKcOXr3XaNjsp2ZM2fu27fv3r17lStXbtmyZYUKFfbu3fvHH3+EhIQUKVJk7Nix0QeTrwEAMARH2QAA+xcYqDZt5O8vSQULavlyubkZHVMy2FfB/dKlS0l4VIcOHR49ejRkyJCLFy9+/fXXUf0dO3b85ZdfHBwcbBcgAADWundPDRo8q7bPnasePYyOyaZKliy5YcOGTp06Xb16de7cuVH9FStWXLp0ae7cuWOMJ18DAJD6OMoGANi5iAh16aIzZyQpUyatXq3/XTssrTKg4N6zZ886deo4OTnFvqt48eLbt29/7jO4urrG6Ondu3ezZs2WLFly+vTpkJAQT0/Pli1bvv7667aJGACARLp7V/Xr6/RpSXJy0rx56tbN6JiSZNiwYd26dcuUKVOc91arVu3s2bOrV6/eu3evn59fvnz56tat26RJE2fnuHcwyNcAAKQEjrIBAGnXsGFav16SHBw0d67SQapxMJlMRsdg78y/3vNGRRccHOzr65s5c+bYExgzMl9f3+Dg4Ny5c2fOnNnoWOzItWvXJHl6ehodiB3hPyhO6ek/6O5d1atn+X3eyUnz56tr1yQ+FTnIerxXsfFtE6f09G1jQ+Tr2PgPihP/QXEiByUW71hsfOfEie+cOJG1Y+M/KE5p4j9owYJnK6+OHq3//jfFt5gKOcjuLpoKAECadufOv6rtCxYkvdoOAAAAAEB6tXev+va1tFu10hdfGBqN7djXGu4AAKRp16+rXj1dvChJLi5askStWxsdEwAAAAAAdubWLbVvr6dPJalcOc2fL8f0MjM8vbwOAACMdu2a6ta1VNtdXbV0KdV2AAAAAABiCglRq1a6dUuScuXSunXKls3omGyHGe4AANiAudru4yP9r9resqXRMQEAAAAAYGdMJr33ng4dkiQXFy1frmLFjI7Jpii4AwCQXFevqm5dXb4sSa6uWrZMLVoYHRMAAAAAAPZn3Dj9/rulPWuW6tQxMpiUQMEdAIBkuXJFdevqyhVJcnPT8uVq1szgkAAAAAAAsEOrV+u//7W0hwxRv36GRpMyKLgDAJB0Fy6oXj3duCFJmTJpzRo1bGh0TAAAAAAA2J8TJ9S9uyIjJalBA02danRAKYOLpgIAkETe3qpb11Jtz5xZa9dSbQcAIMO5edPoCAAASAsePFCbNnr8WJKKFtXixXJOp1PB0+nLAgAghZ0/r3r1LBdVz5xZ69apXj2jYwIAAKkrOFhNmxodBAAAdi8sTO3aycdHkrJm1dq1yp3b6JhSDDPcAQBItHPnVLeupdqeJYv++INqOwAAGVG/fvrnH6ODAADA7g0erB07JMnRUYsWqXx5g+NJURTcAQBInLNnVa+ebt+W/ldtr1vX6JgAAECqmzVLXl5GBwEAgN2bNUs//mhpT5igZs0MjSblsaQMAACJcOKEGjSQr68kvfCCNmxQ9epGxwQAAFLd/v36+GOjgwAAwO5t2aKPPrK0u3fXJ58YGk2qYIY7AADWOn78X9X2v/6i2g4AQEZ0967atVNoqCRVrGh0NAAA2KuLF9Wxo8LDJemNN/TTT0YHlCoouAMAYJVjx55V27Nn18aNqlbN6JgAAECqCw9Xx466eVOScubUypVGBwQAgF169EitW8vPT5IKFNCKFXJ3NzqmVMGSMgAAPN/Ro2rY0LKjkD27Nm3S668bHRMAADDC8OH6+29JcnTUb7+paFGjAwIAwP5ERqpLF506JUnu7lq9WoUKGR1TamGGOwAAz3HkyLNqe44c2ryZajsAABnU6tWaPt3SHjtWjRsbGg0AAPbq00/1xx+S5OCgOXNUtarRAaUiCu4AACRk717Vq2eptufJox07VKWK0TEBAAAjnD+vd9+VySRJzZtrxAijAwIAwC4tXKgpUyztESPUpYuh0aQ6Cu4AAMRrzx41aaLAQEnKm1dbt+rVV42OCQAAGOHxY7VpY9krKFFCCxbIkeNpAABiOXJE/fpZ2k2aaOxYQ6MxAmu4AwAQt9271bSpHj2S/ldtL1/e6JgAAIARTCa9957OnJGkTJm0dKmyZzc6JgAA7M/t22rZUiEhklS2rBYvlpOT0TGlOgruAJDhHD+ur76SpIoV9dlnRkdjr3bt0jvvWKrt+fJp61a9/LLRMQEAAINMnqxlyyzt779XpUqGRgMAgF168kStWunmTUnKmVNr1+qFF4yOyQgU3AEgw7lzx3LEaK4mI7adO/XOO3r8WJLy59fWrSpXzuiYAACAQbZv1+efW9pDhujddw2NBgAAu2QyqXdvHTwoSS4uWrZMJUoYHZNBWHMOAIB/2bxZjRtbqu0vvqidO6m2AwCQcd2+ra5dFR4uSdWrP7sEHAAAiG7CBC1aZGnPnKl69QyNxlAU3AEAeGbjxmfrzb30knbsUMmSRscEAAAMEham9u11+7Yk5cunZcvk6mp0TAAA2J8NGzR6tKX93nsaMMDQaIxGwR0AAIs//1SrVpZqe+HC2rFDxYsbHRMAADDOBx9ozx5JcnbWkiUqVMjogAAAsD9nz6pzZ0VESFKtWvr+e6MDMhoFdwAAJGnDBrVtqydPJMnTU9u2qVgxo2MCAADG+e23ZyWDyZNVu7ah0QAAYJf8/NSihQICJKlIEa1cydlgFNwBAJDWr1fr1pZqu3luO9V2AAAysn/+Ud++lnbr1vrwQ0OjAQDALpnXXrt4UZI8PLR2rfLkMTomO0DBHQCQ0f3xh9q21dOnklSkiHbsUNGiRscEAACM8/Ch2rRRcLAklS6tefPk4GB0TAAA2J8PPtC2bZLk6KjfftMrrxgdkH2g4A4AyNCWL1ebNpZqe8mS2r1bRYoYHBIAADBQZKS6ddOlS5KUNatWrlS2bEbHBACA/fnuu2drr40frxYtDI3GnlBwBwBkXMuWqUsXhYVJUunS2r6di6EBAJDRjR2rP/+UJAcHzZ2rcuWMDggAAPuza5eGDrW027XTp58aGo2dcTY6AAAAjLF0qbp2VXi4JJUurW3bVLCg0TEBAABDbd6s8eMt7eHD1a6dodEAAJAkJ07I21uPHrkVKxaaO7ftn//KFbVtq9BQSapUSfPns/bavzDDHQCQEf3++7Nqe5ky2r6dajsAABnd1avq3FkREZJUt67GjTM6IAAAkmTBAnXooN69s27dmsnmT/74sVq00P37kpQ/v9auVebMNt9I2kbBHQCQ4SxerO7dLdX2smW1fbsKFDA6JgAAYKgnT9S2rR48kKSXXtKSJXLmhHAAAP4tMlJdu+rkSUlyd9eqVXrxRaNjsj8U3AEAGcvcuerWzVJtr1BBO3cqf36jYwIAAEYbOFBHjkiSi4sWL1aePEYHBACA/fn8c61da2l/+62qVTM0GntFwR0AkIH88ov69FFkpCRVrKgtW5QS69kBAIC05fvv9euvlvasWapZ09BoAACwS8uXa+JES/uTT9S7t6HR2DEK7gCAjOLnn9Wvn6XaXqkS1XYAACBJBw9q6FBLu1s39etnaDQAANilY8f07rsymSSpUSN99ZXRAdkxCu4AADtSsWImBwc5OMjb28bP/NNPz6rtr72mLVuUK5eNNwEAANKcBw/UsaOePpWkChX0449GBwQAgP25c0ctWig4WJJKl9bvv8vJyeiY7BgFdwBA+vfDD+rf3/JTfOXK2rxZOXMaHRMAADBaRIS6dNGVK5KUI4dWrlTmzAaHBACAvXnyRK1b68YNScqRQ+vWKXt2o2OybxTcAQDp3PTpGjDAUm2vUUPbtlFtBwAAkvTZZ9q0SZIcHeXlpWLFjA4IAAD78/772r9fkpyc9NtvKlnS6IDsHgV3AEB6NnWqPvrI0q5ZU3/9pWzZDA0IAADYhzVrNGWKpT16tJo2NTQaAADs0uTJmjPH0p4+XU2aGBpNGkHBHQCQbk2Zoo8/trRr1dKGDcqa1dCAAACAffD2fnblt4YN9fnnRgcEAID92bhRn31maffsqcGDDY0m7aDgDgBInyZP1iefWNpvvkm1HQAAWDx+rDZtFBAgSYULa/FirvwGAEBM586pUydFREhSzZr64QejA0o7KLgDANKhSZM0fLil/dZb+vNPeXgYGhAAALAbvXvr9GlJcnfXypXKlcvogAAAsDMPH6pFC/n7S1Lhwlq5Um5uRseUdlBwBwCkN2PG6NNPLe2339Zff1FtBwAAFlOnaulSS/u77/Taa4ZGAwCA/YmIUNeuunBBkjJl0ooVypvX6JjSFGejAwAAwJZGj9a4cZZ2o0ZatUqZMhkaEAAA6YWvr775JlNYmLOnp/OAAUZHkyR792rECEt74ED16mVoNAAA2KWhQ7VhgyQ5OGjePFWubHRAaQ0FdwBA+jFqlMaPt7QbN9aqVXJ3NzQgAADSkbt3NW5cFklly0amxYL7nTtq315hYZL0xhuaNs3ogAAAsD/z5mnWLEt7zBh16GBoNGkTS8oAANKJkSOfVdubNqXaDgAAngkLU4cOunVLkvLm1fLlrEULAEBMe/aof39Lu00bjRplaDRpFjPcAQBpnsmkjz7SjBmWm++8oxUrOIoGAADP/N//adcuSXJykpeXXnzR6IAAALAzV6+qTRs9fSpJFStqwQI5OBgdU9rEDHcAQNpmMmno0GfV9rZttWoV1XYAAPDM4sXPzo6fMEENGxoaDQAA9ickRG3b6t49ScqXT2vXKksWo2NKs5jhDgBIw0wmffDBs0Podu20aJFcXAyNCQAA2JOTJ9Wnj6XdsqU+/tjQaAAAsD8mk3r21JEjkuTioiVL9NJLRseUllFwBwCkVSaTBg/W7NmWmx066Lff5ExmAwAA//PokTp0UFCQJJUqpfnzOTseAICYvvhCS5da2rNnq3ZtQ6NJ+1hSBgCQJplMev/9Z9X2jh2ptgMAgH8xz9c7d06SPDy0cqVeeMHomAAAsDMrV2r8eEt76NBnp4UhyahMAADSnshI/ec/+vVXy81OnbRwIdV2AADwL19+qZUrJcnBQXPm6OWXjQ4IAAA7c/y4evSQySRJDRtq8mSjA0oXmOEOAEhjIiL03nvPqu29ejG3HQAAxLR1q8aMsbT/7//UoYORwQAAYIfu3lWLFs8WXluyhCNr26DgDgBIS8zV9vnzLTd799Yvv8iRbAYAAKK5dk2dOikiQpJq1NBXXxkdEAAAdiYsTB076vp1ScqWTStXKkcOo2NKL/jZAgCQZkREqGdPeXlZbv7nP/rxR6rtAACkNvOJ53bryRO1bStfX0nKn1/LlsnFxeiYAACwM4MG6e+/JcnRUYsWsfCaLVGlAACkDRERevfdZ9X2Pn2otgMAkEoCAzVmjJo2tdw8f97xrbe0bJmhMcXv/fd1+LAkubho6VIVLGh0QAAA2Jlp0/Tzz5b211/rnXcMjSbdYYY7ACANiIhQ9+5avNhys18/ff+9HBwMjQkAgIzB21tNmsjH51mPyaRdu7Rrlzp21MKF9jV//OefNWeOpT19ut5809BoAACwP5s3a/hwS7tHDw0damg06REzAwEA9i4sTO3bP6u29+9PtR0AgFQSHKzGjf9VbY9uyRJ9/HHqBpSg48f1wQeWdpcuGjTI0GgAALA/3t7q0EHh4ZJUvbp++snogNIjCu4AALsWGqoOHbRqleXmRx9RbQcAIPV8+60uX05owOzZunQptaJJkJ+f2rRRSIgkvfLKszPlAQCAWWCgWreWv78kFSyo5cvl5mZ0TOkRBXcAyEBMJv35p77+2nLz0CFNnqwHDwyNKUGhoWrfXqtXW25+/LGmTjU0IAAAMpjnLtQeEfHsd3EDRUaqa1fLbwPZs2vlSmXObHRMAADYk8hIdemiM2ckKVMmrV7NZU5SCgV3AMgo7t1TgwZ65x1t3WrpefBAw4erRAm7OE6OLTRU7dpp7VrLzWHDNGWKoQEBAJDxnD9vmzEpbdQo/fWXJDk4aO5clShhdEAAANiZjz/W+vXS/3Ll668bHVD6RcEdADKEp0/VpIm2bYvjLn9/deigjRtTPaYEhYaqbVutW2e5OXy4Jk82NCAAADKkJ0+ePyY4OOXjSNC6dZowwdL+/HO1bm1oNAAA2J8FCzR9uqU9apQ6dTI0mvSOgjsAZAizZuno0XjvDQ/XgAEKC0vFgJ6nXz/98YelPXy4Jk40NBoAADKq/PmfP8bYE9IvXlSPHjKZJKlBA33xhZHBAABgh/btU9++lnarVuTKFEfBHQAyhLlznzPg8mX9/XeqhGKdvXstjf/+l2o7AACGqV/fNmNSSEiIOnSwXPzN01OLF8vJybBgAACwQ7dvO7Rrp6dPJalcOc2fL0fqwSmMNxgA0r+QEJ09+/xhhw+nfCjPY56eFmXsWI0ebVAoAABA+vDD55SwX35ZDRqkVjSxDBigY8ckyd1dK1Yod27DIgEAwA6Fhzt07Oh265Yk5cqltWuVLZvRMWUAFNwBIP17+NCqYX5+KRzH8wQHO9y86RB1c/x4jRplYDgAAEAVKuirr+K994UXtGiRnJ1TMaBoZs7U/PmW9rffqkoVY8IAAMBurVuX+cgRR0kuLlq+XMWLGx1QxkDBHQDSv5w5rRqWK1cKx5Gg4GCHXr3yhIRYbn70kUaONDIeAABg9skn8vKKYzH3WrW0f79efdWImKQ9ezRsmKXdp4969zYmDAAA7Nnp067mxrffqk4dQ0PJSCi4A0D65+5u1cFwtWopH0o8AgLUtu0L+/e7R/X062dYMAAAIIauXXXlimbPttzMl890+LB27VKZMsbEc/euOnSwXO/99dc1a5YxYQAAkCYMHvzsoqlIBRTcASBDeO60r1KlVLNmqoQSi7+/3n5bhw8bdDo6AACwgpubate2tHPmNFWubFgk4eHq2FHm5Whz59by5XJzMywYAADs0P37z9p1VZTV9gAAIABJREFU6kRMm2ZcKBkSBXcAyBAGDFCNGvHe6+qqn34yZgHWhw/VsKEOHpQkBwflzWt63iMAAECGNny4/v5bkhwd5eUlT0+jAwIAwJ48eKC1ay3t7NkjFywINepqKxmWMQV3f3//e/fuWTMyMjLS39/fZLK2/hIaGhoYGJiM0AAgfXJx0R9/qEWLOO7Km1dr1jybs5aa/P3VqJEOH5YkBweNHev3wgsGhAEAANKKVas0fbql/eWXatTI0GgAALAzYWFq104BAZabHTs+zpWLaW2pzYCCu8lkqlixYrFixRIetmzZspo1a7q5ueXIkcPd3f3tt9/etGlTfIPDwsImTpxYunRpd3f3F154IXv27N27d79w4YKtYweANCxHDq1Zox071KyZpSdfPs2erUuX1LixAfGY57YfOiRJDg6aNOlxjx6PDYgDAACkEefPq2dPmadjtWih4cONDggAADszeLB27Hh2M0+eCMNCycAMKLjv3Lnz6tWrCY8ZMmRIhw4d9u7dGx4eLik0NHTz5s2NGzeeMGFC7MFBQUFvvfXWiBEjvL29zXPhAwICvLy8KlWqtHXr1pR4CQCQdtWurUGDLO1KlTRwoDw8DAjj/n3VqWOZ2+7oqLlz1avXk6tXnaNOUjp2TJGRBgQGAADs0+PHatNG5l2FkiW1YIEcHIyOCQAAezJrln780eggkPoF9wcPHvTp0yfhMXPnzp01a5akN954w8vL6/Tp0z///HPp0qVNJtPIkSP/+uuvGOMHDBiwf/9+SV26dPnzzz+PHj06adIkDw+PoKCg9u3b37lzJ4VeCwAgae7dU/36+ucfSXJy0ty5qltXnTplq1274N27lkPnTp1Urpw2bjQyTgAAYCdMJvXqpTNnJClLFq1cKZahAwAguq1b9dFHlnbZsoaGkuGl0pr5J06cOH369K5du7y8vB4/TmjFgKdPn44ePVpSqVKlNmzYkCNHDknlypVr0KDBG2+8ce/evZEjRzaOtvbBqVOnvLy8JLVv397Ly8vBwUFSpUqVypUr17Jly4cPH06ePHka1+IFALthrrafOiVJTk769VdVqaIqVeTr6xpj5PnzatJEc+eqZ8/UDxMAANiRyZO1fLml/f33Kl/e0GgAALAzly+rUyeFh0tS5cqqWVNnzxodUwaWSjPcGzVq1LVr1x9++CHharukTZs23bx5U9I333xjrrabFSlS5LPPPpN09OjRf8yzIiVJv/76q8lkypQp008//eQQ7ZTCZs2atWjRQtLChQsjWZUAAOzD3buqV+9ZtX3ePHXtqu7d5esb93iTSf36yds7NWMEAAD2Zft2ff65pT10qLp3NzQaAADszKNHatHCclhdoIDGj7cs3ypp3z53b28DVhTP4FLpHe/YseO7/1OhQoUERppXjMmePXvDhg1j3NW8efPoY6K3GzRokD179jjH+/r6Ho76KwMAGOfOHdWrp9OnJcnJSQsWqFs3bdyoI0cSelRoqGbNSp0AAQCA3bl+XR07WqbsVa+uiRONDggAAHsSGakuXSzT2tzcVLSomjTR3r2We7duzfTaa+7duyvqemlIBam0pMzMmTOj2mPGjDlx4kR8I813ValSxdEx5o8BxYoVK1my5IULF6JmuD99+vT8+fOS3njjjdhPFbXyzD///FO1atXkvQIAQLLcuKG6dXXxoiS5uOj339WmjSRt3vz8x27alLKxAQAA+xQWps6ddf++JOXLp+XL5RpzCToAADK0Tz/VH39IkoODcuR4VmqPYjLJy0sXL2rbNmXKlPoBZkR2d07BhQsXJBUtWjTOe4sXLx41RpKPj09ERER84wsWLJgpU6bo4wEAhrh+/Vm13dVVS5ZYqu2Sbt16/sNv3EjB2AAAgJWcnJQ9u+mFFyKzZUulLQ4Zoj17JMnFRUuXqmDBVNouAABpgpeXpkyxtF95RXfuxDty/35NmpQ6QSG1Zrhbz8/PT1LevHnjvNfc/+DBg+iDExifJ0+ea9euRY2Pz08//fTcwJ67+nyGEhwcHBQUZDKZ3N3djY7FjgQFBQUHB7u7u3PZgOiCgoLEf9C/Gf4fFBLiJGWSFBER8fj/2bvTgKiqPgzgz7DvIoK7KIkL5pKpZfrmbqkhKAq4b7hlZWJaZlpm5r7kVu5boonJZmoqLoli6NubmYYCaYqiIouAzrAN8364t4HYRAPOMPP8Pp175j+XZ5AB/HPvOY9VFf3h4uMVb71lefOmEQAzM+zaldm7d672K8LIyOKpP4zMzTWPHz+p6JxERERUuubNERubrFQqHR0dAauK/nABAdiwQR4vX44uXSr6AxIREVUlv/yCSZPkcc+eiIh4Sv0332DuXBgbV3Qu0rGGe3Z2dm5uLoCSmlDSFetS/67goIz1JZmk/fIsmba5TwBUKlVaWlpWVlbBjWopNTU1MzPTyMgoMzNTdBYdkpaWBsDa2lp0EB0i/B2UkWEhNdxzcnIq+pvb3bsmQ4bUvH3bCICpqebrr5Nee01V8GPWqVMNqFb6SRo2rPCcREREpFN++w0TJ8rjIUMwdarQNERERDrm3j14ekKpBAA3N0yahBMnnvKUxERcu4YXX6yEdIZOtxruGo1GGpTUhJIKpKb8c9SXZKL2V7niSNe/29jYlH4Sg2JsbJyVlWVpaclPS0FZWVlGRkY2NjaWXBOrACsrK/Ad9E/C30GWlqbaJBWa4fZto6FD7aRuu7k5tm173KePMfCPjzhgAFatwt/fzovXv38uv4SIiIgMR2oqvLzkJkLLltiyRXQgIiIiXZKZiQEDcPcuADg4ICwMZ8+W6Yn377PhXhl0q+Fubm5ubGysVqtLukA4KysLBS6V1Q7KWF+SjRs3lvKo1HB3cHAo/SQGRalUqtVqKysrfloKysvLMzc3r169utRiJom0mAy/VAoS/g6ytZUHpqamFZchNhb9+8vLr1taIjQUvXvbFi17/XUMH47du0s8j7MzPvzQysaGbysiIiKDkJeHESNw4wYA2NoiMBC8VZKIiKqQJ08QEAAA1tYYPrz8z6/RwM8PFy4AgIkJ9u+HqysuXSrTc6s95fZyKh+61XAHYG9vn5ycXNLSAUlJSVKNtlgalFQvrd6uLSMiosoRE4MePeS/t1tZITQUvXqVWLxxIxIScPJkMQ/VrYtDh8Cr24mIiAzH/Pk4fBgAFAps3w43N9GBiIiInkVqqry0ev36FdJwX7QIe/bI4zVr0KMHgDJdt25qiiZNyj8PFWUkOkBhTZo0AXDr1q1iH42Pj9fWAGjcuLG0mEyx9ampqdKltU341UREVImuX0f37vnd9rCw0rrtUs2xY1iy5HHjxjnayerVMW0afvsNLVtWcFwiIiLSGcePY8ECefzxxxg0SGgaIiIiHXPkCD79VB6PG4e335bHbm5o2/Ypz33rLV7hXkl0ruHeqlUrAL/88kvRh1QqVXR0NICWf3dfLC0tXV1dS6rXTrZkt4aIqLJcu4YePZCQAADW1jh4ED17Pv1ZxsYYNy7z5Ml7Li7yau6RkVi1Co6OFZmViIiIdMmtWxg6FGo1APTsifnzRQciIiLSJdHR+T8o//MffPPNPx796iuYlLyUia0tFi+u2HikpXNLyrz55pubN2++f//+L7/80q5du4IPHT16NCcnB0C/fv0K1sfGxh4/fjw7O9vMzKxg/Q8//ACgWrVqnTp1qpTsRESGTuq237sHANbW+OEHdOv2bGfQ/n5gpHN/ESYiIqIKlJmJQYOQnAwADRpg714YG4vOVKUsXbo0ISHhq6++KqUmLy/vxIkTP//8c3Jycs2aNbt161b6f5aVSmVoaOjVq1eVSqWzs7O7u7t0xRsREVW+lBR4eCAtDQAaNUJQEP7ZB0WXLggIwLhxePKk8HOdnLBvH5o1q6SopHMN9759+zo5OT18+HDRokXff/+9dj4vL2/JkiUAWrRo0b59e+38qFGj1q1bl5ycvGnTpnfffVc7f+/evR07dgAYNmyYqalp5b0AIiJDFR2NHj1w/z4AWFvj0CF07So6ExEREVURU6ZAukXZ3BwHDsDJSXSgKiU5OXnOnDlmZmalNNz/+OOPIUOG/P777wUnO3fuvGfPHmdn56L1ISEhfn5+BfdL8/f3nzBhwpo1aywsLMoxPBERPVVuLry9ERcHADY2CAsr/geljw9eeQWrVuHbb5GaCgBOTuqxY/NmzDDlD9bKpHMXEFpZWX3yyScADhw4MGPGDGnR9mvXro0ePfrnn38GsHDhQmnddkmHDh0GDBgAYObMmVu3bk1LS1Or1ZGRke7u7mlpaba2trNnzxb0UoiIDMilS+jSRe62V6uG8HB224mIiKisvv4a27fL47Vr0aGD0DRV0LJly6TbwUty586dHj16SN12V1dXb2/vevXqATh37lzv3r0fPXpUqP7o0aODBw9OSUkxMjJ65ZVXPDw87OzsAGzevHn06NEV9jqIiKh4U6fi5EkAUCiwbRtatSqxslEjrF6NsWPlw0mT0j/7LIfd9kqmcw13AFOnTh06dCiAFStWODs7Ozg4uLm57d69G8Ds2bM9PT0L1W/bts3NzS0zM3P8+PGOjo7Vq1fv3Lnz//73PzMzsz179tSvX1/AayAiMiSXLqFXLyQlAUC1ajh6FB07is5EREREVURUFKZPl8cjR2LCBKFpqpp79+59/PHHS5cuLb1s2rRpDx48ABAQEBAbGxsYGHjnzp1FixYBiImJ+fzzzwsWZ2Vl+fn5qdVqe3v7K1euREVFhYaGJiUlubu7AwgMDAwNDa2wF0RERIVt25a/XPuCBfD2FpqGykBAw71Ro0Zdu3Z9/fXXSypQKBQBAQHr169v2rQpgNTUVAAvv/zy/v37v/zyy6L11atXv3DhwvTp02vUqJGbm5uRkWFiYtKvX7+oqCjpFwIiIqo4v/6KXr3kFVft7XHsGF59VXQmIiIiqiISEzF4MLKyAOCll7Bxo+hAVcfIkSObNm1ar169xYsXazSaUirj4uKCgoIAzJw5c9iwYdr5WbNmeXt7A9i4cWN6erp2PiAg4O7du9LAzc1NmjQ1Nd27d6+LiwuAZcuWVcALIiKiYpw9i7fflseDB+Pjj4WmobIR0HAfM2bM6dOnjxw5UkqNQqGYMmXK9evXk5KSYmJi0tLSfvnll8GDB5dUb2Njs2LFisTExISEhD///DMjI+PQoUMvvfRSBcQnIqJ8v/yS322vXh3HjuGVV0RnIiIioipCrcbIkbhzBwAcHBAUBEtL0ZmqjuPHj8fGxpbeapeEhYVpNBqFQuHv71/oobFjxwJQqVTHjx/XToaEhABo3rx5v379Chbb2NhIDfrz588/fPjw378EIiIq3V9/wcsL2dkA0LYtdu5EgWW2SXfp4pIyBdWoUaNJkybSanFPZWRkVKdOnRdeeIFbuBARVYJffkHv3pB20pK67VxxlYiIiMru449x7BgAGBlh9264uIgOVKVcvHjx5t/ef//9UirPnDkDoEWLFnXq1Cn0UI8ePWxsbLQ1koiICAA9e/YseioPDw8AeXl5Z8+e/devgIiISvP4MTw8IP19s3ZthIbCykp0JiobE9EBiIioSoqMRN++kG4+dnJCeDhatxadiYiIiKqO0FAsXy6PP/8cffsKTVMFNWjQQDu2t7cvpfL69esAWrZsWfQhc3Pz1q1bR0ZGxsTESDMPHjyQ9lAttr5Dhw4KhUKj0WjriYioIuTlYcQI/P47AFhYIDgYBb7rk67T9SvciYhIB507hz595G57zZo4cYLddiIiInoGMTEYPRrSaiju7pg9W3QgvRYfHw+gfv36xT4qzd++fbtgcUn1ZmZmTk5OBeuJiKgizJ0L7QbV69ahY0ehaegZ8Qp3IiJ6NmfPol8/ZGQAQK1aCA9Hcdc/ERERERXv8WN4eSEtDQBcXfHttzDilWAVRqPRKJVKANLSMUVJ8xnS73bA48ePC84XW5+YmKitL4miDMsMs2tfkEqlSk1NtbCwkP69SJKSkpKZmalSqSy5w0MBCQkJoiPoHJ16B927ZwzUA6BWq2/fvvscZzh82GrRIkdpPGlSeu/ej571+2VGRnXAFkB6enp8fCbfQZWMDXciInoGERHo1w/Sf8Rq1cKJE3jxRdGZiIiIqOrQaODnh6tXAcDSEoGBKHU1FPq3MjMzpY1Vzc3Niy2Q5rUtKpVKVXD+qfVERFS+rl41mz69hnQTWNeumR999Eh0InpmbLgTEVFZ/fQT3N3lbnvt2jhxAi1aiM5EREREVcqKFQgMlMfffIO2bYWmMQDavnl2dnaxBVlZWQDMzMykQwsLi2eqL4nU5S+JdP27s7Nz6ScxKEql0tLS0srKytHRUXQWHWJlZaVUKh0dHa24WWQRfAcVpFPvIO1tW8bGxs/6z3T/PiZOhPSnz2bNEBJiYW//PP/QtrbywM7OrkEDJ76DKhnv3CMiojI5dgx9+8rd9gYNEBHBbjsRERE9m8jI/OXa33sPo0cLTWMYjIyMpJUEnjx5UmxBoQVnrK2tpUEZ64mIqLxkZmLgQNy5AwDVq+PgQd4EVlWx4U5ERE939Cg8PeU/szdogFOn4OoqOhMRERFVKffvY/Bg5OQAQMeOWL5cdCCDUa9ePZS86PPdu3cB1K1bt2BxSfW5ubmJiYkF64mIqLy8+y5+/hkAjI0REIAmTUQHoufFhjsRET3FkSMYMACZmQDg7IxTp9C4sehMREREVKXk5MDHB/fuAUCtWvj+ezxtSRIqN82aNQNw/fr1Yh+NjY0F4ObmJh3Wq1dPunq92Pq4uLi8vLyC9UREVC6WLcPWrfJ45Ur07Ss0Df07bLgTEVFpDh+Gl5fcbW/YEKdPs9tOREREz8zfHxERAGBign378PdV1FQZOnfuDOC3337LyMgo9FBsbOz9+/e1NZJOnToBiJD+wf5JOynVEBFRuTh6FB9/LI/HjMHUqULT0L/GhjsREZXo0KH8bnujRjh1Ci4uojMRERFRVbNnD9avl8dLlqBrV6FpDI+npyeAnJyc3bt3F3pox44dAMzMzPr161eoPioqKjo6ulD9zp07AbRv375BgwYVGZmIyIBcv44hQ6BWA0DnztiwQXQg+tfYcCciouIdOICBA5GVBQBNmiAigt12IiIiema//44JE+TxgAHw9xeaxiC1aNGib9++AObNm3fr1i3t/K+//rpq1SoAfn5+Dg4O2vnRo0c7OTkBmDx5cqZ05QUAYMOGDefOnQMwc+bMSgtPRKTfUlPRvz8ePQKAhg0RFARzc9GZ6F8zER2AiIh00fffY9gweVuzpk1x8iRv/SYiIqJn9ugRvLygVAJAs2bYuRMKhehMBmn16tXnz59PTExs166dp6dnmzZtIiMjf/jhB5VK1ahRo/nz5xcstra2Xrduna+v75kzZ1q1ajVgwAAnJ6fw8PDw8HAA/fv39/b2FvQ6iIj0ilqN4cMRGwsAlpY4cAA1a4rOROWBDXciIiosMBDDhyM3FwCaNcPJk6hbV3QmIiIiqmo0Gowbh7g4ALCxQVAQ7OxEZzJUTZo0OXLkyJAhQ27durVt2zbt/EsvvRQYGOjo6Fio3sfHJyMjY+rUqXFxccuXL9fO+/r6btmyRcE/mxARlQd/fxw5AgAKBXbsQLt2ogNROWHDnYiI/mHfPowYIXfbmzfHiRPsthMREdHzWLAAwcEAoFBg+3a0aCE6kP4aM2ZMt27djI2NS6np2LFjdHR0SEhIZGRkSkpKrVq1unfv3rdvXxOT4tsCfn5+7u7u+/btu3r1qkqlcnZ29vT07NChQ8W8AiIig7NjB9aulcfz5sHHR2gaKldsuBMRUb7vvsPIkXK33c0NJ06gTh3RmYiIiKgKCg/H55/L4w8/xODBQtPou0aNGjVq1OipZZaWlkOHDh06dGgZT1urVq2pU6f+q2RERFScc+cwebI89vLC3LlC01B546apREQk2749fyWZNm3w00/sthMREdHzuH0bQ4dCrQaA7t2xYIHoQERERDrj1i14eSErCwBeegm7dnGDE33DhjsREQHA1q0YPx55eQDw0ksID4eTk+hMREREVAVlZmLQICQlAUD9+vjuO5SwZgkREZHBUakwaBASEwHA0RFBQbC2Fp2Jyhsb7kREhC1bMHGi3G1v2xbh4SiydRYRERFRmbz7Lv77XwAwNcV336FmTdGBiIiIdINGgzFj8MsvAGBqiu+/h4uL6ExUAXilARGRwWnQABMnAsCLLwLA5s2YPFnutr/8Mo4dQ40aIuMRERFR1bVpE7Zulcdr1qBzZ6FpiIiIdMm8eQgMlMfr16NrV6FpqMKw4U5EZHBefBEbN8rjjRvx9tvQaACgXTscOwYHB4HRiIiIqAr79VdMmyaPhw/P3w6OiIiIgoLwxRfy2N8fEyYITUMViUvKEBEZrg0b8rvt7dvj+HF224mIiOg5paRg0CCoVADQujU2bRIdiIiISGdcuoRRo+T/fffujaVLRQeiisSGOxGRgVq5Mr/b3qkTTpxA9eqiMxEREVHVlJeHYcNw8yYAVK+OoCBYWYnOREREpBsePICnJ548AYCmTbFvH7cT13NsuBMRGaLly/HBB/K4c2f8+CPs7IQGIiIioqpszhwcPQoARkbYvRuNG4sOREREpBtycuDri9u3AcDODkFBvNZN/7HhTkRkcJYtw8yZ8vj113HkCGxthQYiIiKiquzgQSxeLI8//RT9+glNQ0REpEveeQc//QQARkbYswcvvig6EFU8NtyJiAzLkiX48EN53KULDh9mt52IiIieX2wsRo7MX5R2zhzRgYiIiHTGqlXYvFkeL1uGt94SmoYqCxvuREQGZMkSzJolj7t2xaFDsLERGoiIiIiqsidP4OWFtDQAaNgQe/fC2Fh0JiIiIt2QmZl/uduoUZg+XWgaqkRsuBMRGYrPPsvvtr/xBo4cYbediIiI/pUpU3DlCgBYWODAAdSoIToQERGRzkhJQW4uALz2GjZtEp2GKhEb7kREBuHTTzF/vjzu0wehobC0FBqIiIiIqrivvsKuXfL466/Rrp3QNERERDomLw8A6tbF/v0wNxedhiqRiegARERU4ebMwZdfyuO+fREUBAsLoYGIiIioijt/Hh99JI/ffhtjxwpNQ0REpDOkPrvE0hIhIahXT1waEoENdyIiPffJJ1i4UB7364cDB3S62/7qq+qGDU0AWFmJjkJEREQlSExUeHsjOxsAXn0Vq1aJDkRERAbv7FmLo0dtLCzQqxe8vUUmWbAgf7x1Kzp0EBeFBGHDnYhIb2k0mD4dX30lH771Fg4c0PUb2TZuzLay4s8mIiIi3ZWbi9Gjze/eBYCaNfH997r+2wURERmCa9dMd+2yAGBtLbLhvmMHNm+Wx3Z2GDpUWBISiGu4ExHpJ40G06bld9sHDUJwMP8/TERERP/Wl19WP3vWCICxMb79FvXriw5ERESkGyIjMXly/qGdnbgoJBQb7kREekijwfvvY80a+dDbG3v3wtRUaCYiIiKq+oKDzbdts5XGCxfijTfExiEiItIV8fEYNAhZWaJzkA5gw52ISN9oNHjvPaxdKx/6+GDPHnbbiYiI6N+6cgXTptlIYy8vzJwpNg4REZGuUKkwaBDu3weA6tVFpyHR2HAnItIrGg3efRfr18uHvr4ICIAJF0UnIiKifyctDV5eUCoVAJo0ydu+HQqF6ExEREQ6QKPBuHG4eBEAjI1Ru7Y8n5CAAQNw/LjAaCQGG+5ERPojLw9+fvj6a/lw6FDs3s1uOxEREf1bGg38/BAbCwDW1pq9e7O5Li0REZFkwQJ89508VqsRHS2P8/IQGoo33sC4ccjNFZWOBGDDnYhIT6jVGDcO27fLh+PGsdtORERE5WPhQhw4II+XLk12c8sTGoeIiEhXhIRg3ryn1GzfznXYDAsb7kRE+kDqtu/cKR/6+WHzZhjxezwRERH9aydO4LPP5PHbb6vc3ZVC4xAREemKP/7A6NHIK8OfodeuxfXrFR+IdAObMUREVZ5ajTFjsGuXfDhhAjZtYrediIiIykF8PIYOhVoNAJ06Yc6cJ6ITERER6YTkZHh4ID0dACwtn1KsVmP//koIRTqB/RgioqpNrcbo0di9Wz6cOBEbNrDbTkREROUgKwuDBuHhQwCoXRv798PMTHQmIiIiHZCTA29v/PknANjawt7+6U+5erWiQ5GuYEuGiKgKy8mBjw8CAuTDSZPYbSciIqJy8957uHgRAExNERiIunVFByIiItIN772HU6cAwMgIAQHIzn76UzIyKjpUvjZt4O0ND4+sF17gbq0CcDc9IqKqKjsbQ4YgOFg+9PfHihVQKIRmIiIiIn3x7bfYvFker1iB118XmoaIiEhnrFuHjRvl8aJF6N8fNWsiOfkpz6pVq6Jz5Rs1CqNGISkpQ6lUAdaV94EJAK9wJyKqorKz4eub322fPh0rV7LbTkREROXj0iVMmiSPhw7Fe+8JTUNERKQzzpzBBx/I4xEj8OGHANC169OfWJYa0g9suBMRVT3Z2fD2RkiIfDhjBlasEBqIiIiI9EhKCry8oFIBQKtW+de5ExERGbibNzFokLyAzMsv51/nPnkyjI1Le2LduvDyqvB4pCPYcCciqmKysjB4MMLC5MMPP8SyZUIDERERkR7Jy8OIEbh5EwBsbREYCGveiU5ERARkZMDDA0lJAFCnDkJDYWUlP9SmDT7/vMQnmppi2zbY2FRGSNIFbLgTEVUlUrf94EH58KOPsGSJ0EBERESkXz77DEeOAIBCgR070Ly56EBEREQ6IC8Pw4fjyhUAsLBAcDDq1/9HwSef4JtvUK1a4Se6uODoUbz5ZiXlJF3AhjsRUZWhVMLdHT/8IB9+9BEWLxYaiIiIiPTLDz9g4UJ5/MknvPmdiIhI9vHH+Ze+bdmCV18tpmbyZNy+jZUr5UNbW4SGIiYG3btXUkjSESaiAxAeQEjWAAAgAElEQVQRUZkolfDwwIkT8uHnn+PTT4UGIj2Vl5cXGRkZHR0dGxtrZ2fXtGnTjh07Ojs7l1J/4sSJn3/+OTk5uWbNmt26devUqVMp51cqlaGhoVevXlUqlc7Ozu7u7q6urhXwOoiI6JnFxWHkSOTlAUDPnpg3T3AeIiIiHbF7N5YulcezZmH48BIr7ezg7Y3p0wGgWjV4eFRGPNI1bLgTEVUBSiX698fJk/LhF19gzhyhgUhPXb58eeLEiVFRUQUnzczM3nvvvc8++8zW1rZQ/R9//DFkyJDff/+94GTnzp337NlTbI8+JCTEz88vJSVFO+Pv7z9hwoQ1a9ZYWFiU3+sgIqJnplLBxwePHgGAszO+++4pm78REREZiP/9D5MmyeM+fbBggdA0VBWw4U5EpOuePEH//jh1Sj5csACffCI0EOmpW7dudezYUaVSKRSKTp06NWvW7NGjR+fOnXvw4MGKFSvi4+P37dtXsP7OnTs9evR48OABAFdX17Zt20ZGRt69e/fcuXO9e/eOioqyt7cvWH/06NHBgwer1WojI6P27dvXrl379OnT6enpmzdvTktLK3RyIiKqZG+/jV9/BQBzc3z/PRwdRQciIiLSAffuwdMTSiUANG/OP0hTmXANdyIinfbkCdzd87vtCxey204VZdq0aSqVytbW9uTJk2fPnt26deuBAwfi4uIGDRoEIDAwMCQkpFC91G0PCAiIjY0NDAy8c+fOokWLAMTExHz++ecFi7Oysvz8/NRqtb29/ZUrV6KiokJDQ5OSktzd3aWTh4aGVt5LJSKif1q7Fjt3yuN169Chg9A0REREuiEzEwMH4s4dAHBwwMGDxeyJSlQUG+5ERLorLQ29euH0aQBQKPDVV/j4Y8GRSF+lpKRI/fQPPvigW7du2nkbG5stW7ZYW1sDCA8P187HxcUFBQUBmDlz5rBhw7Tzs2bN8vb2BrBx48b09HTtfEBAwN27d6WBm5ubNGlqarp3714XFxcAy5Ytq8CXR0REJfv5Z8yYIY8nTMD48ULTEBER6QaNBuPHQ1pu08QE+/eDm09RGbHhTkSko9LS8Oab+Pln4O9u+/vvi85E+is6OloaeBTZ1sfe3r5ly5YALl++rJ0MCwvTaDQKhcLf379Q/dixYwGoVKrjx49rJ6VufvPmzfv161ew2MbGRmrQnz9//uHDh+X1coiIqIwePMDgwcjOBoCXXsLq1aIDERER6YbFixEQII9Xr0aPHkLTUJXChjsRkS569AhvvCH/LV2hwJo1mDpVdCbSa8nJyW3atGnTpk3jxo2LPqrRaACYmORv/XLmzBkALVq0qFOnTqHiHj162NjYaGskERERAHr27Fn05FKLPy8v7+zZs//+hRARUdnl5sLXF3fvAoCDA4KCYGkpOhMREZEO+PFHzJ0rj8eOxZQpQtNQVcOGOxGRzpG67RcuAIBCgbVr8e67ojORvvPw8Lh06dKlS5fs7OwKPXTz5s0rV64A6NSpk3by+vXrAKQr3wsxNzdv3bo1gJiYGGnmwYMHjx49Kqm+Q4cOCoWiYD0REVWOjz7CTz8BgJERAgLg4iI6EBERkQ64dg1DhkCtBoD//AcbNogORFUNG+5ERLolNRW9e+PiRQBQKLB+Pd55R3QmMjxZWVlJSUlXrlxZuXJlz549lUpl48aNp02bpi2Ij48HUL9+/WKfLs3fvn27YHFJ9WZmZk5OTgXriYiooCVL4OAABwcsWVKepw0JwapV8nj+fPTpU54nJyIiqqJSUtC/P9LSAKBhQwQFwcxMdCaqakyeXkJERJXl4UP06gVpoWwjI2zdijFjBEciw/TRRx+tLrCO75AhQ1auXOno6CgdajQapVIJQFo6pihpPiMjQzp8/Phxwfli6xMTE7X1JZEuhC8du/YFqVSq1NRUCwsL6d+LJCkpKZmZmSqVypJrZxSQkJAgOoLO0Z130P371VJTqwG4fz/t9u20cjnnjRumI0fW0miMAPTqpRo+/GEZv33yHURERHosNxfe3oiLAwAbG4SFwclJdCaqgniFOxGRrkhMRM+ecrfd2BjbtrHbTrri3Llzhw4d0h5mZmZKq7qbm5sXWy/Na1tUKpWq4PxT64mIqEI9eaKYONHx8WMjAI0a5a5alWzE/xcSEREB77+PkycBQKHAtm1o3Vp0IKqaeIU7EZFOkLrtV64AgLExtm/HyJGiM5EBW7ly5fLly+/du3f16tVFixadOXNmwoQJiYmJs2fPRoG+eXZ2drFPz8rKAmD2972XFhYWz1RfEqnLXxLp+ndnZ+fST2JQlEqlpaWllZWV9u4EAmBlZaVUKh0dHa2srERn0Tl8BxWkO++gatW0g2rOztVKrX06jQa+voiNBQBLSwQFmbRsWfz6YMXiO4iIiPTV9u34+mt5/MUX8PYWmoaqMl7JQESG4s4dLFmCJUsQECA6ShEPHqBHj/xu+44d7LaTYEZGRiYmJg0aNOjTp8+pU6e6du0KYMGCBUlJSdKj0koCT548KfbphRacsba2lgZlrCciooqzdCn275fH33yDtm2FpiEiItINZ89i8mR5PGgQZs8WmoaqODbcichQ3LyJWbMwaxY2bhQd5Z/u30ePHrh6FQCMjbFzJ0aMEJ2JqAAjI6OZM2cCUKlUFy5ckCbr1auHkhd9vnv3LoC6desWLC6pPjc3NzExsWA9ERFVkFOnMGeOPJ46FaNHC01DRESkG/76C15ekG7HbdsWu3ahDLtHEZWIDXciIpHu3MHrr+OPPwDA1BSBgRg+XHQmMkjvvfder1695s+fX+yjrq6u0iA5OVkaNGvWDMD169eLrY+NjQXg5uYmHdarV0+6er3Y+ri4uLy8vIL1RERUEe7dw/DhyM0FgI4dsWyZ6EBEREQ64PFjeHjg4UMAqF0boaHgqmn0L7HhTkQkTHw8uneXN0A3M8O+ffDyEp2JDJVKpTpx4kRgYGCxj/7111/SoGnTptKgc+fOAH777beMjIxCxbGxsffv39fWSDp16gQgIiKi6Mm1k1INERFVhJwceHvj3j0AqFUL33+Pp22cQUREpP80Gowbh99/BwAzMwQGokED0Zmo6mPDnYhIjDt3jAp12wcOFJ2JDFj79u0BXLt27Xfpl81/OnDgAAAjI6NWrVpJM56engBycnJ2795dqHjHjh0AzMzM+vXrp52U6qOioqKjowvV79y5UwrQgL/bEhFVmPffx7lzAGBign378PdaX0RERAZt7tz8rU3Wr8frrwtNQ/qCDXciIgHu3jUZMKDan38CgJkZ9u/HgAGiM5Fh8/T0rFatmlqtHjduXHx8vHZeo9Fs2bJly5YtAMaNG2f1992VLVq06Nu3L4B58+bdunVLW//rr7+uWrUKgJ+fn4ODg3Z+9OjRTk5OACZPnpyZmamd37Bhw7lz5wBIy8QTEVFFCAjAN9/I46VL0bWr0DRERES64cABLFwoj2fMwPjxQtOQHjERHYCIyODcuKEYPLhmQoIxAAsLBAejTx/Rmcjg1alTZ+nSpZMmTfrvf//r5ub2xhtvNG7cODU19eLFi5cvXwbg4uIiddK1Vq9eff78+cTExHbt2nl6erZp0yYyMvKHH35QqVSNGjUqtBy8tbX1unXrfH19z5w506pVqwEDBjg5OYWHh4eHhwPo37+/t7d3Zb5eIiLDcfkyJk6UxwMHYto0oWmIiIh0w6+/YtQoaDQA8MYbWLxYdCDSI2y4ExFVqrg49OljkZCgAGBpiZAQvPGG6ExEAIAJEybk5OTMnTs3NTU1ODhYO69QKEaPHr148WJp41OtJk2aHDlyZMiQIbdu3dq2bZt2/qWXXgoMDHR0dCx0fh8fn4yMjKlTp8bFxS1fvlw77+vru2XLFoVCUTEvi4jIoKWmwssLSiUANGuGHTvAb7dERET378PTM//n4759MDYWnYn0CBvuRESVJyYGPXrg7l2p264JC1P06iU6E9HfFArFO++8M2TIkEOHDsXFxd26datmzZrNmzfv2LHjiy++WOxTOnbsGB0dHRISEhkZmZKSUqtWre7du/ft29fEpPhfMPz8/Nzd3fft23f16lWVSuXs7Ozp6dmhQ4eKfFlERFVbdjZu35bHt28jO/sZNjvNy8OIEZCWsLOxQVAQ7OwqJCQREVEVkp0NHx9I62hWr46wMNjbi85E+oUNdyKiSnL9Onr0QEICAFhaanbvTu/Vq5roUESF1ahRY9SoUWWvt7S0HDp06NChQ8tYX6tWralTpz5XNCIiw6LRYPVqLFqExER5Zvt2HDqE2bMxdWqZLlSfPx+HDwOAQoHt29GiRQWmJSIiqireeQcREQBgbIzdu9G0qehApHe4aSoRUWW4di2/225tjW3bHnbpkiM6FBEREemovDwMHw5///xuuyQxEdOmYcQI5OU95QzHj2PBAnn80UcYPLhCchIREVUty5djyxZ5vGIF+vUTmob0lO5e4Z6VlXX69Ono6Oj4+PgXXnihRYsWXbp0MS55RSWlUhkaGnr16lWlUuns7Ozu7u7q6lqZgYmISiJ12+/dAwBraxw4kOXmlglYic5FREREOmrdOuzdW+Kje/bgtdfw7rslFty6hWHDoFYDQPfu+OKL8k9IRERU5Rw7hlmz5PHo0Xj/faFpSH/paMM9LCzM39//xo0bBSdbt269Zs2arl27Fq0PCQnx8/NLSUnRzvj7+0+YMGHNmjUWFhYVHpeIqGTR0ejRA/fvA4C1NQ4dQocO6qQk0bGIiIhIV+XlYfHip9QsWoQpU2BU3B3LmZkYNAjSLxsNGmDfPpSwswYREZEBuX4dvr7yX6M7dcLGjaIDkf7SxSVlDh486OnpeePGDTMzs+7du48cObJz585GRkaXL1/u3bv3xYsXC9UfPXp08ODBKSkpRkZGr7zyioeHh52dHYDNmzePHj1axCsgIpJduoQuXeRue7VqCA9HcX80JCIiIsr322/yjXGlSEjA778X/9CUKfjlFwAwNcXevXByKud4REREVU5qKvr3x6NHAODsjKAgmJuLzkT6S+ca7unp6WPHjgXQuHHj33///eTJk7t27Tp79uyFCxccHR1zcnKGDh2q0Wi09VlZWX5+fmq12t7e/sqVK1FRUaGhoUlJSe7u7gACAwNDQ0OFvRgiMmyXLqFXL/n6smrVcPQoOnYUnYmIiIh03p07ZSq7fbuYyW++wfbt8njtWnTuXG6piIiIqii1GiNGIDYWACwtceAAatUSnYn0ms413KOiopKTkwGsX7++aYF9gtu1a7dw4UIAf/755/Xr17XzAQEBd+/elQZubm7SpKmp6d69e11cXAAsW7asMvMTEUn+9z/06oXkZACwt8exY3j1VdGZiIiIqCooeeOqfzA1LTxz4QL8/eXxiBGYNKk8UxEREVVRH3yAw4cBQKHA9u1o3150INJ3Otdw//XXX6XBa6+9VuihTp06FaoBEBISAqB58+b9/rmvsI2Njbe3N4Dz588/fPiw4gITERX1yy/o3VvutlevjmPH8MorojMRERFRFeHi8jxlycnw9UVWFgC0acOlaYmIyIAkJiouXzaTxleu/OMmsJ07sXq1PP70U/j6Vno4Mjw613DX7nH64MGDQg9pZywtLbWTERERAHr27Fn0VB4eHgDy8vLOnj1bEVGJiIr13/+id29IuzhL3fYOHURnIiIioqrDzQ0F7vUtXrNmaNYs/1CtxrBh+OsvAKheHUFBsLKquIBERES6IisLM2ageXPL0FBraeb4cTRuDD8/pKcjMjL/fq+BA/Hpp8JykkHRuYZ73759FQoFgOXLlxd6aOXKlQCsrKy6dOkizTx48ODRo0cAWrZsWfRUHTp0kE4VExNToZmJiLQiI9GzJ1JTAcDJCadP8241IiIiemYLFjxbwezZOHYMAIyMsHs3XnihooIRERHpjpwceHpixQr5Bi+t3Fxs24bXX8fAgfn3fn37LYx0rg9K+knnvtCaNGmyZMkSAJs2bfL09AwODr548eK+ffu6dOly6NAhIyOjTZs2OTg4SMXx8fHSoH79+kVPZWZm5uTkBOB2sdsJERGVt3Pn0KcP0tMBoGZNnDiB1q1FZyIiIqIqyNsbc+cW/5BCgc8+w+DB+TOhodBuXPXpp/jnWptERER6a9UqHD1a4qOXLyMxEQBq1EBQEKytKy0XGToT0QGKMXPmzIYNGw4fPjwsLCwsLEw7b29vHxwc3K1bN+3M48ePpYGNjU2xp7KxsUlMTMzIyCj9IzZu3PipqRISEp5aYzhUKlVKSoqlpWV2drboLDokJSVFpVLl5OQUXPWIpMWgTEzEf7dJSjIDHAFkZ2cnJCSV+/mjosxGjarx+LECgJNT3t69STVq5Bb7nYPvoGLxHURERFTQ/Pl47TV8/jmiovInX30V8+ahT5/8mZgYjB4NjQYAevfGnDmVnZOIiEgIjQZr1z69zNQUBw7w3i+qVOJbYEVdu3Zt9erVubm50qGtra3UMX/06NGqVauaNWtWp04d6SGVSiUNzM3Niz2VNK9UKkv/iDdu3HhqKm0eApCbm6tWq3Nzc/lpKYiflmKp1WroxjtIrTaWBhqNptzzREWZjx1b48kTBQBHR/WePYmurjklfRB+qRSLnxYiIqJC+vZF376YMQMrVgDAjBn5V7JLHj+GlxfS0gCgYUPs3QtjYwE5iYiIKt+1a7hz5+ll77yDrl0rPg1RATrXcI+JienatWtiYqKLi8uSJUvefPNNOzu7lJSUoKCgTz75JCws7Nq1axERETVr1kSBHVZLuko0KysLgJmZWekf9M8//yzlUen697p16z7Hy9FXSqXS1NTUysrK0dFRdBYdYmZmplQqHR0drbhHVQFS81QX3kGOjgppYGZmVr55zpxRjBtn/OQJANSujWPH4ObmVEo930HF4juIiIioWNq7eYveC+/nh6tXAcDCAkFBqFGjUoMREREJdO9emcratq3gHERF6FzDfdq0aYmJiQ4ODhEREfXq1ZMmHRwcxo8f/8orr7zyyisxMTHz5s37+uuvAVj//SvnE6nRVYR0bXtJC85ovVCGG0t0YUEM3WFSgOgsOoSflmJJnw1d+JxoL/hSKBTlmOfYMQwYAOl+mwYNcPIkXF2fcmkZv1SKxU8LERHRM1mxAoGB8vjrr/Hyy0LTEBERVa4yrkXKC7qo8unWpqmPHj06cuQIgEmTJmm77VqtW7cePHgwgICAAGlGW1PsAuu5ubmJiYnQjUtriUgv/fgjPD3lbruzM06dgqur6ExERERkACIj8fHH8njKFIwdKzQNERFRpXN1hVEZ+prNmlV8FKJ/0q2G++3bt6VBq1atii1o3bo1gPT09NTUVAD16tWTrl6/fv160eK4uLi8vDwAbm5uFRSYiAzZkSMYOBCZmcDf3fYybMBMRERE9G/dvw9vb+TkAMCrr2LlStGBiIiIKp2TE7p1e0pN8+YoocVIVIF0q+HeqFEjhUKBEq5Y187b29vb29tLM506dQIQERFRtFg7KdUQEZWjw4fh5SV32xs2xOnT3PSciIiIKkNODnx8IP2HqWZNfP89zM1FZyIiIhJhyRKUsm+jQiHvOk5UyXSr4W5nZ+fq6gogKChIuji9IJVKdfjwYQAvv/yy1JcH4OnpCSAqKio6OrpQ/c6dOwG0b9++QYMGFZ2ciAzKoUP53fZGjXD6NFxcnvkkubkID0d4OE6fLu98REREpL8++ADSlUXGxti9G/Xriw5EREQkSPv22L27+FXaTU2xbh369av0TES61nAHMHnyZACRkZH+/v6ZUjcLAJCamjpmzJjY2FgAEydO1M6PHj3ayclJemLB+g0bNpw7dw7AzJkzKy08ERmC77/HwIHIygKAJk0QEYFGjZ7nPCqVondv9O4NT89yzUdERET6a+9erF0rjxctQu/eQtMQERGJ5u2N9evx93W5AGBmBl9fXLiAKVPExSLDZiI6QGH+/v4//vjj8ePH16xZExwc3KVLl7p16968efPkyZMpKSkAxo4d6+vrq623trZet26dr6/vmTNnWrVqNWDAACcnp/Dw8PDwcAD9+/f39vYW9mKISO/s34/hw+UlU5s2xcmTKLLBMxEREVGFSEzE8uXy2NMTM2YITUNERKQDYmMxfTo0mvyZKVOwapW4QEQ62HBXKBTBwcELFy5csWJFfHx8QECA9iE7O7tPP/106tSphZ7i4+OTkZExderUuLi45drfQAFfX98tW7YoCv6Ri4joXwgMxPDhyM0FgGbNcPIk6tYVnYmIiIgMxv79ePIEAJo2xc6d4H90iIjIwGVkYOBApKYCgI1N3uPHRgB/PpJ4OtdwB2Btbf3ll19OmjTpp59+io6OvnPnjouLi5ubW8+ePaXVY4ry8/Nzd3fft2/f1atXVSqVs7Ozp6dnhw4dKjk5Eemx777DyJFyt715c5w8iTp1RGciIiIiQ5KUBAA2NggKQrVqotMQEREJlZeHYcNw9SoAWFjA1/fJ1q22okMRAbrZcJc4OzuPHDmy7PW1atUqevE7EVG52LsXo0bJ3XY3N5w4wW47ERERCaBQYOtWvPii6BxERESiffghfvgBABQKfPNN1o0buaITyerX/8cSN2SAdG7TVCIiXbNtG0aMkLvtbdrgzBl224mIiKjypKfn3x3/wQfw8RGahoiISAd8+y1WrJDHs2fDx0ctNA7RP7DhTkRUmq1bMWEC8vIA4KWXEB4OR0fRmYiIiMhg3L6Nb7+VL5Tr1AkLF4oOREREJNr585gwQR57emL+fKFpiIpgw52IqESbN2PiRLnb3rYtu+1ERERUqTIzMWiQvHR77drYvx+mpqIzERERCZWQAG9vZGUBgJsbdu2CEbubpGP4JUlEVLxNmzB5stxtf/llhIejRg3RmYiIiMiQvPsu/vtfADA1RWAg6tYVHYiIiEgolQoDBuDuXQCoUQMHD8LOTnQmoiLYcCciKsaGDfnd9nbtcPw4HBxEZyIiIiJDsnkztm6VxytX4vXXhaYhIiISTaOBnx8uXgQAU1Ps34/GjUVnIioOG+5ERIWtWoUpU/IXSz15kt12IiIiqlSXLuH99+XxsGF4912haYiIiHTAl19i7155vGYNuncXmoaoZGy4E5H+y83F7t346CP58H//w7RpiIsrvnjFCkyfLnfbO3fGkSO8Q42IiIgqVUoKvLygUgFAq1bYvFl0ICIiItFCQ/HZZ/L4nXcwebLQNESlYsOdiPRcQgL+8x+MHInz5+WZJ0+wejVefBHr1hUuXr4cM2bI4//8h912IiIiqmx5eRg+HDdvAoC9PYKCYGUlOhMREZFQf/yBUaPkRV9ffx0rV4oORFQqNtyJSJ9lZuLNNxEVVcxD2dl47z3s2pU/s3QpZs6Ux6+/jiNHYGtbGSGJiIiItObOxY8/AoBCgW3b4OoqOhAREZFQycnw8EB6OgA0aoQDB2BmJjoTUalMRAcgIqpAa9fiypXSCj74AF5esLHBkiWYNUue7NIFhw7BxqYSAhIRERHlO3gQixbJ4zlzMHCg0DSkd7Kysk6fPh0dHR0fH//CCy+0aNGiS5cuxsbGJdUrlcrQ0NCrV68qlUpnZ2d3d3dX/gmIiCpXTg68vfHnnwBga4uDB+HkJDoT0dOw4U5E+mz37qcUJCXhyBFcvYrPP5dn3ngDISGwtKzoaERERET/EBeHUaPkjWR69cpfqZaoXISFhfn7+9+4caPgZOvWrdesWdO1a9ei9SEhIX5+fikpKdoZf3//CRMmrFmzxsLCosLjElHV8f77uHcPAFavRp065XzyqVNx6hQAGBlh9260bFnO5yeqCGy4E5Heys19yuXtkrVrEREhj998E8HB7LYTERFRZVOp4OODR48AwNkZe/ei5MuOiZ7ZwYMHPT09AZiZmXXu3Ll+/fo3btw4f/785cuXe/fufe7cuQ4dOhSsP3r06ODBg9VqtZGRUfv27WvXrn369On09PTNmzenpaXt27dP0OsgIl3044+IiQGABQvKueG+fj02bJDHCxfCw6M8T05UcbiGOxHprceP5T1VSqfttvfpw2vbiYiISIy338avvwKAhQUOHICjo+hApEfS09PHjh0LoHHjxr///vvJkyd37dp19uzZCxcuODo65uTkDB06VCPdWwEAyMrK8vPzU6vV9vb2V65ciYqKCg0NTUpKcnd3BxAYGBgaGirsxRCRwYiIwPTp8tjbGx9+KDQN0bNgw52IKsOVK/DxgY8P5s+vvA9ardozbKXSty+Cg8G7Y4mIiKjyrVmDnTvl8bp1aN9eaBrSO1FRUcnJyQDWr1/ftGlT7Xy7du0WLlwI4M8//7x+/bp2PiAg4O7du9LAzc1NmjQ1Nd27d6+LiwuAZcuWVWZ+IjJAf/0FLy9kZwPAyy9jxw4oFKIzEZUZG+5EVBkSE7F/P/bvx08/Vd4HVSjw2mtlqnzrLXbbiYiISIzz5zFzpjyeOBF+fkLTkD76Vbp7AnityC/HnTp1KlQDICQkBEDz5s379etXsNjGxsbb2xvA+fPnHz58WHGBicjAZWSgf38kJQFA7doIDYWVlehMRM+CDXci0meTJj295q23cOAAzM0rPg0RERHRPz14AG9v+Qq+l17CV1+JDkT6SLvH6YMHDwo9pJ2xLLCuYkREBICePXsWPZWHhweAvLy8s2fPVkRUIqK8PAwfLu/HZmGBkBDUry86E9EzYsOdiPTZkCHw8iqtoHt3BAez205EREQC5ObC1xd37wKAgwOCgriXDFWIvn37KhQKAMuXLy/00MqVKwFYWVl16dJFmnnw4MGjR48AtGzZsuipOnToIJ0qRtohkYiovM2ejYMH5fH69Xj1VaFpiJ4LG+5EpM8UCgQEYMoUGBX33a57dxw7BlPTSo9FREREBHz4obzanpER9uyBi4voQKSnmjRpsmTJEgCbNm3y9PQMDg6+ePHivn37usRk4b0AACAASURBVHTpcujQISMjo02bNjk4OEjF8fHx0qB+cdeUmpmZOTk5Abh9+3ZlxSciA7J/P5YulccffYRx44SmIXpeJqIDEBFVLAsLrF+P99/H0qXYujV/3tsbe/bAhN8FiYiISIR9+7BqlTxesABvvik0Dem7mTNnNmzYcPjw4WFhYWFhYdp5e3v74ODgbt26aWceP34sDWxsbIo9lY2NTWJiYkZGRukfUVGG/Q3ZtS9IpVKlpqZaWFgolUrRWXRISkpKZmamSqWy5B1ABSQkJIiO8A+5uXWlBmNCQoKFRe5zn+fKFbPRo2tpNAoA3bplTpqUWPZvEiqVKj3dAqgOICMj4/bt1OeOoU/4DhKFV7gTkUFwdcX9+/mHI0di715224mIiEiM69cxcaI87t8fs2YJTUMG4Nq1a6tXr87NlRthtra20uDRo0erVq26d++etlKlUkkD8xJWXZTm2RQmovKVmGg8fryTSqUA0Lhxzrp1ScbGojMRPS92m4hI/6nV8PPDoUPyYa1a2LGj+EVmiIiIiCpaRgYGDkR6OgA0aYJvv0UZLgUmen4xMTFdu3ZNTEx0cXFZsmTJm2++aWdnl5KSEhQU9Mknn4SFhV27di0iIqJmzZoosMNqtrSZbxFZWVkAzMzMSv+gGo2mlEel69+dnZ2f4+XoK6VSaWlpaWVl5ejoKDqLDrGyslIqlY6OjlZWVqKz6BzdeQdpL2WrW7fu84XKzISPD6S//Tk44McfTV1dn22nVKVSaWeXJY1tbW2dnW2fJ4fe4TtIFDaciEjPqdUYMwY7d+bPNG3KbjsRERGJodFg3DhERwOAtTWCglCtmuhMpO+mTZuWmJjo4OAQERHh7e1tZ2cHwMHBYfz48cePHzc3N4+JiZk3b55UbG1tLQ2ePHlS7Nmka9tLWnCGiOg5jB+PqCgAMDFBYCBcXUUHIvp32HMiIn2mVmPsWOzeLToHEREREQBgyRJ8/708/vprtGwpNA0ZgEePHh05cgTApEmT6tWrV+jR1q1bDx48GEBAQIA0o60pdpHo3NzcxMREAHXr1q24zERkUBYvxt/fgfDVV+jZU2gaovLAhjsR6S3p2vZvv5UP+/cXmoaIiIgM3qlTmDtXHk+bhlGjhKYhw6DdmLRVq1bFFrRu3RpAenp6amoqgHr16klXr1+/fr1ocVxcXF5eHgA3N7cKCkxEBuXHHzFnjjweOxbvvCM0DVE5YcOdiPSTWo1Ro/KvbZ80CTNmCA1EREREhi0+Hr6+kDatfO01LFkiOhAZhkaNGkkLphd7xbp23t7e3t7eXprp1KkTgIiIiKLF2kmphojo37h2DUOGQK0GgP/8Bxs2iA5EVE7YcCciPZSTAx8f7NkjH06ejG++4XZkREREJExODoYOxcOHAFCrFvbvx9O2nCQqH3Z2dq6urgCCgoKki9MLUqlUhw8fBvDyyy8r/v512dPTE0BUVFS0tNtAATt37gTQvn37Bg0aVHRyItJvKSno3x9paQDQsCEOHOBPRtIfbLgTkb7JzoaPD4KC5MPp09ltJyIiIsHeew/nzgF/bwdXZCVtogo0efJkAJGRkf7+/pmZmdr51NTUMWPGxMbGApg4caJ2fvTo0U5OTtITC9Zv2LDh3LlzAGbOnFlp4YlIL+XmwscHcXEAYGODsDDUrCk6E1H5MREdgIioPEnd9tBQ+fCDD7B8udBAREREZPB278bGjfJ42TJ06SI0DRkef3//H3/88fjx42vWrAkODu7SpUvdunVv3rx58uTJlJQUAGPHjvX19dXWW1tbr1u3ztfX98yZM61atRowYICTk1N4eHh4eDiA/v37e3t7C3sxRKQXpk3DiRMAoFBg61a0bi06EFG5YsOdiPRHdja8vREWJh/OnImlS4UGIiIiIoP322+YNEkeDxmCadOEpiGDpFAogoODFy5cuGLFivj4+ICAAO1DdnZ2n3766dSpUws9xcfHJyMjY+rUqXFxccsLXMDi6+u7ZcsWBe8eJaJ/Yft2rF8vj7/4Aj4+QtMQVQA23IlIT2RlYfBg/PCDfPjhh9yLjIiIiARLTYWXF5RKAGjeHJs2iQ5Ehsra2vrLL7+cNGnSTz/9FB0dfefOHRcXFzc3t549e0qrxxTl5+fn7u6+b9++q1evqlQqZ2dnT0/PDh06VHJyIiooIgJZWUhMtHjllSzRWZ7T2bOYPFkeDxqE2bOFpiGqGGy4E5E+UKng6Ynjx+XDjz7C4sVCAxEREZHBy8vDiBG4cQMAbG0RFARbW9GZyLA5OzuPHDmy7PW1atUqevE7EQk0bBju3AFQ8+ef77q6ik7z7G7dgpcXsrMBoG1b7NzJ7dZIP3HTVCKq8pRKeHjkd9vnzasa3fbUVPk3i9xcZGSIzUJERETl7/PPcfgwACgU2L4dbm6iAxEREYnz+DE8PPDwIQDUqoXQUFhbi85EVDHYcCeiqk2pRP/+CA+XD+fPx2efCQ1UBjdvKiZOdOzQwUE6VCpRowbGjkViothcREREVG6OH8eXX8rjWbMwaJDQNEREREJpNBg3DpcvA4CZGQID0aCB6ExEFYYNdyKqwp48gbs7Tp6UD7/4AnPnCg1UBhcuoFMni6NHrfLy8idzcrBjB9q2RVycuGRERERUTm7dwtChUKsBoEcPfPGF6EBERERCzZ2L/fvl8fr16NJFaBqiCsaGOxFVVVK3/dQp+fDLLzFnjtBAZfD4MQYORHp68cvUJSRg0CD5P+dERERURWVmwssLyckA0KABvvsOxsaiMxEREYlz4AAWLpTHH3yA8eOFpiGqeGy4E1GVlJaG3r1x+jQAKBRYtapqbG6+ZQsSEkoruHwZwcGVlYaIiIj+z959BjR19WEAf5Kwh4KKWC24R+vWaq1U654giuDAvarVah1179VKXdW6Wq0LFygo7u1r3avuvVdFFFCRTZL3Q66AMsUkJyHP79O5957c+4CGC/+ce44O9O+Pf/8FAHNzbNgAJyfRgYiIiMQ5fx7dukGtBoAmTeDnJzoQke6x4E5Exuf1azRrhhMngHfV9sGDRWfKnh07su6jWV2NiIiIjNGiRVixQmovWIDatYWmISIiEio0FJ6eiI4GgLJlERDAp77IJJiJDkBE9HFevUKzZjh1CgBkMsybh4EDRWfKtgcPtNOHiIiIDNCpUxg6VGp37ozvvxeahoiISKiEBLRrh8ePAcDREVu3wsFBdCYivWDBnYiMyatXaNoUp08DgEyGP/7AgAGiM30MeTYeK5KlP8E7ERERGbSwMHh7Iz4eACpXxp9/ig5EREQk1IABOHIEABQKrFmDMmVEByLSF04pQ0RGIzISTZqkVNsXLDCyajuAokWz7lOsmM5jEBERkXYplejcGU+eAICjI4KDYWMjOhMREZE4s2Zh2TKpPXs2WrQQmoZIv1hwJyLjEBmJxo1x5gwAyGRYtAj9+4vO9PHc3bXTh4iIiPTp+XPcu4d796RZaNMaPRr79gGAXI61a1GihD7TERERGZa9ezFqlNTu1g0//SQ0DZHeseBOREbgxQt89x3OnQMAhQIrVqBfP9GZcqRXL7i4ZNahWjV4euorDREREWXPoEEoWRIlS6a//nlICGbNktqTJqF5c31GIyIiMiw3b6J9eyiVAFC7NudYI1PEOdyJyNCFhaFRI1y+DAAKBZYvR9euojPllK0ttmxBo0bqyMh0Zmp3cUFQULbmeSciIiIDcesWunWDWg0A7u4YO1Z0ICIiInEiI+HhgVevAMDVFcHBsLTU06Xbt4/29ISjo2PevHq6IlFGWNchIoP2/DkaNEiptq9cacTVdo1q1XDiRJynZ4xZqk88razQty/On+cE7kRERMbk7Vu0aYPXrwGgWDGsXMkPzomIyHRpVjS5fRsArK0RFARnZ/1d3d5eVbSoskQJ5M+vv4sSpYu/DxKR4dJU269eBQCFAqtWoXNn0Zm0wcVFPX/+y/PnIzSbtraIiMCSJfy1gIiIyJio1ejVC9euAYCVFYKCeCsnIiKTNmMGdu4EAJkMK1bgq69EByIShAV3IjJQoaFo0ED6I1ahwOrV6NRJdCatsrVVaxoKBaytxWYhIiKijzZ7NgIDpfbixahWTWgaIiIi0VavlhoTJ6J9e6FRiITiHO5EZIgeP0aDBrhzBwDMzREQgDZtRGciIiIieuf4cYwZI7V//BHdu4sMQ0REZDjatMGECaJDEAnFEe5EZHAePUL9+lK13cICgYGsthMREZEBCQ2FtzcSEwGgVi3Mni06EBERkThJSSntypXh7w+ZTFwaIgPAEe5EZFg01fZ794B31XZPT9GZiIiIiN5JTISPD549A4CCBbFxIywsRGciIiISJDYW//0ntR0cEBwMW1uhgYgMAAvuRGRAHj5E/fq4fx8ALCywaRM8PERnIiIiIkplyBAcPQoACgXWrMHnn4sOREREJIhajR49EBcnbf7xB0qUEBqIyDBwShkiMhQPHqBePanabmmJoCBW24mIiMiwHD2KhQul9owZaNxYaBoiIiKhJk9GQEDKZs2a4qIQGRIW3IlI565csfjrL6l97RqWL0ds7Id9bt9GnTp48AAAbGywbRvc3fWZkYiIiChryb/StG6NYcOERiEiIhJq0yZMmSI6BJFBYsGdiHQoOhqDB+dv2bJQ8ofeoaHo1QulSuHAgZRut26hfn08eQIANjbYupXjxYiIiMhQPHworS4DID4eAMqWxapVXBGOiIhM14UL6N4dajUA2NiITkNkYFhwJyJdUSrRpg02b05nwZT//kPLlvjnHwC4eRP16+PpU+Dd2PaGDfUblIiIiCg9kZHyvn3tS5TA2bMpO2UyeHrC3l5cLCIiIqFevkTbtoiOBoDixfHZZ6IDERkYFtyJSFdWrsS+fRkejY9Hnz64ehX160trmtvaYvt2NGigt4BEREREGXrxQublVSg42FKlem+/Wo3ffkPfvoJiERERCZWYCG9v6dkve3ts2waFQnQmIgPDgjsR6UryJKcZuXULdevi2TPgXbW9fn095CIiIiLK2rBhFvfumWV0dOlSBAXpMw4REZFB+PFHHD4MAHI51q1D+fJQKqVDH3xETWSyWHAnIp1QKnHuXNbdIiIAIG9e7NuHevV0nImIiIgoe548QXBwFgP2Zs3STxYiIiJD8fvvKUPrZszAgwcoVw5370p7vvkGgwfjxQtR6YgMRYZDNoiIPkVkZMqn3JnLmxe7d6NWLR0HAipWlKa4cXDQ+bWIiIjIqO3fLy0El4nTpxEVxcnciYjIVOzbh+HDpXbHjti1C4cOvdfh1SvMm4fAQOzZg4oV9R+QyFCw4E5EOpE3L+TyrB8os7LC3r2oWVMfkRwc0KiRPi5ERERExk4z5V3mVCo8e8aCOxERmYT79+Hri6QkAPjmG6jVH1bbkz17hpYtce0a7Oz0GZDIgHBKGSLSCXNzlC+fdbfp0/VUbSciIiLKPkvLbHWzsdFxDiIiIgMQFQUPD7x8CQCFC2PKFAQEZNb/8WMsWKCfaESGiAV3ItKVrl2z6ODkhB9+0EsUIiIioo8hk2XdJ08eODvrPgoREZFQKhV8fXH1KgBYWWHLFhw7lvXEa5s36yEakYFiwZ2IdGXgQFSpkuFRuRxLlsDaWo+BiIiIiLLh5UvMnZt1N09PmJvrPg0REZFQI0Zg+3YAkMmwfDlq1MCdO1m/6vZtXeciMlwsuBORrlhaYtcu1KwZn/aQlRWWL4eXl/5DEREREWVGpULnznj8OItudnaYNEkfeYiIiATy98fs2VJ77Fh07AgAiYlZvzA+nUoAkalgwZ2IdKhQIQQEPP/559cKhbRHJkPfvrhzB926CU1GRERElJ5x47BnDwDIZGjSJCbdPnnzIjgYJUroNRgREZGenTiBPn2ktqcnJk+W2kWKZP1aFxddpSIyfCy4E5FunT1ruXhxHqVS2qxZE0uWZOv2TERERKRn27ZhxgypPXp04tKlLzdufN24MeTv/myyt8f33+PSJTRuLCojERGRPvz3H3x8pIHqX3yB1atT7obZuQnyRkmmjAV3ItKhf/5B9+4Fo6NT1h2ztRUYh4iIiChDt2+jSxdpFbhGjTBqVCKAevUS9+5NmQdv6VL8+SdcXcWlJCIi0r3YWLRujadPASB/fmzbhjx5Uo42aYKvvsrs5RYWGDRItwmJDBkL7kSkK4cPo0ULaKrt+fKJTkNERESUsehoeHnh9WsAKFoU69cjeUI8IGVMn0yWzmuJiIhyE7UavXrhzBkAMDfHxo0oWfK9DnI5/P3h5JT+y2Uy/PUXSpfWeU4ig8WCOxHpxJ49aN4c0dEAULiw8vffRQciIiIiylj//rhyBQCsrBAUhAIFRAciIiISZPp0rF8vtefPR/366fQpVw5nz8Ld/cOPor/4Anv2cM02MnUsuBOR9u3ejdatERsLAIULJ23Y8JyTthMREZHB+v13rF4ttRcuRPXqQtMQERGJExKCiROl9oAB6Ncvw56urti2DXfvolAhac/GjbhyhbO3E7HgTkTatmsX2rRBXBwAuLoiICCsaNEk0aGIiIiI0nfiBEaOlNr9+qFnT6FpiIiIxLl+HV27QqUCgDp1MGdO1i8pXjxlevdKlVImYSMyZWaiAxBRrrJjB9q2ldYxL1oUhw5BoWC1nYiIiAzU8+fw8UFCAgDUrAlOgkdERCYrPBweHnjzBgCKFUNQECwsRGciMk6GW3BXqVRbt27dtGnT3bt3FQpF+fLlfXx8GjVqlFH/EydOrFy58urVqzExMa6urh4eHp07d7a0tNRnZiITt307vL2lanuxYjh0CMWK4dEj0bGIiIiI0pOUhHbt8PQpAOTLh4AA8K8HIiIyTYmJ8PHB3bsAYG+PbdsyXBOViLJkoAX30NDQDh06HD58OHnPsWPH/vrrrw4dOvj7+5uZfRh72LBhc1I96HL+/PmQkJB58+Zt27ataNGiegpNZNo2bYKvLxITAaB0aRw6BM7bTkRERIbs55/xzz8AIJdj3ToUKyY4DxERkSiDBuHQIQCQy7FmDSpUEB2IyJgZYsE9NjbW3d393Llzcrm8adOmDRs2BBAQEHDmzJkNGza4uLj89ttvqfv/9ttvmmp7mTJlWrduXahQoX379u3atevy5cseHh6nT5+2srIS85WQzvzwA86cAYDFi1Gjhug0BGzciE6dpGp72bI4cIDVdiIiIjJoGzZg3jypPX06mjYVmoaIiEichQuxZInUnj4drVoJTUNk/AxxLYMZM2acO3dOJpMtXbp0586dw4YNGzZs2MmTJ9u3bw9g1qxZ9+/fT+4cFhY2efJkABUqVDh79qyfn9+QIUN27tw5ceJEAJcvX/7rr79EfSGkO7du4dw5nDuHqCjRUQgIDEwZ2162LA4eZLWdiIiIDNqNG/j+e6ndqlXKoqlERESm5sgRDB0qtX18eE8k0gKDK7i/ffv2999/B9C/f/+ePXsm75fL5fPnz1coFGq1euvWrcn7//7775iYGJlMtmnTJnt7++T9kyZNqlWrFoA//vhDj/GJTM6GDejUCUlJAFCuHA4dQuHCojMRERERZSwqCl5e0riN0qWxejVkMtGZiIiIRHjwAG3bSouHV6uGlSt5TyTSAoObUmbPnj1v3rwB0Lt37w8OFSxYcOfOnW/evEk9Lfv27dsBuLm5lS1b9oP+Xl5eJ0+evHPnzu3bt0uXLq3j4ESmaP16dO0qVdu/+AIHD6JQIdGZiIiIiDKmVqNHD1y/DgC2tti8GXnzZv2qEiVQvToAODrqNh4REZHeREXBwwMvXgBAoUIICYGNjehMRLmCIRbcAZQtW7ZKlSppjzZp0iT1pkql+vfffwF8++23aTu7u7uPGDECwOnTp1lwJ9K65cvRpw9UKgCoXBn796NAAdGZiIiIiDL1668ICpLaixejfPnsvurXX3UXioiISN9UKnTujCtXAMDKClu24PPPRWciyi0MbkqZK1euAEgern737t1du3YdOnQoIiIibedHjx7FxcUBKFOmTNqjZcuWNTMzA3D79m0dJiYySX//nVJtr1KF1XYiIiIyAgcPYsIEqT1kCLp0EZqGiIgo227cwNChCAuTNqdPdzx8+JNOOHYskidsXrgQX3/9SWcjotQMboT7nTt3ABQqVOj8+fP9+/c/efJk8qEKFSosWbLEzc0teU9oaKim8dlnn6U9lVwud3Z2fvr06bNnzzK/6P79+7MMpqnsk0ZcXFx8fLxCoRD1bVGpLDQfFyUkJMTFqYRkSCs+Pj4+Pj4uLk4uN7iPsrRr+XLFwIHm78a2q3bsSLSzU2f0fyE+Ph5AQkICYAFApVLFxSXoL6tB0ryDlEqz1HsE5jEQpvMOIiIiIR4/RocOUCoB4JtvMGOG6EBERETZM20aJk2SbmEa27bZbNuGDh2wfDmsrT/6hBs3ws9Pao8ciVRLKBKRFhhcwf3Vq1cAHjx48O2338bExAAoXLhwREREXFzclStX6tatO3v27MGDB2s6R0dHaxo2GcwyZW1tnbpbRho3bpxlsLDkjxEJiI2NjYyMjI6OVqb+ea9HCQkFASsAr169CgszlEql5j+qSqWyzsHtznisW2c3Zkw+tRoAKlRIWL06LClJlcn7Izw8HMCrV3mBggASEhL4btK8g5TKOKAwAJVKxe8JTOYdREREQsTHo23blGlqN22ChYXoTERERNng54fx49M/tGEDEhJSpkrLpn//Rffu0PxR37Qppk//1IRE9AHDKrgnJCQkJiYC2Lt3r5WV1fTp03/88cc8efIolcqDBw/27dv3/v37o0aNatasWbly5SCNmQUAzdQxaWn2Zzl0tFGjRpkc1Yx/t7Ky+vgvKNdSq9WWlpZWVlaivi3JA2AtLCwM51/GyspKrVYL/LbowapV1mPG2GtuzJUrJwUGvnFwyOKvVUtLSwAW7/6olcvlufj7k02ad5CFhcXGja8AmJnxJwxgGu8gIiISZdAgnDkDAObmCAxE4cKiAxEREWXD48eYNCmzDsHB2LEDLVtm94ShofD0REwMAJQrh4AAKBSfmJGIPmRYBffUFi5c2PPdMy0KhaJx48a7d++uUKFCfHz8hAkTAgMDkWpgu2bOirQ0pfYsB0vu27cvk6MymQxAwYIFP/IryM1iYmJkMpmNjU0BQfN2J49IcnBwMJx/GblcHhMTU6BAgYweuTB2c+di5EjpY/DatbFrl1mePFn/B9C8DSMjHTSbFhYWfDclv4PKl3cQncWA5Pp3EBERieLvj7/+ktqzZqFOHaFpiIiIsi0gAFnOP7pqVXYL7nFxaN0aT54AQL582LYNefN+akIiSsuw5sm1sLAwNzcHULx48Z5pZpAqU6aMl5cXgLNnz2r22Nvbaxpv3rxJ94Sa/cndiCjHZs/G0KFStd3NDbt3I08e0ZmIiIiIsnLxIvr2ldodOmDQIKFpiIiIPsa//2qnj8aAATh1CgDMzBAYiFKlch6MiDJhWAV3vBtIXqVKlXSPli9fHsCDBw/evn0LoHjx4pr9TzQfz70vNjY2IiIidTciyplZs/Dzz1L722+xaxf4MRYREREZvshIeHkhNhYAKlTAsmWiAxEREX2M16+z7hMZma1T+flh+XKpPXcuGjbMeSoiypzBFdw1k7NnNOu6ZnYXCwsLzQy/jo6Ozs7OAC5dupS28+XLlzWNL774QkdpiUzBb79h+HCpXacOq+1ERERkHFQqdOqEe/cAwN4egYGwtRWdiYiI6GPkz591n+zM9btnD8aOldo9euDHHz8pFRFlzuAK7m5ubgAuXLigVCrTHj1//jyAL7/8MnmV1AYNGgA4ePBg2s4HDhwAYG5uXrduXd0FJgIQHQ0/P8yfb71qVW4rRfv5YeRIqV23LnbuhJ2d0EBERERE2TNpEnbtAgCZDCtXgoNwiIjI6Hz9ddZ9atfOosONG2jfHpoym5sblizRQjAiyoTBFdw1s7Q/e/Zs4cKFHxy6ePFiSEgIgG+//TZ5p4+PD4A7d+7s3r07def4+Phly5YBaNasWR5ONU06FhWFUaMwdartH3/kqv9skyZh1Cip3aQJdu9mtZ2IiIiMw/btmD5dao8ZAy8voWmIiIhypF27rNc1TbMG4nsiIuDhIU1NU7QogoNhYaG1eESULoMruFeuXNnd3R3AiBEj5syZkzzO/cCBAx4eHkqlsmDBgpMmTUru37p164oVKwLo27fv7du3NTsTEhL69et37949mUw2btw4fX8NRLnCxImYPFlqN22KLVtgbS00EBEREVH2PHiA7t2hUgFAw4Ypv9IQEREZFycn/P47ZLIMO/Tvjzp1MjyalIR27XDnDgDY2WHrVhQsqP2QRPQBgyu4A1iyZImLi0t8fPywYcPs7e2rV69esGDBRo0aPX782NraetmyZfny5UvuLJPJ1q5da2dn9+jRo7Jly9aoUaNFixb58+dfuXIlgIkTJ9asWVPYV0JktMaPx5QpUrtZM1bbiYiIyGjExqJtW4SHA4CLC9avh0IhOhMREVFOde+OFSvSWUpNocCIEZg/P7PXDh6MAwcAQCbD33+jUiVdhSSi1Ayx4F6kSJFjx455eHjIZLLY2Nh///33xYsXAOrVq3fp0iUPD48P+lesWPHYsWPVqlVTq9Vnz57dtWvX27dvHR0dFy1aNHHiRBFfAZFxGzsW06ZJ7ebNsXkzrKyEBiIiIiLKtv798e+/AGBpiaAgODmJDkRERPRpunXD/fuYOzdlJFzv3lE3b8LPL7MPlVesQPJszVOmoF07neckIg0z0QHS5+LisnXr1qdPn54+fTo8PLxEiRKVK1fOn/HazJUqVTp37tylS5euXr0aGxvr6upap04dS0tLfWYmyh3GjMGvv0rtli0RFAS+k4iIiMhYLFiAlStT2jVqiAxDRESkLfnzY/BgzJ6NJ08AoHfvNyVLphn0nsrRo+jXT2p7eWHsWN1Hqs6YKwAAIABJREFUJKJ3DLTgrlGkSJE2bdpkv3+lSpUq8fEYopxSqzFkCObNkzbd3bFpE6vtREREZDROnsSwYVK7Sxf07i00DRERkSAPH6JtWyQkAECVKli9OrNZ4IlI6wxxShki0j+1Gj/9lFJt9/ZGcDCr7URERGQ0nj+Hj09KceHPP0UHIiKi3KVcOeTLh3z5EBYmOkqm3r5Fq1ZSSGdnbN0KW1vRmYhMjEGPcCci/VCrMWgQFiyQNn18sG4dzPjjgYiIiIxEUhLat5eess+XD8HBXO+diIi07PVrREYCgEolOkrG1Gr06oVLlwDA3ByBgXBxEZ2JyPRwhDuRqVOr8eOPKdX29u1ZbSciIiIjM2oUDh8GALkca9ageHHRgYiIiESYMAGBgVJ70SLUrSs0DZGpYsGdyKSp1RgwAIsWSZsdOmDNGlbbiYiIyJhs2YI5c6T25Mlo3lxoGiIiIkGCgzF9utQeOpRrmRAJw7oakelSKtG7N1aulDY7doS/PxQKkZGIiIiIPsrNm+jWDWo1ALi7Y8wY0YGIiIhEuHABXbtKN8QmTeDnJzoQkQnjCHciE6VUomfPlGp7z55Ys4bVdiIiIjImb9/Cywtv3gBAqVLw94ecf98QEZHpef4crVohOhoAypZFQACfXCcSib+QEpkipRI9emD1ammzd28sXco/UImIiMiYqNXo2RPXrgGAtTUCA+HgIDoTERGR3iUmol07PH4MAHnyIDiYN0QiwVhgIzI5SiW6d4e/v7TZpw/+/JPVdiIiIjIyM2di40apvXgxqlYVmoaIiEiQ/v3xzz8AoFBg/Xp8+aXoQEQmj0+YEJkWpRJdu2LdOmmzb18sXgyZTOfXtbdH9eoAUKaMzq9FREREud6hQxg7VmoPHIhu3YSmISIiEmT2bCxbJrVnzUKLFkLTEBEAFtyJTEpiIjp0QHCwtNmvHxYt0ke1HUCNGjh7Vh8XIiIiolzv2TN06oSkJACoVQuzZokOREREJMLevRg1Smp37YrBg4WmIaJ3OIsEkalISEC7dinV9iFD9DS2nYiIiEiLNDPVPnsGAM7O2LQJFhaiMxEREendzZto3176+Ll2bfz1l+hARPQOC+5EJkFTbd+yRdocNgxz5ggNRERERJQjP/2Eo0cBwMwMAQEoUkR0ICIiIr2LjpZ5eeHVKwAoXBgbN8LSUnQmInqHU8oQ5SpJSYiKAgAzM9jbSzsTEuDjg61bpc3hw/Hbb2LiEREREX2KtWuxeLHU9vPDd98JTUNERCTI+PH5rl0DAGtrbNmCwoVFByKiVDjCnShXOXMG+fIhXz40bSrtiY9H27Yp1fYRI1htJyIiIqN06RK+/15qt26NIUOEpiEiIhLn+HErADIZli9HjRqi0xDR+zjCnSg3i42Fpyf27ZM2R47EjBlCAxERERHlSGQkvLwQEwMAZcti1SouRUNERKZu/Hh06CA6BBGlwRHuRLlWTAxatUqptk+axGo7ERERGSWVCl264O5dALCzQ3Aw8uQRnYmIiEjvEhJS2l5emDRJWBIiygRHuBPlTioVPDxw8KC0OWUKxo8XGoiIiIgop6ZOxY4dACCTYcUKfPml6EBERER69+gRwsOldunSiatWmfNhLyLDxII7GZ/oaERESO3Hj4VGMWA3buD1a6k9dSrGjROahoiIiCin9u3D1KlSe8QIeHsLTUNERCRCbCzatoVSKW3OmBFhZ+csNBERZYhTypAxiY7G0KFwdsaFC9Ke7t1RvToOHRIayyAlV9tnzmS1nYiIiIzVw4fw9ZXqC/XrY9o00YGIiIj0Tq1Gz544ezZlT5EiSeLiEFEWWHAnoxEZCTc3zJ2L6Oj39v/7Lxo1wrJlgmIZmNTfHJkMc+fi55/FpSEiIiL6BHFxaNsWL18CwOefY8MGmPEBXSIiMj1TpmDDBtEhiCjbWHAno/HDD7h4Mf1DKhV++AGXL+s3kOF5/RqDB6dszpv33iYRERGRcRkwAOfOAYC5OTZsQMGCogMRERHp3ebNmDJFatvZCY2SgTx54OgIR0coFKKjEBkGFtzJONy6hcDAzDokJeHXX/WVxiC9eoWmTXH1qrRZvDgGDhQaiIiIiOgTLFmC5cul9vz5cHMTmoaIiEiEixfRpQtUKgBo1AgODqIDpefMGUREICICJUuKjkJkGFhwJ+OwezfU6iz67NqllygGSVNtP3UqZU+hQuLSEBEREX2a06dTHtTr1An9+glNQ0REJEJ4OLy8pJljixfH+vWiAxFR9rDgTsbh0aOs+7x6lbJSqEmJjETjxjh9GgBkMtFpiIiIiD5NeDjat0d8PABUqoS//hIdiIiISO8SE+HtjXv3AMDeHtu2oUAB0ZmIKHu46hAZh2xOBGaC84W9eIFGjXDpEgDI5Rg9GtOni85EREbu1q1b58+fv3XrVnR09Jdfflm5cuXKlStn1FmlUh04cODkyZPh4eEFCxasV69e7dq1Mzl5TExMSEjI1atXY2JiXF1d3d3dS5UqpYMvgoiMlUoFX188eAAAjo4IDoaNjeBIRLnJixcvQkJC7t69q1Aoypcv36hRIycnp4w6865NJNCPP+J//wMAuRzr1qF8ecF5iCj7WHAn41CsWNZ9nJwMdP0Q3QkLQ6NG0mqxCgX+/htlyrDgTkQ5FxkZOXr06KVLl6o080S+06JFiz/++KNEiRIf9L927VqHDh0uv79otZub27p161xdXdOef8uWLb169YqIiEjeM2TIkD59+syfP9/Kykp7XwcRGbGxY7F3LwDI5VizhrPBEmlNUlLS5MmT/fz8EhMTk3c6ODjMmDGjb9++afvzrk0k0Pz5KQ94zZgBd3ehaYjoI7HgTsahZUsoFFAqM+vTqpW+0hiGsDA0bIgrVwBAocDy5ejaFSdOiI5FREZLqVQ2aNDgwoULAIoVK1ajRg0rK6szZ87cuHFj586dR44cuXDhQuqa+5MnTxo0aPD8+XMApUqVqlq16vHjx58+fXrs2LHGjRufOnXK4f1Fnfbs2ePt7a1UKuVy+VdffVWoUKH//e9/b968Wbp06evXrwMCAvT89RKRAdq8GX5+Unv8eLRoITQNUe7Su3fvVatWAciTJ0/dunUBHD58+NWrV/369bO3t/f19U3dmXdtIoH278ewYVK7SxcMHy40DRF9PM7hTsbB1RW9e2fWwdoaY8boK40BeP4cDRqkVNtXrkTXrqIzEZGRW7hwoabaPnTo0Fu3bgUGBq5evfr69esrV640NzePiorq3LmzMtUnn4MHD9ZU29euXXv79u3AwMAnT578+uuvAG7dujV58uTUJ4+Pj+/Vq5dSqXRwcLhy5cqpU6dCQkJevnzp7u4OIDAwMCQkRK9fLREZnlu30L071GoAaN4cEyaIDkSUi/j7+2uq7T179gwPD9+2bdu2bdtu3rypmTWuX79+kZGRyZ151yYS6P59dOyIpCQAqF4df/4pOhARfTwW3MlozJ2LBg3SP2RlhfXrkWaqAz25fTtlKNbr1/J588xfvNDtFUND0aABrl4FAIUCq1ahc2fdXpGIcj21Wj19+nQAlStXnjlzprm5efKhbt26jR8/HsCJEycuXryo2Xnnzp3g4GAAw4cPTz0mbtSoUT4+PgD+/PPPN2/eJO9fu3bt06dPNY0vvvhCs9Pc3Hz9+vXFixcHMHPmTB1/iURk0N6+hZcXND82ihaFvz/k/EuFSEuUSuXEiRMBNG3adOnSpWZm0pPun3322erVqwFERUXt2LEjuT/v2kSiREXBwwMvXwLAZ58hJATW1qIzEdHH46+xZDSsrbFnD2bNQuHCKTvlcri74/RpeHoKiKRUYsQIlCuH33+X9iQkyMaMMS9WDMuW6eqimmr7tWsAoFDA3x+dOunqWkRkOq5fvx4WFgbg+++/l6epcnV+97HeuXPnNI2tW7eq1WqZTDZkyJAPOvfo0QNAbGzsvn37kndu2bIFQLly5Vq8P0OEnZ2dpkB/4sSJF7r+uJKIDFj//tJgAisrBAUhf37RgYhykSNHjty/fx/AkCFDPrjLV6pUafz48QMGDEiuwoN3bSJBNMuGJ98Nt2xBkSKiMxFRjrDgTsbEzAzDhuHJE9SqJe3ZsgXbtqFiRTF5Bg7EzJl4f2VBAIiJQZ8+Oqm5P36MOnVw/ToAmJtj40Z07Kj9qxCRCXrw4IGmUTG9H6mff/65TCYD8OzZM82ef/75B8CXX3752WeffdC5QYMGdnZ2yX00jhw5AqBhw4ZpT96qVSsAKpXq6NGjn/plEJFxmjMH/v5Se9EiVK8uNA1RrqMZve7s7NyoUaO0R6dMmbJgwYIOHTok7+Fdm0iIkSOxfTsAyGT4+2/UrCk6EBHlFAvuZHxkMtjYSG1bW2Exjh7F4sWZdRg6FM+fa/OKjx6hfn3cuQMAFhYIDESbNto8PxGZsipVqmimc62eXqHrwoULarUaQKlSpTR7bt68CaBChQppO1taWlaqVAnArVu3NHueP3/+6tWrjPrXqFFDU81P7k9EJuX4cYweLbV/+AE9eghNQ5QbadZoqVq1qkKh0OyJiYlJSEhItzPv2kRC+Ptj1iypPXo03l/GmIiMDAvuRDmU5QD2qCgEBGjtcppq+927AGBhgY0b0bq11k5ORFS4cGF3d3d3d3eb5I8031GpVJo53O3s7Jo2barZ+fjxYwCff/55umfT7H/06FHqzhn1t7CwcHJySt2fiExHaCh8fKCp+339NebOFR2IKDe6ceMGgEKFCkVFRY0ePdrV1dXW1tbOzq5SpUoDBw5MvVwqeNcmEuHcOfTtK7WbN8eUKULTENEnM8u6CxGl5/TprPucOqWdaz18iPr1cf8+AFhYYNMmeHho58xERJmLjo7u27fvnj17AAwfPjx//vwA1Gp1TEwMAM3UMWlp9kdFRWk23759m3p/uv3DwsKS+2dEM6Quc/z7P7XY2NjIyEgrKyvNvxdpRERExMXFxcbGWnMZslT+++8//V80KUnWsWPB//6zBODoqJozJ/T58yT9x8gI30Hp4jvIGCXPt169evXbt29r2omJiZcvX758+fKmTZvWrVtXv359zX7etUXhz5x0GdTPHKWyCKAA8PTp04QEpbZOGxam8PAoFBurAFCqVOLMmc+fPk0zcW2aDM+fP3/0SGsZcgG+g9JlUO8gk8IR7kQ5FB6edR/N2uKf6MED1KsnVdstLREUxGo7EelJcHBwxYoV165dC6BLly6ace4A4uLiNDPMWFpapvtCzf7kX3ZjY2NT78+yPxGZiKlTHU6ftgSgUGD+/Jeff25A1XaiXEOpVMbHxwNYtWrV7du3mzRpEhIScuvWraNHj44ZM8bc3Dw0NNTX11czjQx41ybSr/h4WZ8+TqGhCgAODqq//35hb59htZ2IjAVHuBPlkIMDwsKy6JMv36de5fZt1K+Pp08BwMYGISFIb6EjIiItO3/+/ODBgzWrnlpbW0+ZMmXo0KHJQ9WS/wLPaPpXzR/2FhYWmk0rK6uP6p8RTZU/I5p4rq6umZ/EpMTExFhbW9vY2BQoUEB0FgNiY2MTExNToECBtBMokT7fQevXY+VKqf3LL+jcuaDeLp1NfAeli+8go5OYmKhpqNXqQYMGzZs3T7NZunRpNzc3Nze3li1bhoaGTpw4UXOId21R+DMnXQb1M+fdIggoUqRIoUJaOKFajc6dceECAJibIzhYXrdu4WxmcHZ2dnUtooUQuQXfQekyqHeQSeEId6IcqlYt6z5Vq37SJW7efK/avnUrq+1EpHNxcXFDhgypUaOGptru5eV16dKln3/+WS5P+Z1BLpdrnkmMjo5O9yQfTDhj+26F62z2J6Jc7/Jl9OkjtT09MXy40DREuZqVlZXmJl6gQIEZM2Z8cLRFixYNGzYEcPDgQc0e3rWJ9OaXX7BundSeNw/vJnYiIqPHgjtRDnXrlkUHKyt06JDz89+8iQYNUqrt27ahYcOcn42IKDtevnxZq1at33//XalU1q5d+8SJE0FBQaVKlUrbs0iRIsh40uenT58CKFy4cOrOGfVPSkoKCwtL3Z+IcreoKLRrB00pr0wZrFqFbEz1TEQ55+joCKBatWrpzuFbo0YNADdv3tSMheddm0g/du3CxIlSu39//PCD0DREpFUsuBPlULNmaNcusw4TJyLHj0jeuIH69aH5FdfWFtu3o0GDHJ6KiCib3r5927x584sXL1pbWy9YsODo0aO1atXKqHPZsmUB3Lx5M92jmgXZvvjiC81mkSJFNOPg0u1/584dlUqVuj8R5WJqNbp3x40bAGBnh+Bg5M0rOhNRblemTBkA9vb26R7Nly8fAKVSmVxw512bSNeuX0fHjlAqAaBOHcydKzoQEWkVC+5EObdqFTp3Tme/QoEpUzBqVA5Pe/066tfHs2fAu2o7nywjIj0YOnTo2bNn7ezs9u3bN2DAAFmmI07d3NwAXLx4MSoq6oNDt2/fDg0NTe6jUbt2bQBHjhxJe6rknZo+RJS7/fILgoOl9t9/o3x5oWmITEP16tUBXL16Nd2j169fB1CyZMnkGX551ybSqYgItGqF168BoFgxBAUhqzURiMjIsOBOlHNWVvD3x9Gj8PWV9pibqwcNSrp2DePH5/CcFy+ibl2EhgJA3rzYvx/16mklLBFRZsLDw/39/QFMmzYtdaE8I56engASExPXrFnzwaGVK1cCsLCwaNGixQf9T506pfmrPrVVq1YB+Oqrr1xcXD7lSyAiw3fgQMrj88OGZfGwIBFpS6tWrQDcuHFj7969HxwKCwsLCQkBUC3VElW8axPpTmIivL1x5w4A2Nlh61Y4OYnORETaxoI70adyc8Ps2VLbwUH1668JZcrk8FQXLqBRI7x8CQB582LPHmQ8nQMRkTYFBATExcUBqFq16pWMRUZGavp/+eWXzZs3BzBp0qSHDx8mn+f8+fNz584F0KtXL80j6hrdunVzcnIC0K9fP82FNJYsWXLs2DEAw7lmIlFu9+gROnSQHp+vXRu//io6EJHJaNiwYcWKFQH07t379OnTyfvDwsJ8fX0jIiIsLCzGjRuXvJ93bSLd+eknHDoEAHI51q5FxYqiAxGRDpiJDkBEkvPn0bgxwsMBwMEBe/agZk3RmYjIZCQPYfvuu+8y6bZ48eJ+/fpp2vPmzTtx4kRYWFj16tU9PT0rV658/Pjx7du3x8bGFitWbMqUKalfaGtru2DBgvbt2//zzz8VK1Zs3bq1k5PT/v379+/fD8DDw8PHx0c3XxkRGYT4eHh7S6MKChXCxo0wNxedichkyOXyJUuWNGjQ4PHjx25ubvXr169YseLjx48PHDgQEREBYNy4cRUqVEjuz7s2kY4sWoTFi6X2tGlo1UpoGiLSGRbciQzCv/+icWNERACAgwP27kWNGqIzEZEpuXv37se+pHTp0rt27erQocPDhw+XL1+evL9KlSqBgYEFChT4oH+7du2ioqIGDRp0586dWbNmJe9v3779smXLMp8ynoiM3Y8/4swZADA3R2AgChcWHYjIxNSuXTskJKRHjx7Pnj3bt2/fvn37NPvz588/b968Tp06fdCfd20irTtyBEOGSG1v75yv+kZEho8FdyLxzp1DkyZStd3REXv34quvRGciIhMzderUESNGZNmtzPtzZtWqVev69etbtmw5fvx4RESEs7Nz/fr1mzdvbmaW/i8YvXr1cnd3DwgIuHr1amxsrKurq6enZw1+wEiU2/n7Y9kyqT1nDurUEZqGyFQ1bdr09u3bISEhp06dCg8PL1GiROXKlevVq5c/f/50+/OuTaRFDx6gbVskJABA1apYtQr83IooF2PBnUiw48fRvDnevAEAJyfs349KlURnIiLTU7169Zy90NraumPHjh07dsxmf2dn50GDBuXsWkRkjC5cQN++UrtjR/z4o9A0RKbN1tbW19fX19c3m/151ybSirdv0aoVXrwAgEKFsHUrbGxEZyIiXeKiqUQiHTuGZs2kanvBgjhwgNV2IiIiyj0iIuDlhdhYAKhYEUuXig5ERET08c6fR9++0kokAPr3x9692X2tSoVOnXD5MgBYWWHzZnz+ec6THDuGu3dx5Mh/Tk7KnJ+FiHSMI9yJhDl6FC1aICoKAJydsX8/Uq1URERERGTcNCWG+/cBwN4egYGwtc36VaGhiIkBgEKFOACQiIgEU6sxejR++w1qdcrOzZuxeTPatsXq1VnfqsaNw9atUnvBAtSq9Ul5XF0BwMws6ZPOQkQ6xhHuRGIcOYLmzVOq7QcOsNpOREREucqECdi9GwBkMqxciXLlsvWqPn1QsiRKlsTBgzpNR0RElLWJE+Hn9161PVlQELKcn2nTJsyYIbVHjECvXlqOR0SGiQV3IgEOH0aLFnj7FgAKFcLBgyhfXnQmIiIiIu3Zvh2//iq1x46Fl5fQNERERB/v3r2Ucnm6QkKwfXuGR8+fR7duUrG+aVP88ouW4xGRwWLBnUjf9u5F8+ZStd3FBUeO4MsvRWciIiIi0p47d9ClC1QqAGjYEJMmCc5DRESUAxs2IDExiz5r1qS/PzQUrVpJk6SVK4cNG6BQaDkeERkszuFOpFd79qB1a8TFAYCLCw4dQsmSojMRERERaU9sLNq1w6tXAODqyhIDEREZq/Pnc9gnLg5t2uDJEwBwdMTWrXBw0HI2IjJkHOFOpD+7dqVU211dtVxtj43FH3/g+++lzXPn0LkzTp/W2vmJiIiIsuOHH6Tqg5UVgoJQoIDoQERERDny5k3WfTQfMH9gwACcPAkACgXWrkXp0loORkQGjgV3Ij3ZuRNeXlK1vWhRLVfb799HjRoYNAhXrkh7EhKwdi2++Qbjx2vtKkRERESZmz8fq1ZJ7QUL8NVXQtMQERF9gux8Zuzk9OGe337D8uVSe+5cNG+u5VREZPhYcCfShx07UqrtxYrh0CGUKKG1k8fEoFkzXL2aziGVCtOm4ffftXYtIiIiooycPInhw6V2nz7o1UtoGiIiok/zzTdZ93Fze29zzx6MGSO1u3fHwIHaT0VEho8FdyKdCwpCmzaIjweA0qVx5AiKF9fm+efPx61bmXWYMAEREdq8IhEREdEHnj+HtzcSEgCgShXMmyc6EBER0adp3x5582bWQSZ779PlGzfQoQOUSgBwc8OSJbqNR0QGiwV3It3atAkdO0orm5cpg0OH8PnnWr7EunVZdIiKwvbtWr4oERERUbKkJLRvj6dPASBfPgQHw9padCYiIqJP4+SE+fMhk2XYYdgw1KwptSMj0aqVNKV70aIIDoalpT5CEpEBYsGdSIcCA1Oq7WXL4tAhFCmi5UuoVLh+PetuyXO7ExEREWndiBE4fBgA5HKsXavlh/mIiIhE6doV/v7pjHO3sMDkyfDzkzaVSnTqhNu3AcDaGkFBKFhQrzmJyKCw4E6kKwEB6NQJSUkAUK4cDh5E4cLav0pcnHSJzEVFaf/SRERERAA2b05ZMGbqVDRrJjQNERGRVnXqhIcPsXAhrKykPWPG4O5dTJgA+bui2uDB2LULAGQyrFyJ6tXFRCUiA8GCO5FObNiAzp2lUvgXX+iq2g7AxgZ2dll3c3bWydWJiIjIxN28ie7doVYDgIcHRo/O+amePsX48Th6VNqcNg3r12drYAEREZFO5c2L/v3h4CBtDhz43lSxK1diwQKpPXky2rXTdzwiMjQsuBNp3/LlKWPbK1fG4cP47DMdXq5u3az7fPedDgMQERGRaXr7Fl5eePMGAEqVwurVmU10m7m1a1G2LKZNk2a/BXDqFHx94eaGJ0+0k5aIiIzCo0e4dw/37hnHZ67HjqFfP6nt5YVx44SmISLDwII7kZatWmXWpw9UKgCoUgX798PJSbdXHDAgiw4VK2arKE9ERESUfWo1evTAtWsAYG2NwMCUoX8fa+tWdO2K6Oh0Dp0+jSZN0j9ERES50nffoWRJlCxpBB+4PnwILy/ExwNAlSqf9MEzEeUmLLgTaVNcnOzHHy001faqVbF/PwoU0PlFW7RAnz4ZHrWzw4oVUCh0HoOIiIhMym+/YdMmqb1kCapWzeF5EhMxcKA0WCFd169jzpwcnpyIiEhH3r5Fq1YICwMAZ2ds3QpbW9GZiMgwsOBOpE1RUXLNn4tffYUDB5A/v56uu3gxJk9OWcIlWYUKOHyYC7YQERGRlh06lPLU/E8/oWvXnJ/qf//Do0dZ9Fm9OufnJyIi0jq1Gr164dIlADA3R0AAXFxEZyIig8GCO5H2ff019u2Do6P+rqhQYMIEPHiA4cOlPYULY88eXLyIatX0F4OIiIhMwePHaN9emlr3m2/w22+fdLZ//826z507iIr6pKsQERFp0cSJCAyU2gsXctU0InoPC+5EWrB0aUr7669Ve/bkfA7TT+HsjDZtpHbRomjSBHK+xYmIiEirEhPRsSNevAAAZ2ds3AgLi086oWbN1SxFRn7SVYiIiLRl505Mmya1hw7NbIpXIjJNrMYRfao5czBhgtQ2N1eHhMTnzSs0EBEREZHODBqEY8cAwMwMAQEoUuRTT5jNKfh0vQo9ERFRNg0cCLUaABo3hp+f6DREZHjMRAcgyolq1aSx2/nyCU4ya1bKLC4A8uZV2durxcUhIiIi0qG1a7FkidSeOVM7T9B/803WfapWhbW1Fq5FRET06WJiAKBMGQQGwox1NSJKgz8YyCjNnCk6AQBg5kyMGPHeHplMUBQiIiIiHbt0Cd9/L7Xbt8fgwdo57ddfo1Ilad25jPTurZ1rERERaUWePAgOFjOXLBEZPk4pQ5RDfn4p1fZatYRGISIiItKxyEh4eUlj+sqWxV9/ae3McjmWLoWNTYYd6tdPKfQTERGJkrzoiFyOdetQvrzQNERkwIym4H7u3LkNGzY8fPgwkz5Pnz7dv3//1q1bL1y4oFZzWg/SIT8/jBoltb/7DmvWCE1DREREpEsqFTp3xt27AGCZ3qS4AAAgAElEQVRvj82bkSePNs9fsyb27kXRoukc8vVFSAgf2CciIsHmzpU+dQYwcSJathSahogMm3EU3B8+fNiwYcOOHTseOXIk3Q4PHjxo1qyZi4tL48aNPT09q1atWqxYsXXr1uk5J5mIiRNTqu1NmmDXLtjaCg1EREREpEtTpmDnTgCQybB8Ob74QvuXcHPDrVtYswYuLtIeb2+cO4e1a2Fvr/3LERERZd+ePe8t3sbnrogoc0ZQcFcqlb6+vq9fv86ow927d7/66qs9e/ao1WozMzNHR0cAjx496tSp06xZs/SYlEzChAmYMkVqN2uGkBAu4UVERES52b59mDZNao8cCW9vXV3IwgKdOqFyZWmzWzdUq6araxEREWXTzZvo0AFKpegcRGQ8jKDgPnny5OPHj2fSwdfXNzw8XC6XL1myJDw8/OXLl6dOnSpdujSAkSNHXrhwQV9JKfcbNw5Tp0rt5s2xeTOsrIQGIiIiItKlhw/RsaNUZWjQIOUXISIiIlPw5g28vPDqFQDIjaCERkQGwdB/Whw5cuSXX36RyWQZddi9e/fp06cB/PLLL3379s2TJ49cLq9Zs+aOHTvy5s2rUqmmT5+ux7yUm40Zg+T/TS1asNpOREREuVxcHNq2RXg4ALi4YMMGzqVOREQmRKmEry+uXQMAa2s4OooORERGwqAL7pGRkZ06dVIqlT///HNGfQICAgAULFhw6NChqfeXLl3a29sbwPbt22NjY3UdlXI3tRpDhuDXX6XNli0RHAxLy5QOtrYYORKDBsV26xYlJCERERGR1vXvj3PnAMDcHOvXw8lJdCAiIiI9Gj4cO3YA75YwMTcXHYiIjIRBF9z79Onz+PHjFi1aDBo0KKM++/btA9C0aVPzND/5PDw8AMTFxR09elSnOSl3U6sxeDB+/13a9PbG5s3vVdsB2NtjxgyMHx89cOAb/SckIiIi0rpFi7BihdT+4w+4uQlNQ0REpF+rV2PuXKk9fjw6dBCahoiMiuEW3JcuXRoUFFSwYMEVyb/ppxEVFfX06VMAVatWTXu0fv36msaNGzd0FJJyPbUagwZh/nxp08cH69bxY20iIiLK5U6dQvLjo507o29foWmIiIj068QJfP+91G7dGhMnCk1DRMbGQAvuN27cGDx4MICVK1cWLFgwo253797VNIoWLZr2aJ48eRwcHFJ3I/ooajUGDsSCBdJmu3asthMREVHuFxYGb2/ExwNA5cr480/RgYiIiPTov/9S7oNffolVq7hcKhF9HENc9ig+Pr5jx44xMTGDBg1q3rx5Jj3fvJGm79AU1tNycHB49erV69evM79i48aNs0wVFhaWZR/TERsbGxERERMTo1KpRGfRFbUao0fbr1hhrdls3Tpu7tw3ERGZvSQiIiI2NlatVltbW+sjYnoiI80BRwCJiYlhYZGiYqQWHh4OwIorzKZiCu+gHDCEdxARESmV6NIFT54AgKMjgoNhYyM6ExERkb7ExqJ1a/z3HwDkz49t25Anj+hMRGRsDLHgPnLkyAsXLlSsWNHPzy/znjExMZpGRrU8TdUmOjo68/Ps378/y1RxcXFZ9jEdcXFx8fHxMpkst35bVCqMGJF/40ap6ufpGTN79sukJCQlZfYqzbclLi5OJpPpI2V6EhLUmoZKpTKQf534+HjwHfS+XP8OyhlDeAcREdGYMdi7FwDkcqxdixIlRAciIiLSF7UaPXvizBkAMDfHpk28DxJRThhcwX3nzp3z58+3srJat25dlkNizcyk/EqlMt0OiYmJALKs3WhWXs2IZvx7JjPbmKCYmBi5XG5jY5M/f37RWbRPqUS/fuYbNyo0m926KRctksvlWf8HUCgUMTEx+fPntxE3EszRUXrUzdzc3ED+02oK7gYSxkDk7ndQjhnCO4iIyMSFhGDmTKk9cSIyfdaUiIgot5k6FRs2SO0//kC9eiLDEJHxMqyCe2hoaI8ePdRq9cyZMytUqJBlf1tbW00jo1Gimv12dnaZn6dRo0ZZXosTYqSmUqksLS0tLS1z37dFqUTfvlizRtrs1Qt//aWQyxXZea2lpaVSqbSyshL4bbGwkBpyudxA/nUsLS3Bd9D7cvE76FMYwjuIiMiU3btn1q0b1GoAaNkS48aJDkRERKRHW7Zg8mSpPXAgFwwnopwzrIL76tWrw8LCHB0d3759O2PGjOT9yXO1b9++/cmTJwB8fHxKlizp5OSk2f/8+fO0Z1Or1ZqJ1wsUKKDz6JQrKJXo3j2l2t6nD5Ys4eooRERElPtFR8v69nXSrHxUtKjIBeK2bRNzXSIiMmUXL6JLF2jW2GrYEHPmiA5ERMbMsArumvUDIyMjR48enW6HgICAgIAAABUqVChZsmTx4sUtLCwSEhLu3buXtvPTp08TEhIAlCtXTpepKZdQKtGtG9aulTa//x6LF7PaTkRERCZhxIj8t26ZA7CyQnAwOOcZERGZjvBweHnh7VsAKF4cGzbAzLCqZURkZAzrR4irq+t3332Xdn98fPzJkycBlCtXztnZGYBm4mOFQlG5cuUzZ85ojn7g1KlTmka1atV0GJpyhcREdOiA4GBps18/LFoELtxIREREpmD2bGzfLq2fsXgx+LszERGZjsREeHtDM4zT3h5bt4KzJBDRJzKsgruvr6+vr2/a/U+ePHFxcQEwduzYzp07pz7UsmXLM2fOHDhwIDw8/IPlBwMDAwG4urpWrlxZl6nJ6CUkoEMHbN4sbQ4ZgtmzWW0nIiIik3D8OJIfLh0wAN27iwxDRESkZwMH4n//AwC5HOvWIRvrCRIRZcHo58vo2bOnZlaZce+v63Tq1KmgoCAA/fv3FxSNjENCAtq3T6m2Dx2KOXNYbSciIiKTEBoKb28kJgJA1aoJs2eLDkRERKRH8+fjzz+l9owZcHcXmoaIcgujL7i7uLj8/PPPAJYsWdKlS5cdO3acPn36l19+adasmVKpLFOmzMCBA0VnJMOVkAAfH2zZIm3+/DP4dyYRERGZiMREtGuHZ88AIH9+5eLFLywtRWciIiLSl/37MWyY1O7cGcOHC01DRLmIYU0pkzNTp059/Pixv7//mjVr1qxZk7y/ZMmS27dvt7GxEZiNDFl8PHx8sG2btDliBPz8hAYiIiIi0qOhQ3HkCAAoFJg3L/yzz5SiExEREenJ/fvo2BFJSQBQvXrKOHciok9nHAX3PHnyTJw4EUClSpXSHpXL5atXr/bx8VmxYsXVq1djY2NdXV09PT1/+OEHOzs7vYcl4xAfD29vbN8ubY4ciRkzhAYiIiIi0qP167FggdSeMQN16sQJjUNERKQ/UVFo1QovXwLAZ58hJAQcq0lEWmQ0BfdJkyZl3sfDw8PDw0MvccjoxcTA0xP790ubrLYTERGRSbl8GX36SG1PTwwbhsePhQYiIiLSF5UKvr64cgUArKywZQuKFBGdiYhyF6Ofw53oY8XEoFWrlGr75MmsthMREZEJiYpCu3aIjgaAMmWwejWXiyciIhMyapT0sLtMhr//Rs2aogMRUa5jHCPcibQlJgYeHjh4UNqcOhXjxgkNRERERKRHajW6dcONGwBgZ4fgYOTJIzoTERGRvvj7Y+ZMqT16NHx9haYholyKBXcyIdHR8PDAoUPS5rRpGDtWaCAiIiIi/Zo2DZs3A++G9ZUvLzoQERGRvpw7h759pXbz5pgyRWgaIsq9WHAnUxEdjZYtcfiwtPnLLxg9WmggIiIiIv06cACTJ0vtYcPwf/buPMDGsv/j+OfMZoyxZox10JOtUAr1WCpLi2IwzNhD84iKsqTUj1KUPRES8dh3k0HZJWt6RCXJkkS2wdjG7DPn98e5mxGz4Zy5zznzfv31va/7cu7PTMZM37nOdYWFmZoGAIBcdOaMWrZUXJwkVaumhQvl6Wl2JgBuioY78oQrV/Tss/ruO0myWDR+vF5/3exMAAAAuejECbVvr5QUSapfXx99ZHYgAAByS3y8WrXSqVOSVKyYVq5U4cJmZwLgvmi4w/1duaJnntHu3ZJkseiTT/Taa2ZnAgAAyEXx8WrTRhcuSFLJklq6VN7eZmcCACBXWK0KD9f330uSt7eWLtV995mdCYBbo+EON3f5sp55xvjOarFo4kT17m12JgAAgNzVu7f27JH+bjSUKmV2IAAAcsuIEVqwwKgnTFDjxqamAZAH0HCHO7t8WU8/rf/9T5IsFk2apFdeMTsTAABA7po2TTNmGPX48WrQwNQ0AADkojVr9O67Rv3ii3r5ZVPTAMgbaLjjNly7prVrJcnHx7NWLbPTZOfSJT39tLGYy2LR5Ml8ZwUAAHnOjz+qb1+j7thRr75qahoAAHLRwYPq0ME4v6RBA332mdmBAOQNNNxxG86cUViYJFWq5LNxo9lpsnT+vJo21c8/S5KHh2bMULduJkcCAADIZdHRCglRXJwk1aih6dPNDgQAQG6JjlZwsK5ckaQKFRQRIR8fszMByBs8zA4A2F9UlJo0Mbrtnp6aOZNuOwAAyHNSU9Wpk/74Q5KKFFFEhPz8zM4EAECuSEpSaKiOHpUkf3+tXKmAALMzAcgzWOEOd3PunJo21S+/SJKnp/77X3XpYnamXHTPPQoNlaTKlc2OAgAATDVkiLEZoMWimTN1331mBwIAILe8/ro2b5YkDw/Nm6caNcwOBCAvoeEOt3LunJo00YEDkuTpqVmz1Lmz2ZlyV+XKWrLE7BAAAMBsq1ZpxAijHjJErVubmgYAgFw0c2b6du3Dh6tlS/u8bM2aKlNGkry97fOCANwVDXe4j7Nn1aSJfv1Vkjw9NWeOOnY0OxMAAECuO3JEXbrIapWkpk317rtmBwIAILds26aXXzbqtm01aJDdXnndOru9FAD3xh7ucBMnT6phQ6Pb7u2tJUvotgMAgLwoLk7t2hlnxAUFaeFCeXqanQkAgJyJjjbO+pb011+3/cePH1ebNkpMlKRatTR7tiwWe8YDgJyg4Q53cPKkGjUyjkPx8dHixQoJMTsTAACAGXr10r59kuTrq+XLVby42YEAAMiBqCi98IICA3XunDHSsKFatix84IBPDl8hJkbBwTp/XpJKltTKlZwWDsAcNNzh8k6cUKNG+v13SfLx0ZIl7FIKAADyqAkTNGeOUU+apNq1TU0DAEDOHD+uRx7R3LlKTv7H+M6d3q1aBa5bl/17tVJT1amT9u+XJF9fffmlypZ1TFYAyA4Nd7i2P//8R7d96VK7HYcCAADgWnbt0ptvGnXPngoPNzUNAAA5Y7WqXbtMN5BJTLR07eqTtuw9M4MHa+VKo540SY89Zs+EAHBbaLjDhR0/rkaNdOyYJOXLp2XLFBxsdiYAAAAznDun0ND0XWvHjzc7EAAAObN+vb7/PqsJ165ZJk7MasKyZRo50qgHDuRXzgBMRsMdrurIETVsqD/+kKT8+bVqlVq0MDsTAACAGZKTFRamU6ckqVgxLV+u/PnNzgQAQM6sWXNXc/btU9euslol6ZlnNGKE3YIBwJ2h4Q6XdPiwGjUy3nHm56eVK/XUU2ZnAgAAMMnAgdq6VZI8PLRggSpWNDsQAAA5dvJk9nP+/DPj8bNnFRys2FhJqlJFixbJM/v93gHAsbzMDgDctkOH1LixTp+W/u62N2lidiYAAACTLF6sTz4x6g8/1DPPmJoGAIDblJMWeYZz4uPVurWxFK9oUa1apSJF7JwNAO4AK9zhYn77Lb3bXqCAVq+m2w4AAPKuQ4f00ktGHRyst94yNQ0AALevQoXs59x7bwaDvXvru+8kydNT8+erUiX75gKAO0TDHa7k1m57o0ZmZwIAADDJtWtq3VpXr0pSpUqaM0cWi9mZAAC4TcHB2c+59cy20aM1Y4ZRjx+vZs3snAoA7hgNd7iMgwfVqJHOnJEkf3999ZWefNLkSAAAAGaxWtW9uw4elKQCBRQRocKFzc4EAMDta9Agm/3QAgOtvXv/Y2TdOr3zjlF366Y+fRyVDQDuAA13uIYff9Tjj+vsWUkqXFgbNuiJJ8zOBAAAYJ6RI7V8uVFPmaLq1e/wdT79VBaLypcPeu+9ovbKBgDAbZk3TzVrZnyrcOHUJUsSbvyl8qFDat9eKSmSVL++pk7NjYQAkHM03OECfvxRTZvqwgVJKlxY69bpscfMzgQAAGCezZs1ZIhR9+2rF14wNQ0AAHeneHF9953+7/90zz3pgz4+CgtLWLv2TO3aqWmDly6pRQtdvixJ5csrIkL58uV6XADIEg13OLu9e9W0qS5elKQiRbR+vR591OxMAAAA5jl5Mn1l37//rVGjzA4EAMBdy59fw4fr3DmVLm2M/PSTJk++Vrp0StqclBR16qQjR4z5y5erRAkzsgJAlmi4w6n98IOeesrothctqvXrVbeu2ZkAAADMk5SkDh10/rwkBQZq2TL5+JidCQAAO/H0TP++5ut7891+/bRmjSRZLJo1S488kqvZACCHvMwOAGTK1m2/dEn6u9teu7bZmQAAAEzVu7d27JAkLy8tWZK+DBAAAPc2a5Y+/dSohw5VWJipaQAgc6xwh5PauVONGxvd9oAAbdlCtx0AAOR18+Zp2jSjHjtWjz9uahoAAHLLjh3q1cuoQ0LSDzIBACdEwx3OaMcOPfusrl6VpBIltGlTpueVAwAA5BE//aSePY26fXu9/rqpaQAAyC0nTlhCQpSQIEkPPaQ5c2SxmJ0JADJHwx1OZ/t2NWuma9ckKTBQmzapRg2zMwEAAJjq0iWFhCg2VpKqVk1f5w4AgHuLj7d07JgvKkqSAgMVGakCBczOBABZouEO57J1683d9urVzc4EAABgqtRUdeqkY8ckqWBBRUSoYEGzMwEA4HhWqwYMuGffPg9J3t5avFhBQWZnAoDs0HCHE/n2Wz3/vGJiJKlkSW3erAceMDsTAACA2d5/X2vWSJLFov/+V9WqmR0IAIBcMXq03+rVfrb688/1xBPmxgGAHKHhDmexfr2aNTO67eXKads23X+/2ZkAAADMtnq1hg836rffVps2pqYBACC3fP21xo0zuu39+ql7d3PjAEBO0XCHU1i7Vi1bKi5OkoKC9M03uu8+szMBAACY7fhxdeum1FRJatxYH3xg59ePi9Nvvxn1yZNeV67Y+fUBALhjb7whq1WSmjZNGTPG7DQAkGM03GG+NWvUurXi46W/u+3/+pfZmQAAAMwWH682bXTxoiSVK6dFi+TpabcXt1r18ccqV05TphgjmzblL1NGb7+thAS7PQUAgDtmW5N3773Js2cn2vE7IAA4Gg13mOzrrxUSYnTby5fXli26916zMwEAADiBl1/W3r2SlC+fli9XQIDdXtlqVdeuGjDA6OanuX5dI0eqWTPjZzMAQB40dKgsFlksGjrUnAC2Ve02BQtaP//8fJEi1synA4DToeEOM331VXq3vUIFffONKlY0OxMAAIATmDxZs2YZ9aefqk4de774jBmaOzfTu998o2HD7Pk4AAByLjraKDw89Pnn1ypXTjI1DgDcNi+zAyDvWr5cHTooKUmSKlXS5s0qW9bsTAAAAE5g924NGGDUXbqoRw87v/7o0dlMmDBBgwcrf347PxeAU5k+ffoPP/zw4osv1q1bN8MJsbGxkZGRBw4ciI2NDQoKat68+X2ctQUHGz9e164Z9Tvv6KmnEmNjTQ0EALePhjvMsWyZOnY0uu2VK2vzZpUpY3YmAAAAJxAVpbZtjY3UH3xQn39u59f/4w8dOZLNnOvXtWOHmja186MBOI8tW7b06tUrNTW1QYMGGTbcV6xYER4eHp222Fjq169fjx49Jk6c6Ovrm4tJkYds2KA330y/DA83LwoA3AW2lIEJlixJX9tepYq++YZuOwAAgCSlpKhzZ/31lyQVLaqICPsvM7e9eLZOnrTzcwE4j+jo6M6dO6empmY2Yd26dW3bto2Ojvbw8Khbt25wcHChQoUkTZ8+vWvXrrmYFHnI4cMKC1Nystk5AOCu0XBHblu8WJ06Gd9Eq1bV5s0qXdrsTAAAAM5h0CBt2CBJHh6aP98hh8n7+ORoWr589n80ACcRHh5+6tSpzO4mJCSEh4enpKQUKVLkl19+2b17d2Rk5IULF5o3by5pyZIlkZGRuRgWecLVq2rdWpcvS5Knp9lpAODu0HBHrlq0SJ07G932atXotgMAAKSLjNS4cUY9dKiaNXPIUypWlEcO/ifgX/9yyNMBmO6zzz5bsWKFbcV6hubPn29rx8+fP79atWq2QW9v74ULF1asWFHSmDFjcicq8ojUVHXsqF9/laT8+VWihNmBAODu0HBH7pk5M31t+4MP6ttvVaqU2ZkAAACcw+HDeuEFWa2S1Ly5/u//HPWgEiVUv342c8qWVZ06jgoAwEQHDhwYMGCAh4fHp59+mtmcFStWSKpatepzzz1347i/v39oaKikXbt2nT9/3tFRkXe88Ya++kqSLBbNnMlbrAC4PBruyCUzZqhHD9k2CXzoIW3cqIAAszMBAAA4h5gYtW6tq1clqUIFzZqVo0Xod+zDD7N5w/5HHzk2AABTxMfHd+jQIS4ubuDAgY0bN85s2rZt2yQ1adLk1lvBwcGSUlNTt2/f7ricyFPmzNH48UY9eLDatzc1DQDYAz9HIzd88YVeesnotteqpY0bVby42ZkAAACcg9Wq8HDjrfS+vlq+XPfc49gnNmyoqVPl5ZXBLYtFgwerSxfHBgBgijfeeGP//v2PPPLIsGHDMptz7ty5y5cvS6pevfqtd+vUqWOxWCQdPnzYcTmRd+zapZdeMupWrTR0qJlhAMBeaLjD4aZNU8+eRrf94Ye1YYPD/x8SAADAhYwdqyVLjPqzz/Tww7nx0P/8R7t2qXnz9KXuFosef1xr1yrzRhwAF7Z69erJkycXKFBgwYIF3t7emU07efKkrShbtuytd318fAICAiSdOHHCQTmRd5w+rbZtlZAgSfffr9mzeXMVADeR0bIWICM7dyptl7+//rJ88knh7t1Tsl2o/vnnevllYzfSRx7R+vUqVsyxOQEAAFzIli165x2j7t1b3brl3qNr19aqVRo3Tm+8IUkdO8bMm+efe48HkIvOnDnTvXt3SRMmTKhcuXIWM2NiYmyFv3/G/yD4+/tHRUVdu3Yt6yfaFsJnja79jeLi4i5duuTr6xsbG2tukitXCkuFJV25cuXEiSsOekp8vCUsLPD0aR9JRYumTp169vLl5MuXJSk5ubStW3X69Gk/v6j4+Pi4uLj8+fM7KIkrOn36tNkRnI7zfAU5lejoaL6CTMFvD5G9uDh16qT69bVoUfrI+PGF69Qp+vnnWf3BqVPTu+21a2vDBrrtAAAA6c6eVceOxpHyjz2mceNMyODjYxTe3lYTHg/A8axWa5cuXS5cuNCmTZvw8PCsJ8fFxdmKfJmcXGkbp6WFu2G1auDAe376yUeSl5d16tQL5csnmx0KAOyGFe7IXvv2Wrkyg/GEBEuvXvL21osvZnD34481YIBR16unNWtUqJADQwIAALiWpCSFhurMGUkKDNSyZem9bwCwo9GjR2/atKlMmTLTpk3LdrKvr6+tSExMzHBCQkKCJJ/s/sGyWrP6HZ5t/XtQUFC2efKO2NjY/Pnz+/n5FTf7xLPChdOKwkFBhbOce4c++CC9yTBpkiUsrMSNd9OOGCldurS/v09sbGzx4sX9/PwckcSl8RV0I+f5CnIqfn5+fAWZghXuyEZERMbd9jT9++vixZsHx45N77Y3aKC1a+m2AwAA/EP//tq+XZK8vLRokcqUMTsQAHe0Z8+eIUOGeHh4zJ07t1gO3nFcoEABW3H9+vUMJ9jWtme24QyQrRUr9P77Rt2nj3r2NDUNADgAK9yRjZkzs5lw5Yq+/FL/+U/6yJgxevNNo27YUF99pYIFHRUPAADAFc2fr0mTjHrECD35pJlhALixjRs3JiUlFS5ceNSoUaNGjUobty1UlzRmzJh58+ZJ+uCDD+rWrVvm79/+ZbhJdHJyclRUlKTSpUs7PDrc0a+/qmtXpaZKUpMm+vhjswMBgAPQcEc29uzJfs7//pfecB81SoMGGfXjj+urr8TSBwAAgBv9/LNeesmoQ0PT3xcIAA5y5cqVdevWZXjr559//vnnnyX17t1bUpkyZfz9/WNiYg4dOnTr5KNHj6ampkqqVq2aI/PCPV28qOBgXb0qSRUratGi9N1jAMCd8G8bsmE7JTxr0dFGcWO3/YkntHo13XYAAIB/uHxZbdrIdtxglSr64gtZLGZnAuC+GjRo8N577906fvXq1fHjx0tq3bp1zZo1JVWuXNl2q169euvXr9+2bdutfyptsF69eo5KDDeVlKS2bfX775JUsKBWrhRbbQNwVzTckY1ixYyzvLJg+zb53nv64ANj5OmntWKF8ud3bDYAAADXYrXqxRd19Kgk+fsrIoJzbgA4VoMGDRo0aHDr+F9//WVruIeEhHTu3PnGWy1btly/fv3u3bsPHjx400r22bNnS6pdu3a5cuUcmRpuqE8fbdkiSR4emj9f1aubnAcAHIdDU5GNOnWyn1O3rt59N73b/uyzioyk2w4AAHCz4cP15ZeSZLHov//V/febHQgAbtG1a9eAgABJvXr1io+PTxufOnXqjh07JA0cONC0cHBNn36qzz836hEj1KKFqWkAwMFY4Y5svPiiVq7MakLRojpwQOPGGZfNmikiQr6+uRANAADAlWzcqPffN+o331TbtqamAYBMFChQYNKkSe3atdu6dWuNGjVatWoVEBCwcePGjRs3SmrRokVoaKjZGeFKNm1S//5G3bmz3nzT1DQA4Hg03JGNli3Vtq2WLcv4rsWiBg3Su+3PPaeICOXLl2vpAAAAXMOJE+rQQSkpktSokYYPNzsQAGQuLCzs2rVrr7322tGjR8eOHZs23q5duy+++MLC0RPIsT/+UPv2Sk6WpIcfTl/nDgBujIY7sjd3rgoV0m837voAACAASURBVMyZN4/7+Vnr17esWmVcPv+8li+n2w4AAHCz+Hi1aaMLFySpbFktWiQvp/kxvEQJPfKIEhMTS5dOMTsLgNwTEBDwzTffSLppl/Y04eHhzZs3X7x48YEDB+Li4oKCglq2bFknJ1uOAn+7dk3Bwca3v1KlFBkpPz+zMwGA4znNT/pwYr6+mjFDr76qCRM0Z44k+fmpd+/LZ874zp1r7B3Ttq0WLJC3t5k5AQAAnFPv3tqzR5K8vbVokUqUMDvQDdq1U7t2OnHirCSpiMlpAOSWfPnyPfnkk1nPCQwMfO2113IlDtxQaqo6ddIvv0iSr69WrFDZsmZnAoBcwaGpyKmHH9b//Z9RlyljPXfOM63bHhpKtx0AACBj06ZpxgyjnjhR9eubmgYAgFzx9tuyvSHeYtGMGapb1+xAAJBbaLjjTkRFWWbPLmirO3Sg2w4AAJCxffvUt69Rd+qkXr1MTQMAQK6YN0+jRxv1oEHq2NHUNACQu2i4405cuWIUnTtr7lwn2oQUAADAeURHq00bxcVJUs2amjbN7EAAADjeDz+oZ0+jfvZZDRtmahoAyHU03HEbUlP/cdm+fcKsWfL0NCkNAACAE0tNVceO+uMPSSpaVBERnBQHAHB/Z86oZUvFxkpStWpatIimAYA8h4Y7ciolRe+8k34ZFhYzYcI1vnECAABkaPBgrVsnSR4emjdP//qX2YEAAHCw+Hi1aqVTpySpWDGtXKnChc3OBAC5joY7ciQlRd2768svjctChTRqVLQHf30AAAAysmqVRo406nff1XPPmZoGAADHs1oVHq7vv5ckLy8tXar77jM7EwCYgb23kb2UFHXrpnnz0kcCA6102wEAADJ05Ii6dJHVKklPPaXBg80OBACA440cqQULjHriRDVubGoaADAPDXdkIyVFXbtq/nyzcwAAALiC69cVEmKcMF++vBYuZO9aAID7W7tWQ4YY9Ysv6uWXTU0DAKZilTKykpSksLD0bnv79qamAQAAcHqvvKJffpEkX18tX6577jE7EAAADnbwoNq3V0qKJDVooM8+MzsQAJjKeVe4HzhwYOHChYcPHz527FjJkiWrV6/erFmzJ554IrP5u3btmjVr1oEDB2JjY4OCglq0aNG5c+d8+fLlZmY3k5io9u3T923v1089e2rRIlMzAQAAOLFPPtGcOUY9ZYoeecTUNAAAOF50tIKDjbd2VaigiAj5+JidCQBM5YwN98TExCFDhnz88cfJyclpg1999dWoUaPat28/YcKEEiVK3PRHBgwY8PHHH6dd7tu3LzIycsKECatWrSpfvnwu5XYviYlq104rVhiXAwZo7FgdPmxqJgAAACe2a5feesuoX35Z3bubmgYAAMdLTlZoqI4elSR/f61cqYAAszMBgNmcseE+duzY0aNHS6pYseILL7xQqVKlP//8c/ny5Xv37l20aNGZM2c2b97sccORnaNHj7Z12ytXrtyqVauSJUtu2LBhzZo1+/fvb9Gixffff+/r62vaB+OaEhMVGqqVK43LN97QmDGmBgIAAHBu584pNFSJiZL06KMaP97sQAAAON5rr2nzZkmyWDRzpmrUsMNr/vijUlMlqXBhRUfb4QUBIJc53R7uJ06c+PDDDyU1bNjwp59+Gjp0aKdOnd55553vv/++b9++kr799tuJEyemzY+Kinr//fclVa9efc+ePaNGjerXr9/XX3/93nvvSdq/f/+0adNM+lBcVUKC2rZN77a/+SbddgAAgKwkJyssTKdOSVKJElq2TOxrCABwezNnpm/XPny4QkPt87KFC6toURUtKg+na1kBQI443b9es2fPjo2NtVgsEyZMKFiwYNq4p6fnmDFjqlWrJikyMjJtfMaMGbb5y5Ytu3H+0KFDH3vsMUmffvppLsZ3eXFxatFCq1YZl2+9pVGjTA0EAADg9N54Q1u3SpKnp+bOVdmyZgcCAMDBtm/Xyy8bdZs2evttU9MAgDNxuob7d999J6lixYq1atW66ZaXl1fjxo0l7d2712q12gZXr14tqX79+lWqVLlpfkhIiKSjR48eOXLE0bHdQ2ysgoO1YYNxOXSoRo40NRAAAIDTW7RIEyYY9Ucf6emnTU0DAIDjHT+ukBBjI7VatTRnjiwWszMBgNNwuob76dOnJd1///0Z3vXz85OUlJRku0xNTd27d6+kBg0a3Dq5efPmtuL77793RFQ3Y+u2b9xoXL7/vt57z9RAAAAATu+33/TSS0bdsqUGDjQ1DQAAjhcTo+BgnT8vSSVLKjJSfn5mZwIAZ+J0h6bu2LEjNTXV29s7w7sbN26UVLVqVYvFIunEiRPx8fGSKleufOvkKlWqeHl5JScns8I9W9evq0ULffONcTlsmAYPNjUQAACA07t2TSEhunZNkipX1uzZrO8DALi51FR17qz9+yXJ11dffqly5czOBABOxuka7n6Z/2J00qRJ+/btk9SzZ0/byNmzZ21FqVKlbp3v4eERGBh46tSpM2fOZP3QY8eOZRssOTk52zku6vp1tWzp+e23xv8gDhuWOmhQaoYfbkqKRfKUZLVak/+Wm1GdXPINzM7iRGyfDT4nN+KvSob4tABwLVarunfXwYOS5O+viAgVLmx2JgAAHGzIEKUdqzdpkh57zNQ0AOCUnK7hnqHk5OThw4cPGzZMUt26dbt3724bv379uq3IrE2fP3/+G6dl5l//+le2GWx73bif69ctL75Y4rvvjL8Jb755+YUXrmb2sZ475yWVlpScnBwVFeXr65to27MNkqTo6Oj4+PikpCTbXzzYREVFSfLyco1/bXJHXFzcpUuX+Aq6CV9BAFzLiBFavtyoZ8zQAw+YmgYAAMdbtkwjRhj1wIEKDzc1DQA4Kxdoga1Zs2bAgAEHDx6U9OCDD3799dc+Pj62W2m9qsx6ebZx27YzWbj33nuzuGtb/+6W7cJr1zw6dy62d6+PJItFQ4de+c9/YrP4W5H2SbBYLJ6enl5eXm75abljXl5efFpu5enpKTf9Crpj/FXJEJ8WAC5k82a9+65RDxigsDBT0wAA4Hj79qlrV1mtkvTMM+mddwDATZy6qXH48OE+ffqsX79ekqen54ABAz744IN8+fKlTUhb2J6QkJDhK9ha7dkulvz999+zuGvbL7506dK3k90FXLmikBDt3StJFosmTFCfPoWlrN4LHRNjFF5eXoGBgX5+fsWLF3d8Upfh4+MTGxtbvHjxLHZGyoNs24O431fQ3YiNjfX29uYr6CZ8BQFwFSdPqn17paRIUr16dBwAAHbw0Ufef/xRzMvLa8QIOeH/PJ09q5YtFRsrSVWqaNEieXqanQkAnJWH2QEyZrVaR40aVaNGDVu3vUWLFj/99NOoUaNu7LZLKliwoK24evVqhq9jG0+bhjSXL+vpp7V7tyRZLJo4UX36mJ0JAADA6SUkqE0bnT8vSSVLaulSeXvf9ot07qxixVSsmL7+2u4BAQAuKSLCc8EC/zlzfC9dMjvKLeLj1bq1Tp6UpKJFtWqVihQxOxMAODFnXOFutVo7d+68YMECSTVr1pw0aVLDhg0znFmxYkVb8ddff916Ny4uLjo6+sZpsLl0Sc88o//9T5IsFk2apFdeMTsTAACAK+jTx/ghyttbS5bc4SLE69dl66dwlgcAwPn17q3vvpMkT0/Nn69KlcwOBADOzRlXuL/++uu2bvs777yzZ8+ezLrtkooWLRoYGCjp559/vvXu/v37bUW1atUck9QlXbqkp59O77ZPnky3HQAAIEfmztX06Ub98cfK/KdUAADcxJgxmjHDqD/+WM2amZoGAFyB0zXcd+3a9emnn0oaM2bMhx9+6J3de3QbN24safPmzbfe2rRpkyRvb+/HH3/cAUld0vnzevJJ7dkjSZ6emjlTL79sdiYAAABX8NNP6tnTqDt0UO/epqYBAMABTp40TnqTtHev5s3T228bl9266bXXzMoFAK7E6Rrutm57rVq1BgwYkJP5oaGhko4ePbp27dobxxMSEr744gtJzz77bKFChRyQ1PVERalJE9neDGDrtnfrZnIkAAAAl3DpkkJCFBcnSTVqpK9zBwDAPcTEqGdP3XuvVq0yRlatUpcu6YeET51qYjoAcCXOtYe71WpdsWKFpKJFi06ePDmzaQUKFOjevbutbtWqVY0aNfbv39+zZ8+NGzdWqlRJUmJiYq9evY4dO2axWAYPHpw74Z3cuXNq2lS//CJJnp7673/VpYvZmQAAAFxBaqo6ddKxY5JUpIgiIlSggNmZAACwn9hYPfOMdu7M+G6+fFq4UPny5W4mAHBZztVwP3XqVFxcnKTNmzdnuEuMTWBgYFrD3WKxzJ8/v169eidOnKhSpcojjzwSEBCwbdu2mJgYSe+9917dunVzJ7wzO3dOjRvr118lydNTs2apc2ezMwEAALiI997TmjWSZLFo5kzdd5/ZgQAAsKvhwzPttktKSNC0aRo+PBcDAYArc64tZX7//fc7+FM1atTYsWPHww8/bLVa9+zZs2bNmpiYmKJFi06ZMuW9996ze0iXc/bsP7rtc+bQbQcAAMip1av10UdGPXiwWrc2NQ0AAPaWlKTPPstmzqRJSkzMlTQA4Pqca4X7E088YbVa7+AP1qxZ84cffvj5558PHDgQFxcXFBTUsGHDfLzfSTp5Uo0b6+hRSfL21qJFCgkxOxMAAICLOH5c3bopNVWSmjQRazkAAO7nhx90+XI2c65c0Y8/ih0EACAnnKvhfpdq1qxZs2ZNs1M4kRMn1LixbG8b8PHR4sVq1crsTAAAAC4iLk5t2ujiRUkKCtKiRfL0NDsTAAD2dvZsjqadPu3gHADgLtyq4Y4bnTihRo2M0718fLRkiVq2NDsTAACA63jlFe3dK0m+vlq+XMWLmx0IAAAHyJ8/R9P8/R2cAwDcBQ139/Tnn2rUSH/8IUk+Plq6VMHBZmcCALia0aNHnz59+pNPPsliTmpq6qZNm7777ruLFy+WKFHiySefrFevXhbzY2NjIyMjDxw4EBsbGxQU1Lx58/s4gBJOadIkzZqVXteubc8XT0kxijvaTBEAAHuqWjVH0ypXdnAOAHAXNNzd0PHjatRIx49LUr58WrZMzZubHAkA4HIuXrw4ePBgHx+fLBruv/76a/v27ffv33/jYP369RcsWBAUFHTr/BUrVoSHh0dHR6eN9OvXr0ePHhMnTvT19bVjeOAuffedBgww6pdeUni43V557VqNHatvvjEuu3XT+vX6v/9T2bJ2ewQAALelfHk9+qh2785qzmOPKaMf7gAAGfAwOwDs7MgRNWxodNvz59eqVXTbAQB3YsyYMUlJSVlM+Ouvvxo3bmzrtt93332hoaFlypSRtGPHjqeeeuryLWdvrVu3rm3bttHR0R4eHnXr1g0ODi5UqJCk6dOnd+3a1WEfB3Dbzp1T27ZKTJSkhx5Slu/xuA1Wq/r2VbNm2rTJOIVV0tWrmjpVNWtqyxb7PAUAgDtQrVpWd728NGZMbkUBANdHw92tHD6sRo3011+S5OenlSv11FNmZwIAuJozZ868/fbbo0ePznpa3759z507J2n+/PlHjhxZsmTJX3/9NWLECEmHDx9+//33b5yckJAQHh6ekpJSpEiRX375Zffu3ZGRkRcuXGjevLmkJUuWREZGOuwDAm5DcrLatdOpU5JUrJgiInK6s222xo/XhAkZ37p0SS1b6sQJ+zwIAIDbEhGh2bMzvZs/v2bNUoMGuRgIAFwcDXf3ceiQGjUy/v/Qz0+rVqlpU7MzAQBcSpcuXSpXrlymTJmRI0das9xb+ujRoxEREZIGDhzYsWPHtPFBgwaFhoZK+vzzz69evZo2Pn/+/FOnTtmKan+vofL29l64cGHFihUljWHdFJzDoEH69ltJ8vDQ/PmqWNE+LxsTo3/+EupmV6/qgw/s8ywAAHLuxx/1wgvGmSL16umFF+TnZ9zy81P37tq3T506mRgQAFwPDXc38dtvatRIp09LUoECWr1ajRubnQkA4Go2bNhw5MiRrFvtNitXrrRarRaLpV+/fjfd6t69u6S4uLgNGzakDa5YsUJS1apVn3vuuRsn+/v72xr0u3btOn/+/N1/CMDdWLFCH39s1MOH69ln7fbK69frht9AZSwiIn2rGQAAcsGFCwoJ0fXrklS5slav1uzZGjjQuDtwoGbOVJUqJgYEAJdEw90dHDyoRo105oz0d7e9USOzMwEAXND//ve/P/72+uuvZzFz69atku6///5SpUrddKtx48b+/v5pc2y2bdsmqUmTJre+VHBwsKTU1NTt27ff9UcAZKNbNwUEFC9fPmj+fK+bbh06pK5djSV+LVpo0CB7Pvfw4eznXLokfusEAMg1SUlq21Z//CFJhQopIkJFi5qdCQDcws3/pwGX89NPatpUFy5IUuHCWrNG//632ZkAAK6pXLlyaXWRIkWymHno0CFJ1atXv/VWvnz5atasuXPnzsN/txjPnTtnO0M1w/l16tSxWCxWq/VwTlqSgGPExCgkxFiEXqmS5s6VxWLP109IyNG0uDh7PhQAgCy8+mr6LmoLFuiBB8wOBADugoa7a/vxRz31VHq3fe1aPfaYAx9XqpSWLJEkH59EBz4GAOD0Tp48Kals2bIZ3rWNn/j7CEjb5Mzm+/j4BAQEREVFneDISJjEatWLL+rXXyWpQAFFRKhwYTs/4pa3gmTA01MlS9r5uQAAZGj8eE2fbtRjxuj5501NAwDuhYa7C9u3T089pYsXJalIEa1bp7p1HfvEggUVGipJsbEpti4/ACAPslqtsbGxkmxbx9zKNn7t2jXbZUxMzI3jGc6PiopKm58ZSw6WHNO1v1FcXNylS5d8fX1t/70g6fr1e6QCkqKjo0+cMBYQTJ1aaOlS4y0dw4ZdLFTout3/HlWv7iWVznpOnToJUVHn7PzgHDttOwsIN+ArKEPR0dHx8fFxcXH58+c3OwuAO7Rhg95806i7dFH//qamAQC3wx7urmrvXjVtmt5tX7/e4d12AABs4uPjbQer5suXL8MJtvG0FlXc39tk5HA+kJt27fIdM8botoeHX2vT5rojnlK2bPIzz2TzN/yll7I7VhUAgLt2+LDatVNysiT9+9/p69wBAPbCCneX9MMPevppRUdLUtGiWr9etWubnQkAkGek9c0TEzPeYSwhIUGSj4+P7dLX1/e25mfG1uXPjG39e1BQUNYvkqfExsbmz5/fz8+vePHiZmdxFgUKGEWxYsWCgnzOnFG/fulNhylTCvr4FHTQo2fNUoMG+v33jO/27q3u3QMc9Oic4yvoRnwFZcjPzy82NrZ48eJ+fn5mZwFw265eVUiILl2SpNKltXSpMlkOAQC4c6xwdz07d6pxY6PbHhCgLVvotgMAcpWHh4dtJ4Hr1zNeC3zThjMF/u5x5nA+kDuSkhQaqjNnJCkwUEuXKrtf+tyVkiW1a5fCwuTxzx/A77lHEydq4kQHPhoAAEmpqerYUQcOSFL+/FqxQmXKmJ0JANwRDXcXs2OHmjXT1auSVKKENm1SzZpmZwIA5D1lypRR5ps+nzp1SlLp0qVvnJzZ/OTk5KioqBvnA7nj9de1Y4ckeXlpyZLcaDoEBGjxYh09qoceMkbeflt//qk+fZSDEwoAALgrAwfqq68kyWLRjBmqU8fsQADgpmi4u5Lt22/utteoYXYmAECeVKVKFUmHDh3K8O6RI0ckVatWzXZZpkwZ2+r1DOcfPXo0NTX1xvlALti92+Ozz4x6zBg9/njuPbpiRVWoYNR166bvcgMAgOPMmaOPPzbqwYPVoYOpaQDArdFwdxnbtqlZM127JkmBgdq8WdWrm50JAJBX1a9fX9JPP/10zfad6QZHjhw5e/Zs2hybevXqSdq2bdutL5U2aJsD5I65c42jjNq3V9++5mYBAMCxdu3SSy8ZdatWGjrUzDAA4PZouLuGTZv07LOKiZGk0qX17bd64AGzMwEA8rCWLVtKSkpKmjdv3k23Zs2aJcnHx+e55567af7u3bsPHjx40/zZs2dLql27drly5RwZGfgH2wm+Vatq2jSzowAA4EinTys0VAkJknT//Zo9++bTRAAA9sW/si5gwwa1aKHYWEkqW1ZbtqhKFbMzAQDytvvvv79Zs2aShg4d+ueff6aN79u3b/z48ZLCw8OLFSuWNt61a9eAgABJvXr1io+PTxufOnXqjh07JA0cODDXwiMvs1rT60KFFBmpggXNSwMAgIPFxalVK506JUn33KOVK1WokNmZAMDdeZkdANlYt06tWysuTpLKldPmzbrvPrMzAQAgTZgwYdeuXVFRUY888kjLli0ffPDBnTt3rl69Oi4urkKFCh988MGNkwsUKDBp0qR27dpt3bq1Ro0arVq1CggI2Lhx48aNGyW1aNEiNDTUpI8DecvPPxuFxaLZs1W5sqlpAABwJKtV4eH63/8kydtbS5fqX/8yOxMA5AE03J3a2rVq3Vq2hYBBQdq8me+OAABnUalSpTVr1rRv3/7PP/+cOXNm2vhDDz20ZMmS4sWL3zQ/LCzs2rVrr7322tGjR8eOHZs23q5duy+++MJiseRSbuRVP/yg/v3144/Gpa+vtm/Xo4+qVClTYwEA4DDDh2vhQqP+9FM1amRqGgDIM2i4O681axQSYnTby5fX5s26916zMwEA8oxu3bo9+eSTnp6eWcx57LHHDh48uGLFip07d0ZHRwcGBjZq1KhZs2ZeXhn/gBEeHt68efPFixcfOHAgLi4uKCioZcuWderUccxHAKQbN05vvaWUlPSRuDiNG6fZs7VsmZ54wrxkAAA4xooV6Yej9u6tnj3NDAMAeQoNdyf11Vdq08Y41aR8eX3zjSpWNDsTACAvqVChQoUKFbKdlj9//g4dOnTo0CGHLxsYGPjaa6/dVTLgNi1cqDfeyPjWhQsKDtaPP/KDFgDArfz6q7p2VWqqJDVsqHHjzA4EAHkJh6Y6o9Wr07vtFSpoyxb+JxAAAOBOJCcr6xN5r17Vu+/mVhoAABzv4kUFB+vqVUmqWFEREfLxMTsTAOQlNNydzrJlCgkxuu2VK2v7duVgfSEAAAAysGOHTp3KZs6KFcaPXgAAuLqkJIWG6vffJalgQa1cqVsO1gEAOBYNd+eydKk6dFBSkiRVqaJvvlGZMmZnAgAAcFlff539nJgYnTzp+CgAADhenz765htJ8vDQ/PmqXt3sQACQ97CHuxNZskSdOik5WZKqVNHmzSpd2uxMAAAALisqSp9/nqOZ1687OMo/DRyojh0liTODAQB2NGlS+je+ESPUooWpaQAgr6Lh7iwWLVKXLka3vWpVbd6sUqXMzgQAAOCyUlLUpYuuXMnR5Fz+uatevVx9HAAgL9i6VQMGGHXnznrzTVPTAEAexpYyTmHhQnXubHTbq1XTN9/QbQcAALgr77yj9etzNLN6dZUo4eA0AAA40h9/qE0bJSZK0sMP5/QNXgAAR6Dhbr6ZM9W5s1JSJOnBB7V1q0qWNDsTAACAK4uM1JgxRp3t9rV9+zo6DgAADnTtmoKDdeGCJJUqpchI+fmZnQkA8jAa7ib74gv16KHUVEl66CFt3MgB4gAAAHfl8GF17SqrVZKef17r1uneezOdHBKi7t1zLRoAAHaWmqpOnfTLL5Lk66svv1TZsmZnAoC8jYa7maZPV8+eRre9Vi267QAAAHcrJkYhIcbW7eXLa/ZslS6tHTsUHHzzTF9fvf22Fi2SBz8RAwBc1ttva9Uqo/7iCz36qKlpAAA03E00bVp6t/3hh7Vxo+65x+xMAAAALi48XAcOSJKvryIijJ+vSpZUZKQOHFCdOsa0rl2Tjx/XRx/J29u0qAAA3KV58zR6tFEPGqROnUxNAwCQRMPdLFOnqlcv453OjzyiDRtUrJjZmQAAAFzcuHFassSop0zRww//4+799+v++426fv3UwMBczQYAgH3t3auePY362Wc1fLipaQAAf6PhboLx4/Xyy0a3vV49bd5Mtx0AAOBu7dypt9826ldfZWd2AIA7O3NGLVsqNlaSqlbVokXy9DQ7EwBAEg333DdunPr3N+r69bV2rQoVMjUQAACA6zt7VqGhSkqSpEcf1bhxZgcCAMBh4uPVqpX++kuSihXTqlUqXNjsTACAv9Fwz1VjxuiNN4y6QQOtWaOCBU0NBAAA4PqSkhQWptOnJalECS1bpnz5zM4EAEDOpKTo668VFWWxXX75paKjs5pvteo//9H330uSl5eWLtV99zk+JQAgx2i4557Ro/Xmm0bdsCHddgAAAPvo31/btkmSp6fmzVPZsmYHAgAgZ3btUrVqev55XbxoNNyHDFH58ho/3tiH9lYjR2r+fKOeMEGNG+dKUABAjnmZHSCvGDVKgwYZ9eOP66uv5O9vaiAAAAC3sHChJk0y6hEj9NRTpqYBACDHtm7VM88oPv7m8ZgY9e+vqCiNGHHzrbVrNWSIUXfvrldecXhIAMDtYoV7bhg6NL3b/vTTWruWbjsAAIAd7N+vHj2MumXL9L37AABwcgkJ6t49g257mlGjtGvXP0Z++03t2yslRZIaNNDUqY5NCAC4MzTcHe7dd/X++0b9zDNasUL585saCAAAwC1cu6awMF2/LkmVK2vOHFksZmcCACBnVq/WsWNZTbBaNXly+mV0tFq00JUrklShgiIi5OPj2IQAgDvDljKONWSIhg836mef1ZdfytfX1EAAAABuwWpVt2767TdJ8vdXRIQKFTI7EwAAOWY7fSRr335rFMnJCg3V0aOS5O+vlSsVEODAbACAu8EKdwf6v/9L77Y/9xzddgAAALsZPlwREZJksWjGDD3wgNmBAAC4HefO3cac11/X5s2SZLFo5kzVqOHAYACAu8QKd4ewWtW/vz75xLh8/nktX658+UzNBAAA4C42bUrfsm/AAIWFmZoGAIDbzAI6EQAAIABJREFUV7BgTufMnKkpU4yRYcMUGurAVACAu8cKd/uzWtWvX3q3vU0bffkl3XYAAAD7OHEi/ci4+vX10UdmBwIA4Pbdf3+O5mzfrpdfNi7btNE77zg0FADADljhbmdWq15/XZ9+aly2basFC+TtbWomAAAAdxEfrzZtdOGCJJUsqaVLb+8HreeeU+HCcUlJSQ88wElzAAAztWmjt95SYmJWc55+WiEhxpxatTgeHABcAw13e7Ja1adP+jHiYWGaP19efI4BAADspHdv7dkjSd7eWrpUpUrd3h8PC1PjxtdjY2OLFy/uiHgAAORQuXJ66y0NG5bphJo1tWSJzp+XpJIlFRkpP79cSwcAuHNsKWM3Vqt6907vtrdrR7cdAADAnqZN04wZRj1+vBo0MDUNAAB3Z+hQ9e6d8a1HHlFQkH75RZJ8fLRkicqVy81oAIA7R8PdPqxWvfpq+jEm7dtr3jy67QAAAHbz44/q29eoO3bUq6+amgYAgLvm4aFPP9WWLWrTRp6exmCtWpo6VU89pdWrjZEpU9SwoVkZAQC3jYa7HaSkqHt3ffaZcdmxI912AAAAe4qOVkiI4uIkqUYNTZ9udiAAAOzkiSe0bJkqV061Xc6dq+LFNWqUcfeNNxQeblo2AMAdoOF+t1JS9OKLmj3buHzxRc2dm/6raQAAANyl1FR16qQ//pCkIkUUEcEmtgAAt3XwoF54QVarJD39tEaONDsQAOA20XC/K7a17XPmGJf/+Y+mT5cHn1QAAAD7GTJEa9dKksWimTN1331mBwIAwGH69FFsrCRVqaLFi1nPBwCuh31P7lxKirp21fz5xmWPHpo6lW47AACAPa1apREjjHrIELVubWoaAAAc7OxZSSpaVKtWqUgRs9MAAG4f7eE7lJKiF15I77b37KnPP6fbDgAAYE9HjqhLF+Nt9U2b6t13zQ4EAIDjeXpq3jxVqmR2DgDAHWGF+51ISlL79oqIMC579dKUKbJYHPU4q1V790qSxaKHH3bUUwAAAJxKXJzatdOVK5IUFKSFC3lbPQDAbV28mN5TGDdOzz1nWpIGDfTWW0YBALgDNNxvW2Ki2rXTihXGZf/+GjfOsU9MTlbt2pLk7a3ERMc+CwAAwEn06qV9+yTJ11fLl6t4cbMDAYCLi4+P3759++HDh48dO1ayZMnq1as/9thjRTLftSQ2NjYyMvLAgQOxsbFBQUHNmze/j2M0HGPNGkVFGQ33kBC9/rqZYZo2VdOmZgYAAFdHw/32JCYqLEyRkcblgAEaO9bUQAAAAO5owoT0c+knTTIWHwAA7tjXX3/dp0+fY8eO3ThYrFixjz76qEePHh63bJC6YsWK8PDw6OjotJF+/fr16NFj4sSJvr6+uZE4z/jtN3XokH45ZIh5UQAA9kDD/TYkJio0VCtXGpcDB2r0aFMDAQAAuKNdu/Tmm0bds6fCw01NAwCub/ny5W3btpXk7e1dr169SpUq/fnnnzt37oyOju7Vq9fPP/88efLkG+evW7eubdu2KSkpHh4etWvXLlmy5JYtW65evTp9+vQrV64sXrzYpI/DDV26pOBgY/80G29v89IAAOyBUz5zKiFBbdqkd9vfeotuOwAAgP2dO6fQUGMbvVq1NH682YEAwMVdv369X79+koKCgnbv3r1ly5bp06evX7/+t99+e/LJJyVNmTLl66+/TpufkJAQHh6ekpJSpEiRX375Zffu3ZGRkRcuXGjevLmkJUuWRKa96Rt3JyVFnTrpyBFJDjwWDgCQy2i451SLFlq92qjfeksjR5qaBgAAwB0lJyssTKdOSVKxYlq+XPnzm50JAFzcrFmzTp48KWn8+PG1atVKGy9btuzSpUtLlCghaerUqWnj8+fPP3XqlK2oVq2abdDb23vhwoUVK1aUNGbMmNzM78b699eaNZJksah0aavZcQAA9kHDPac2bDCKDz6g2w4AAOAQAwdq61ZJ8vDQggWqWNHsQADg+r799ltJJUqUCAkJuelW8eLFn332WUl79uxJG1yxYoWkqlWrPvfcczdO9vf3Dw0NlbRr167z5887Orbbmz1bEyca9XvvqVAhGu4A4CZouN+eDz/kABMAAACHWLxYn3xi1MOH65lnTE0DAO7i+PHjkqpXr57h3XLlykk6f/58SkqKbWTbtm2SmjRpcuvk4OBgSampqdu3b3dM2Lxi50717GnUISF6911T0wAA7IpDU2/DqFHp53cBAADAjg4d0ksvGXVwsAYNMjUNALiR0aNHx8TElC1bNsO7+/btk1SxYkVPT09J586du3z5sjJp0NepU8disVit1sOHDzsysps7cUKtWyshQZIefFBz5rCBOwC4FRruOTVunPr3NzsEAACAO7p2Ta1b6+pVSapUidYDANiT7WTUDG3fvn3NmjWS2rRpYxux7fYuKcMGvY+PT0BAQFRU1IkTJ+wfNG+Ii1ObNoqKkqTixRURoQIFzM4EALArGu45RbcdAADAEaxWvfiiDh6UpAIFFBGhwoXNzgQAecDmzZtDQ0OtVmtAQMAbb7xhG4yJibEV/v7+Gf4pf3//qKioa9euZf3ilhz84jQPdu2tVvXpU3zPHj9JXl7WyZOjvLwSbJ+GpKRAKZ+kM2fOFCyYZG5O5xEdHR0fHx8XF5efU9RvcPr0abMjOJ24uLhLly75+vrGxsaancWJ8BVkFvZwBwAAgJlGjtSyZUY9ZYoy2WQYAGA3586de+mll5o2bRodHV2oUKG1a9fec889tltxcXG2Il++fBn+Wds4La0788knhVet8rPVw4ZdeuyxBHPzAAAcgRXuAAAAMM3mzekn0vftqxdeMDUNALi7xMTEcePGjRgxwrZE/d///vd///vfKlWqpE3w9fVNm5nhKyQkJEjy8fHJ+kFWqzWLu7b170FBQbeT3eVFRGjCBKPu21eDBhWTiqXd9fZOtRWlSpXKY5+YrPj5+cXGxhYvXtzPz8/sLE4nr30FZS02NjZ//vx+fn7Fixc3O4sT4SvILDTcAQAAYI6TJ9W+vVJSJOnf/9aoUWYHAgC3tmPHjvDw8EOHDkkqWbLk0KFDe/To4eHxjze+F/h7Q/Hr169n+CK2te2ZbTiDzPz0k154QbZfQzz1lMaMMTsQAMBhaLgDAADABElJ6tBB589LUmCgli1TdsslAQB3burUqb17905JSfHz8xs0aFD//v0LZHRYZ5kyZWxFhptEJycnR0VFSSpdurRD07qZCxcUEiLbrzDuvVcLFsiLZgwAuC/+jQcAAIAJ+vTRjh2S5OWlJUtE6wYAHGfBggWvvPKK1Wp94oknZs6cee+992Y2s0yZMv7+/jExMbaF8Dc5evRoamqqpGrVqjkwrntJSlLbtjp2TJIKFtTKlWLHCwBwb+52aGpiYuLVq1fNTgEAAICszJunzz836rFj9fjjpqYBALd2/Pjxbt26Wa3WsLCwDRs2ZNFtt6lXr56kbdu23XorbdA2Bznx6qv69ltJ8vDQggV64AGzAwEAHMxNGu5JSUkjR46sUqWKr69v4cKFixQp0qVLlyNHjpidCwAAADf76Sf17GnU7dvr9ddNTQMA7m7y5MlJSUllypSZMWOGt7d3tvNbtmwpaffu3QcPHrzp1uzZsyXVrl27XLlyjojqfj75RNOnG/Xo0Wre3NQ0AIBc4Q5byly/fr1p06bfffdd2siVK1fmzZv35ZdfRkZGNmnSxMRsAAAAuNGlSwoJUWysJFWtqmnTzA4EAO7O1iVv0KDB8ePHM5vj7e1dpUoVW921a9ehQ4eeP3++V69e69at8/X1tY1PnTp1x44dkgYOHOjw0G5hwwalfaq6dNGAAaamAQDkFndouL/88su2bnvHjh07d+5csmTJDRs2DBs2LCYmJjQ09Ndffy1ZsqTZGQEAAKDUVHXqlL6PbUSEChY0OxMAuLWLFy+eP39e0uLFixcvXpzZtMDAwLNnz9rqAgUKTJo0qV27dlu3bq1Ro0arVq0CAgI2bty4ceNGSS1atAgNDc2d8C7t/9u778CoyvTt49ek0ZJQg9KCGJEm+IKALosiP1xBpEgglKCCIkqzIqigawWVoliw0CUQTDBIcVFEFndpggIWmhIQRJHQIaSSZN4/zuwQM5PJkEzmTDLfz18P55ycuZx95rln75k55+BBxcYqJ0eS/va3S99zBwCUe2W+4b5r165FixZJiomJWbRokcVikdS6devmzZv37t37zJkzU6ZMeeONN8yOCQAAAL34oj7/XJIsFs2fL265BwCl7cCBA8X4q/79+6empj7yyCPJycnTpk2zbx8wYMCcOXOM/98NF1JT1auXTp6UpLp1tXSpKlQwOxMAwFvKfMN9/vz5Vqu1UqVKs2bNyl/1e/To0atXr+XLl8fFxU2bNi0goJxcrR4AAKCM+uwzvfKKbfzMM+rb19Q0AOAfoqKi1q9fX+RhISEhBbYMGzasR48eCQkJu3fvzsjIiIyM7N27d7t27UonZrmSl6fYWO3eLUmVKmn5ctWrZ3YmAIAXlfmG+xdffCHptttuq1atWoFdPXv2XL58+cmTJ7/77rv27dubkQ4AAACSdOiQhg5VXp4k/d//6aWXzA4EAP6hZs2at956a/H+9oorrnjkkUc8GscvjBunzz6TJItFc+eKDykAwN+U7e99Z2Vl/fzzz5JuvPFGx73dunUzBj/++KNXYwEAACCfzEz17atTpySpQQN9/LECA83OBABAKYiLk/2ithMnatAgU9MAAMxQthvuBw8ezM3NldSoUSPHvXXr1q1UqZKk/fv3ezsZAAAA/mfkSO3YIUkVKigpSRERZgcCAKAUbNmi4cNt49699eKLpqYBAJikbF9S5vTp08agdu3aTg+IiIj47bffThnfpyrcQw895P5jed/Fi5JqmB4jv4yMjLNnz2ZlZXFx/PzOnDmTkZERGBiYmZlpdhYfcvbsWUmhoaFmB/EhvIKc4hUElFczZ2rBAtv4nXf4ZT0AoHw6elQxMcrKkqTmzbVwoXizDwD+qWw33NPS0oxBxYoVnR5gfMPdflhhZs2aVeRjXbhw4TLTeUxOjsVouFutVhNj5JeRkZGenp6Xl1eBW63nk5aWlpmZWaFCBeOHFzCkp6fL1FeQD+IV5BSvIKBc2rpVY8faxvfcc+l7fwAAlCcZGbrrLv3xhyTVrKmVKxUebnYmAIBJynbD3Wq1GgOLxeLigJycHNfn+fDDD13sNb7/XqNGjeJE9ISLF20Di8ViYoz8jF5h5cqVfSSPj7Barenp6dWrV69cubLZWXyI8YkXUyU/XkFO8QoCyp/jx9Wvn+27ftdfL5dvuAAAKKusVg0bpm+/laTgYC1dqqgoszMBAMxTthvuVapUMQaFXX8gKysr/2GFefDBB13sNRruJl4Qw95wNzdGfgEBAZmZmZUrV/aRPD4iMzPTYrGEhobSLszPeAEyVfLjFeQUryCgnMnN1d136/ffJal6dS1bpkqVzM4EAEApmDRJS5bYxm+/rc6dTU0DADBb2b6iWLVq1YxBYVc2N67ebj8MAAAA3vH001q7VpICArR4sa6+2uxAAACUguXL9fzztvGYMRoxwtQ0AAAfULYb7lFRUcbFZA4fPuy498yZM8Zloxs3buztZAAAAH5sxQpNn24bv/CC7rjD1DQAAJSOPXs0ZIjy8iTp5psv1T4AgD8r2w33SpUqXXPNNZK2b9/uuNe+8brrrvNqLAAAAD/2yy+6914Zt9rp0UMTJ5odCACAUnDqlHr10vnzknTVVVq2TCEhZmcCAPiAst1wl9S1a1dJa9euzc7OLrDrs88+k1S1atUOHTqYkAwAAMD/XLigPn0udR8WLFBAmX+/CQBAQRcvKiZGBw5IUliYVq1SrVpmZwIA+IYy/3+A7r33XkmnTp2aNWtW/u1//vnnggULJMXGxgYHB5uSDQAAwK9YrRo2THv2SFLFipoyRRMm6KGH9PbbZicDAMCjHnlE69dL/7tVCb+rBwDYlfmGe7t27e666y5J48aNmzt37rlz53Jzczdv3tyjR49z586FhYVNmDDB7IwAAAB+Ydo0JSbaxu+/r7AwzZqlWbP0+eemxgIAwKPefVcffGAbT56snj1NTQMA8DFlvuEuad68ec2aNcvMzHzggQdq1apVvXr1v//97zt27AgJCYmPj69fv77ZAQEAAMq/r7+W/XsOY8Zo6FAzwwAAUEo2bNDYsbZxTIzGjzc1DQDA95SHhnv16tW3bdv2xBNP1KxZMycnJzU1NSgoqHv37lu3bu3Ro4fZ6QAAAMq/Y8cUG6ucHEm66SZNn252IAAASsGvvyo6WsYt5Nq00YIFsljMzgQA8DFBZgfwjNDQ0OnTp0+dOjUlJSUjI6Nu3boVK1Y0OxQAAIBfMG4c9+efknTFFVq6VCEhZmcCAMDTUlPVq5dOnpSkOnW0YoUqVzY7EwDA95SThrshICCgTp06ZqfwvP37bYO8PB04oKgoU9MAAAD81eOPa+NGSQoKUkKCuJ4fAKD8ycvT4MHatUuSKlbUp59S7wAAzpWHS8qUYz/9pFtuUYsWtn/m5uqaa3Tbbfr5Z1NjAQAA/E98vGbOtI1fe02dOpmaBgCA0jFhglatso3nzNGNN5qaBgDgw2i4+67//Ec33qgNGwpuX7dObdtq61YzMgEAAOTz448aPtw2vusuPfGEqWkAACgdS5dqyhTb+OmnNXiwqWkAAL6NhruPSk3VwIHKyHC+98IF9euntDTvZgIAAMjn7FlFRys9XZKaNNFHH3HjOABAGZOTozNndOaMUlMLPWbHDg0dKqtVkrp10yuveC0dAKBMouHuo+bO1bFjrg74/XfFx3srDQAAwF9Zrbr/fh04IEmhoVq2TOHhhR6cl+e1XAAAXIYtW1SjhmrU0J13Oj/gzz/Vu7ft0+WmTfXxxwoMLJUk332XefjwbydOnLRfVBYAUEbRcPdRa9YUfcyXX5Z+DgAAAGdeflmffipJFovmzVPz5n/Zm5KiJ5/UPffY/vnVV+rWTWvXejskAAAlkZmpPn30+++SVKOGVq1S1apmZwIA+Dwa7j7KqOiuHTlS+jkAAAAcfPWVXnrJNh43TjExf9m7datatdL06Tp50rYlL09r1uj22/X447af5AMA4PseeMB2+7SgICUm6pprzA4EACgLaLj7qODgoo8JCSn9HAAAAH91+LAGDVJuriR17qxJk/6y99gx3Xmnjh93/rczZuiNN0o9IQAAJffaa1q82DaeMUNdupiaBgBQdtBw91FRUUUfc/XVpZ8DAAAgn8xM9e1r++p6nTpavFhBQX85YPJknTrl6gwvvqhz50oxIQAAJffFF3r2Wdv4vvs0erSpaQAAZQoNdx/Vu3fRx9x1V+nnAAAAyGf0aG3fLknBwUpMVJ06BQ9YurSIM6Sm6osvSiUbAAAesW+fBg60/ZarY0d98IHZgQAAZQoNdx81cKCuv97VATfdpF69vJUGAABA+vBDzZtnG7/1ljp2LHjA2bM6dqzo8+zb5+FgAAB4yunT6tnT9mOshg2VlMTVXAEAl4eGu48KCtKKFYVeNKZpUyUlKYD/9QAAgLds26ZHH7WNBw/WyJFOjsnMdOtUGRkeSwUAgAfl5Kh/fyUnS1JoqFauVO3aZmcCAJQ1tGx9V8OG2rlT48erVq1LG2vX1rPP6rvvVLeueckAAICfOX1aAwcqK0uSWrXSrFnOD6tVy60bv/M2BgDgmx59VOvWSZLFonnz1KqV2YEAAGUQDXefFh6u11/X77/b/hkUpGPH9PLLqlLF1FgAAMCf5OUpNla//ipJ1atr2TJVruz8yKAg3XJL0Sfs0sWT8QAA8Ij58/Xee7bxyy8rJsbUNACAMouGexlgv3SMxSKLxdQoAADA/0ycqDVrJCkgQHFxiopydfDjjxdxti5d1KKFx7IBAOAR589rxAjbuG9fTZhgahoAQFlGwx0AAACFWrlSr79uGz/3nO68s4jj77xTo0cXurdevUu3XQUAwHfs2aPsbElq3VoffcR33QAAxUfDHQAAAM7t369775XVKkn/+Ieee86tv3rnHb3xhqpVK7j9zjv1zTeKjPRwSAAASu7iRUm64gqtWMFFXAEAJULDHQAAAE6kpSk6WufOSVLDhoqPV2CgW39osejxx3X4sCZOtG1p3ly7d+uzz1S/fmmlBQCgGIwPlQ0hIUpMVIMG5qUBAJQLNNwBAADgxKhR2rVLkipWVFKSatW6vD8PD1fHjrZxZKSaN/dwPAAASm7u3EvjWbPcuvU3AACu0XAHAABAQW++qYULbeOZM3XDDaamAQCgFCQkKC7ONq5fX0OGmJoGAFBe0HAHAADAX2zZoqefto1HjND995uaBgCAUrB9u+6//9IlZa66yswwAIDyhIY7AAAALklJUb9+ys6WpPbtNWOG2YEAAPC0Y8fUp4/S0y9tsVjMSwMAKF9ouAMAAMAmJ0f9++voUUmqWVMJCapQwexMAAB4VHa2+vfXkSOSFBZmdhoAQLlDwx0AAAA2Tz6p//5XkgICFB/P7+sBAOXQ6NHasEGSAgP13HNmpwEAlDtBZgcAAACAT/j4Y731lm08ebJuv93UNAAAlIJp0zRnjm08fbratDE1DQCgPOIb7gAAANC+fXrwQdu4Vy+NH29qGgAASsGXX166K/iQIXr0UVPTAADKKRruAAAA/i41VdHRSk2VpMaNtXAh944DAJQ3P/+sAQOUmytJHTroww/NDgQAKKe4pAwAAIBfs1p1333au1eSqlTRp5+qalXPnLlbN1mtnjkVAAAlceaMevbU2bOSFBmpZcu4KzgAoLTwDXcAAAC/9uqrSkqyjd9/Xy1amJoGAABPy83V3Xdr/35JqlRJSUm64gqzMwEAyi8a7gAAAP7r3//WP/9pGz/xhO65x9Q0AACUgrFjtXq1JFksmj9fbduaHQgAUK7RcAcAAPBTR45o4MBLV7N99VWzAwEA4GkffaS33rKN//lPDRhgahoAgB/gGu4AAADlxA8/KCdHkq6/XkFFvcvLylLfvjpxQpKuvFJLlyokpNQTAgDgTZs366GHbOM+fS79qAsAgNJDwx0AAKCc+L//0+nTknTqlGrUKOLghx/Wt99KUnCwEhNVt26pxwMAwJt++03R0crKkqTrr1dcnAL4kT8AoPRRbQAAAPxOXJxmz7aNp0/XzTebmgYAAE/LyFDfvkpJkaSaNbVsmapUMTsTAMA/0HAHAADwLz/8cOn39YMG6eGHTU0DAICnWa267z59950kBQcrKUlXX212JgCA36DhDgAA4EfOnFF0tDIyJKlly0vfcwcAoNx48UUlJNjG776rTp1MTQMA8DM03AEAAPxFXp4GD9bBg5IUFqbERH5fDwAobz79VC+9ZBs/+qgefNDUNAAA/0PDHQAAwF88/7w+/1ySLBYtWKCmTc0OBACAR/3wg+65R1arJN12m6ZNMzsQAMD/0HAHAADwC599psmTbeMJExQdbWoaAAA87dQpRUcrLU2SGjXSkiUKCjI7EwDA/9BwBwAAKCeML/Q5deiQhg5VXp4kdemiF1/0WigAALzh4kX17XvpsmmrVqlWLbMzAQD8Eg13AACAsi03V3PmqG1bnTlj2/K3v2nqVGVm2v6ZkaG+fXXqlCRFRurjjxUYaE5UAABKyZgx+s9/JCkgQPHxatHC7EAAAH9Fwx0AAKAMu3BBt9+u4cO1ffuljb/8ovHjdcstFY8fD5Q0apR27JCkChX0ySd84w8AUN7MmKFZs2zjKVPUo4epaQAA/o3rmQEAAJRhQ4fq3/92vmv37oBhwyIGDLi4YIFty7vvql07byUDAMAr1q7VuHG28T33aOxYU9MAAPweDXcAAICyavNmJSW5OuDHH0P27Akxxvfcowce8EYqAAC85tdfFRurnBxJuuEGffih2YEAAH6PS8oAAACUVZ98UvQxRg/i//0/ehAAgPImNVU9e+rkSUmqU0crVqhSJbMzAQD8Hg13AACAsurnn906rGZNffopPQgAQLmSl6fYWO3eLUkVK2r5ctWrV5yTGIzPpwEAKDka7gAAAGVVRoZbhy1erKuuKt0kAAB42fjx+uwzSbJYNG+e2re/vD///XeNGKGePW3/3LJF7dopPt7DIQEAfoiGOwAAQFlVp07Rx9Srl9e1a+lHAQDAi+LiNH26bTxxogYNurw/37RJ11+vDz9Uauqljd99p8GDNWgQ33YHAJQIDXcAAICyqkuXoo/p3z+z9IMAAOA9W7Zo+HDbuHdvvfji5f15Sop69tTp0873fvyxnn22RPEAAH6OhjsAAEBZNXCgIiNdHVChgvWee2i4AwDKj6NHFROjrCxJatZMCxcq4DIbG6+9pjNnXB3w5pv688/iJwQA+Dka7gAAAB7w/ffavl3btys313sPWrmyPvpIFSs632ux6PXXTzdokOd8NwAAZU1Ghu66S3/8IUk1a2rVKoWHX/ZJli0r4oDsbNvV4QEAKAYa7mVAcLCsVlmtys42OwoAAChEp05q21Zt2yotzauPe+ut2rBB119fcHtEhJYty+rTx7tpAAAoNVarhg3Tt99KUnCwli5VVNRlnyQrS0eOFH3Y/v2XfWYAAAw03AEAAMq2tm21c6feeefSljvv1NGjuv12L37ZHgCAUjZpkpYssY3ffludOxfnJNnZslqLPsy4ZA0AAMVAwx0AAKDMO3ZMkydf+uecOQoKMi8NAACetmKFnn/eNh49WiNGFPM8YWEKCyv6sHr1inl+AABouAMAAJRtFy8qJuYvt3cLCTEvDQAAnrZnj+69V3l5knTzzXrjjRKd7R//8MwxAAA4RcMdAACgbHv0UW3aZHYIAABKx6lT6tVL589L0lVXKSmppJ8rjxsni8XVAV26qHXrEj0EAMCf0XAHAAAowxYv1vvv28aVK5saBQAATzN+xXXggCSFhWkCzxCMAAAczklEQVTVKkVElPScN92kl18udG9kpBYsKOlDAAD8GQ13AACAsurHH/Xgg7Zxnz6qWNHUNAAAeNojj2j9ekkKCNCiRbruOs+cduJELV6s+vX/sjEgQDEx2rat4HYAAC4LDXcAAIASychQfLwyM23/XLTI9rP30nbmjKKjlZ4uSU2a8HU8AEB5M3OmPvjANp40Sb16efLksbE6cEAzZtj+2aSJDh5UYqKuuMKTjwIA8EM03AEAAIrv00911VUaPFjZ2bYto0crMlJz55bu4+bl6Z57bD+xDw3VsmUKDy/dRwQAwJs2bNATT9jGMTF66inPP0RIiNq0sY1r11bDhp5/CACAHwoyOwAAAEBZFR+vu++W1Vpw+7lzeuABpabqscdK66Ffekn/+pckWSyaP1/Nm0tS7966cEFSSe8mBwCAuQ4dUt++tg+z27TRggVF3OYUAADfQcMdAACgOE6c0KhRTrrtdk89pTvvVOPGnn/otWv1yiu28fjx6tfPNp43z/OPBQCAl6WmqmdPnTghSVdeqRUruCs4AKAs4ZIyAAAAxREXp3PnXB2Qna3Zsz3/uIcPKzZWubmS1Lnzpc47AADlQF6e7r5bu3ZJUsWKWr6cW5gCAMoYGu4AAADFsXFj0cds2ODhB83MVN++OnlSkho0UEKCgvi9IgCgHJkwQStX2sYzZ+rGG01NAwDA5aPhDgAAUBzHjxd9TEqKhx909Ght3y5JwcFaskQRER4+PwAAJlq6VFOm2MZPPaX77zc1DQAAxULDHQAAoDjCwoo+Jjzck4/4/vuXrtL+9tv6+989eXIAAMy1Y4eGDrXdHKVrV02aZHYgAACKhYY7AABAcVx3nWeOcdO2bXr8cdt48GCNGOGxMwMAYLpjx9S7t9LTJalpUyUkKDDQ7EwAABQLDXcAAIDiGDRIFksRx8TGeuaxTp3SgAHKypKkVq00a5ZnTgsAgC/IzNRdd+n33yWpRg2tWqWqVc3OBABAcdFwBwAAKI42bfTAA64O6NlT3bt74IHy8hQbq0OHJKl6dS1bpsqVPXBaAAB8xOjR2rpVkoKClJioa64xOxAAACVAwx0AAKCYZs7U3Xc739W9u+LjPfMoEyboyy8lKSBAixYpKsozpwUAwBe8/vqlO5TMmKEuXUxNAwBAidFwBwAAKKbgYMXFac0a9elz6fIyt9+upCR99plCQz3wECtWaMoU2/if//TMV+YBAPARX3yhiRNt4/vu0+jRpqYBAMATgswOUKjMzMyNGzf+8ssvBw8evPLKK6+77rqbbrqpWrVqhR2fnp6+YsWK3bt3p6enR0ZG9ujR4xp+hwYAgI8pl/X69tt1++2qWlXnz0vS0qUKD/fMmX/5RUOGyGqVpH/8Q88+65nTAgDgjtKu2vv2aeBA5eZKUseO+uADD54bAADT+GjDffXq1Q8//PDBgwfzb6xRo8bkyZOHDx8eEFDwi/nLly8fNmzY6dOn7Vsef/zx4cOHv/322xUrVvRGYgAAUBTq9WW5cEHR0Tp3TpIaNtSSJQoMNDsTAMBveKFq9+x5qcwlJSkkxCNnBQDAZL7YcE9KSurXr5+k4ODgDh06NG7c+PDhw5s3bz59+vSIESN+/PHHmTNn5j9+zZo1/fr1y83NDQgIaNu27ZVXXvn111+fP39+9uzZ586dS0hIMOm/AwAAXEK9vlzDhmn3bkmqWFFJSapZ0+xAAAC/4Z2qnZwsSaGhWrlStWt75JQAAJjP567hnpaW9vjjj0uKjIzcunXr119/PXv27C+//HLfvn233nqrpPfee2/16tX247OysoYNG5abm1utWrVdu3Zt3bp1xYoVJ0+e7NGjh6TExMQVK1aY9J8CAABsqNeX6403lJhoG7/3nm64wdQ0AAB/4s2qbbFo7ly1auWp8wEAYD6fa7gvWLDgyJEjkt58883WrVvbt9evX3/p0qW1a9eW9EG+S7stXrz4jz/+MAbNmjUzNgYHBy9ZsqRRo0aSpk6d6s38AADAEfX6smzerGeesY1HjdJ995maBgDgZ7xZtV96Sf37e+pkAAD4BJ9ruP/nP/+RVLt27ejo6AK7atWq1a1bN0nfffedfePy5cslNW3atHv37vkPDg0NjYmJkbRly5YTJ06UdmwAAOAC9dp9x44pJkbZ2ZJ044164w2zAwEA/IzXqnb//po4seSnAQDAt/hcw/3QoUOSrrvuOqd7GzRoIOnEiRO5xo3MpQ0bNkjq0qWL48G9evWSlJeXt3HjxtIJCwAA3EK9dtPFi+rfX0ePSlLt2vrkE1WoYHYmAICf8VrVjo+XxVLy0wAA4Ft87qapU6ZMuXDhQv369Z3u3blzp6RGjRoFBgZKSklJOXv2rApp0Ldr185isVit1l9++aU0IwMAAFf8pF4/9piysiSVqEU+dqw2bJCkwEDFxamQN0QAAJQWb1btwMCSnwMAAJ/jcw13486oTm3cuPHzzz+X1LdvX2OLcbV3SU4b9CEhIREREcePH//tt988HxQAALjHT+r1iy+W9AxLluidd2zjV1/V7beX9IQAAFwuP6naAACUHp9ruBfm3//+d0xMjNVqjYiIePLJJ42NFy5cMAahoaFO/yo0NPT48eOpqamuT25x42ds7hwDAAAcUa+LYfx4jR9vdggAgP/x26q9YQPXtwEAeIbPXcPdUUpKyoMPPnjbbbedPn06PDz8iy++qFmzprErIyPDGFQo5Mfbxvb09HTvRAUAAI6o1wAAlBVUbQAASsinG+7Z2dmvvvpq48aNZ8+ebbVa//a3v23btq1Nmzb2AypWrGg/0ukZsrKyJIWEhLh+IKtL7hzjbxITEyUZvzmAXUxMjKTExESzg/gWXkGOeAU5xSvIqRJUUR9CvTYLq41TrDZO8QpyxCvIKV5BTpW8VvoOqrZZWHOcYs1xileQI15BTvEKcqrktbJIpX5JmZkzZ65du9b1MVWqVFm8eHGBjZs2bRo2bNjPP/8s6corr3zhhReGDx8eEBBQ4A+NQVpamtMzG5+6F/ZTOAAA4AXUawAAygqqNgAAJVTqDfedO3euWLHC9TFVq1YtsOWDDz4YM2ZMbm5u5cqVn3766SeeeMJe9fOrV6+eMTh69Kjj3pycnOPHj0uqW7ducaIDAABPoF4DAFBWULUBACihUm+4P/fccyNGjCgiRNBfYsTHx48aNcpqtXbq1GnevHlXX311YX9Yr1690NDQCxcuGF+ELyA5OTkvL09Ss2bNipUdAAB4APUaAICygqoNAEAJlXrDvWHDhg0bNnT/+EOHDg0dOtRqtfbv33/RokXBwcGuj+/QocOXX365YcMGx132jR06dHA/AAAA8DjqNQAAZQVVGwCAkvC5m6bOnDnz4sWL9erVmzt3bpHddkm9e/eWtHXr1r179xbY9dFHH0lq27ZtgwYNSiMqAABwE/UaAICygqoNAEBJ+FzD3ajfHTt2PHTo0K5C5P9p25AhQyIiIiSNGDEiMzPTvv2DDz7YtGmTpHHjxnn9PwIAAPwF9RoAgLKCqg0AQEmU+iVlLsupU6dOnDghKSEhISEhobDDrrjiimPHjhnjKlWqvPvuuwMGDPjvf//bsmXLu+66KyIi4quvvvrqq68k9ezZMyYmxjvhAQBAYajXAACUFVRtAABKwrca7gcOHCjGX/Xv3z81NfWRRx5JTk6eNm2affuAAQPmzJljsVg8FxAAABQT9RoAgLKCqg0AQLH5VsM9Kipq/fr1RR4WEhJSYMuwYcN69OiRkJCwe/fujIyMyMjI3r17t2vXrnRiAgCA4qBeAwBQVlC1AQAoHovVajU7AwAAAAAAAAAAZZ7P3TQVAAAAAAAAAICyiIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAPoOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLgDAAAAAAAAAOABNNwBAAAAAAAAAPAAGu4AAAAAAAAAAHgADXcAAAAAAAAAADyAhjsAAAAAAAAAAB4Q+MILL5idwaft3bt327ZtBw8eDAgIqF69utlxfEJeXt6hQ4e2bdv2xx9/hIWFVa5c2exEPufzzz/fvn17VFRUcHCw2VlMlpaWtn379p07d2ZlZVWrVi0oKMjsRObLzc1NTk7esmXL2bNnw8PDK1SoYHYiE5w8eXLlypXBwcG1atVyfaRfLcJ79uxZt25dvXr1KlWq5OIwFmGn/GqquImpUiTqtR312hH1WtTrQlCvS86vJoybmDBFomrbUbUdUbVF1S6EaVXbikKsW7euefPm+Z+r9u3bb9++3excZsrMzHzhhRcKTLvGjRuvWLHC7Gg+5NNPPzWemSNHjpidxUypqamjR4+uUqWKfapUqVLltddey87ONjuaadLT0x1fQV27dt2zZ4/Z0bzt1VdflTR16lQXx/jhIty1a1dJ3377bWEHsAg75YdTpUhMFXdQrw3Ua0fUazvqtVPU65LwwwlTJCaMO6jaBqq2I6q2HVXbKbOqNg1355KSkgICbNfbCQsLq1ixojGuUKHCxo0bzU5njrS0NPvL0mKxNGzYsEaNGva5OGzYMLMD+oTff//d/rT481uB06dPN2vWzD5b6tata39B9evXz+x05khPT2/VqpX9Oalfv77989WgoKCvvvrK7IDek5mZ2aRJE9dvBfxwEd6/f7/x5ZTC3gqwCDvlh1OlSEwVd1CvDdRrR9RrO+q1U9TrkvDDCVMkJow7qNoGqrYjqrYdVdspE6s2DXcnUlJSQkNDJdWqVWvdunXZ2dnp6emffPKJ8bqtW7duRkaG2RlN8PTTTxsT7qGHHjp79qyxcefOnTfddJOxfeHCheYmNF1ubu6tt95qf2X681uB7t27G6vVG2+8cfz4cavVevLkydjYWOOZmTt3rtkBTTBy5EjjP3/8+PHnzp2zWq25ubmrVq2qW7eupDp16pw8edLsjN5w4sSJQYMGGU9FYW8F/HAR3rNnT8uWLY2npbC3AizCjvxwqriDqVIk6rUd9doR9dpAvXaKel0Sfjhh3MGEKRJV246q7YiqbaBqO2Vu1abh7sRTTz0lKSgoqMAnPImJicbT/e6775qVzSx//PFHSEiIpO7duxfYlZqaGhUVJalevXqmZPMdr7zyilH//PytwLp165y+Ui5evHjDDTdIuvHGG83KZpacnBzjd3+DBg0qsGvt2rXG07Vo0SJTsnnHrl27Jk6c2KNHD/un6C7eCvjPIrx69erHHnusY8eO9nWjsLcCLMJO+c9UcR9TxR3UawP12hH1mnrtFPXaI/xnwriPCeMOqraBqu2Iqk3VdspHqjYNdyeuuuoqSX369HHcZTzdt9xyi/dTmSsuLs6Yo05/ZvLWW28Ze48ePer9bD7im2++CQoKCg4Ofuyxx/z8rUDfvn0lNWrUyHHX4sWLW7Ro0bJlS+PDZ//x008/GbMiISGhwK68vLywsDBJjz76qCnZvOP999+Xg8LeCvjPIjxgwADHp8XpWwEWYaf8Z6q4j6lSJOq1HfXaEfWaeu0U9doj/GfCuI8JUySqth1V2xFVm6rtlI9Ube5lXFBycvKhQ4ck9ejRw3Fvz549Z8yYsXnz5oyMDNf3ty1n9u3bJ8lisbRu3dpxb4sWLYzBzz//XKdOHa8m8w3nz5+PjY3Nycl5/fXXjd8u+a3s7Ow1a9ZIuvvuux33xsbG2n/y5lcyMjKMQW5uboFdxlosKTMz09uxvKhz587z58+3//O+++4r7Ei/WoRHjhzZrVs3Y7xv377XX3+9sCNZhB351VRxH1PFNeq1HfXaKeo19dop6nXJ+dWEcR8TxjWqth1V2ymqNlXbKR+p2jTcC9qzZ48xcPp0d+7cecaMGTk5OcnJyfYrAfmDNm3ajB07Njw8vMB9ew2HDx82BvXr1/duLl8xcuTIgwcPdu7c+cknn4yPjzc7jpl279594cIFSbfddpvZWXxIs2bNwsLCUlNTExMT7ddWM6xevdp4xtq3b29SOm9o0qSJcQsXg4u3An61CHfq1KlTp07G+Ouvv3bxVoBF2JFfTRX3MVVco17bUa+dol5Tr52iXpecX00Y9zFhXKNq21G1naJqU7Wd8pGqTcO9oIMHDxqDhg0bOu61bzxw4EA5mIXui46Ojo6OdrorNzd35syZkiIjIxs1auTdXD5h4cKF8fHxNWrUiIuLs9/x2W/t3bvXGNSpU+fEiROzZ89ev379qVOnrrnmmuuvv37IkCH++X4xNDR08uTJDz/88PLlyx988MGJEyc2bNjwwoULy5Yte+KJJyS1b9/eP7+V4IhF2CkWYUdMFaeYKi5Qr/OjXjtFvXYfi7BTLMKFYcI4xYRxgaqdH1XbKaq2+1iEnSrVRZiGe0Hnz583BtWqVXPca9947tw572XyYRcvXhw+fPiOHTskTZw4MTAw0OxE3pacnDxmzBhJs2fPrlevntlxzHf06FFjsG/fvvvvv//kyZPGP3fu3Ll06dIpU6ZMnz79gQceMC+gacaMGVOhQoXHHnts9uzZs2fPrlSpkv0XcP369Zs9e3b++5z4Mxbhy+LPizBT5bL481QxUK8LoF4XhnrtJhbhy8IizIS5LEwYqnYBVO3CULXdxCJ8WTyyCNNwLyg9PV1ScHCw0w9R7RczSktL82osn7R169aRI0fu3LlT0n333Td8+HCzE3nbxYsXY2NjU1NThw8fXtjHYv4mNTVVksViGTx4cGpqavfu3W+++ebq1av/9NNPH3300fnz54cPHx4REdG7d2+zk5ogJCSkUqVKxiJjfx8gqWbNmsYF5iAW4cvh54swU8V9fj5VRL12hnrtAvXaHSzC7mMRFhPmcjBhqNqOqNouULXdwSLsPk8twjTcCwoKCpKzWy4YLl68aAwsFov3Mvme33777ZlnnlmyZInVag0MDHzyyScnTZrkh8/Js88+++233zZp0mTGjBlmZ/EVxj1JrFZrWlrasmXL+vTpY981duzYTp06HTlyZPTo0V26dAkNDTUvpgnGjBlj/CLpjjvuuPfeexs3bnz8+PGNGzfOmDHjww8/XL9+/ddff+2fd0MqgEXYHSzCYqq4h6lioF47ol4XhnrtJhZhd7AI2zFh3MGEMVC1HVG1C0PVdhOLsDs8uwj7+5WwHFWpUkVSXl6efcLlZ7/Bsb+tYnY5OTmvvfZas2bN4uPjrVZr+/btN2/e/Nprr/nhz9zWrVs3derU4ODgxYsXO73Bgn+yfzQ6atSo/O8DJDVq1GjKlCmS/vjjj02bNpkQzjwJCQnG+4BJkyatXr164MCBN9xwwx133DFp0qSdO3eGhYX98ssv999/v9kxfQKLsGsswnZMFdeYKnbUa6eo105Rr93HIuwai3ABTBjXmDB2VG2nqNpOUbXdxyLsWmkswnzDvaCIiAhjkJKS4njfiWPHjhmDWrVqeTWWb0hJSYmOjt68ebOkxo0bT5o0KSYmxuxQppk+fbrVam3ZsuXatWvXrl1r3/79998bg/feey88PFzS2LFjg4ODzUnpdWFhYcbA6c/Zunbtagx+/PFH+9gfGO8Drr322qeffrrArmuvvXbChAnPPPPMF198ceDAgaioKDMC+hAWYRdYhPNjqrjAVMmPeu0U9dop6rX7WIRdYBF2xIRxgQmTH1XbKaq2U1Rt97EIu1BKizAN94KaNGliDA4ePOg4C3/99Vdj0LRpU6/G8gHnz5/v1q3b999/Hxwc/Mwzz0ycODEkJMTsUGbKy8uTtGPHDuNGCo5effVVYzBmzBj/eStgr2QNGjRw3Fu9evWwsLDU1FT7XV/8xL59+yTddNNNTq+Y1qFDB2Owd+9e3gqwCBeGRbgApkphmCoFUK+dol47Rb12H4twYViEnWLCFIYJUwBV2ymqtlNUbfexCBem9BZhGu4FtWrVKigoKCcn55tvvrnlllsK7N26daukmjVrNmzY0Ix0Zho0aND3338fHh6+cuXKTp06mR3HfK1atbL/7ia/lJQU+7pfoUIFSX71S8CWLVsag/3799vXdLtTp04Z93tp1qyZt5OZqnr16idOnMjOzna61769atWqXgzlo1iEC8MiXABTpTBMlQKo105Rr52iXruPRbgwLMJOMWEKw4QpgKrtFFXbKaq2+1iEC1OKi7AVDm699VZJN9xwQ4HtOTk5devWlXTvvfeaEsxE9h9wJSYmmp3F18XFxRnP1ZEjR8zOYo5rr71W0pAhQxx3zZ8/33hyvvnmG6/nMtPAgQMlNWzYMCsry3HvxIkTJQUEBKSmpno/mymMaTB16lSne/1zEV6/fr3xtHz77beOe1mEnfLPqeIaU8V91GvqtSPqdQHUa0fU62LzzwnjGhPGfVRtqrYjqnYBVG1HJlZtbprqxMiRIyVt3749ISEh//Y333zT+IWOcYBfef/99yVFRkb68+Xk4KZhw4ZJWrhw4SeffJJ/e3Jy8vjx4yW1bdu2bdu25oQziXGtvcOHD48bN874maTdli1bpk2bJqlz585+e4uSAliEHbEIO8VUccRUgfuo146o15eFRdgRi7ALTBhHTBi4j6rtiKp9WViEHZXuIuzxFn45kJeX17FjR0kVKlSYMGHC5s2bv/zyyzFjxhiXhRo8eLDZAU1gLNzBwcE1Xdq/f7/ZSc3HZ+/p6enGx++SBg0aNH/+/KSkpKeeesq4L3ZwcPAPP/xgdkYT9O/f33hO2rZt+9Zbb/3rX/+aN2/e0KFDjYWlevXqv/32m9kZvcd4Kgr77N0/F2HXn72zCDvln1PFNaaK+6jX1GunqNf5Ua8dUa+LzT8njGtMGPdRtanaTlG186NqOzKxatNwdy4lJaV169aOn0907do1PT3d7HQmqFGjhutPbgx79+41O6n5eCtgtVqTk5MbN27sOEMiIyPXrFljdjpznD17dsiQIRaLxfFpadGixaZNm8wO6FWu3wpY/XIRdv1WgEW4MH44VVxjqriPem2lXjtDvc7P+A+nXudHvS4JP5wwrjFh3EfVtlK1naFq52f8h1O18zOxanPTVOdq1679zTffzJkz55NPPjl48GBgYGDTpk0HDx48aNAgp6/k8i03N/eRRx6x/u/V60KtWrW8kMfHtWrV6vnnn5cUHh5udhbTREVF/fDDD3PmzFm+fPmvv/4aHBzcqlWrdu3ajRo1ym9/z1W1atUFCxaMGjUqLi5u7969ycnJERERzZo1u+WWW4YOHRoU5F+rsfEasd843pEfLsJXXXWV8bQYV9DLj0XYBT+cKi4wVS4L9VrUa2eo1/lRrx1Rr0vCDyeMC0yYy0LVFlXbGap2flRtRyZWbYs7pwYAAAAAAAAAAK5x01QAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwANouAMAAAAAAAAA4AE03AEAAAAAAAAA8AAa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8gIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAPoOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLgDAAAAAAAAAOABNNwBAAAAAAAAAPAAGu4AAAAAAAAAAHgADXcAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwANouAMAAAAAAAAA4AE03AEAAAAAAAAA8AAa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICGOwAAAAAAAAAAHvD/Aa+ZFDpDNvnvAAAAAElFTkSuQmCC", "text/html": [ - "<img width=1000 height=400 style='object-fit: contain; height: auto;' src=\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2BTZdvH8V93gYLsqWVPUUAQWcqWIXtvQR62oPiKiAjyAMqSJeIGGRVkLxGRKVs2sguUvUuhhbbQlfeP5Cm1i7RNe5L2+/nr5M6d5JeOXOdcOcPJZDIJAAAAAAAAAACkjLPRAQAAAAAAAAAASA9ouAMAAAAAAAAAYAM03AEAAAAAAAAAsAEa7gAAAAAAAAAA2AANdwAAAAAAAAAAbICGOwAAAAAAAAAANkDDHQAAAAAAAAAAG6DhDgAAAAAAAACADdBwBwAAAAAAAADABmi4AwAAAAAAAABgAzTcAQAAAAAAAACwARruAAAAAAAAAADYAA13AAAAAAAAAABsgIY7AAAAAAAAAAA2QMMdAAAAAAAAAAAboOEOAAAAAAAAAIAN0HAHAAAAAAAAAMAGaLgDAAAAAAAAAGADNNwBAAAAAAAAALABGu4AAAAAAAAAANgADXcAAAAAAAAAAGyAhjsAAAAAAAAAADZAwx0AAAAAAAAAABug4Q4AAAAAAAAAgA3QcAcAAAAAAAAAwAZouAMAAAAAAAAAYAM03AEAAAAAAAAAsAEa7gAAAAAAAAAA2AANdwAAAAAAAAAAbICGOwAAAAAAAAAANkDDHQAAAAAAAAAAG6DhDgAAAAAAAACADbgaHQBwDMHBwZMmTXry5MmNGzciIiImTpxYuHBho0PhXy5dujRjxgx3d3dfX98yZcqMGjUqS5YsRocCAKQp6rX9o14DABJBKTcKBRqwISeTyWR0BsABDBo0aOTIkQULFpT0f//3fytXrjx27Fi2bNmMzgWLkJCQ/v37//zzzy4uLmFhYXXq1ClQoMCKFSuMzgUASFPUaztHvQYAJI5SbggKNGBbnFIGeLYHDx78/vvv586dM9987733Ll26tHr1amNTIaZNmzZduHDh9u3bktzd3fv3779y5corV64YnQsAkHao1/aPeg0ASASl3CgUaMC2aLgDz2YymZ48eeLn52e+mTt3bklXr141NBT+JWvWrGfOnHnw4IH5Jr8jAMiAqNf2j3oNAEgEpdwoFGjAtjiHO/BsOXLkuHHjRvTNEydOSKpYsaJxiRBbvXr17t27F33zxIkT7u7uZcuWNTASACCN2W29DgsLc3d3NzqFXaBeAwASYbelPN2jQAO2xTncgSTr16/f4cOH9+/f7+TkZEiAu3fvnjt3rkaNGglNCAoKWrZs2b59+wICAl5++eVatWrVr1/f+uevVq1a5cqVmzVrVqJEiWzZsl27du3ChQtbtmzx9vYeOXJkQo86fvy4l5dX0aJFk/ZmUkFkZOTLL7/cuHHjqVOnGpUhIiLizz//bNq0aZIeNWjQIH9//5YtW1aoUCF37tz+/v4XL17ct2+fr6/v0qVL433I5cuXFyxYcPToUVdX1ypVqgwaNChz5sy2eAcA4PAMr9dmGzdufP/990+fPh1rPBmf+bEkqV4HBQUtXLjwwIEDkZGRefPm7datW6VKlWzzDpPLqHq9YMGCefPmtW7dumbNmvnz5w8NDb148eLx48dXrVq1Zs2aHDlyWP9U1lThyMjINWvW7Nu379y5cyVKlKhfv37jxo1t+oYAIN0yvJQ/c9P7mZ65mRwSEjJv3rzDhw/fu3evWLFizZo1q1u3brJfziaM3aD++++/f/nll6CgoMjIyDp16nTu3Dl5W7iJ/+5SvhoGPIMJQFIcOHCgQIECly5dMuTVw8PDV6xYUbBgwSZNmiQ059ChQ7Vq1Zo9e/bRo0dXrlzZsmVLSa1bt75x44aVr5I9e/a4nxUNGzZ89OhRvPMfPHgwZcoUDw+PSZMmJedd2drUqVNff/31J0+eGBXg77//rl69eqZMmZL6wFatWsX9yRcuXNjX1zfu5KioqLFjx3p7e8+bN+/u3bvBwcGrV69+/fXXQ0NDbfEmAMCxGVuvowUFBXl7excpUiTuXUn6zI+X9fX6yJEj3t7e48aNCwkJMZlMe/fuLVGixMiRI1P47lLIqHo9Y8aMuD83T0/PNWvWWP8kVlbhq1evvvLKKzVr1ty7d29YWNjhw4dLly7dvn37sLAwW78tAEhv7H/TO3HWbCbv2rWrZcuWa9euDQwMfPLkycGDB1u0aNGoUaPg4ODkBrcBowp0RETE0KFDy5Urd/ToUZPJ9PDhw48++qhMmTInT55M0vNY87tL+WoYkDga7kAShISE1K5d+9ChQ2n8upGRkT179mzUqFHVqlXfeOMNSY0bN4535t27d1966aUrV65Ej0RFRfXq1UtS1apVIyIirHm5HDlyuLpazjfl5ORUpkyZ+fPnR0ZGxpp26tSpbt26vfHGG7Vq1SpXrpykiRMnJvs92srZs2dr1aoVEBCQ9i/9xRdftGzZskqVKs2bNzdvuif1GVq1ahXznAP58uUbPXp0UFBQ3JnmX2u+fPkuX74cPfjNN98UL178+++/T9HbAADHZ1S9jmvAgAGSEmq4W/mZnxAr6/X9+/fz58//3nvvxRw8e/asi4vLDz/8kIw3ZRMG1usZM2bE/Ml7eXl169bt4sWL1j+DlVX48ePH5cqVK1iw4P3796MHDxw44OLi8v7779virQBAumX/m94JsX4z+ebNm7Vr1w4MDIw13qlTp7Zt2ybzDaSYgQV64sSJXl5eMbsZJpOpe/fuJUuWTGjnv5iS9LtL+WoYkDga7kAS9O/ff//+/eblBw8epOVL79y588KFCyaT6ddff02kcvTp02fx4sWxBu/evevp6SnJyj3QixQpEhwcfOzYsQMHDjx8+DChaffv39+zZ8+dO3dMJlP//v3toeEeGBjYvn37u3fvmkymsLAw8358aebo0aP//PNPRETErVu3kt1wP3jw4JkzZ/bu3Xv79u1EZv7yyy+SVq5cGXMwf/78koYNG5bk6ACQvhhYr2Pavn179+7dE2m4W/mZnxAr6/X7778v6erVq7HGmzRpkiVLFn9//2S8dAoZW69nzJgxffr0y5cv792718/PLyoqKqnPYGUVHj58uKShQ4fGenirVq1cXFzOnj2bvPwAkBHY/6Z3QqzfTB4xYsSYMWPijp85c8bZ2dmQlreBBfrGjRuZMmX6z3/+E2v877//lvTxxx9b8yTW/+5SvhoGJM457jEUAOL11VdfdejQ4dVXX5UUERGxePHitHz1WrVqFStW7JnT1q9fv2LFiqNHj8YczJ0795tvvilp7dq1Vr5c5syZX3755SpVqnh5eSU0J3v27NWrV8+TJ4+Vz5naTCbTp59+OmPGDPMV1ffu3Xvu3Lm0DFChQoWXXnrJxcUlJU/i6upaunTpatWq5c2bN6E5oaGhI0aMKFmyZKzj4MaOHdu4ceNu3bqlJAAAODpj63W00NDQKVOmjB49OpE51nzmJ86aer106VJvb+/nn38+1nj9+vWDg4MXLVqUvJdONsPrtSQnJydvb+9q1aoVLVo0qecFtrIKBwcHm89dE/c6OpUrV46MjJw/f34K3gEApGcOsemdEOs3k80XXYs7XqJECUlnzpxJdobkMbZAr1u3LjQ0NO4p16tWrerl5fXzzz9HREQ880mS9LtL+WoYkAga7oBV/vzzz9OnT4eFhW3cuHHDhg3Tpk0rUqSI0aFiCwoKunHjxvLlyz/++ONYd5UsWVLS0aNHo6KijIiWFj777LMSJUocP35848aN69evnzNnjnlNJf2ZNm3alStXmjZtGqtH0KdPnw0bNrz88stGBQMAw9lPvR49evSIESMyZcpkyKtHO3bs2I0bN8w7X8dSoEABSX/88UcaR3L0em1lFT5y5MiTJ08k5cyZM9YzFC5cWNL69evTJC8AOBj7KeWpzcnJ6aefftqxY0es8WPHjrm4uJQtWzaN8xhboDds2CApoTWW27dvHzlyJM3CACnnanQAwAHcu3evU6dO9+/f/+6776IHL1y4YGCkeGXLlq1ChQrHjh2L23KNjIyUlKRue0RExJkzZ/z8/CpWrOjt7W3LoKlgy5Yt48ePN5lM0SMvvPBC8q5mbg8uXbp04sSJwoULly9fPu6edwsWLJBUtWpVSX5+focOHSpSpEjFihXd3NwMyAoAdsN+6vXff/8dGRlZs2bN69evP3Ny4p/5z5R4vd6yZYsk865qseTLl0/SoUOHkvqKKWFX9drf3//YsWPu7u5Vq1b18PCw8lFWVuH79++bF8yn9Yspa9askk6dOvXkyRPrXxcAMgL7KeVpoEGDBlu3bq1fv/6HH344evRo85f0kZGRI0aMGDZsWLyXRk89hhfoxNdYzp07d+jQIfNBD7aVwtUwICHs4Y6MKDIyctq0aR07duzbt2/iuxd9+eWXYWFhuXLlinsCtZQcZZZ6/v7774sXL06ePDnW+OnTpyWVK1fO2dmq//qNGzf26tVr165dTk5OEydOfPHFF//55x/bx01YQEDARx991K5du/fff//EiRMJTQsJCYk+XjvWOVivXLmShnlt5uzZsz169Fi2bJnJZFq/fn2RIkWWLFkSc8KNGzd8fX0l5c2bd+rUqV9++aWzs/P+/ftffPFF848CANINB63XYWFh48aNGzdu3DNnPvMz/5meWa/NlxWJd0d786C/v3+SXjEWB63XgYGBH3zwwZdffvngwYPz58+/8sorw4cPN++dkDjrq3DRokXNC3EPgTe3M8LDwy9fvmyb9wMA9spBS3naGDJkSJkyZSIiIiZOnPjSSy9t2bLl0aNHXbt2LV68uDVrEYlzrAIdEhLy8OFDpeYaS1wpXw0DEsEe7siIPv3006pVq/br169OnTo//vjjJ5988vnnn8edNnHixGzZssW8dLX98/DwiHvA3Z07d7Zu3Spp4MCB1jxJYGDgkSNHFi5caL7ZvHnzwYMHV69eff369XXq1LFl3IT16NFj5syZUVFRVapU+eabb1avXt20adNYcyIiInr16vXhhx+mTaS0sWjRoiVLlpj3d2vevHnJkiXbtWt3+fLljz76yDzh0qVL5oWTJ0/myJHjm2++Md9s3LhxxYoVDx06FP2LAwBH56D1euzYsUOHDs2SJcszZz7zMz9x1tTrwMBASfFeX8Q8GBkZGRwcbE3aeDlovfbx8dmyZcsLL7xgvlmvXr3y5cufPHly3bp1ie/dZn0VLl26tJubW3h4eHBwcKwniT7uwfzbAYB0zEFLedrIkiXL9u3bu3btumXLlgsXLjRo0CBv3rwzZ87s1KlTyp/csQp0dEFMZI3F5kUzhathQOJouCMj6tixY8WKFSXNnDmzZs2aEyZMeOedd4oXLx5zzvz58wMDA+OeDP2ZNm/ePGDAgKQ+yt3dfdu2bal0sY4vv/wyPDy8evXqvXr1smb+nDlzWrduHXNk1KhRX3/99cCBA//55x9X11T/3DCZTJ9//rn5NzJ8+PCRI0cOGjTIz88v1jbwwIEDu3fvnozDyvz9/evUqWM+s2qSfP31140aNUrqo6w3cODAGjVqxDy6vG3btmXLlh09enS7du3Me3ZEf7G/atWq7du3R88sXrx4hw4d5s6d27Fjx2bNmqVeSABIM45Yr48ePRoQEBD3OplxWfOZnzhr6nVQUJCkeJvI0du0gYGByWu4O2i9rl+/ftOmTaO77ZIKFy7cvXv3b7/9dvHixV26dEk8knnhmVXYzc2tXbt2ixcvPnLkSKz9Ff766y/zgvm3AwDpmCOW8rSUL1++efPm1alT5+bNmyEhIXfu3Bk6dKirq2u7du1S8rQOV6CjC2Iiayy2bbinfDUMSBwNd2RE5pIvqUaNGq+++uqBAwfmzp0b85v2DRs2bN26dd68ecl48ho1avz0009JfZS7u7s11zFPhp07d06dOrVMmTJr1qyx8pRksbbeJeXNm7dcuXKnTp1avHhx9+7dUyHmvzg5OVWoUMG83K9fv/Hjx1+6dGnz5s0NGzaMnjNy5MjKlSsnr7OcK1eun376KRnrB1WqVEnGy1kv5huMVrdu3dOnT3/++edz5syRFH2K2MaNG8ea+frrr8+dO3fEiBE03AGkDw5XryMiIkaNGuXj42PNU1nzmZ84a+q1eW/BeC/iEn0GlWRfAsRB63X58uXjDtatW/fbb78dNWpU4g33JFXhKVOmrFu3bu3atUOHDo2edv369bt375qXk31gAQA4Cocr5Wls6dKl48aNmzdvXuHChQcNGrRu3bpbt261b99+1KhRY8eOTfbTOlyBjj64IZE1FttesSzlq2FA4mi4I6MbOHBgr169Fi5cOH78eHM/ev/+/bNnz165cmXyrpiROXPm2rVr2zpmMgUFBfXo0aNo0aKbN29O4VpFoUKFTp06tX///jRouMeUK1euDh06zJ8/f8GCBdFFcfbs2ZL69euXvOd0cnKqVq2azSKmskKFCknav3+/+eZzzz1nXihZsmSsmQULFpR06tSpkJAQx71gLADEyyHq9aRJk/r16xf9QZ0MsT7zk/cMMeu1+ZJrcU8jHnMwJYGjOXq9Nv/k/fz8/P39471im1mSqnChQoXWrVvXuXPnL7744pNPPpF07dq19957b8CAAead3O2n4wMAacAhSnlaWrhw4fDhw/fu3Vu4cGFJa9euXbly5eDBg2/cuDFu3LhXX321efPmKX8VhyjQ0VeITWSNxSarK4lL+WoYEI2LpiKja9Wqlbu7+9WrVw8cOCDJ19d3+PDhPj4+6eD8cVFRUT179syRI8euXbvMlcMaa9as2bhxY8yrk5uZd8I6efKkjVNaoWPHjpLWrVsXFhYmacWKFfv37x8/fnzaJ0lVhw4d8vHxefz4caxx80/+7Nmz5vWM6IMfc+bMGWum+YC4qKgoQ35NAJCq7L9enzp1ys/Pz8o9xaz8zE+ElfXavAUb7z5o5qrq4eFhq5+hQ9Tra9eu/fTTT7dv3441Hr2z+alTpxJ5eFKrcJ06dY4ePRoSEtKtW7c2bdp89tlns2bNMh8anz179ugLqwJARmD/pTwt3bx5c9CgQdOnTzd3283atGlz/PjxBg0aSJo2bZqtXsv+C3S2bNnMX7okssaSLVs2W71cylfDgGdiD3dkdNmzZ2/UqNG6detWrVrl7e39zjvvLF68OPr7VYc2ZMiQwMDAv/76K2vWrFY+ZMeOHa1atZK0adMmc5mPZi5yafCtclwNGjTImTNnQEDAtm3bPD09586du3r16uTtBGG3njx58vrrr4eGhp45cybWqo/5J58lSxbz2XiLFy+eNWvWhw8fxl0XiT7+jkPUAaQ/9l+vP/vss8jIyD59+sQcNF8w09/f3zxesWLFQYMGWf+ZnxDr67V5M/7OnTtxn+TWrVuSypYtm9R3mhCHqNc9evTYtm1bzZo1d+3aFXPc/HPTs1Z1klGF8+XLF+u37OfnJ6levXrOzuz8BCADsf9SnpY2b95sMpninqs9Z86cGzZsqFKlypEjR2z1WvZfoF1cXJ5//vmrV6+mwRpLylfDAGvwNwSoQ4cO69atW7Zs2Z49e2bPnh3zIlrJsGfPnpEjRyb1UR4eHj4+PokcwpxUEyZMuH79+oYNG2LuL/DVV18NGjQo3gt/m0Xv7Bb3GjL37t2TVLlyZVsltJ6bm1vr1q3nzJnz5ZdfPnnyZN26dSk8fdv9+/c7d+6cjFPOjR079vXXX0/JSyfEZDKFh4dLev7552PdFesn7+Tk9Nprr23evPny5cuxZprfkYeHR6lSpVIjJAAYy87r9ejRowMCAmIN7t+/f/HixV5eXt26dZNkfqD1n/kJsb5e16hRQ//bUo3l5s2bkpo0aZL4a1nPIeq1+UcX94/H/HPz8PB48cUXE3nmJFXhyMjIAwcOvPTSS7Fa8Hv37pVkPskMAGQodl7K09KZM2fy588f77a5q6tr165dp0yZYqvXcogCXaNGjSVLliS0xuLm5lavXr0kB41PylfDAGvQcAf01ltvubi4XLhw4fPPP4++tEiylSxZsmfPnkl9lLu7uw2/258/f/7hw4eXLl0aq47+9ttvQ4YMSeSBlSpVql69+tq1a2OtfwQFBR0+fNjJyenNN9+0Vcgkadmy5Zw5c/766y8/P7+U72WfLVu2nj17JmP9oHTp0il86YR4enpWrVr1p59+ivu9/bZt2/Tvi7N17dp18+bNx44dizXzzJkzkmrWrMkX8gDSJTuv1y+99FLcQfPRyp6enjFPMpukz/x4WV+vy5QpU6lSpX/++efBgwexkp84ccKa10oS+6/Xr7zyyoABA7p27Rpr3PyTb9CgwTNrqPVVeNKkSSNHjqxfv/7mzZujp927d2/Dhg1t27Zlex5ABmTnpTwtVa5cedKkSY8ePfLy8op77+PHj81fmduK/Rfozp07L1my5PTp07HGr1y58vDhw7p161p/4H7iUr4aBljFBMBkMl/x47vvvjM6yLP9+uuvkho3bpzQhD/++KN79+7h4eGxxs+ePduoUaNYM/v373/ixImYg7179z506FCsx86dO1fSoEGDEnrR/v37S5o4cWJCE6ZPn96/f/+AgICEJiTu0aNH5s3XM2fOJDQnMjLy0qVL+/fvDw4Ojh68fv168l4xJcxfy3t6eiY04fTp0wMGDPjtt99iDs6bN2/mzJmxZp4/f97Z2blixYphYWHRg6GhoSVKlChXrlxUVFTMyc2aNXN1dT127Jgt3gQA2CMHqtdmGzZskFSkSJFY49Z/5ptSXK8XL14sae7cuTEHw8PD8+TJU61atcjIyJjj6b5enz17tlOnTrEGHz9+XKpUqSxZsvj5+cUcj7deW1+Fhw8fLqlu3boxpw0aNChLliynT5+2zfsBAEfjQKXcmk3vuAU6pkQ2kwMCAvLmzTt27Ni4d4WEhFSoUGHbtm0xB9N9gY6IiChXrlzhwoVjldcZM2ZIWr9+fczBeAt0TIn/7pK0GgYkDw13wLR///5GjRpJat68udFZns18PfGqVavGe+/Bgwe9vLwKFCjwfAyFChXKnTu3s7Pz+++/Hz0zLCzM/MV+/fr1Yz7DrVu3atasuXv37uiRnTt3ZsqUqV69eg8fPkwoVfv27SV99NFH8d5rPnRaUt++fZP2bv9nzpw5VapUkTR16tSE5ty4cePdd9+VdPnyZfNIeHj4Cy+8cPDgweS9aLKZr5bm5OQUc00lpqZNm0ry8vIKCQmJHoyKimrVqtWPP/4YvYZx69atEiVKFC1aNO463J49e7JkyTJixIjokUWLFrm4uEybNs3W7wYA7IVj1WuzRYsWScqZM2dERETMces/821Sr3v27FmoUKGbN29GjwwbNixnzpyx2r4ZpF5Pnjx54MCB0TU6IiKiVatWWbJkWbp0aayZ8dZrk9VVeNeuXeXKlbt37575ZlRU1OTJk728vP7880/bvysAcASOVcoT3/ROqEDHlPhm8r59+7y8vKZOnRpzb7nLly83bdp08uTJMWdmkAJ9/PjxLFmyxPwS4vLly7ly5Ro4cGCsmQkV6GiJ/+6StOkNJI+TyWSy7S7zgGO5cOHC8uXLe/ToUahQIQ8Pj7t378Z7SJfhRo0adeXKlXv37m3fvt18BbZq1aoVL17c09Pzk08+KVasmKTQ0NBixYrFe9Yzs++//75v377RN2vXrr1jx46PPvpo0qRJMac9ePBgwIABgYGBxYsXv379+vHjx999990hQ4bEuqxKUFDQBx988OTJk6tXr+7YscNkMrm7u9etWzdfvnyZM2f+9ttvo2feuXOnVKlSQUFBFStWPHz4cFLf+7p160wmU0hISOfOnV9//fUdO3YkNHPnzp2dO3e+du2a+ebatWv79et37dq1RE5bb0M+Pj5bt259+PDh7t27zSfGLVGiRJUqVTJnztyuXbuYJ8kdPXr0uHHjqlat+vfff8d8hqioqP/+979//fVXyZIlIyIidu/eXb9+/SlTpsT7N3nw4MH33nsvIiKicuXKvr6+AQEBX331Va1atVL7bQKAIRylXkfr27fv/fv3t27daj6xe6VKlV588cVGjRqZT+aupHzmp7Bem19r2rRp8+fPb9euXZ48eX7//ffIyMhvv/22SJEiMadlkHotaeXKldOmTfP29s6RI8euXbsKFiz49ddfFy9ePNa0hOq1rK7C8+fPnzlzZuXKlZ2dnXft2lW8ePGpU6eWLFkyFd8bANgrRynl1mx6m8VboK3fTJZ06dKlsWPH7tmzp2LFirlz5/bz8wsODp44cWL16tVjTss4BdrX13fQoEFZs2Z98803r1+/vmrVqr59+8Y9L25CBdr6312SNr2BZKDhjgzN399/+vTp48ePd3Jyqlq16oEDB3799deOHTsanSsehw8fNplMrq6uzs7OTk5O5m/MIiMjnzx58uKLL5pPZxYWFhb91Xe8ypcvnytXruibUVFRfn5+JUqUiHdyRETEyZMnCxYsmCdPnngnhIeHHzx40MPDw9XV1cnJKTpVREREWFiY+VDBaMHBwQEBAZ9//vl3332XpDe+b9++kydP9u7dOzAwME+ePJGRkdeuXStQoEC8kydNmnT48OElS5aYb7Zs2bJ27doffPBBkl4x2c6fP//gwQM3N7eYv6OoqKjw8HDzMQcxJ1+4cKFIkSIJrbj4+vq6urrGXCFIyKNHj3x9fUuWLGmrU9oBgB1yoHodbdeuXa6urm5ubm5ubuZaYD6LS9xm6zM/81NYr2POPH36dEhISLFixRKanBHqdbRbt27duXOnXLlyiZy3PfF6bU0VDg8Pv3Tp0oMHD4oXL54zZ04b5AYAB+RApdyaTW+zeAt0kjaTzczncgkKCipbtqynp2e8qTJUgb59+/bFixezZs1apkyZhEpwvAXa+t9dNOs3vYGkSe1d6AG7FRISMmzYsMePH5tvTpgwQVLbtm2NTZW+xTynjTV8fX1jHkxnPvxw1qxZCc1v3rz5jBkzzMs7d+4sX758aGho8qICAOwE9TrtUa8BADZEKbcVCjTgKJyNbPYDxt//eQEAACAASURBVImMjPzvf/87YsQIDw8P80jXrl2dnZ3Xr19vPvQbNnfx4sUkHZ91586defPmffjhh9Ej3bt3l7Rw4cKEHrJnzx7zxdyDgoIGDx68YsWKhHYQAAA4BOp12qNeAwBsiFJuKxRowIHQcEcG9cUXX/Tv3z9HjhzRIy+88EK9evUeP348d+5cA4OlY7NmzRowYICVk4ODg6dMmfLZZ5/FPBFt69ats2XLtn///oMHD8Z9yJkzZ0JCQipWrHjv3r2ePXt+++23pUqVsk10AIBBqNdpj3oNALAhSrmtUKABB0LDHRnR119//dZbb8W6UJikoUOHSvryyy8DAwMlzZkz59SpU2kfL13atGlTjhw5ChYsaM3kyMjIsWPHjhw50t3dPeZ45syZ+/XrJ2nUqFHmkWHDhpn+dyGK3bt3V6lSZdOmTWPHjp0xY0a8Z8cDADgQ6nXao14DAGyIUm4rFGjAsbiMGTPG6AxAmlq+fHmBAgVef/31uHeZr3n1xx9/7Nmz5/z5876+vu+8807aJ0yXdu7cOXjw4Jjfridi/Pjxffv2zZcvX9y73njjjYsXL65aterOnTsrVqyoWLFi5cqVzXcdOHDA1dX11Vdf7dOnz3PPPWfL9ACANEe9NgT1GgBgK5RyG6JAA47FKfq7LCCDCAoKypYtWyITQkJCzp0799xzz8X9Hh5p45m/o4CAAD8/v6JFi+bKlSvNUgEA0hL12v5RrwEAiaCUG4UCDRjOmIb75MmTb9y4MWPGjETmPH78eNeuXb6+vn5+fvnz5y9fvny1atWyZ8+e0PyQkJA1a9acPHkyJCTE29u7WbNmJUqUSIXsAABkIDdu3Bg3blyePHnGjh0b74SoqKgtW7bs27fv3r17efPmrVOnjvlSSwmhXgMAkBrYygYAwE4Y0HC/d+9egQIF3N3dHz16lNCc33//ffDgwX5+fjEHc+bM+cUXX/Tp08fZOfap51evXt27d+9YV7ju06fPV199xSWVAQBIHpPJ1LBhwy1bthQvXvz8+fNxJ5w6dapTp07Hjx+POVizZs1FixZ5e3vHnU+9BgAgNbCVDQCA/XBN+5ecMmVKeHh4rEs3xLRixYp27dpJcnNzq1GjRsmSJS9fvrxnz56AgID+/fv/888/s2fPjjl/48aN7dq1i4yMdHZ2rlKlSv78+bdv3x4UFPTjjz8GBgYuWbIk1d8SAADp0eTJk7ds2ZLQvdeuXatXr97t27cllShRolKlSnv27Ll+/fru3bsbNmz4999/x9pjjnoNAEAqYSsbAAA7YkpDN27c+Pjjj80XeciSJUu8cx49evTCCy9I8vb2Pnz4cPT41atX69SpY868fv366PHHjx8XKlRIUvbs2U+dOmUeDAsLa9asmXny6tWrU/VNAQCQLu3fv9/Nzc1cTIsXLx53Qtu2bc33/vLLL9GDEyZMMA++//77MSdTrwEASA1sZQMAYG9iHzWWSrp3716qVKlChQpNnDjRlOhJbObNm3f16lVJ06dPr1SpUvT4888/v2zZsrx580r67rvvosd/+eWX69evmxfKli1rHnRzc1u8eHHRokUlTZkyJRXeEAAA6dnDhw87d+4cHh6e0AWXzp8/v3LlSknDhg3r0qVL9PjHH3/cvn17Sd9//31QUFD0OPUaAADbYisbAAD7lEYN902bNp07dy7xlQCzv/76S1LevHnbtGkT667cuXM3btxY0sGDB6MHV69eLalMmTJNmzaNOdnLy8u8wb937967d++m+B0AAJCBDBo06MKFC3Xr1o3ejT2WtWvXmkwmJyenoUOHxrqrV69ekkJDQzdt2hQ9SL0GAMC22MoGAMA+pVHD/cCBAxf/57333ktk5qVLlySVL18+3nvNx8HdvXs3MjLSPLJz505J9evXjzu5RYsWkqKionbt2pWi9AAAZCSLFi1auHBhzpw5Fy5cGPcSamY7duyQVK5cuQIFCsS6q169el5eXtFzzKjXAADYFlvZAADYpzS6aKq5hJvFuoRaLJMnT3706NHzzz8f771HjhyRVLRoURcXF0m3b99+8OCBElh1ePXVV52cnEwmk6+vb0rCAwCQcVy8eHHAgAGSfvzxR/P5W+N19uxZJVB/PTw8Xn755T179kTXX+o1AAA2x1Y2AAD2KY0a7taLvmZLXLt27dqwYYOk6MPbzeehkxTvqoO7u3uePHnu3Llz5coV2wcFACDdiYiI6NKlS1BQ0H/+85+4R53HZC7BCW26m8ej6y/1GgAAA7GVDQBAWrK7hntCtm7d2r59e5PJlCdPng8//NA8+OjRI/OC+dD1uLy8vO7cufPw4cPEn9x8SXcAAOyTNadntYnPPvts3759pUqVmjFjRuJ5QkJClGj9lRRdf6nXAICMIM3qta2wlQ0AyLBStWqn0TncU+L27dt9+/Zt0KBBQEBAtmzZ/vjjj1y5cpnvCg0NNS94eHjE+1jzuLkpAAAAErF9+/aJEye6ubktXrw4S5Ysicx8/Pixee3EyvpLvQYAwK6wlQ0AQOqx6z3cw8LCpk6dOmHCBPOX59WrV//5559Lly4dPcHT0zN6ZrzP8OTJE0nu7u6Jv1Di32mYv5l3uL0VUlVISIi/v3/mzJlz585tdBY74u/vHxISkjt37syZMxudxY6Yjzb19vY2Oogd4T8oXhnnPyg4WM2aaft2y83PP9cnnyQ4Oc32DgsICOjWrVtUVNSECRNeeeWVxCdHb4FbWX+p10bh0yZeGefTJkmo13HxHxQv/oPi5UB7c7OVbbf4zIkXnznxomrHxX9QvBz6P+joUdWqpeBgSWrYUL//LlcbtbHToGrbb8N99+7dvXv3Nl+TLX/+/GPGjOnTp4+z8792yY/e/y7Y/OOPI/ED3gEASGNBQWrcWHv3SpKTk6ZN0/vvG51JkvSf//zn+vXr9erViz6iPBHOzs6ZMmUKDQ21sv5SrwEAsAdsZQMAHMLt22rRwtJtL11aS5farNueNuw07Hfffffuu+9GRkZmzpz5448//uCDD+I9tr1QoULmhRs3bsS9NyIi4s6dO5IKFiyYqmkBALBGYKAaN9a+fZLk5KTp0/Xee0Zn+p/ff/9dUmBgYNOmTWOOnzx5UtLNmzcbN24sqVSpUl999ZWkQoUKnT9/Pt76K+n69euKUX+p1wAAGI6tbACAQwgPV4cOMl/DO1s2rVyp7NmNzpRE9thwX7Ro0cCBA00mU+3atefOnVusWLGEZhYqVMjLy+vRo0fmr+hjOX/+fFRUlKSyZcumYlwAAKzw4IEaN9bff0uSk5NmztTgwUZniuPQoUPxjoeEhGzcuFGSv7+/eaR06dLnz5+Pt/5KOnfunGLUX+o1AADGYisbAOAoBg7Ujh2S5OKiRYtUrpzRgZLO7hruly5d6tmzp8lk6tChg4+Pj5ubW+Lza9So8eeff+7cuTPuXdGDNWrUsH1QAACs9uCBGjXS/v2S5OSkWbM0aJDRmf7t008/jYiIiDu+du3aI0eO5MiRY8iQIYqxO1vNmjXXr19/7Nixhw8fZs2aNeZDzp07d+vWLfOc6EHqNQAARmErGwDgKKZN008/WZanTNFbbxmaJrnsruE+e/bs8PDwQoUKzZkz55nrAZJatmz5559//v3336dPn471Hfv8+fMlValS5YUXXkituAAAPMv9+2rUSAcOSJKTk77+WgMHGp0pjk8//TTe8WvXrh05ciRnzpxjxoyJOd6yZctPPvkkPDzcx8dnwIABMe+aN2+eJHd395hnp6FeAwBgFLayAQAOYdMmDR9uWe7RQ0OHGpomBZyfPSVtmet3rVq1Ll26dCIBMQ9te/vtt/PkySOpf//+jx8/jh7/7rvvdu/eLWnYsGFp/iYAALC4f19vvvm02z57tj1225OhXLlyTZo0kTRmzJjLly9Hjx85cmT69OmSevfunTNnzuhx6jUAAEZhKxsAYP/OnlWHDjIfd129un74wehAKWBfe7jfu3fv7t27kpYsWbJkyZKEpuXLl898rLqkLFmyfP311x07dtyxY8dLL73UqlWrPHnybN68efPmzZKaN2/evn37tAkPAEAsd++qfn0dPy5JLi6aM0dvv210JtuZOXPm3r1779y5U7ly5ZYtW1aoUGHPnj2//fZbaGhokSJFxo4dG3My9RoAAEOwlQ0AsH9BQWrTRg8eSFLBglq+XB4eRmdKAftquF+4cCEZj+rQocPDhw+HDBly/vz5L7/8Mnq8Y8eOP/30k5OTk+0CAgBgrTt31KDB02773Lnq0cPoTDZVsmTJDRs2dOrU6fLly3Pnzo0er1ix4tKlS3Pnzh1rPvUaAIC0x1Y2AMDORUaqSxedOiVJmTJp9Wr979phjsqAhnvPnj3r1Knj4uIS967ixYtv27btmc/g7u4ea6R3797NmjVbsmTJyZMnQ0NDvb29W7Zs+eqrr9omMQAASXT7tho00IkTkuTiop9/VvfuRmdKlmHDhnXr1i1Tpkzx3lutWrXTp0+vXr16z549AQEB+fLlq1u3bpMmTVxd41/BoF4DAJAa2MoGADiuYcO0fr0kOTlp7lylg1LjZDKZjM5g78zf3vODiikkJMTf3z9z5sxxd2DMyPz9/UNCQnLnzp05c2ajs9iRK1euSPL29jY6iB3hPyhe6ek/6PZt1atn+X7exUXz56tr12Q+FTXIevys4uLTJl7p6dPGhqjXcfEfFC/+g+JFDUoqfmJx8ZkTLz5z4kXVjov/oHg5xH/QggVPz7w6erT++99Uf8U0qEF2d9FUAAAc2q1b/+q2L1iQ/G47AAAAAADp1Z496tvXstyqlT77zNA0tmNf53AHAMChXb2qevV0/rwkubnp11/Vpo3RmQAAAAAAsDM3bqh9ez15Iknlymn+fDmnlz3DabgDAGAbV66oXj2Zr0zm7q4lS9SqldGZAAAAAACwM6GhatVKN25IUq5cWrdO2bIZncl2aLgDAGADV66obl35+UmSu7uWLlXLlkZnAgAAAADAzphMeucdHTggSW5uWr5cxYoZncmmaLgDAJBSly+rbl1dvChJ7u5atkwtWhidCQAAAAAA+zNunH791bI8a5bq1DEyTGqg4Q4AQIpcuqS6dXXpkiR5eGj5cjVrZnAkAAAAAADs0OrV+u9/LctDhqhfP0PTpA4a7gAAJN+5c6pXT9euSVKmTFqzRg0bGp0JAAAAAAD7c+yYundXVJQkNWigqVONDpQ60svFXwEASHO+vqpb19Jtz5xZa9fSbQcAIMO5ft3oBAAAOIJ799SmjR49kqSiRbV4sVzT6a7g6fRtAQCQys6eVb16louqZ86sdetUr57RmQAAQNoKCVHTpkaHAADA7oWHq107+flJUtasWrtWuXMbnSnVsIc7AABJduaM6ta1dNuzZNFvv9FtBwAgI+rXT//8Y3QIAADs3uDB2r5dkpydtWiRypc3OE+qouEOAEDSnD6tevV086b0v2573bpGZwIAAGlu1iz5+BgdAgAAuzdrlr7/3rI8YYKaNTM0TerjlDIAACTBsWNq0ED+/pL03HPasEHVqxudCQAApLl9+/Thh0aHAADA7m3erA8+sCx3766PPjI0TZpgD3cAAKx19Oi/uu1//EG3HQCAjOj2bbVrp7AwSapY0eg0AADYq/Pn1bGjIiIk6bXX9MMPRgdKEzTcAQCwypEjT7vt2bNr40ZVq2Z0JgAAkOYiItSxo65fl6ScObVypdGBAACwSw8fqnVrBQRIUoECWrFCnp5GZ0oTnFIGAIBnO3xYDRtaVhTM3faqVY3OBAAAjDB8uP76S5KcnfXLLypa1OhAAADYn6godemiEyckydNTq1erUCGjM6UV9nAHAOAZDh162m3PkUObNtFtBwAgg1q9WtOnW5bHjlXjxoamAQDAXn38sX77TZKcnDRnTsbaiKbhDgBAYvbsUb16lm57njzavl1VqhidCQAAGOHsWb39tkwmSWreXCNGGB0IAAC7tHChpkyxLI8YoS5dDE2T5mi4AwCQoN271aSJgoIkKW9ebdmil182OhMAADDCo0dq08ayVlCihBYskDPb0wAAxHHokPr1syw3aaKxYw1NYwTO4Q4AQPx27VLTpnr4UPpft718eaMzAQAAI5hMeucdnTolSZkyaelSZc9udCYAAOzPzZtq2VKhoZJUtqwWL5aLi9GZ0hwNdwDIcI4e1RdfSFLFivrkE6PT2KudO/XWW5Zue7582rJFL75odCYAAGCQyZO1bJll+dtvVamSoWkAALBLjx+rVStdvy5JOXNq7Vo995zRmYxAwx0AMpxbtyxbjOZuMuLasUNvvaVHjyQpf35t2aJy5YzOBAAADLJtmz791LI8ZIjeftvQNAAA2CWTSb17a/9+SXJz07JlKlHC6EwG4ZxzAAD8y6ZNatzY0m1//nnt2EG3HQCAjOvmTXXtqogISape/ekl4AAAQEwTJmjRIsvyzJmqV8/QNIai4Q4AwFMbNz4939wLL2j7dpUsaXQmAABgkPBwtW+vmzclKV8+LVsmd3ejMwEAYH82bNDo0Zbld97RgAGGpjEaDXcAACx+/12tWlm67YULa/t2FS9udCYAAGCc997T7t2S5OqqJUtUqJDRgQAAsD+nT6tzZ0VGSlKtWvr2W6MDGY2GOwAAkrRhg9q21ePHkuTtra1bVayY0ZkAAIBxfvnlactg8mTVrm1oGgAA7FJAgFq0UGCgJBUpopUrORqMhjsAANL69Wrd2tJtN+/bTrcdAICM7J9/1LevZbl1a73/vqFpAACwS+Zzr50/L0leXlq7VnnyGJ3JDtBwBwBkdL/9prZt9eSJJBUpou3bVbSo0ZkAAIBx7t9XmzYKCZGk0qU1b56cnIzOBACA/XnvPW3dKknOzvrlF730ktGB7AMNdwBAhrZ8udq0sXTbS5bUrl0qUsTgSAAAwEBRUerWTRcuSFLWrFq5UtmyGZ0JAAD78803T8+9Nn68WrQwNI09oeEOAMi4li1Tly4KD5ek0qW1bRsXQwMAIKMbO1a//y5JTk6aO1flyhkdCAAA+7Nzp4YOtSy3a6ePPzY0jZ1xNToAAADGWLpUXbsqIkKSSpfW1q0qWNDoTAAAwFCbNmn8eMvy8OFq187QNAAAJMuxY/L11cOHHsWKheXObfvnv3RJbdsqLEySKlXS/Pmce+1f2MMdAJAR/frr0257mTLato1uOwAAGd3ly+rcWZGRklS3rsaNMzoQAADJsmCBOnRQ795Zt2zJZPMnf/RILVro7l1Jyp9fa9cqc2abv4hjo+EOAMhwFi9W9+6WbnvZstq2TQUKGJ0JAAAY6vFjtW2re/ck6YUXtGSJXDkgHACAf4uKUteuOn5ckjw9tWqVnn/e6Ez2h4Y7ACBjmTtX3bpZuu0VKmjHDuXPb3QmAABgtIEDdeiQJLm5afFi5cljdCAAAOzPp59q7VrL8tdfq1o1Q9PYKxruAIAM5Kef1KePoqIkqWJFbd6s1DifHQAAcCzffquff7Ysz5qlmjUNTQMAgF1avlwTJ1qWP/pIvXsbmsaO0XAHAGQUP/6ofv0s3fZKlei2AwAASdq/X0OHWpa7dVO/foamAQDALh05orfflskkSY0a6YsvjA5kx2i4AwDsSMWKmZyc5OQkX18bP/MPPzzttr/yijZvVq5cNn4JAADgcO7dU8eOevJEkipU0PffGx0IAAD7c+uWWrRQSIgklS6tX3+Vi4vRmewYDXcAQPr33Xfq39/yVXzlytq0STlzGp0JAAAYLTJSXbro0iVJypFDK1cqc2aDIwEAYG8eP1br1rp2TZJy5NC6dcqe3ehM9o2GOwAgnZs+XQMGWLrtNWpo61a67QAAQJI++UR//ilJzs7y8VGxYkYHAgDA/rz7rvbtkyQXF/3yi0qWNDqQ3aPhDgBIz6ZO1QcfWJZr1tQffyhbNkMDAQAA+7BmjaZMsSyPHq2mTQ1NAwCAXZo8WXPmWJanT1eTJoamcRA03AEA6daUKfrwQ8tyrVrasEFZsxoaCAAA2Adf36dXfmvYUJ9+anQgAADsz8aN+uQTy3LPnho82NA0joOGOwAgfZo8WR99ZFl+/XW67QAAwOLRI7Vpo8BASSpcWIsXc+U3AABiO3NGnTopMlKSatbUd98ZHchx0HAHAKRDkyZp+HDL8htv6Pff5eVlaCAAAGA3evfWyZOS5OmplSuVK5fRgQAAsDP376tFCz14IEmFC2vlSnl4GJ3JcdBwBwCkN2PG6OOPLctvvqk//qDbDgAALKZO1dKlluVvvtErrxiaBgAA+xMZqa5dde6cJGXKpBUrlDev0ZkciqvRAQAAsKXRozVunGW5USOtWqVMmQwNBABAeuHvr6++yhQe7urt7TpggNFpkmXPHo0YYVkeOFC9ehmaBgAAuzR0qDZskCQnJ82bp8qVjQ7kaGi4AwDSj1GjNH68ZblxY61aJU9PQwMBAJCO3L6tceOySCpbNsoRG+63bql9e4WHS9Jrr2naNKMDAQBgf+bN06xZluUxY9Shg6FpHBOnlAEApBMjRz7ttjdtSrcdAAA8FR6uDh1044Yk5c2r5cs5Fy0AALHt3q3+/S3Lbdpo1ChD0zgs9nAHADg8k0kffKAZMyw333pLK1awFQ0AAJ76v//Tzp2S5OIiHx89/7zRgQAAsDOXL6tNGz15IkkVK2rBAjk5GZ3JMbGHOwDAsZlMGjr0abe9bVutWkW3HQAAPLV48dOj4ydMUMOGhqYBAMD+hIaqbVvduSNJ+fJp7VplyWJ0JofFHu4AAAdmMum9955uQrdrp0WL5OZmaCYAAGBPjh9Xnz6W5ZYt9eGHhqYBAMD+mEzq2VOHDkmSm5uWLNELLxidyZHRcAcAOCqTSYMHa/Zsy80OHfTLL3KlsgEAgP95+FAdOig4WJJKldL8+RwdDwBAbJ99pqVLLcuzZ6t2bUPTOD5OKQMAcEgmk95992m3vWNHuu0AAOBfzPvrnTkjSV5eWrlSzz1ndCYAAOzMypUaP96yPHTo08PCkGx0JgAAjicqSv/5j37+2XKzUyctXEi3HQAA/Mvnn2vlSklyctKcOXrxRaMDAQBgZ44eVY8eMpkkqWFDTZ5sdKB0gT3cAQAOJjJS77zztNveqxf7tgMAgNi2bNGYMZbl//s/dehgZBgAAOzQ7dtq0eLpideWLGHL2jZouAMAHIm52z5/vuVm79766Sc5U80AAEAMV66oUydFRkpSjRr64gujAwEAYGfCw9Wxo65elaRs2bRypXLkMDpTesHXFgAAhxEZqZ495eNjufmf/+j77+m2AwCQ1swHntutx4/Vtq38/SUpf34tWyY3N6MzAQBgZwYN0l9/SZKzsxYt4sRrtkSXAgDgGCIj9fbbT7vtffrQbQcAII0EBWnMGDVtarl59qzzG29o2TJDMyXs3Xd18KAkublp6VIVLGh0IAAA7My0afrxR8vyl1/qrbcMTZPusIc7AMABREaqe3ctXmy52a+fvv1WTk6GZgIAIGPw9VWTJvLzezpiMmnnTu3cqY4dtXChfe0//uOPmjPHsjx9ul5/3dA0AADYn02bNHy4ZblHDw0damia9Ig9AwEA9i48XO3bP+229+9Ptx0AgDQSEqLGjf/VbY9pyRJ9+GHaBkrU0aN67z3LcpcuGjTI0DQAANgfX1916KCICEmqXl0//GB0oPSIhjsAwK6FhalDB61aZbn5wQd02wEASDtff62LFxObMHu2LlxIqzSJCghQmzYKDZWkl156eqQ8AAAwCwpS69Z68ECSChbU8uXy8DA6U3pEwx0AMhCTSb//ri+/tNw8cECTJ+vePUMzJSosTO3ba/Vqy80PP9TUqYYGAgAgg3nmidojI59+L26gqCh17Wr5biB7dq1cqcyZjc4EAIA9iYpSly46dUqSMmXS6tVc5iS10HAHgIzizh01aKC33tKWLZaRe/c0fLhKlLCL7eS4wsLUrp3WrrXcHDZMU6YYGggAgIzn7FnbzElto0bpjz8kyclJc+eqRAmjAwEAYGc+/FDr10v/q5Wvvmp0oPSLhjsAZAhPnqhJE23dGs9dDx6oQwdt3JjmmRIVFqa2bbVuneXm8OGaPNnQQAAAZEiPHz97TkhI6udI1Lp1mjDBsvzpp2rd2tA0AADYnwULNH26ZXnUKHXqZGia9I6GOwBkCLNm6fDhBO+NiNCAAQoPT8NAz9Kvn377zbI8fLgmTjQ0DQAAGVX+/M+eY+wB6efPq0cPmUyS1KCBPvvMyDAAANihvXvVt69luVUramWqo+EOABnC3LnPmHDxov76K02iWGfPHsvCf/9Ltx0AAMPUr2+bOakkNFQdOlgu/ubtrcWL5eJiWBgAAOzQzZtO7drpyRNJKldO8+fLmX5wKuMHDADpX2ioTp9+9rSDB1M/yrOYd0+LNnasRo82KAoAAJDef/8ZLewXX1SDBmmVJo4BA3TkiCR5emrFCuXObVgSAADsUESEU8eOHjduSFKuXFq7VtmyGZ0pA6DhDgDp3/37Vk0LCEjlHM8SEuJ0/bpT9M3x4zVqlIFxAACAKlTQF18keO9zz2nRIrm6pmGgGGbO1Pz5luWvv1aVKsbEAADAbq1bl/nQIWdJbm5avlzFixsdKGOg4Q4A6V/OnFZNy5UrlXMkKiTEqVevPKGhlpsffKCRI43MAwAAzD76SD4+8ZzMvVYt7dunl182IpO0e7eGDbMs9+mj3r2NiQEAgD07edLdvPD116pTx9AoGQkNdwBI/zw9rdoYrlYt9aMkIDBQbds+t2+fZ/RIv36GhQEAALF07apLlzR7tuVmvnymgwe1c6fKlDEmz+3b6tDBcr33V1/VrFnGxAAAwCEMHvz0oqlIAzTcASBDeOZuX6VKqWbNNIkSx4MHevNNHTxo0OHoAADACh4eql3bspwzp6lyZcOSRESoY0eZT0ebO7eWL5eHh2FhAACwQ3fvPl2uqkyFeQAAIABJREFUUydy2jTjomRINNwBIEMYMEA1aiR4r7u7fvjBmBOw3r+vhg21f78kOTkpb17Tsx4BAAAytOHD9ddfkuTsLB8feXsbHQgAAHty757WrrUsZ88etWBBmFFXW8mwjGm4P3jw4M6dO9bMjIqKevDggclkbf8lLCwsKCgoBdEAIH1yc9Nvv6lFi3juyptXa9Y83WctLT14oEaNdPCgJDk5aezYgOeeMyAGAABwFKtWafp0y/Lnn6tRI0PTAABgZ8LD1a6dAgMtNzt2fJQrF7u1pTUDGu4mk6lixYrFihVLfNqyZctq1qzp4eGRI0cOT0/PN998888//0xocnh4+MSJE0uXLu3p6fncc89lz569e/fu586ds3V2AHBgOXJozRpt365mzSwj+fJp9mxduKDGjQ3IY963/cABSXJy0qRJj3r0eGRADgAA4CDOnlXPnjLvjtWihYYPNzoQAAB2ZvBgbd/+9GaePJGGRcnADGi479ix4/Lly4nPGTJkSIcOHfbs2RMRESEpLCxs06ZNjRs3njBhQtzJwcHBb7zxxogRI3x9fc37wgcGBvr4+FSqVGnLli2p8RYAwHHVrq1BgyzLlSpp4EB5eRkQ4+5d1alj2bfd2Vlz56pXr8eXL7tGH6R05IiiogwIBgAA7NOjR2rTRuZVhZIltWCBnJyMzgQAgD2ZNUvff290CKR9w/3evXt9+vRJfM7cuXNnzZol6bXXXvPx8Tl58uSPP/5YunRpk8k0cuTIP/74I9b8AQMG7Nu3T1KXLl1+//33w4cPT5o0ycvLKzg4uH379rdu3Uql9wIASJ47d1S/vv75R5JcXDR3rurWVadO2WrXLnj7tmXTuVMnlSunjRuNzAkAAOyEyaRevXTqlCRlyaKVK8Vp6AAAiGnLFn3wgWW5bFlDo2R4aXTO/GPHjp08eXLnzp0+Pj6PHiV2xoAnT56MHj1aUqlSpTZs2JAjRw5J5cqVa9CgwWuvvXbnzp2RI0c2jnHugxMnTvj4+Ehq3769j4+Pk5OTpEqVKpUrV65ly5b379+fPHnyNK7FCwB2w9xtP3FCklxc9PPPqlJFVarI39891syzZ9WkiebOVc+eaR8TAADYkcmTtXy5Zfnbb1W+vKFpAACwMxcvqlMnRURIUuXKqllTp08bnSkDS6M93Bs1atS1a9fvvvsu8W67pD///PP69euSvvrqK3O33axIkSKffPKJpMOHD/9j3itSkvTzzz+bTKZMmTL98MMPTjEOKWzWrFmLFi0kLVy4MIqzEgCAfbh9W/XqPe22z5unrl3Vvbv8/eOfbzKpXz/5+qZlRgAAYF+2bdOnn1qWhw5V9+6GpgEAwM48fKgWLSyb1QUKaPx4y+lbJe3d6+nra8AZxTO4NPqJd+zY8e3/qVChQiIzzWeMyZ49e8OGDWPd1bx585hzYi43aNAge/bs8c739/c/GP1XBgAwzq1bqldPJ09KkouLFixQt27auFGHDiX2qLAwzZqVNgEBAIDduXpVHTtadtmrXl0TJxodCAAAexIVpS5dLLu1eXioaFE1aaI9eyz3btmS6ZVXPLt3V/T10pAG0uiUMjNnzoxeHjNmzLFjxxKaab6rSpUqzs6xvwwoVqxYyZIlz507F72H+5MnT86ePSvptddei/tU0Wee+eeff6pWrZqydwAASJFr11S3rs6flyQ3N/36q9q0kaRNm5792D//TN1sAADAPoWHq3Nn3b0rSfnyaflyucc+BR0AABnaxx/rt98kyclJOXI8bbVHM5nk46Pz57V1qzJlSvuAGZHdHVNw7tw5SUWLFo333uLFi0fPkeTn5xcZGZnQ/IIFC2bKlCnmfACAIa5efdptd3fXkiWWbrukGzee/fBr11IxGwAAsJKLi7JnNz33XFS2bGn0ikOGaPduSXJz09KlKlgwjV4XAACH4OOjKVMsyy+9pFu3Epy5b58mTUqbUEirPdytFxAQIClv3rzx3msev3fvXszJiczPkyfPlStXoucn5IcffnhmsGeefT5DCQkJCQ4ONplMnp6eRmexI8HBwSEhIZ6enlw2IKbg4GDxH/Rvhv8HhYa66P/Zu9OAqKo+DODPsO8igrsoiQvmkqll+uZuqSEoCrhvuGVlYlpmWmbmvuRW7luiiclmaiouiWLo25uZhgJpiqIii4DOsA3zfri3gdhEA84w8/w+nXvmP5dnkAH8c+85sASgVqsfP1ZV9IeLj1e89ZblzZtGAMzMsGtXZu/eudqvCCMji6f+MDI31zx+/KSicxIREVHpmjdHbGyyUql0dHQErCr6wwUEYMMGebx8Obp0qegPSEREVJX88gsmTZLHPXsiIuIp9d98g7lzYWxc0blIxxru2dnZubm5AEpqQklXrEv9u4KDMtaXZJL2y7Nk2uY+AVCpVGlpaVlZWQU3qqXU1NTMzEwjI6PMzEzRWXRIWloaAGtra9FBdIjwd1BGhoXUcM/Jyanob25375oMGVLz9m0jAKammq+/TnrtNVXBj1mnTjWgWuknadiwwnMSERGRTvntN0ycKI+HDMHUqULTEBER6Zh79+DpCaUSANzcMGkSTpx4ylMSE3HtGl58sRLSGTrdarhrNBppUFITSiqQmvLPUV+Sidpf5YojXf9uY2NT+kkMirGxcVZWlqWlJT8tBWVlZRkZGdnY2FhyTawCrKyswHfQPwl/B1lammqTVGiG27eNhg61k7rt5ubYtu1xnz7GwD8+4oABWLUKf387L17//rn8EiIiIjIcqanw8pKbCC1bYssW0YGIiIh0SWYmBgzA3bsA4OCAsDCcPVumJ96/z4Z7ZdCthru5ubmxsbFarS7pAuGsrCwUuFRWOyhjfUk2btxYyqNSw93BwaH0kxgUpVKpVqutrKz4aSkoLy/P3Ny8evXqUouZJNJiMvxSKUj4O8jWVh6YmppWXIbYWPTvLy+/bmmJ0FD07m1btOz11zF8OHbvLvE8zs748EMrGxu+rYiIiAxCXh5GjMCNGwBga4vAQPBWSSIiqkKePEFAAABYW2P48PI/v0YDPz9cuAAAJibYvx+urrh0qUzPrfaU28upfOhWwx2Avb19cnJySUsHJCUlSTXaYmlQUr20eru2jIiIKkdMDHr0kP/ebmWF0FD06lVi8caNSEjAyZPFPFS3Lg4dAq9uJyIiMhzz5+PwYQBQKLB9O9zcRAciIiJ6Fqmp8tLq9etXSMN90SLs2SOP16xBjx4AynTduqkpmjQp/zxUlJHoAIU1adIEwK1bt4p9ND4+XlsDoHHjxtJiMsXWp6amSpfWNuFXExFRJbp+Hd2753fbw8JK67ZLNceOYcmSx40b52gnq1fHtGn47Te0bFnBcYmIiEhnHD+OBQvk8ccfY9AgoWmIiIh0zJEj+PRTeTxuHN5+Wx67uaFt26c89623eIV7JdG5hnurVq0A/PLLL0UfUqlU0dHRAFr+3X2xtLR0dXUtqV472ZLdGiKiynLtGnr0QEICAFhb4+BB9Oz59GcZG2PcuMyTJ++5uMiruUdGYtUqODpWZFYiIiLSJbduYehQqNUA0LMn5s8XHYiIiEiXREfn/6D8z3/wzTf/ePSrr2BS8lImtrZYvLhi45GWzi0p8+abb27evPn+/fu//PJLu3btCj509OjRnJwcAP369StYHxsbe/z48ezsbDMzs4L1P/zwA4Bq1ap16tSpUrITERk6qdt+7x4AWFvjhx/QrduznUH7+4GRzv1FmIiIiCpQZiYGDUJyMgA0aIC9e2FsLDpTlbJ06dKEhISvvvqqlJq8vLwTJ078/PPPycnJNWvW7NatW+n/WVYqlaGhoVevXlUqlc7Ozu7u7tIVb0REVPlSUuDhgbQ0AGjUCEFB+GcfFF26ICAA48bhyZPCz3Vywr59aNaskqKSzjXc+/bt6+Tk9PDhw0WLFn3//ffa+by8vCVLlgBo0aJF+/bttfOjRo1at25dcnLypk2b3n33Xe38vXv3duzYAWDYsGGmpqaV9wKIiAxVdDR69MD9+wBgbY1Dh9C1q+hMREREVEVMmQLpFmVzcxw4ACcn0YGqlOTk5Dlz5piZmZXScP/jjz+GDBny+++/F5zs3Lnznj17nJ2di9aHhIT4+fkV3C/N399/woQJa9assbCwKMfwRET0VLm58PZGXBwA2NggLKz4H5Q+PnjlFaxahW+/RWoqADg5qceOzZsxw5Q/WCuTzl1AaGVl9cknnwA4cODAjBkzpEXbr127Nnr06J9//hnAwoULpXXbJR06dBgwYACAmTNnbt26NS0tTa1WR0ZGuru7p6Wl2drazp49W9BLISIyIJcuoUsXudterRrCw9ltJyIiorL6+mts3y6P165Fhw5C01RBy5Ytk24HL8mdO3d69OghddtdXV29vb3r1asH4Ny5c71793706FGh+qNHjw4ePDglJcXIyOiVV17x8PCws7MDsHnz5tGjR1fY6yAiouJNnYqTJwFAocC2bWjVqsTKRo2wejXGjpUPJ01K/+yzHHbbK5nONdwBTJ06dejQoQBWrFjh7Ozs4ODg5ua2e/duALNnz/b09CxUv23bNjc3t8zMzPHjxzs6OlavXr1z587/+9//zMzM9uzZU79+fQGvgYjIkFy6hF69kJQEANWq4ehRdOwoOhMRERFVEVFRmD5dHo8ciQkThKapau7du/fxxx8vXbq09LJp06Y9ePAAQEBAQGxsbGBg4J07dxYtWgQgJibm888/L1iclZXl5+enVqvt7e2vXLkSFRUVGhqalJTk7u4OIDAwMDQ0tMJeEBERFbZtW/5y7QsWwNtbaBoqAwEN90aNGnXt2vX1118vqUChUAQEBKxfv75p06YAUlNTAbz88sv79+//8ssvi9ZXr179woUL06dPr1GjRm5ubkZGhomJSb9+/aKioqRfCIiIqOL8+it69ZJXXLW3x7FjePVV0ZmIiIioikhMxODByMoCgJdewsaNogNVHSNHjmzatGm9evUWL16s0WhKqYyLiwsKCgIwc+bMYcOGaednzZrl7e0NYOPGjenp6dr5gICAu3fvSgM3Nzdp0tTUdO/evS4uLgCWLVtWAS+IiIiKcfYs3n5bHg8ejI8/FpqGykZAw33MmDGnT58+cuRIKTUKhWLKlCnXr19PSkqKiYlJS0v75ZdfBg8eXFK9jY3NihUrEhMTExIS/vzzz4yMjEOHDr300ksVEJ+IiPL98kt+t716dRw7hldeEZ2JiIiIqgi1GiNH4s4dAHBwQFAQLC1FZ6o6jh8/HhsbW3qrXRIWFqbRaBQKhb+/f6GHxo4dC0ClUh0/flw7GRISAqB58+b9+vUrWGxjYyM16M+fP//w4cN//xKIiKh0f/0FLy9kZwNA27bYuRMFltkm3aWLS8oUVKNGjSZNmkirxT2VkZFRnTp1XnjhBW7hQkRUCX75Bb17Q9pJS+q2c8VVIiIiKruPP8axYwBgZITdu+HiIjpQlXLx4sWbf3v//fdLqTxz5gyAFi1a1KlTp9BDPXr0sLGx0dZIIiIiAPTs2bPoqTw8PADk5eWdPXv2X78CIiIqzePH8PCA9PfN2rURGgorK9GZqGxMRAcgIqIqKTISfftCuvnYyQnh4WjdWnQmIiIiqjpCQ7F8uTz+/HP07Ss0TRXUoEED7dje3r6UyuvXrwNo2bJl0YfMzc1bt24dGRkZExMjzTx48EDaQ7XY+g4dOigUCo1Go60nIqKKkJeHESPw++8AYGGB4GAU+K5Puk7Xr3AnIiIddO4c+vSRu+01a+LECXbbiYiI6BnExGD0aEirobi7Y/Zs0YH0Wnx8PID69esX+6g0f/v27YLFJdWbmZk5OTkVrCciooowdy60G1SvW4eOHYWmoWfEK9yJiOjZnD2Lfv2QkQEAtWohPBzFXf9EREREVLzHj+HlhbQ0AHB1xbffwohXglUYjUajVCoBSEvHFCXNZ0i/2wGPHz8uOF9sfWJiora+JIoyLDPMrn1BKpUqNTXVwsJC+vciSUpKSmZmpkqlsuQODwUkJCSIjqBzdOoddO+eMVAPgFqtvn377nOc4fBhq0WLHKXxpEnpvXs/etbvlxkZ1QFbAOnp6fHxmXwHVTI23ImI6BlERKBfP0j/EatVCydO4MUXRWciIiKiqkOjgZ8frl4FAEtLBAai1NVQ6N/KzMyUNlY1NzcvtkCa17aoVCpVwfmn1hMRUfm6etVs+vQa0k1gXbtmfvTRI9GJ6Jmx4U5ERGX1009wd5e77bVr48QJtGghOhMRERFVKStWIDBQHn/zDdq2FZrGAGj75tnZ2cUWZGVlATAzM5MOLSwsnqm+JFKXvyTS9e/Ozs6ln8SgKJVKS0tLKysrR0dH0Vl0iJWVlVKpdHR0tOJmkUXwHVSQTr2DtLdtGRsbP+s/0/37mDgR0p8+mzVDSIiFvf3z/EPb2soDOzu7Bg2c+A6qZLxzj4iIyuTYMfTtK3fbGzRARAS77URERPRsIiPzl2t/7z2MHi00jWEwMjKSVhJ48uRJsQWFFpyxtraWBmWsJyKi8pKZiYEDcecOAFSvjoMHeRNYVcWGOxERPd3Ro/D0lP/M3qABTp2Cq6voTERERFSl3L+PwYORkwMAHTti+XLRgQxGvXr1UPKiz3fv3gVQt27dgsUl1efm5iYmJhasJyKi8vLuu/j5ZwAwNkZAAJo0ER2Inhcb7kRE9BRHjmDAAGRmAoCzM06dQuPGojMRERFRlZKTAx8f3LsHALVq4fvv8bQlSajcNGvWDMD169eLfTQ2NhaAm5ubdFivXj3p6vVi6+Pi4vLy8grWExFRuVi2DFu3yuOVK9G3r9A09O+w4U5ERKU5fBheXnK3vWFDnD7NbjsRERE9M39/REQAgIkJ9u3D31dRU2Xo3LkzgN9++y0jI6PQQ7Gxsffv39fWSDp16gQgQvoH+yftpFRDRETl4uhRfPyxPB4zBlOnCk1D/xob7kREVKJDh/K77Y0a4dQpuLiIzkRERERVzZ49WL9eHi9Zgq5dhaYxPJ6engBycnJ2795d6KEdO3YAMDMz69evX6H6qKio6OjoQvU7d+4E0L59+wYNGlRkZCIiA3L9OoYMgVoNAJ07Y8MG0YHoX2PDnYiIinfgAAYORFYWADRpgogIdtuJiIjomf3+OyZMkMcDBsDfX2gag9SiRYu+ffsCmDdv3q1bt7Tzv/7666pVqwD4+fk5ODho50ePHu3k5ARg8uTJmdKVFwCADRs2nDt3DsDMmTMrLTwRkX5LTUX//nj0CAAaNkRQEMzNRWeif81EdAAiItJF33+PYcPkbc2aNsXJk7z1m4iIiJ7Zo0fw8oJSCQDNmmHnTigUojMZpNWrV58/fz4xMbFdu3aenp5t2rSJjIz84YcfVCpVo0aN5s+fX7DY2tp63bp1vr6+Z86cadWq1YABA5ycnMLDw8PDwwH079/f29tb0OsgItIrajWGD0dsLABYWuLAAdSsKToTlQc23ImIqLDAQAwfjtxcAGjWDCdPom5d0ZmIiIioqtFoMG4c4uIAwMYGQUGwsxOdyVA1adLkyJEjQ4YMuXXr1rZt27TzL730UmBgoKOjY6F6Hx+fjIyMqVOnxsXFLV++XDvv6+u7ZcsWBf9sQkRUHvz9ceQIACgU2LED7dqJDkTlhA13IiL6h337MGKE3G1v3hwnTrDbTkRERM9jwQIEBwOAQoHt29GihehA+mvMmDHdunUzNjYupaZjx47R0dEhISGRkZEpKSm1atXq3r173759TUyKbwv4+fm5u7vv27fv6tWrKpXK2dnZ09OzQ4cOFfMKiIgMzo4dWLtWHs+bBx8foWmoXLHhTkRE+b77DiNHyt12NzecOIE6dURnIiIioiooPByffy6PP/wQgwcLTaPvGjVq1KhRo6eWWVpaDh06dOjQoWU8ba1ataZOnfqvkhERUXHOncPkyfLYywtz5wpNQ+WNm6YSEZFs+/b8lWTatMFPP7HbTkRERM/j9m0MHQq1GgC6d8eCBaIDERER6Yxbt+DlhawsAHjpJezaxQ1O9A0b7kREBABbt2L8eOTlAcBLLyE8HE5OojMRERFRFZSZiUGDkJQEAPXr47vvUMKaJURERAZHpcKgQUhMBABHRwQFwdpadCYqb2y4ExERtmzBxIlyt71tW4SHo8jWWURERERl8u67+O9/AcDUFN99h5o1RQciIiLSDRoNxozBL78AgKkpvv8eLi6iM1EF4JUGREQGp0EDTJwIAC++CACbN2PyZLnb/vLLOHYMNWqIjEdERERV16ZN2LpVHq9Zg86dhaYhIiLSJfPmITBQHq9fj65dhaahCsOGOxGRwXnxRWzcKI83bsTbb0OjAYB27XDsGBwcBEYjIiKiKuzXXzFtmjwePjx/OzgiIiIKCsIXX8hjf39MmCA0DVUkLilDRGS4NmzI77a3b4/jx9ltJyIioueUkoJBg6BSAUDr1ti0SXQgIiIinXHpEkaNkv/33bs3li4VHYgqEhvuREQGauXK/G57p044cQLVq4vORERERFVTXh6GDcPNmwBQvTqCgmBlJToTERGRbnjwAJ6eePIEAJo2xb593E5cz7HhTkRkiJYvxwcfyOPOnfHjj7CzExqIiIiIqrI5c3D0KAAYGWH3bjRuLDoQERGRbsjJga8vbt8GADs7BAXxWjf9x4Y7EZHBWbYMM2fK49dfx5EjsLUVGoiIiIiqsoMHsXixPP70U/TrJzQNERGRLnnnHfz0EwAYGWHPHrz4ouhAVPHYcCciMixLluDDD+Vxly44fJjddiIiInp+sbEYOTJ/Udo5c0QHIiIi0hmrVmHzZnm8bBneektoGqosbLgTERmQJUswa5Y87toVhw7BxkZoICIiIqrKnjyBlxfS0gCgYUPs3QtjY9GZiIiIdENmZv7lbqNGYfp0oWmoErHhTkRkKD77LL/b/sYbOHKE3XYiIiL6V6ZMwZUrAGBhgQMHUKOG6EBEREQ6IyUFubkA8Npr2LRJdBqqRGy4ExEZhE8/xfz58rhPH4SGwtJSaCAiIiKq4r76Crt2yeOvv0a7dkLTEBER6Zi8PACoWxf798PcXHQaqkQmogMQEVGFmzMHX34pj/v2RVAQLCyEBiIiIqIq7vx5fPSRPH77bYwdKzQNERGRzpD67BJLS4SEoF49cWlIBDbciYj03CefYOFCedyvHw4c0Olu+6uvqhs2NAFgZSU6ChEREZUgMVHh7Y3sbAB49VWsWiU6EBERGbyzZy2OHrWxsECvXvD2FplkwYL88dat6NBBXBQShA13IiK9pdFg+nR89ZV8+NZbOHBA129k27gx28qKP5uIiIh0V24uRo82v3sXAGrWxPff6/pvF0REZAiuXTPdtcsCgLW1yIb7jh3YvFke29lh6FBhSUggruFORKSfNBpMm5bfbR80CMHB/P8wERER/Vtffln97FkjAMbG+PZb1K8vOhAREZFuiIzE5Mn5h3Z24qKQUGy4ExHpIY0G77+PNWvkQ29v7N0LU1OhmYiIiKjqCw4237bNVhovXIg33hAbh4iISFfEx2PQIGRlic5BOoANdyIifaPR4L33sHatfOjjgz172G0nIiKif+vKFUybZiONvbwwc6bYOERERLpCpcKgQbh/HwCqVxedhkRjw52ISK9oNHj3XaxfLx/6+iIgACZcFJ2IiIj+nbQ0eHlBqVQAaNIkb/t2KBSiMxEREekAjQbjxuHiRQAwNkbt2vJ8QgIGDMDx4wKjkRhsuBMR6Y+8PPj54euv5cOhQ7F7N7vtRERE9G9pNPDzQ2wsAFhba/buzea6tERERJIFC/Ddd/JYrUZ0tDzOy0NoKN54A+PGITdXVDoSgA13IiI9oVZj3Dhs3y4fjhvHbjsRERGVj4ULceCAPF66NNnNLU9oHCIiIl0REoJ5855Ss30712EzLGy4ExHpA6nbvnOnfOjnh82bYcTv8URERPSvnTiBzz6Tx2+/rXJ3VwqNQ0REpCv++AOjRyOvDH+GXrsW169XfCDSDWzGEBFVeWo1xozBrl3y4YQJ2LSJ3XYiIiIqB/HxGDoUajUAdOqEOXOeiE5ERESkE5KT4eGB9HQAsLR8SrFajf37KyEU6QT2Y4iIqja1GqNHY/du+XDiRGzYwG47ERERlYOsLAwahIcPAaB2bezfDzMz0ZmIiIh0QE4OvL3x558AYGsLe/unP+Xq1YoORbqCLRkioiosJwc+PggIkA8nTWK3nYiIiMrNe+/h4kUAMDVFYCDq1hUdiIiISDe89x5OnQIAIyMEBCA7++lPycio6FD52rSBtzc8PLJeeIG7tQrA3fSIiKqq7GwMGYLgYPnQ3x8rVkChEJqJiIiI9MW332LzZnm8YgVef11oGiIiIp2xbh02bpTHixahf3/UrInk5Kc8q1atis6Vb9QojBqFpKQMpVIFWFfeByYAvMKdiKiKys6Gr29+t336dKxcyW47ERERlY9LlzBpkjweOhTvvSc0DRERkc44cwYffCCPR4zAhx8CQNeuT39iWWpIP7DhTkRU9WRnw9sbISHy4YwZWLFCaCAiIiLSIykp8PKCSgUArVrlX+dORERk4G7exKBB8gIyL7+cf5375MkwNi7tiXXrwsurwuORjmDDnYioisnKwuDBCAuTDz/8EMuWCQ1EREREeiQvDyNG4OZNALC1RWAgrHknOhEREZCRAQ8PJCUBQJ06CA2FlZX8UJs2+PzzEp9oaopt22BjUxkhSRew4U5EVJVI3faDB+XDjz7CkiVCAxEREZF++ewzHDkCAAoFduxA8+aiAxEREemAvDwMH44rVwDAwgLBwahf/x8Fn3yCb75BtWqFn+jigqNH8eablZSTdAEb7kREVYZSCXd3/PCDfPjRR1i8WGggIiIi0i8//ICFC+XxJ5/w5nciIiLZxx/nX/q2ZQtefbWYmsmTcfs2Vq6UD21tERqKmBh0715JIUlHmIhaoiQ5AAAgAElEQVQOQEREZaJUwsMDJ07Ih59/jk8/FRqI9FReXl5kZGR0dHRsbKydnV3Tpk07duzo7OxcSv2JEyd+/vnn5OTkmjVrduvWrVOnTqWcX6lUhoaGXr16ValUOjs7u7u7u7q6VsDrICKiZxYXh5EjkZcHAD17Yt48wXmIiIh0xO7dWLpUHs+aheHDS6y0s4O3N6ZPB4Bq1eDhURnxSNew4U5EVAUolejfHydPyodffIE5c4QGIj11+fLliRMnRkVFFZw0MzN77733PvvsM1tb20L1f/zxx5AhQ37//feCk507d96zZ0+xPfqQkBA/P7+UlBTtjL+//4QJE9asWWNhYVF+r4OIiJ6ZSgUfHzx6BADOzvjuu6ds/kZERGQg/vc/TJokj/v0wYIFQtNQVcCGOxGRrnvyBP3749Qp+XDBAnzyidBApKdu3brVsWNHlUqlUCg6derUrFmzR48enTt37sGDBytWrIiPj9+3b1/B+jt37vTo0ePBgwcAXF1d27ZtGxkZeffu3XPnzvXu3TsqKsre3r5g/dGjRwcPHqxWq42MjNq3b1+7du3Tp0+np6dv3rw5LS2t0MmJiKiSvf02fv0VAMzN8f33cHQUHYiIiEgH3LsHT08olQDQvDn/IE1lwjXciYh02pMncHfP77YvXMhuO1WUadOmqVQqW1vbkydPnj17duvWrQcOHIiLixs0aBCAwMDAkJCQQvVStz0gICA2NjYwMPDOnTuLFi0CEBMT8/nnnxcszsrK8vPzU6vV9vb2V65ciYqKCg0NTUpKcnd3l04eGhpaeS+ViIj+ae1a7Nwpj9etQ4cOQtMQERHphsxMDByIO3cAwMEBBw8WsycqUVFsuBMR6a60NPTqhdOnAUChwFdf4eOPBUcifZWSkiL10z/44INu3bpp521sbLZs2WJtbQ0gPDxcOx8XFxcUFARg5syZw4YN087PmjXL29sbwMaNG9PT07XzAQEBd+/elQZubm7SpKmp6d69e11cXAAsW7asAl8eERGV7OefMWOGPJ4wAePHC01DRESkGzQajB8PablNExPs3w9uPkVlxIY7EZGOSkvDm2/i55+Bv7vt778vOhPpr+joaGngUWRbH3t7+5YtWwK4fPmydjIsLEyj0SgUCn9//0L1Y8eOBaBSqY4fP66dlLr5zZs379evX8FiGxsbqUF//vz5hw8fltfLISKiMnrwAIMHIzsbAF56CatXiw5ERESkGxYvRkCAPF69Gj16CE1DVQob7kREuujRI7zxhvy3dIUCa9Zg6lTRmUivJScnt2nTpk2bNo0bNy76qEajAWBikr/1y5kzZwC0aNGiTp06hYp79OhhY2OjrZFEREQA6NmzZ9GTSy3+vLy8s2fP/vsXQkREZZebC19f3L0LAA4OCAqCpaXoTERERDrgxx8xd648HjsWU6YITUNVDRvuREQ6R+q2X7gAAAoF1q7Fu++KzkT6zsPD49KlS5cuXbKzsyv00M2bN69cuQKgU6dO2snr168DkK58L8Tc3Lx169YAYmJipJkHDx48evSopPoOHTooFIqC9UREVDk++gg//QQARkYICICLi+hAREREOuDaNQwZArUaAP7zH2zYIDoQVTVsuBMR6ZbUVPTujYsXAUChwPr1eOcd0ZnI8GRlZSUlJV25cmXlypU9e/ZUKpWNGzeeNm2atiA+Ph5A/fr1i326NH/79u2CxSXVm5mZOTk5FawnIqKCliyBgwMcHLBkSXmeNiQEq1bJ4/nz0adPeZ6ciIioikpJQf/+SEsDgIYNERQEMzPRmaiqMXl6CRERVZaHD9GrF6SFso2MsHUrxowRHIkM00cffbS6wDq+Q4YMWblypaOjo3So0WiUSiUAaemYoqT5jIwM6fDx48cF54utT0xM1NaXRLoQvnTs2hekUqlSU1MtLCykfy+SpKSkZGZmqlQqS66dUUBCQoLoCDpHd95B9+9XS02tBuD+/bTbt9PK5Zw3bpiOHFlLozEC0KuXavjwh2X89sl3EBER6bHcXHh7Iy4OAGxsEBYGJyfRmagK4hXuRES6IjERPXvK3XZjY2zbxm476Ypz584dOnRIe5iZmSmt6m5ubl5svTSvbVGpVKqC80+tJyKiCvXkiWLiRMfHj40ANGqUu2pVshH/X0hERAS8/z5OngQAhQLbtqF1a9GBqGriFe5ERDpB6rZfuQIAxsbYvh0jR4rORAZs5cqVy5cvv3fv3tWrVxctWnTmzJkJEyYkJibOnj0bBfrm2dnZxT49KysLgNnf915aWFg8U31JpC5/SaTr352dnUs/iUFRKpWWlpZWVlbauxMIgJWVlVKpdHR0tLKyEp1F5/AdVJDuvIOqVdMOqjk7Vyu19uk0Gvj6IjYWACwtERRk0rJl8euDFYvvICIi0lfbt+Prr+XxF1/A21toGqrKeCUDERmKO3ewZAmWLEFAgOgoRTx4gB498rvtO3aw206CGRkZmZiYNGjQoE+fPqdOneratSuABQsWJCUlSY9KKwk8efKk2KcXWnDG2tpaGpSxnoiIKs7Spdi/Xx5/8w3athWahoiISDecPYvJk+XxoEGYPVtoGqri2HAnIkNx8yZmzcKsWdi4UXSUf7p/Hz164OpVADA2xs6dGDFCdCaiAoyMjGbOnAlApVJduHBBmqxXrx5KXvT57t27AOrWrVuwuKT63NzcxMTEgvVERFRBTp3CnDnyeOpUjB4tNA0REZFu+OsveHlBuh23bVvs2oUy7B5FVCI23ImIRLpzB6+/jj/+AABTUwQGYvhw0ZnIIL333nu9evWaP39+sY+6urpKg+TkZGnQrFkzANevXy+2PjY2FoCbm5t0WK9ePenq9WLr4+Li8vLyCtYTEVFFuHcPw4cjNxcAOnbEsmWiAxEREemAx4/h4YGHDwGgdm2EhoKrptG/xIY7EZEw8fHo3l3eAN3MDPv2wctLdCYyVCqV6sSJE4GBgcU++tdff0mDpk2bSoPOnTsD+O233zIyMgoVx8bG3r9/X1sj6dSpE4CIiIiiJ9dOSjVERFQRcnLg7Y179wCgVi18/z2etnEGERGR/tNoMG4cfv8dAMzMEBiIBg1EZ6Kqjw13IiIx7twxKtRtHzhQdCYyYO3btwdw7dq136VfNv/pwIEDAIyMjFq1aiXNeHp6AsjJydm9e3eh4h07dgAwMzPr16+fdlKqj4qKio6OLlS/c+dOKUAD/m5LRFRh3n8f584BgIkJ9u3D32t9ERERGbS5c/O3Nlm/Hq+/LjQN6Qs23ImIBLh712TAgGp//gkAZmbYvx8DBojORIbN09OzWrVqarV63Lhx8fHx2nmNRrNly5YtW7YAGDdunNXfd1e2aNGib9++AObNm3fr1i1t/a+//rpq1SoAfn5+Dg4O2vnRo0c7OTkBmDx5cmZmpnZ+w4YN586dAyAtE09ERBUhIADffCOPly5F165C0xAREemGAwewcKE8njED48cLTUN6xER0ACIig3PjhmLw4JoJCcYALCwQHIw+fURnIoNXp06dpUuXTpo06b///a+bm9sbb7zRuHHj1NTUixcvXr58GYCLi4vUSddavXr1+fPnExMT27Vr5+np2aZNm8jIyB9++EGlUjVq1KjQcvDW1tbr1q3z9fU9c+ZMq1atBgwY4OTkFB4eHh4eDqB///7e3t6V+XqJiAzH5cuYOFEeDxyIadOEpiEiItINv/6KUaOg0QDAG29g8WLRgUiPsOFORFSp4uLQp49FQoICgKUlQkLwxhuiMxEBACZMmJCTkzN37tzU1NTg4GDtvEKhGD169OLFi6WNT7WaNGly5MiRIUOG3Lp1a9u2bdr5l156KTAw0NHRsdD5fXx8MjIypk6dGhcXt3z5cu28r6/vli1bFApFxbwsIiKDlpoKLy8olQDQrBl27AC/3RIREd2/D0/P/J+P+/bB2Fh0JtIjbLgTEVWemBj06IG7d6VuuyYsTNGrl+hMRH9TKBTvvPPOkCFDDh06FBcXd+vWrZo1azZv3rxjx44vvvhisU/p2LFjdHR0SEhIZGRkSkpKrVq1unfv3rdvXxOT4n/B8PPzc3d337dv39WrV1UqlbOzs6enZ4cOHSryZRERVW3Z2bh9Wx7fvo3s7GfY7DQvDyNGQFrCzsYGQUGws6uQkERERFVIdjZ8fCCto1m9OsLCYG8vOhPpFzbciYgqyfXr6NEDCQkAYGmp2b07vVevaqJDERVWo0aNUaNGlb3e0tJy6NChQ4cOLWN9rVq1pk6d+lzRiIgMi0aD1auxaBESE+WZ7dtx6BBmz8bUqWW6UH3+fBw+DAAKBbZvR4sWFZiWiIioqnjnHUREAICxMXbvRtOmogOR3uGmqUREleHatfxuu7U1tm172KVLjuhQREREpKPy8jB8OPz987vtksRETJuGESOQl/eUMxw/jgUL5PFHH2Hw4ArJSUREVLUsX44tW+TxihXo109oGtJTunuFe1ZW1unTp6Ojo+Pj41944YUWLVp06dLFuOQVlZRKZWho6NWrV5VKpbOzs7u7u6ura2UGJiIqidRtv3cPAKytceBAlptbJmAlOhcRERHpqHXrsHdviY/u2YPXXsO775ZYcOsWhg2DWg0A3bvjiy/KPyEREVGVc+wYZs2Sx6NH4/33haYh/aWjDfewsDB/f/8bN24UnGzduvWaNWu6du1atD4kJMTPzy8lJUU74+/vP2HChDVr1lhYWFR4XCKikkVHo0cP3L8PANbWOHQIHTqok5JExyIiIiJdlZeHxYufUrNoEaZMgVFxdyxnZmLQIEi/bDRogH37UMLOGkRERAbk+nX4+sp/je7UCRs3ig5E+ksXl5Q5ePCgp6fnjRs3zMzMunfvPnLkyM6dOxsZGV2+fLl3794XL14sVH/06NHBgwenpKQYGRm98sorHh4ednZ2ADZv3jx69GgRr4CISHbpErp0kbvt1aohPBzF/dGQiIiIKN9vv8k3xpUiIQG//178Q1Om4JdfAMDUFHv3wsmpnOMRERFVOamp6N8fjx4BgLMzgoJgbi46E+kvnWu4p6enjx07FkDjxo1///33kydP7tq16+zZsxcuXHB0dMzJyRk6dKhGo9HWZ2Vl+fn5qdVqe3v7K1euREVFhYaGJiUlubu7AwgMDAwNDRX2YojIsF26hF695OvLqlXD0aPo2FF0JiIiItJ5d+6Uqez27WImv/kG27fL47Vr0blzuaUiIiKqotRqjBiB2FgAsLTEgQOoVUt0JtJrOtdwj4qKSk5OBrB+/fqmBfYJbteu3cKFCwH8+eef169f184HBATcvXtXGri5uUmTpqame/fudXFxAbBs2bLKzE9EJPnf/9CrF5KTAcDeHseO4dVXRWciIiKiqqDkjav+wdS08MyFC/D3l8cjRmDSpPJMRUREVEV98AEOHwYAhQLbt6N9e9GBSN/pXMP9119/lQavvfZaoYc6depUqAZASEgIgObNm/f7577CNjY23t7eAM6fP//w4cOKC0xEVNQvv6B3b7nbXr06jh3DK6+IzkRERERVhIvL85QlJ8PXF1lZANCmDZemJSIiA5KYqLh82UwaX7nyj5vAdu7E6tXy+NNP4etb6eHI8Ohcw127x+mDBw8KPaSdsbS01E5GREQA6NmzZ9FTeXh4AMjLyzt79mxFRCUiKtZ//4vevSHt4ix12zt0EJ2JiIiIqg43NxS417d4zZqhWbP8Q7Uaw4bhr78AoHp1BAXByqriAhIREemKrCzMmIHmzS1DQ62lmePH0bgx/PyQno7IyPz7vQYOxKefCstJBkXnGu59+/ZVKBQAli9fXuihlStXArCysurSpYs08+DBg0ePHgFo2bJl0VN16NBBOlVMTEyFZiYi0oqMRM+eSE0FACcnnD7Nu9WIiIjomS1Y8GwFs2fj2DEAMDLC7t144YWKCkZERKQ7cnLg6YkVK+QbvLRyc7FtG15/HQMH5t/79e23MNK5PijpJ537QmvSpMmSJUsAbNq0ydPTMzg4+OLFi/v27evSpcuhQ4eMjIw2bdrk4OAgFcfHx0uD+vXrFz2VmZmZk5MTgNvFbidERFTezp1Dnz5ITweAmjVx4gRatxadiYiIiKogb2/MnVv8QwoFPvsMgwfnz4SGQrtx1aef4p9rbRIREemtVatw9GiJj16+jMREAKhRA0FBsLautFxk6ExEByjGzJkzGzZsOHz48LCwsLCwMO28vb19cHBwt27dtDOPHz+WBjY2NsWeysbGJjExMSMjo/SP2Lhx46emSkhIeGqN4VCpVCkpKZaWltnZ2aKz6JCUlBSVSpWTk1Nw1SOSFoMyMRH/3SYpyQxwBJCdnZ2QkFTu54+KMhs1qsbjxwoATk55e/cm1aiRW+x3Dr6DisV3EBERUUHz5+O11/D554iKyp989VXMm4c+ffJnYmIwejQ0GgDo3Rtz5lR2TiIiIiE0Gqxd+/QyU1McOMB7v6hSiW+BFXXt2rXVq1fn5uZKh7a2tlLH/NGjR6tWrWrWrFmdOnWkh1QqlTQwNzcv9lTSvFKpLP0j3rhx46mptHkIQG5urlqtzs3N5aelIH5aiqVWq6Eb7yC12lgaaDSacs8TFWU+dmyNJ08UABwd1Xv2JLq65pT0QfilUix+WoiIiArp2xd9+2LGDKxYAQAzZuRfyS55/BheXkhLA4CGDbF3L4yNBeQkIiKqfNeu4c6dp5e98w66dq34NEQF6FzDPSYmpmvXromJiS4uLkuWLHnzzTft7OxSUlKCgoI++eSTsLCwa9euRURE1KxZEwV2WC3pKtGsrCwAZmZmpX/QP//8s5RHpevf69at+xwvR18plUpTU1MrKytHR0fRWXSImZmZUql0dHS04h5VBUjNU114Bzk6KqSBmZlZ+eY5c0YxbpzxkycAULs2jh2Dm5tTKfV8BxWL7yAiIqJiae/mLXovvJ8frl4FAAsLBAWhRo1KDUZERCTQvXtlKmvbtoJzEBWhcw33adOmJSYmOjg4RERE1KtXT5p0cHAYP378K6+88sorr8TExMybN+/rr78GYP33r5xPpEZXEdK17SUtOKP1QhluLNGFBTF0h0kBorPoEH5aiiV9NnThc6K94EuhUJRjnmPHMGAApPttGjTAyZNwdX3KpWX8UikWPy1ERETPZMUKBAbK46+/xssvC01DRERUucq4Fikv6KLKp1ubpj569OjIkSMAJk2apO22a7Vu3Xrw4MEAAgICpBltTbELrOfm5iYmJkI3Lq0lIr3044/w9JS77c7OOHUKrq6iMxEREZEBiIzExx/L4ylTMHas0DRERESVztUVRmXoazZrVvFRiP5Jtxrut2/flgatWrUqtqB169YA0tPTU1NTAdSrV0+6ev369etFi+Pi4vLy8gC4ublVUGAiMmRHjmDgQGRmAn9328uwATMRERHRv3X/Pry9kZMDAK++ipUrRQciIiKqdE5O6NbtKTXNm6OEFiNRBdKthnujRo0UCgVKuGJdO29vb29vby/NdOrUCUBERETRYu2kVENEVI4OH4aXl9xtb9gQp09z03MiIiKqDDk58PGB9B+mmjXx/fcwNxediYiISIQlS1DKvo0KhbzrOFEl062Gu52dnaurK4CgoCDp4vSCVCrV4cOHAbz88stSXx6Ap6cngKioqOjo6EL1O3fuBNC+ffsGDRpUdHIiMiiHDuV32xs1wunTcHF55pPk5iI8HOHhOH26vPMRERGR/vrgA0hXFhkbY/du1K8vOhAREZEg7dtj9+7iV2k3NcW6dejXr9IzEelawx3A5MmTAURGRvr7+2dK3SwAQGpq6pgxY2JjYwFMnDhROz969GgnJyfpiQXrN2zYcO7cOQAzZ86stPBEZAi+/x4DByIrCwCaNEFEBBo1ep7zqFSK3r3Ruzc8Pcs1HxEREemvvXuxdq08XrQIvXsLTUNERCSatzfWr8ff1+UCgJkZfH1x4QKmTBEXiwybiegAhfn7+//444/Hjx9fs2ZNcHBwly5d6tate/PmzZMnT6akpAAYO3asr6+vtt7a2nrdunW+vr5nzpxp1arVgAEDnJycwsPDw8PDAfTv39/b21vYiyEivbN/P4YPl5dMbdoUJ0+iyAbPRERERBUiMRHLl8tjT0/MmCE0DRERkQ6IjcX06dBo8memTMGqVeICEelgw12hUAQHBy9cuHDFihXx8fEBAQHah+zs7D799NOpU6cWeoqPj09GRsbUqVPj4uKWa38DBXx9fbds2aIo+EcuIqJ/ITAQw4cjNxcAmjXDyZOoW1d0JiIiIjIY+/fjyRMAaNoUO3eC/9EhIiIDl5GBgQORmgoANjZ5jx8bAfz5SOLpXMMdgLW19Zdffjlp0qSffvopOjr6zp07Li4ubm5uPXv2lFaPKcrPz8/d3X3fvn1Xr15VqVTOzs6enp4dOnSo5OREpMe++w4jR8rd9ubNcfIk6tQRnYmIiIgMSVISANjYICgI1aqJTkNERCRUXh6GDcPVqwBgYQFf3ydbt9qKDkUE6GbDXeLs7Dxy5Miy19eqVavoxe9EROVi716MGiV3293ccOIEu+1EREQkgEKBrVvx4ouicxAREYn24Yf44QcAUCjwzTdZN27kik4kq1//H0vckAHSuU1TiYh0zbZtGDFC7ra3aYMzZ9htJyIiosqTnp5/d/wHH8DHR2gaIiIiHfDtt1ixQh7Png0fH7XQOET/wIY7EVFptm7FhAnIywOAl15CeDgcHUVnIiIiIoNx+za+/Va+UK5TJyxcKDoQERGRaOfPY8IEeezpifnzhaYhKoINdyKiEm3ejIkT5W5727bsthMREVGlyszEoEHy0u21a2P/fpiais5EREQkVEICvL2RlQUAbm7YtQtG7G6SjuGXJBFR8TZtwuTJcrf95ZcRHo4aNURnIiIiIkPy7rv4738BwNQUgYGoW1d0ICIiIqFUKgwYgLt3AaBGDRw8CDs70ZmIimDDnYioGBs25Hfb27XD8eNwcBCdiYiIiAzJ5s3YulUer1yJ118XmoaIiEg0jQZ+frh4EQBMTbF/Pxo3Fp2JqDhsuBMRFbZqFaZMyV8s9eRJdtuJiIioUl26hPffl8fDhuHdd4WmISIi0gFffom9e+XxmjXo3l1oGqKSseFORPovNxe7d+Ojj+TD//0P06YhLq744hUrMH263G3v3BlHjvAONSIiIqpUKSnw8oJKBQCtWmHzZtGBiIiIRAsNxWefyeN33sHkyULTEJWKDXci0nMJCfjPfzByJM6fl2eePMHq1XjxRaxbV7h4+XLMmCGP//MfdtuJiIiosuXlYfhw3LwJAPb2CAqClZXoTEREREL98QdGjZIXfX39daxcKToQUanYcCcifZaZiTffRFRUMQ9lZ+O997BrV/7M0qWYOVMev/46jhyBrW1lhCQiIiLSmjsXP/4IAAoFtm2Dq6voQEREREIlJ8PDA+npANCoEQ4cgJmZ6ExEpTIRHYCIqAKtXYsrV0or+OADeHnBxgZLlmDWLHmySxccOgQbm0oISERERJTv4EEsWiSP58zBwIFC05DeycrKOn36dHR0dHx8/AsvvNCiRYsuXboYGxuXVK9UKkNDQ69evapUKp2dnd3d3V35JyAiqlw5OfD2xp9/AoCtLQ4ehJOT6ExET8OGOxHps927n1KQlIQjR3D1Kj7/XJ554w2EhMDSsqKjEREREf1DXBxGjZI3kunVK3+lWqJyERYW5u/vf+PGjYKTrVu3XrNmTdeuXYvWh4SE+Pn5paSkaGf8/f0nTJiwZs0aCwuLCo9LRFXH++/j3j0AWL0adeqU88mnTsWpUwBgZITdu9GyZTmfn6gisOFORHorN/cpl7dL1q5FRIQ8fvNNBAez205ERESVTaWCjw8ePQIAZ2fs3YuSLzsmemYHDx709PQEYGZm1rlz5/r169+4ceP8+fOXL1/u3bv3uXPnOnToULD+6NGjgwcPVqvVRkZG7du3r1279unTp9PT0zdv3pyWlrZv3z5Br4OIdNGPPyImBgAWLCjnhvv69diwQR4vXAgPj/I8OVHF4RruRKS3Hj+W91Qpnbbb3qcPr20nIiIiMd5+G7/+CgAWFjhwAI6OogORHklPTx87diyAxo0b//777ydPnty1a9fZs2cvXLjg6OiYk5MzdOhQjXRvBQAgKyvLz89PrVbb29tfuXIlKioqNDQ0KSnJ3d0dQGBgYGhoqLAXQ0QGIyIC06fLY29vfPih0DREz4INdyKqDFeuwMcHPj6YP7/yPmi1as+wlUrfvggOBu+OJSIiosq3Zg127pTH69ahfXuhaUjvREVFJScnA1i/fn3Tpk218+3atVu4cCGAP//88/r169r5gICAu3fvSgM3Nzdp0tTUdO/evS4uLgCWLVtWmfmJyAD99Re8vJCdDQAvv4wdO6BQiM5EVGZsuBNRZUhMxP792L8fP/1UeR9UocBrr5Wp8q232G0nIiIiMc6fx8yZ8njiRPj5CU1D+uhX6e4J4LUivxx36tSpUA2AkJAQAM2bN+/Xr1/BYhsbG29vbwDnz59/+PBhxQUmIgOXkYH+/ZGUBAC1ayM0FFZWojMRPQs23IlIn02a9PSat97CgQMwN6/4NERERET/9OABvL3lK/heeglffSU6EOkj7R6nDx48KPSQdsaywLqKERERAHr27Fn0VB4eHgDy8vLOnj1bEVGJiPLyMHy4vB+bhQVCQlC/vuhMRM+IDXci0mdDhsDLq7SC7t0RHMxuOxEREQmQmwtfX9y9CwAODggK4l4yVCH69u2rUCgALF++vNBDK1euBGBlZdWlSxdp5sGDB48ePQLQsmXLoqfq0KGDdKoYaYdEIqLyNns2Dh6Ux+vX49VXhaYhei5suBORPlMoEBCAKVNgVNx3u+7dcewYTE0rPRYRERER8OGH8mp7RkbYswcuLqIDkZ5q0qTJkiVLAGzatMnT0zM4OPjixYv79m6wLl8AACAASURBVO3r0qXLoUOHjIyMNm3a5ODgIBXHx8dLg/rFXVNqZmbm5OQE4Pbt25UVn4gMyP79WLpUHn/0EcaNE5qG6HmZiA5ARFSxLCywfj3efx9Ll2Lr1vx5b2/s2QMTfhckIiIiEfbtw6pV8njBArz5ptA0pO9mzpzZsGHD4cOHh4WFhYWFaeft7e2Dg4O7deumnXn8+LE0sLGxKfZUNjY2iYmJGRkZpX9ERRn2N2TXviCVSpWammphYaFUKkVn0SEpKSmZmZkqlcqSdwAVkJCQIDrCP+Tm1pUajAkJCRYWuc99nitXzEaPrqXRKAB065Y5aVJi2b9JqFSq9HQLoDqAjIyM27dTnzuGPuE7SBRe4U5EBsHVFffv5x+OHIm9e9ltJyIiIjGuX8fEifK4f3/MmiU0DRmAa9eurV69OjdXboTZ2tpKg0ePHq1aterevXvaSpVKJQ3MS1h1UZpnU5iIyldiovH48U4qlQJA48Y569YlGRuLzkT0vNhtIiL9p1bDzw+HDsmHtWphx47iF5khIiIiqmgZGRg4EOnpANCkCb79FmW4FJjo+cXExHTt2jUxMdHFxWXJkiVvvvmmnZ1dSkpKUFDQJ598EhYWdu3atYiIiJo1a6LADqvZ0ma+RWRlZQEwMzMr/YNqNJpSHpWuf3d2dn6Ol6OvlEqlpaWllZWVo6Oj6Cw6xMrKSqlUOjo6WllZic6ic3TnHaS9lK1u3brPFyozEz4+kP725+CAH380dXV9tp1SlUqlnV2WNLa1tXV2tn2eHHqH7yBR2HAiIj2nVmPMGOzcmT/TtCm77URERCSGRoNx4xAdDQDW1ggKQrVqojORvps2bVpiYqKDg0NERIS3t7ednR0ABweH8ePHHz9+3NzcPCYmZt68eVKxtbW1NHjy5EmxZ5OubS9pwRkioucwfjyiogDAxASBgXB1FR2I6N9hz4mI9JlajbFjsXu36BxEREREAIAlS/D99/L466/RsqXQNGQAHj16dOTIEQCTJk2qV69eoUdbt249ePBgAAEBAdKMtqbYRaJzc3MTExMB1K1bt+IyE5FBWbwYf38HwldfoWdPoWmIygMb7kSkt6Rr27/9Vj7s319oGiIiIjJ4p05h7lx5PG0aRo0SmoYMg3Zj0latWhVb0Lp1awDp6empqakA6tWrJ129fv369aLFcXFxeXl5ANzc3CooMBEZlB9/xJw58njsWLzzjtA0ROWEDXci0k9qNUaNyr+2fdIkzJghNBAREREZtvh4+PpC2rTytdewZInoQGQYGjVqJC2YXuwV69p5e3t7e3t7aaZTp04AIiIiihZrJ6UaIqJ/49o1DBkCtRoA/vMfbNggOhBROWHDnYj0UE4OfHywZ498OHkyvvmG25ERERGRMDk5GDoUDx8CQK1a2L8fT9tykqh82NnZubq6AggKCpIuTi9IpVIdPnwYwMsvv6z4+9dlT09PAFFRUdHSbgMF7Ny5E0D79u0bNGhQ0cmJSL+lpKB/f6SlAUDDhjhwgD8ZSX+w4U5E+iY7Gz4+CAqSD6dPZ7ediIiIBHvvPZw7B/y9HVyRlbSJKtDkyZMBREZG+vv7Z2ZmaudTU1PHjBkTGxsLYOLEidr50aNHOzk5SU8sWL9hw4Zz584BmDlzZqWFJyK9lJsLHx/ExQGAjQ3CwlCzpuhMROXHRHQAIqLyJHXbQ0Plww8+wPLlQgMRERGRwdu9Gxs3yuNly9Cli9A0ZHj8/f1//PHH48ePr1mzJjg4uEuXLnXr1r158+bJkydTUlIAjB071tfXV1tvbW29bt06X1/fM2fOtGrVasCAAU5OTuHh4eHh4QD69+/v7e0t7MUQkV6YNg0nTgCAQoGtW9G6tehAROWKDXci0h/Z2fD2RliYfDhzJpYuFRqIiIiIDN5vv2HSJHk8ZAimTROahgySQqEIDg5euHDhihUr4uPjAwICtA/Z2dl9+umnU6dOLfQUHx+fjIyMqVOnxsXFLS9wAYuvr++WLVsUvHuUiP6F7duxfr08/uIL+PgITUNUAdhwJyI9kZWFwYPxww/y4Ycfci8yIiIiEiw1FV5eUCoBoHlzbNokOhAZKmtr6y+//HLSpEk//fRTdHT0nTt3XFxc3NzcevbsKa0eU5Sfn5+7u/u+ffuuXr2qUqmcnZ09PT07dOhQycmJqKCICGRlITHR4pVXskRneU5nz2LyZHk8aBBmzxaahqhisOFORPpApYKnJ44flw8/+giLFwsNRERERAYvLw8jRuDGDQCwtUVQEGxtRWciw+bs7Dxy5Miy19eqVavoxe9EJNCwYbhzB0DNn3++6+oqOs2zu3ULXl7IzgaAtm2xcye3WyP9xE1TiajKUyrh4ZHfbZ83r2p021NT5d8scnORkSE2CxEREZW/zz/H4cMAoFBg+3a4uYkOREREJM7jx/DwwMOHAFCrFkJDYW0tOhNRxWDDnYiqNqUS/fsjPFw+nD8fn30mNFAZ3LypmDjRsUMHB+lQqUSNGhg7FomJYnMRERFRuTl+HF9+KY9nzcKgQULTEBERCaXRYNw4XL4MAGZmCAxEgwaiMxFVGDbciagKe/IE7u44eVI+/OILzJ0rNFAZXLiATp0sjh61ysvLn8zJwY4daNsWcXHikhEREVE5uXULQ4dCrQaAHj3wxReiAxEREQk1dy7275fH69ejSxehaYgqGBvuRFRVSd32U6fkwy+/xJw5QgOVwePHGDgQ6enFL1OXkIBBg+T/nBMREVEVlZkJLy8kJwNAgwb47jsYG4vOREREJM6BA1i4UB5/8AHGjxeahqjiseFORFVSWhp698bp0wCgUGDVqqqxufmWLUhIKK3g8mUE/5+9+w5o6vrbAP4kYQ8FFbFacI/WrdVaqa24F6IIDtyrWq3+HHXv1bpXXa3WhQsUFPf2te5V996DiiigIpsk7x+5AsoUk5yEPJ+/zr335N4HNFz45txztuorDREREelAv374918AMDfHpk1wchIdiIiISJyLF9G1K9RqAGjUCDNmiA5EpHssuBOR8XnzBk2a4NQp4H21fdAg0ZmyZ9eurPtoVlcjIiIiY7RkCVatktqLFqF2baFpiIiIhAoNhacnoqMBoGxZ+PvzqS8yCWaiAxARfZrXr9GkCc6cAQCZDAsWYMAA0Zmy7dEj7fQhIiIiA3TmDIYMkdqdOuGnn4SmISIiEiohAW3b4ulTAHB0xPbtcHAQnYlIL1hwJyJj8vo1GjfG2bMAIJPhjz/Qv7/oTJ9Cno3HimTpT/BOREREBi0sDN7eiI8HgMqV8eefogMREREJ1b8/jh0DAIUC69ahTBnRgYj0hVPKEJHRiIxEo0Yp1fZFi4ys2g6gaNGs+xQrpvMYREREpF1KJTp1wrNnAODoiKAg2NiIzkRERCTO7NlYsUJqz5mDZs2EpiHSLxbcicg4REaiYUOcOwcAMhmWLEG/fqIzfboWLbTTh4iIiPTpxQs8eIAHD6RZaNMaNQoHDgCAXI7161GihD7TERERGZb9+zFypNTu2hX/+5/QNER6x4I7ERmBly/x44+4cAEAFAqsWoW+fUVnypGePeHiklmHatXg6amvNERERJQ9AweiZEmULJn++ufBwZg9W2pPnIimTfUZjYiIyLDcvo127aBUAkDt2pxjjUwR53AnIkMXFoYGDXD1KgAoFFi5El26iM6UU7a22LYNDRqoIyPTmandxQWBgdma552IiIgMxJ076NoVajUAtGiBMWNEByIiIhInMhIeHnj9GgBcXREUBEtLPV26XbtoT084OjrmzaunKxJlhHUdIjJoL16gXr2Uavvq1UZcbdeoVg2nTsV5esaYpfrE08oKffrg4kVO4E5ERGRM3r1D69Z48wYAihXD6tX84JyIiEyXZkWTu3cBwNoagYFwdtbf1e3tVUWLKkuUQP78+rsoUbr4+yARGS5Ntf36dQBQKLBmDTp1Ep1JG1xc1AsXvrp4MUKzaWuLiAgsW8ZfC4iIiIyJWo2ePXHjBgBYWSEwkLdyIiIyadOnY/duAJDJsGoVvvlGdCAiQVhwJyIDFRqKevWkP2IVCqxdi44dRWfSKltbtaahUMDaWmwWIiIi+mRz5iAgQGovXYpq1YSmISIiEm3tWqkxYQLatRMahUgozuFORIbo6VPUq4d79wDA3Bz+/mjdWnQmIiIiovdOnsTo0VL7l1/QrZvIMERERIajdWuMHy86BJFQHOFORAbnyRO4u0vVdgsLBASw2k5EREQGJDQU3t5ITASAWrUwZ47oQEREROIkJaW0K1eGnx9kMnFpiAwAR7gTkWHRVNsfPADeV9s9PUVnIiIiInovMRE+Pnj+HAAKFsTmzbCwEJ2JiIhIkNhY/Pef1HZwQFAQbG2FBiIyACy4E5EBefwY7u54+BAALCywZQs8PERnIiIiIkpl8GAcPw4ACgXWrcOXX4oOREREJIhaje7dERcnbf7xB0qUEBqIyDBwShkiMhSPHqFuXanabmmJwEBW24mIiMiwHD+OxYul9vTpaNhQaBoiIiKhJk2Cv3/KZs2a4qIQGRIW3IlI565ds/jrL6l94wZWrkRs7Md97t5FnTp49AgAbGywYwdatNBnRiIiIqKsJf9K06oVhg4VGoWIiEioLVswebLoEEQGiQV3ItKh6GgMGpS/efNCyR96h4aiZ0+UKoVDh1K63bkDd3c8ewYANjbYvp3jxYiIiMhQPH4srS4DID4eAMqWxZo1XBGOiIhM16VL6NYNajUA2NiITkNkYFhwJyJdUSrRujW2bk1nwZT//kPz5vjnHwC4fRvu7ggJAd6Pba9fX79BiYiIiNITGSnv08e+RAmcP5+yUyaDpyfs7cXFIiIiEurVK7Rpg+hoACheHF98IToQkYFhwZ2IdGX1ahw4kOHR+Hj07o3r1+HuLq1pbmuLnTtRr57eAhIRERFl6OVLmZdXoaAgS5Xqg/1qNWbORJ8+gmIREREJlZgIb2/p2S97e+zYAYVCdCYiA8OCOxHpSvIkpxm5cwc//IDnz4H31XZ3dz3kIiIiIsra0KEWDx6YZXR0+XIEBuozDhERkUH45RccPQoAcjk2bED58lAqpUMffURNZLJYcCcinVAqceFC1t0iIgAgb14cOIC6dXWciYiIiCh7nj1DUFAWA/Zmz9ZPFiIiIkMxf37K0Lrp0/HoEcqVw/370p7vvsOgQXj5UlQ6IkOR4ZANIqLPERmZ8il35vLmxd69qFVLx4GAihWlKW4cHHR+LSIiIjJqBw9KC8Fl4uxZREVxMnciIjIVBw5g2DCp3aED9uzBkSMfdHj9GgsWICAA+/ahYkX9ByQyFCy4E5FO5M0LuTzrB8qsrLB/P2rW1EckBwc0aKCPCxEREZGx00x5lzmVCs+fs+BOREQm4eFD+PoiKQkAvvsOavXH1fZkz5+jeXPcuAE7O30GJDIgnFKGiHTC3Bzly2fdbdo0PVXbiYiIiLLP0jJb3WxsdJyDiIjIAERFwcMDr14BQOHCmDwZ/v6Z9X/6FIsW6ScakSFiwZ2IdKVLlyw6ODnh55/1EoWIiIjoU8hkWffJkwfOzrqPQkREJJRKBV9fXL8OAFZW2LYNJ05kPfHa1q16iEZkoFhwJyJdGTAAVapkeFQux7JlsLbWYyAiIiKibHj1CvPmZd3N0xPm5rpPQ0REJNTw4di5EwBkMqxciRo1cO9e1q+6e1fXuYgMFwvuRKQrlpbYswc1a8anPWRlhZUr4eWl/1BEREREmVGp0KkTnj7NopudHSZO1EceIiIigfz8MGeO1B4zBh06AEBiYtYvjE+nEkBkKlhwJyIdKlQI/v4vfv31jUIh7ZHJ0KcP7t1D165CkxERERGlZ+xY7NsHADIZGjWKSbdP3rwICkKJEnoNRkREpGenTqF3b6nt6YlJk6R2kSJZv9bFRVepiAwfC+5EpFvnz1suXZpHqZQ2a9bEsmXZuj0TERER6dmOHZg+XWqPGpW4fPmrzZvfNGwI+fs/m+zt8dNPuHIFDRuKykhERKQP//0HHx9poPpXX2Ht2pS7YXZugrxRkiljwZ2IdOiff9CtW8Ho6JR1x2xtBcYhIiIiytDdu+jcWVoFrkEDjByZCKBu3cT9+1PmwVu+HH/+CVdXcSmJiIh0LzYWrVohJAQA8ufHjh3IkyflaKNG+OabzF5uYYGBA3WbkMiQseBORLpy9CiaNYOm2p4vn+g0RERERBmLjoaXF968AYCiRbFxI5InxANSxvTJZOm8loiIKDdRq9GzJ86dAwBzc2zejJIlP+ggl8PPD05O6b9cJsNff6F0aZ3nJDJYLLgTkU7s24emTREdDQCFCyvnzxcdiIiIiChj/frh2jUAsLJCYCAKFBAdiIiISJBp07Bxo9ReuBDu7un0KVcO58+jRYuPP4r+6ivs28c128jUseBORNq3dy9atUJsLAAULpy0adMLTtpOREREBmv+fKxdK7UXL0b16kLTEBERiRMcjAkTpHb//ujbN8Oerq7YsQP376NQIWnP5s24do2ztxOx4E5E2rZnD1q3RlwcALi6wt8/rGjRJNGhiIiIiNJ36hRGjJDaffuiRw+haYiIiMS5eRNdukClAoA6dTB3btYvKV48ZXr3SpVSJmEjMmVmogMQUa6yaxfatJHWMS9aFEeOQKFgtZ2IiIgM1IsX8PFBQgIA1KwJToJHREQmKzwcHh54+xYAihVDYCAsLERnIjJOhltwV6lU27dv37Jly/379xUKRfny5X18fBo0aJBR/1OnTq1evfr69esxMTGurq4eHh6dOnWytLTUZ2YiE7dzJ7y9pWp7sWI4cgTFiuHJE9GxiIiIiNKTlIS2bRESAgD58sHfH/zrgYiITFNiInx8cP8+ANjbY8eODNdEJaIsGWjBPTQ0tH379kePHk3ec+LEib/++qt9+/Z+fn5mZh/HHjp06NxUD7pcvHgxODh4wYIFO3bsKFq0qJ5CE5m2LVvg64vERAAoXRpHjoDzthMREZEh+/VX/PMPAMjl2LABxYoJzkNERCTKwIE4cgQA5HKsW4cKFUQHIjJmhlhwj42NbdGixYULF+RyeePGjevXrw/A39//3LlzmzZtcnFxmTlzZur+M2fO1FTby5Qp06pVq0KFCh04cGDPnj1Xr1718PA4e/aslZWVmK+EdObnn3HuHAAsXYoaNUSnIWDzZnTsKFXby5bFoUOsthMREZFB27QJCxZI7WnT0Lix0DRERETiLF6MZcuk9rRpaNlSaBoi42eIaxlMnz79woULMpls+fLlu3fvHjp06NChQ0+fPt2uXTsAs2fPfvjwYXLnsLCwSZMmAahQocL58+dnzJgxePDg3bt3T5gwAcDVq1f/+usvUV8I6c6dO7hwARcuICpKdBQCAgJSxraXLYvDh1ltJyIiIoN26xZ++klqt2yZsmgqERGRqTl2DEOGSG0fH94TibTA4Aru7969mz9/PoB+/fr16NEjeb9cLl+4cKFCoVCr1du3b0/e//fff8fExMhksi1bttjb2yfvnzhxYq1atQD88ccfeoxPZHI2bULHjkhKAoBy5XDkCAoXFp2JiIiIKGNRUfDyksZtlC6NtWshk4nOREREJMKjR2jTRlo8vFo1rF7NeyKRFhjclDL79u17+/YtgF69en10qGDBgrt373779m3qadl37twJwM3NrWzZsh/19/LyOn369L179+7evVu6dGkdBycyRRs3oksXqdr+1Vc4fBiFConORERERJQxtRrdu+PmTQCwtcXWrcibN+tXlSiB6tUBwNFRt/GIiIj0JioKHh54+RIAChVCcDBsbERnIsoVDLHgDqBs2bJVqlRJe7RRo0apN1Uq1b///gvg+++/T9u5RYsWw4cPB3D27FkW3Im0buVK9O4NlQoAKlfGwYMoUEB0JiIiIqJM/f47AgOl9tKlKF8+u6/6/XfdhSIiItI3lQqdOuHaNQCwssK2bfjyS9GZiHILg5tS5tq1awCSh6vfv39/z549R44ciYiISNv5yZMncXFxAMqUKZP2aNmyZc3MzADcvXtXh4mJTNLff6dU26tUYbWdiIiIjMDhwxg/XmoPHozOnYWmISIiyrZbtzBkCMLCpM1p0xyPHv2sE44Zg+QJmxcvxrffftbZiCg1gxvhfu/ePQCFChW6ePFiv379Tp8+nXyoQoUKy5Ytc3NzS94TGhqqaXzxxRdpTyWXy52dnUNCQp4/f575RQ8ePJhlME1lnzTi4uLi4+MVCoWob4tKZaH5uCghISEuTiUkQ1rx8fHx8fFxcXFyucF9lKVdK1cqBgwwfz+2XbVrV6KdnTqj/wvx8fEAEhISAAsAKpUqLi5Bf1kNkuYdpFSapd4jMI+BMJ13EBERCfH0Kdq3h1IJAN99h+nTRQciIiLKnqlTMXGidAvT2LHDZscOtG+PlSthbf3JJ9y8GTNmSO0RI5BqCUUi0gKDK7i/fv0awKNHj77//vuYmBgAhQsXjoiIiIuLu3bt2g8//DBnzpxBgwZpOkdHR2saNhnMMmVtbZ26W0YaNmyYZbCw5I8RCYiNjY2MjIyOjlam/nmvRwkJBQErAK9fvw4LM5RKpeY/qkqlss7B7c54bNhgN3p0PrUaACpUSFi7NiwpSZXJ+yM8PBzA69d5gYIAEhIS+G7SvIOUyjigMACVSsXvCUzmHURERELEx6NNm5RpardsgYWF6ExERETZMGMGxo1L/9CmTUhISJkqLZv+/RfdukHzR33jxpg27XMTEtFHDKvgnpCQkJiYCGD//v1WVlbTpk375Zdf8uTJo1QqDx8+3KdPn4cPH44cObJJkyblypWDNGYWADRTx6Sl2Z/l0NEGDRpkclQz/t3KyurTv6BcS61WW1paWllZifq2JA+AtbCwMJx/GSsrK7VaLfDbogdr1liPHm2vuTFXrpwUEPDWwSGLv1YtLS0BWLz/o1Yul+fi7082ad5BFhYWmze/BmBmxp8wgGm8g4iISJSBA3HuHACYmyMgAIULiw5ERESUDU+fYuLEzDoEBWHXLjRvnt0ThobC0xMxMQBQrhz8/aFQfGZGIvqYYRXcU1u8eHGP98+0KBSKhg0b7t27t0KFCvHx8ePHjw8ICECqge2aOSvS0pTasxwseeDAgUyOymQyAAULFvzEryA3i4mJkclkNjY2BQTN2508IsnBwcFw/mXkcnlMTEyBAgUyeuTC2M2bhxEjpI/Ba9fGnj1mefJk/R9A8zaMjHTQbFpYWPDdlPwOKl/eQXQWA5Lr30FERCSKnx/++ktqz56NOnWEpiEiIso2f39kOf/omjXZLbjHxaFVKzx7BgD58mHHDuTN+7kJiSgtw5on18LCwtzcHEDx4sV7pJlBqkyZMl5eXgDOnz+v2WNvb69pvH37Nt0TavYndyOiHJszB0OGSNV2Nzfs3Ys8eURnIiIiIsrK5cvo00dqt2+PgQOFpiEiIvoU//6rnT4a/fvjzBkAMDNDQABKlcp5MCLKhGEV3PF+IHmVKlXSPVq+fHkAjx49evfuHYDixYtr9j/TfDz3odjY2IiIiNTdiChnZs/Gr79K7e+/x5494MdYREREZPgiI+HlhdhYAKhQAStWiA5ERET0Kd68ybpPZGS2TjVjBlaulNrz5qF+/ZynIqLMGVzBXTM5e0azrmtmd7GwsNDM8Ovo6Ojs7AzgypUraTtfvXpV0/jqq690lJbIFMyciWHDpHadOqy2ExERkXFQqdCxIx48AAB7ewQEwNZWdCYiIqJPkT9/1n2yM9fvvn0YM0Zqd++OX375rFRElDmDK7i7ubkBuHTpklKpTHv04sWLAL7++uvkVVLr1asH4PDhw2k7Hzp0CIC5ufkPP/ygu8BEAKKjMWMGFi60XrMmt5WiZ8zAiBFS+4cfsHs37OyEBiIiIiLKnokTsWcPAMhkWL0aHIRDRERG59tvs+5Tu3YWHW7dQrt20JTZ3NywbJkWghFRJgyu4K6Zpf358+eLFy/+6NDly5eDg4MBfP/998k7fXx8ANy7d2/v3r2pO8fHx69YsQJAkyZN8nCqadKxqCiMHIkpU2z/+CNX/WebOBEjR0rtRo2wdy+r7URERGQcdu7EtGlSe/RoeHkJTUNERJQjbdtmva5pmjUQPxARAQ8PaWqaokURFAQLC63FI6J0GVzBvXLlyi1atAAwfPjwuXPnJo9zP3TokIeHh1KpLFiw4MSJE5P7t2rVqmLFigD69Olz9+5dzc6EhIS+ffs+ePBAJpONHTtW318DUa4wYQImTZLajRtj2zZYWwsNRERERJQ9jx6hWzeoVABQv37KrzRERETGxckJ8+dDJsuwQ79+qFMnw6NJSWjbFvfuAYCdHbZvR8GC2g9JRB8xuII7gGXLlrm4uMTHxw8dOtTe3r569eoFCxZs0KDB06dPra2tV6xYkS9fvuTOMpls/fr1dnZ2T548KVu2bI0aNZo1a5Y/f/7Vq1cDmDBhQs2aNYV9JURGa9w4TJ4stZs0YbWdiIiIjEZsLNq0QXg4ALi4YONGKBSiMxEREeVUt25YtSqdpdQUCgwfjoULM3vtoEE4dAgAZDL8/TcqVdJVSCJKzRAL7kWKFDlx4oSHh4dMJouNjf33339fvnwJoG7duleuXPHw8Piof8WKFU+cOFGtWjW1Wn3+/Pk9e/a8e/fO0dFxyZIlEyZMEPEVEBm3MWMwdarUbtoUW7fCykpoICIiIqJs69cP//4LAJaWCAyEk5PoQERERJ+na1c8fIh581JGwvXqFXX7NmbMyOxD5VWrkDxb8+TJaNtW5zmJSMNMdID0ubi4bN++PSQk5OzZs+Hh4SVKlKhcuXL+jNdmrlSp0oULF65cuXL9+vXY2FhXV9c6depYWlrqMzNR7jB6NH7/XWo3b47AQPCdRERERMZi0SKsXp3SrlFDZBgiIiJtyZ8fgwZhzhw8ewYAvXq9LVkyzaD3VI4fR9++UtvLC2PGT6zSAAAAIABJREFU6D4iEb1noAV3jSJFirRu3Tr7/StVqlSJj8cQ5ZRajcGDsWCBtNmiBbZsYbWdiIiIjMbp0xg6VGp37oxevYSmISIiEuTxY7Rpg4QEAKhSBWvXZjYLPBFpnSFOKUNE+qdW43//S6m2e3sjKIjVdiIiIjIaL17AxyeluPDnn6IDERFR7lKuHPLlQ758CAsTHSVT796hZUsppLMztm+Hra3oTEQmxqBHuBORfqjVGDgQixZJmz4+2LABZvzxQEREREYiKQnt2klP2efLh6AgrvdORERa9uYNIiMBQKUSHSVjajV69sSVKwBgbo6AALi4iM5EZHo4wp3I1KnV+OWXlGp7u3asthMREZGRGTkSR48CgFyOdetQvLjoQERERCKMH4+AAKm9ZAl++EFoGiJTxYI7kUlTq9G/P5YskTbbt8e6day2ExERkTHZtg1z50rtSZPQtKnQNERERIIEBWHaNKk9ZAjXMiEShnU1ItOlVKJXL6xeLW126AA/PygUIiMRERERfZLbt9G1K9RqAGjRAqNHiw5EREQkwqVL6NJFuiE2aoQZM0QHIjJhHOFOZKKUSvTokVJt79ED69ax2k5ERETG5N07eHnh7VsAKFUKfn6Q8+8bIiIyPS9eoGVLREcDQNmy8Pfnk+tEIvEXUiJTpFSie3esXStt9uqF5cv5ByoREREZE7UaPXrgxg0AsLZGQAAcHERnIiIi0rvERLRti6dPASBPHgQF8YZIJBgLbEQmR6lEt27w85M2e/fGn3+y2k5ERERGZtYsbN4stZcuRdWqQtMQEREJ0q8f/vkHABQKbNyIr78WHYjI5PEJEyLTolSiSxds2CBt9umDpUshk+n8uvb2qF4dAMqU0fm1iIiIKNc7cgRjxkjtAQPQtavQNERERILMmYMVK6T27Nlo1kxoGiICwII7kUlJTET79ggKkjb79sWSJfqotgOoUQPnz+vjQkRERJTrPX+Ojh2RlAQAtWph9mzRgYiIiETYvx8jR0rtLl0waJDQNET0HmeRIDIVCQlo2zal2j54sJ7GthMRERFpkWam2ufPAcDZGVu2wMJCdCYiIiK9u30b7dpJHz/Xro2//hIdiIjeY8GdyCRoqu3btkmbQ4di7lyhgYiIiIhy5H//w/HjAGBmBn9/FCkiOhAREZHeRUfLvLzw+jUAFC6MzZthaSk6ExG9xylliHKVpCRERQGAmRns7aWdCQnw8cH27dLmsGGYOVNMPCIiIqLPsX49li6V2jNm4McfhaYhIiISZNy4fDduAIC1NbZtQ+HCogMRUSoc4U6Uq5w7h3z5kC8fGjeW9sTHo02blGr78OGsthMREZFRunIFP/0ktVu1wuDBQtMQERGJc/KkFQCZDCtXokYN0WmI6EMc4U6Um8XGwtMTBw5ImyNGYPp0oYGIiIiIciQyEl5eiIkBgLJlsWYNl6IhIiJTN24c2rcXHYKI0uAId6JcKyYGLVumVNsnTmS1nYiIiIySSoXOnXH/PgDY2SEoCHnyiM5ERESkdwkJKW0vL0ycKCwJEWWCI9yJcieVCh4eOHxY2pw8GePGCQ1ERERElFNTpmDXLgCQybBqFb7+WnQgIiIivXvyBOHhUrt06cQ1a8z5sBeRYWLBnYxPdDQiIqT206dCoxiwW7fw5o3UnjIFY8cKTUNERESUUwcOYMoUqT18OLy9haYhIiISITYWbdpAqZQ2p0+PsLNzFpqIiDLEKWXImERHY8gQODvj0iVpT7duqF4dR44IjWWQkqvts2ax2k5ERETG6vFj+PpK9QV3d0ydKjoQERGR3qnV6NED58+n7ClSJElcHCLKAgvuZDQiI+HmhnnzEB39wf5//0WDBlixQlAsA5P6myOTYd48/PqruDREREREnyEuDm3a4NUrAPjyS2zaBDM+oEtERKZn8mRs2iQ6BBFlGwvuZDR+/hmXL6d/SKXCzz/j6lX9BjI8b95g0KCUzQULPtgkIiIiMi79++PCBQAwN8emTShYUHQgIiIivdu6FZMnS207O6FRMpAnDxwd4egIhUJ0FCLDwII7GYc7dxAQkFmHpCT8/ru+0hik16/RuDGuX5c2ixfHgAFCAxERERF9hmXLsHKl1F64EG5uQtMQERGJcPkyOneGSgUADRrAwUF0oPScO4eICEREoGRJ0VGIDAML7mQc9u6FWp1Fnz179BLFIGmq7WfOpOwpVEhcGiIiIqLPc/ZsyoN6HTuib1+haYiIiEQID4eXlzRzbPHi2LhRdCAiyh4W3Mk4PHmSdZ/Xr1NWCjUpkZFo2BBnzwKATCY6DREREdHnCQ9Hu3aIjweASpXw11+iAxEREeldYiK8vfHgAQDY22PHDhQoIDoTEWUPVx0i45DNicBMcL6wly/RoAGuXAEAuRyjRmHaNNGZiMjI3blz5+LFi3fu3ImOjv76668rV65cuXLljDqrVKpDhw6dPn06PDy8YMGCdevWrV27diYnj4mJCQ4Ovn79ekxMjKura4sWLUqVKqWDL4KIjJVKBV9fPHoEAI6OCAqCjY3gSES5ycuXL4ODg+/fv69QKMqXL9+gQQMnJ6eMOvOuTSTQL7/g//4PAORybNiA8uUF5yGi7GPBnYxDsWJZ93FyMtD1Q3QnLAwNGkirxSoU+PtvlCnDgjsR5VxkZOSoUaOWL1+u0swT+V6zZs3++OOPEiVKfNT/xo0b7du3v/rhotVubm4bNmxwdXVNe/5t27b17NkzIiIiec/gwYN79+69cOFCKysr7X0dRGTExozB/v0AIJdj3TrOBkukNUlJSZMmTZoxY0ZiYmLyTgcHh+nTp/fp0ydtf961iQRauDDlAa/p09GihdA0RPSJWHAn49CsGRQKKJWZ9fHw0FcawxAWhvr1ce0aACgUWLkSXbrg1CnRsYjIaCmVynr16l26dAlAsWLFatSoYWVlde7cuVu3bu3evfvYsWOXLl1KXXN/9uxZvXr1Xrx4AaBUqVJVq1Y9efJkSEjIiRMnGjZseObMGYcPF3Xat2+ft7e3UqmUy+XffPNNoUKF/u///u/t27fLly9/8+aNv7+/nr9eIjJAW7dixgypPW4cmjUTmoYod+nVq9eaNWsA5MmT54cffgBw9OjR169f9+3b197e3tfXN3Vn3rWJBDp4EEOHSu3OnTFsmNA0RPTpOIc7GYeiRdGzZ2YdrK0xZoy+0hiAFy9Qr15KtX31anTpIjoTERm5xYsXa6rtQ4YMuXPnTkBAwNq1a2/evLl69Wpzc/OoqKhOnTopU33yOWjQIE21ff369Xfv3g0ICHj27Nnvv/8O4M6dO5MmTUp98vj4+J49eyqVSgcHh2vXrp05cyY4OPjVq1ctWrQAEBAQEBwcrNevlogMz5076NYNajUANG2K8eNFByLKRfz8/DTV9h49eoSHh+/YsWPHjh23b9/WzBrXt2/fyMjI5M68axMJ9PAhOnRAUhIAVK+OP/8UHYiIPh0L7mQ05s+Hu3v6h6yssGED0kx1oCd376YMxXrzRr5ggfnLl7q9Ymgo6tXD9esAoFBgzRp06qTbKxJRrqdWq6dNmwagcuXKs2bNMjc3Tz7UtWvXcePGATh16tTly5c1O+/duxcUFARg2LBhqcfEjRw50sfHB8Cff/759u3b5P3r168PCQnRNL766ivNTnNz840bNxYvXhzArFmzdPwlEpFBe/cOXl7Q/NgoWhR+fpDzLxUiLVEqlRMmTADQuHHj5cuXm5lJT7p/8cUXa9euBRAVFbVr167k/rxrE4kSFQUPD7x6BQBffIHgYFhbi85ERJ+Ov8aS0bC2xv79mDkTX3yRslMuR/PmOHMGrVoJiKRUYvhwlCuH+fOlPQkJstGjzYsVw4oVurqoptp+4wYAKBTw80PHjrq6FhGZjps3b4aFhQH46aef5GmqXJ3ef6x34cIFTWP79u1qtVomkw0ePPijzt27dwcQGxt74MCB5J3btm0DUK5cuWYfzhBhZ2enKdCfOnXqpa4/riQiA9avnzSYwMoKgYHIn190IKJc5NixYw8fPgQwePDgj+7ylSpVGjduXP/+/ZOr8OBdm0gQzbLhyXfDbdtQpIjoTESUIyy4kzExM8OwYQgJwbffSnu2bsXOnahUSUyeAQMwaxY+XFkQAGJi0Lu3TmruT5+iTh3cvAkA5ubYvBkdOmj/KkRkgh49eqRpVKxYMe3RL7/8UiaTAXj+/Llmzz///APg66+//iL1p6AAgHr16tnZ2SX30Th27BiA+vXrpz15y5YtAahUquPHj3/ul0FExmnuXPj5Se0lS1C9utA0RLmOZvS6s7NzgwYN0h6dPHnyokWL2rdvn7yHd20iIUaMwM6dACCT4e+/UbOm6EBElFMsuJPxkclgayu17eyExTh+HEuXZtZhyBC8eKHNKz55And33LsHABYWCAhA69baPD8RmbIqVapopnOtnl6h69KlS2q1GkCpUqU0e27fvg2gQoUKaTtbWlpWqlQJwJ07dzR7Xrx48fr164z616hRQ1PNT+5PRCbl5EmMGiW1f/4Z3bsLTUOUG2nWaKlatapCodDsiYmJSUhISLcz79pEQvj5YfZsqT1qFD5cxpiIjAwL7kQ5lOUA9qgo+Ptr7XKaavv9+wBgYYHNm8XMokNEuVXhwoVbtGjRokULGxubjw6pVCrNHO52dnaNGzfW7Hz69CmAL7/8Mt2zafY/efIkdeeM+ltYWDg5OaXuT0SmIzQUPj7Q1P2+/Rbz5okORJQb3bp1C0ChQoWioqJGjRrl6upqa2trZ2dXqVKlAQMGpF4uFbxrE4lw4QL69JHaTZti8mShaYjos5ll3YWI0nP2bNZ9zpzRzrUeP4a7Ox4+BAALC2zZAg8P7ZyZiChz0dHRffr02bdvH4Bhw4blz58fgFqtjomJAWCXwXNGmv1RUVGazXfv3qXen27/sLCw5P4Z0Qypyxz//k8tNjY2MjLSyspK8+9FGhEREXFxcbGxsdZchiyV//77T/8XTUqSdehQ8L//LAE4Oqrmzg198SJJ/zEywndQuvgOMkbJ861Xr1797t27mnZiYuLVq1evXr26ZcuWDRs2uLu7a/bzri0Kf+aky6B+5iiVRQAFgJCQkIQEpbZOGxam8PAoFBurAFCqVOKsWS9CQtJMXJsmw4sXL5480VqGXIDvoHQZ1DvIpHCEO1EOhYdn3UeztvhnevQIdetK1XZLSwQGstpORHoSFBRUsWLF9evXA+jcubNmnDuAuLg4zQwzlpaW6b5Qsz/5l93Y2NjU+7PsT0QmYsoUh7NnLQEoFFi48NWXXxpQtZ0o11AqlfHx8QDWrFlz9+7dRo0aBQcH37lz5/jx46NHjzY3Nw8NDfX19dVMIwPetYn0Kz5e1ru3U2ioAoCDg+rvv1/a22dYbSciY8ER7kQ55OCAsLAs+uTL97lXuXsX7u4ICQEAGxsEByO9hY6IiLTs4sWLgwYN0qx6am1tPXny5CFDhiQPVUv+Czyj6V81f9hbWFhoNq2srD6pf0Y0Vf6MaOK5urpmfhKTEhMTY21tbWNjU6BAAdFZDIiNjU1MTEyBAgXSTqBE+nwHbdyI1aul9m+/oVOngnq7dDbxHZQuvoOMTmJioqahVqsHDhy4YMECzWbp0qXd3Nzc3NyaN28eGho6YcIEzSHetUXhz5x0GdTPnPeLIKBIkSKFCmnhhGo1OnXCpUsAYG6OoCD5Dz8UzmYGZ2dnV9ciWgiRW/AdlC6DegeZFI5wJ8qhatWy7lO16mdd4vbtD6rt27ez2k5EOhcXFzd48OAaNWpoqu1eXl5Xrlz59ddf5fKU3xnkcrnmmcTo6Oh0T/LRhDO275e6zmZ/Isr1rl5F795S29MTw4YJTUOUq1lZWWlu4gUKFJg+ffpHR5s1a1a/fn0Ahw8f1uzhXZtIb377DRs2SO0FC/B+YiciMnosuBPlUNeuWXSwskL79jk//+3bqFcvpdq+Ywfq18/52YiIsuPVq1e1atWaP3++UqmsXbv2qVOnAgMDS5UqlbZnkSJFkPGkzyEhIQAKFy6cunNG/ZOSksLCwlL3J6LcLSoKbdtCU8orUwZr1iAbUz0TUc45OjoCqFatWrpz+NaoUQPA7du3NWPhedcm0o89ezBhgtTu1w8//yw0DRFpFQvuRDnUpAnats2sw4QJyPEjkrduwd0dml9xbW2xcyfq1cvhqYiIsundu3dNmza9fPmytbX1okWLjh8/XqtWrYw6ly1bFsDt27fTPapZkO2rr77SbBYpUkQzDi7d/vfu3VOpVKn7E1EuplajWzfcugUAdnYICkLevKIzEeV2ZcqUAWBvb5/u0Xz58gFQKpXJBXfetYl07eZNdOgApRIA6tTBvHmiAxGRVrHgTpRza9agU6d09isUmDwZI0fm8LQ3b8LdHc+fA++r7XyyjIj0YMiQIefPn7ezsztw4ED//v1lmY44dXNzA3D58uWoqKiPDt29ezc0NDS5j0bt2rUBHDt2LO2pkndq+hBR7vbbbwgKktp//43y5YWmITIN1atXB3D9+vV0j968eRNAyZIlk2f45V2bSKciItCyJd68AYBixRAYiKzWRCAiI8OCO1HOWVnBzw/Hj8PXV9pjbq4eODDpxg2MG5fDc16+jB9+QGgoAOTNi4MHUbeuVsISEWUmPDzcz88PwNSpU1MXyjPi6ekJIDExcd26dR8dWr16NQALC4tmzZp91P/MmTOav+pTW7NmDYBvvvnGxcXlc74EIjJ8hw6lPD4/dGgWDwsSkba0bNkSwK1bt/bv3//RobCwsODgYADVUi1Rxbs2ke4kJsLbG/fuAYCdHbZvh5OT6ExEpG0suBN9Ljc3zJkjtR0cVL//nlCmTA5PdekSGjTAq1cAkDcv9u1DxtM5EBFpk7+/f1xcHICqVatey1hkZKSm/9dff920aVMAEydOfPz4cfJ5Ll68OG/ePAA9e/bUPKKu0bVrVycnJwB9+/bVXEhj2bJlJ06cADCMayYS5XZPnqB9e+nx+dq18fvvogMRmYz69etXrFgRQK9evc6ePZu8PywszNfXNyIiwsLCYuzYscn7edcm0p3//Q9HjgCAXI7161GxouhARKQDZqIDEJHk4kU0bIjwcABwcMC+fahZU3QmIjIZyUPYfvzxx0y6LV26tG/fvpr2ggULTp06FRYWVr16dU9Pz8qVK588eXLnzp2xsbHFihWbPHly6hfa2touWrSoXbt2//zzT8WKFVu1auXk5HTw4MGDBw8C8PDw8PHx0c1XRkQGIT4e3t7SqIJChbB5M8zNRWciMhlyuXzZsmX16tV7+vSpm5ubu7t7xYoVnz59eujQoYiICABjx46tUKFCcn/etYl0ZMkSLF0qtadORcuWQtMQkc6w4E5kEP79Fw0bIiICABwcsH8/atQQnYmITMn9+/c/9SWlS5fes2dP+/btHz9+vHLlyuT9VapUCQgIKFCgwEf927ZtGxUVNXDgwHv37s2ePTt5f7t27VasWJH5lPFEZOx++QXnzgGAuTkCAlC4sOhARCamdu3awcHB3bt3f/78+YEDBw4cOKDZnz9//gULFnTs2PGj/rxrE2ndsWMYPFhqe3vnfNU3IjJ8LLgTiXfhAho1kqrtjo7Yvx/ffCM6ExGZmClTpgwfPjzLbmU+nDOrVq1aN2/e3LZt28mTJyMiIpydnd3d3Zs2bWpmlv4vGD179mzRooW/v//169djY2NdXV09PT1r8ANGotzOzw8rVkjtuXNRp47QNESmqnHjxnfv3g0ODj5z5kx4eHiJEiUqV65ct27d/Pnzp9ufd20iLXr0CG3aICEBAKpWxZo14OdWRLkYC+5Egp08iaZN8fYtADg54eBBVKokOhMRmZ7q1avn7IXW1tYdOnTo0KFDNvs7OzsPHDgwZ9ciImN06RL69JHaHTrgl1+EpiEybba2tr6+vr6+vtnsz7s2kVa8e4eWLfHyJQAUKoTt22FjIzoTEekSF00lEunECTRpIlXbCxbEoUOsthMREVHuEREBLy/ExgJAxYpYvlx0ICIiok938SL69JFWIgHQrx/278/ua1UqdOyIq1cBwMoKW7fiyy9znuTECdy/j2PH/nNyUub8LESkYxzhTiTM8eNo1gxRUQDg7IyDB5FqpSIiIiIi46YpMTx8CAD29ggIgK1t1q8KDUVMDAAUKsQBgEREJJhajVGjMHMm1OqUnVu3YutWtGmDtWuzvlWNHYvt26X2okWoVeuz8ri6AoCZWdJnnYWIdIwj3InEOHYMTZumVNsPHWK1nYiIiHKV8eOxdy8AyGRYvRrlymXrVb17o2RJlCyJw4d1mo6IiChrEyZgxowPqu3JAgOR5fxMW7Zg+nSpPXw4evbUcjwiMkwsuBMJcPQomjXDu3cAUKgQDh9G+fKiMxERERFpz86d+P13qT1mDLy8hKYhIiL6dA8epJTL0xUcjJ07Mzx68SK6dpWK9Y0b47fftByPiAwWC+5E+rZ/P5o2lartLi44dgxffy06ExEREZH23LuHzp2hUgFA/fqYOFFwHiIiohzYtAmJiVn0Wbcu/f2hoWjZUpokrVw5bNoEhULL8YjIYHEOdyK92rcPrVohLg4AXFxw5AhKlhSdiYiIiEh7YmPRti1evwYAV1eWGIiIyFhdvJjDPnFxaN0az54BgKMjtm+Hg4OWsxGRIeMIdyL92bMnpdru6qrlantsLP74Az/9JG1euIBOnXD2rNbOT0RERJQdP/8sVR+srBAYiAIFRAciIiLKkbdvs+6j+YD5I/374/RpAFAosH49SpfWcjAiMnAsuBPpye7d8PKSqu1Fi2q52v7wIWrUwMCBuHZN2pOQgPXr8d13GDdOa1chIiIiytzChVizRmovWoRvvhGahoiI6DNk5zNjJ6eP98yciZUrpfa8eWjaVMupiMjwseBOpA+7dqVU24sVw5EjKFFCayePiUGTJrh+PZ1DKhWmTsX8+Vq7FhEREVFGTp/GsGFSu3dv9OwpNA0REdHn+e67rPu4uX2wuW8fRo+W2t26YcAA7aciIsPHgjuRzgUGonVrxMcDQOnSOHYMxYtr8/wLF+LOncw6jB+PiAhtXpGIiIjoIy9ewNsbCQkAUKUKFiwQHYiIiOjztGuHvHkz6yCTffDp8q1baN8eSiUAuLlh2TLdxiMig8WCO5FubdmCDh2klc3LlMGRI/jySy1fYsOGLDpERWHnTi1flIiIiChZUhLatUNICADky4egIFhbi85ERET0eZycsHAhZLIMOwwdipo1pXZkJFq2lKZ0L1oUQUGwtNRHSCIyQCy4E+lQQEBKtb1sWRw5giJFtHwJlQo3b2bdLXludyIiIiKtGz4cR48CgFyO9eu1/DAfERGRKF26wM8vnXHuFhaYNAkzZkibSiU6dsTduwBgbY3AQBQsqNecRGRQWHAn0hV/f3TsiKQkAChXDocPo3Bh7V8lLk66ROaiorR/aSIiIiIAW7emLBgzZQqaNBGahoiISKs6dsTjx1i8GFZW0p7Ro3H/PsaPh/x9UW3QIOzZAwAyGVavRvXqYqISkYFgwZ1IJzZtQqdOUin8q690VW0HYGMDO7usuzk76+TqREREZOJu30a3blCrAcDDA6NG5fxUISEYNw7Hj0ubU6di48ZsDSwgIiLSqbx50a8fHBykzQEDPpgqdvVqLFoktSdNQtu2+o5HRIaGBXci7Vu5MmVse+XKOHoUX3yhw8v98EPWfX78UYcBiIiIyDS9ewcvL7x9CwClSmHt2swmus3c+vUoWxZTp0qz3wI4cwa+vnBzw7Nn2klLRERG4ckTPHiABw+M4zPXEyfQt6/U9vLC2LFC0xCRYWDBnUjL1qwx690bKhUAVKmCgwfh5KTbK/bvn0WHihWzVZQnIiIiyj61Gt2748YNALC2RkBAytC/T7V9O7p0QXR0OofOnkWjRukfIiKiXOnHH1GyJEqWNIIPXB8/hpcX4uMBoEqVz/rgmYhyExbcibQpLk72yy8Wmmp71ao4eBAFCuj8os2aoXfvDI/a2WHVKigUOo9BREREJmXmTGzZIrWXLUPVqjk8T2IiBgyQBiuk6+ZNzJ2bw5MTERHpyLt3aNkSYWEA4OyM7dthays6ExEZBhbcibQpKkqu+XPxm29w6BDy59fTdZcuxaRJKUu4JKtQAUePcsEWIiIi0rIjR1Kemv/f/9ClS85P9X//hydPsuizdm3Oz09ERKR1ajV69sSVKwBgbg5/f7i4iM5ERAaDBXci7fv2Wxw4AEdH/V1RocD48Xj0CMOGSXsKF8a+fbh8GdWq6S8GERERmYKnT9GunTS17nffYebMzzrbv/9m3efePURFfdZViIiItGjCBAQESO3Fi7lqGhF9gAV3Ii1Yvjyl/e23qn37cj6H6edwdkbr1lK7aFE0agQ53+JERESkVYmJ6NABL18CgLMzNm+GhcVnnVCz5mqWIiM/6ypERETasns3pk6V2kOGZDbFKxGZJlbjiD7X3LkYP15qm5urg4Pj8+YVGoiIiIhIZwYOxIkTAGBmBn9/FCnyuSfM5hR8ul6FnoiIKJsGDIBaDQANG2LGDNFpiMjwmIkOQJQT1apJY7fz5ROcZPbslFlcAOTNq7K3V4uLQ0RERKRD69dj2TKpPWuWdp6g/+67rPtUrQpray1ci4iI6PPFxABAmTIICIAZ62pElAZ/MJBRmjVLdAIAwKxZGD78gz0ymaAoRERERDp25Qp++klqt2uHQYO0c9pvv0WlStK6cxnp1Us71yIiItKKPHkQFCRmLlkiMnycUoYoh2bMSKm216olNAoRERGRjkVGwstLGtNXtiz++ktrZ5bLsXw5bGwy7ODunlLoJyIiEiV50RG5HBs2oHx5oWmIyIAZTcH9woULmzZtevz4cSZ9QkJCDh48uH379kuXLqnVnNaDdGjGDIwcKbV//BHr1glNQ0RERKRLKhU6dcLUm/qKAAAgAElEQVT9+wBgb4+tW5EnjzbPX7Mm9u9H0aLpHPL1RXAwH9gnIiLB5s2TPnUGMGECmjcXmoaIDJtxFNwfP35cv379Dh06HDt2LN0Ojx49atKkiYuLS8OGDT09PatWrVqsWLENGzboOSeZiAkTUqrtjRphzx7Y2goNRERERKRLkydj924AkMmwciW++kr7l3Bzw507WLcOLi7SHm9vXLiA9ethb6/9yxEREWXfvn0fLN7G566IKHNGUHBXKpW+vr5v3rzJqMP9+/e/+eabffv2qdVqMzMzR0dHAE+ePOnYsePs2bP1mJRMwvjxmDxZajdpguBgLuFFREREudmBA5g6VWqPGAFvb11dyMICHTuicmVps2tXVKumq2sRERFl0+3baN8eSqXoHERkPIyg4D5p0qSTJ09m0sHX1zc8PFwuly9btiw8PPzVq1dnzpwpXbo0gBEjRly6dElfSSn3GzsWU6ZI7aZNsXUrrKyEBiIiIiLSpceP0aGDVGWoVy/lFyEiIiJT8PYtvLzw+jUAyI2ghEZEBsHQf1ocO3bst99+k8lkGXXYu3fv2bNnAfz22299+vTJkyePXC6vWbPmrl278ubNq1Kppk2bpse8lJuNHo3k/03NmrHaTkRERLlcXBzatEF4OAC4uGDTJs6lTkREJkSphK8vbtwAAGtrODqKDkRERsKgC+6RkZEdO3ZUKpW//vprRn38/f0BFCxYcMiQIan3ly5d2tvbG8DOnTtjY2N1HZVyN7Uagwfj99+lzebNERQES8uUDra2GDECAwfGdu0aJSQhERERkdb164cLFwDA3BwbN8LJSXQgIiIiPRo2DLt2Ae+XMDE3Fx2IiIyEQRfce/fu/fTp02bNmg0cODCjPgcOHADQuHFj8zQ/+Tw8PADExcUdP35cpzkpd1OrMWgQ5s+XNr29sXXrB9V2APb2mD4d48ZFDxjwVv8JiYiIiLRuyRKsWiW1//gDbm5C0xAREenX2rWYN09qjxuH9u2FpiEio2K4Bffly5cHBgYWLFhwVfJv+mlERUWFhIQAqFq1atqj7u7umsatW7d0FJJyPbUaAwdi4UJp08cHGzbwY20iIiLK5c6cQfLjo506oU8foWmIiIj069Qp/PST1G7VChMmCE1DRMbGQAvut27dGjRoEIDVq1cXLFgwo27379/XNIoWLZr2aJ48eRwcHFJ3I/okajUGDMCiRdJm27asthMREVHuFxYGb2/ExwNA5cr480/RgYiIiPTov/9S7oNff401a7hcKhF9GkNc9ig+Pr5Dhw4xMTEDBw5s2rRpJj3fvpWm79AU1tNycHB4/fr1mzdvMr9iw4YNs0wVFhaWZR/TERsbGxERERMTo1KpRGfRFbUao0bZr1plrdls1Spu3ry3ERGZvSQiIiI2NlatVltbW+sjYnoiI80BRwCJiYlhYZGiYqQWHh4OwIorzKZiCu+gHDCEdxARESmV6NwZz54BgKMjgoJgYyM6ExERkb7ExqJVK/z3HwDkz48dO5Anj+hMRGRsDLHgPmLEiEuXLlWsWHHGjBmZ94yJidE0Mqrlaao20dHRmZ/n4MGDWaaKi4vLso/piIuLi4+Pl8lkufXbolJh+PD8mzdLVT9Pz5g5c14lJSEpKbNXab4tcXFxMplMHynTk5Cg1jRUKpWB/OvEx8eD76AP5fp3UM4YwjuIiIhGj8b+/QAgl2P9epQoIToQERGRvqjV6NED584BgLk5tmzhfZCIcsLgCu67d+9euHChlZXVhg0bshwSa2Ym5Vcqlel2SExMBJBl7Uaz8mpGNOPfM5nZxgTFxMTI5XIbG5v8+fOLzqJ9SiX69jXfvFmh2ezaVblkiVwuz/o/gEKhiImJyZ8/v424kWCOjtKjbubm5gbyn1ZTcDeQMAYid7+DcswQ3kFERCYuOBizZkntCROQ6bOmREREuc2UKdi0SWr/8Qfq1hUZhoiMl2EV3ENDQ7t3765Wq2fNmlWhQoUs+9va2moaGY0S1ey3s7PL/DwNGjTI8lqcECM1lUplaWlpaWmZ+74tSiX69MG6ddJmz5746y+FXK7IzmstLS2VSqWVlZXAb4uFhdSQy+UG8q9jaWkJvoM+lIvfQZ/DEN5BRESm7MEDs65doVYDQPPmGDtWdCAiIiI92rYNkyZJ7QEDuGA4EeWcYRXc165dGxYW5ujo+O7du+nTpyfvT56rfefOnc+ePQPg4+NTsmRJJycnzf4XL16kPZtardZMvF6gQAGdR6dcQalEt24p1fbevbFsGVdHISIiotwvOlrWp4+TZuWjokVFLhC3Y4eY6xIRkSm7fBmdO0Ozxlb9+pg7V3QgIjJmhlVw16wfGBkZOWrUqHQ7+Pv7+/v7A6hQoULJkiWLFy9uYWGRkJDw4MGDtJ1DQkISEhIAlCtXTpepKZdQKtG1K9avlzZ/+glLl7LaTkRERCZh+PD8d+6YA7CyQlAQOOcZERGZjvBweHnh3TsAKF4cmzbBzLCqZURkZAzrR4irq+uPP/6Ydn98fPzp06cBlCtXztnZGYBm4mOFQlG5cuVz585pjn7kzJkzmka1atV0GJpyhcREtG+PoCBps29fLFkCLtxIREREpmDOHOzcKa2fsXQp+LszERGZjsREeHtDM4zT3h7bt4OzJBDRZzKsgruvr6+vr2/a/c+ePXNxcQEwZsyYTp06pT7UvHnzc+fOHTp0KDw8/KPlBwMCAgC4urpWrlxZl6nJ6CUkoH17bN0qbQ4ejDlzWG0nIiIik3DyJJIfLu3fH926iQxDRESkZwMG4P/+DwDkcmzYgGysJ0hElAWjny+jR48emlllxn64rtOZM2cCAwMB9OvXT1A0Mg4JCWjXLqXaPmQI5s5ltZ2IiIhMQmgovL2RmAgAVasmzJkjOhAREZEeLVyIP/+U2tOno0ULoWmIKLcw+oK7i4vLr7/+CmDZsmWdO3fetWvX2bNnf/vttyZNmiiVyjJlygwYMEB0RjJcCQnw8cG2bdLmr7+Cf2cSERGRiUhMRNu2eP4cAPLnVy5d+tLSUnQmIiIifTl4EEOHSu1OnTBsmNA0RJSLGNaUMjkzZcqUp0+f+vn5rVu3bt26dcn7S5YsuXPnThsbG4HZyJDFx8PHBzt2SJvDh2PGDKGBiIiIiPRoyBAcOwYACgUWLAj/4gul6ERERER68vAhOnRAUhIAVK+eMs6diOjzGUfBPU+ePBMmTABQqVKltEflcvnatWt9fHxWrVp1/fr12NhYV1dXT0/Pn3/+2c7OTu9hyTjEx8PbGzt3SpsjRmD6dKGBiIiIiPRo40YsWiS1p09HnTpxQuMQERHpT1QUWrbEq1cA8MUXCA4Gx2oSkRYZTcF94sSJmffx8PDw8PDQSxwyejEx8PTEwYPSJqvtREREZFKuXkXv3lLb0xNDh+LpU6GBiIiI9EWlgq8vrl0DACsrbNuGIkVEZyKi3MXo53An+lQxMWjZMqXaPmkSq+1ERERkQqKi0LYtoqMBoEwZrF3L5eKJiMiEjBwpPewuk+Hvv1GzpuhARJTrGMcIdyJtiYmBhwcOH5Y2p0zB2LFCAxERERHpkVqNrl1x6xYA2NkhKAh58ojOREREpC9+fpg1S2qPGgVfX6FpiCiXYsGdTEh0NDw8cOSItDl1KsaMERqIiIiISL+mTsXWrcD7YX3ly4sOREREpC8XLqBPH6ndtCkmTxaahohyLxbcyVRER6N5cxw9Km3+9htGjRIaiIiI6P/Zu/MAG8v+j+OfM5sxxpox1kFPtkIp1GOpLC2KwTBjD80jKsqSUj9KUfZESMRj300GZZes6RGVJEsS2QZjG7PPnN8f525GzIZz5j7nzPv11/e+7su5PzMZM33nOtcF5K5Nm/T++0Y9YIDCwkxNAwBALjpzRi1bKi5OkqpV08KF8vQ0OxMAN0XDHXnClSt69ll9950kWSwaP16vv252JgAAgFx04oTat1dKiiTVr6+PPjI7EAAAuSU+Xq1a6dQpSSpWTCtXqnBhszMBcF803OH+rlzRM89o925Jslj0ySd67TWzMwEAAOSi+Hi1aaMLFySpZEktXSpvb7MzAQCQK6xWhYfr++8lydtbS5fqvvvMzgTArdFwh5u7fFnPPGN8Z7VYNHGievc2OxMAAEDu6t1be/ZIfzcaSpUyOxAAALllxAgtWGDUEyaocWNT0wDIA2i4w51dvqynn9b//idJFosmTdIrr5idCQAAIHdNm6YZM4x6/Hg1aGBqGgAActGaNXr3XaN+8UW9/LKpaQDkDTTccRuuXdPatZLk4+NZq5bZabJz6ZKeftpYzGWxaPJkvrMCAIA858cf1bevUXfsqFdfNTUNAAC56OBBdehgnF/SoIE++8zsQADyBhruuA1nzigsTJIqVfLZuNHsNFk6f15Nm+rnnyXJw0MzZqhbN5MjAQAA5LLoaIWEKC5OkmrU0PTpZgcCACC3REcrOFhXrkhShQqKiJCPj9mZAOQNHmYHAOwvKkpNmhjddk9PzZxJtx0AAOQ5qanq1El//CFJRYooIkJ+fmZnAgAgVyQlKTRUR49Kkr+/Vq5UQIDZmQDkGaxwh7s5d05Nm+qXXyTJ01P//a+6dDE7Uy665x6FhkpS5cpmRwEAAKYaMsTYDNBi0cyZuu8+swMBAJBbXn9dmzdLkoeH5s1TjRpmBwKQl9Bwh1s5d05NmujAAUny9NSsWerc2exMuatyZS1ZYnYIAABgtlWrNGKEUQ8ZotatTU0DAEAumjkzfbv24cPVsqV9XrZmTZUpI0ne3vZ5QQDuioY73MfZs2rSRL/+KkmenpozRx07mp0JAAAg1x05oi5dZLVKUtOmevddswMBAJBbtm3Tyy8bddu2GjTIbq+8bp3dXgqAe2MPd7iJkyfVsKHRbff21pIldNsBAEBeFBendu2MM+KCgrRwoTw9zc4EAEDOREcbZ31L+uuv2/7jx4+rTRslJkpSrVqaPVsWiz3jAUBO0HCHOzh5Uo0aGceh+Pho8WKFhJidCQAAwAy9emnfPkny9dXy5Spe3OxAAADkQFSUXnhBgYE6d84YadhQLVsWPnDAJ4evEBOj4GCdPy9JJUtq5UpOCwdgDhrucHknTqhRI/3+uyT5+GjJEnYpBQAAedSECZozx6gnTVLt2qamAQAgZ44f1yOPaO5cJSf/Y3znTu9WrQLXrcv+vVqpqerUSfv3S5Kvr778UmXLOiYrAGSHhjtc259//qPbvnSp3Y5DAQAAcC27dunNN426Z0+Fh5uaBgCAnLFa1a5dphvIJCZaunb1SVv2npnBg7VypVFPmqTHHrNnQgC4LTTc4cKOH1ejRjp2TJLy5dOyZQoONjsTAACAGc6dU2ho+q6148ebHQgAgJxZv17ff5/VhGvXLBMnZjVh2TKNHGnUAwfyK2cAJqPhDld15IgaNtQff0hS/vxatUotWpidCQAAwAzJyQoL06lTklSsmJYvV/78ZmcCACBn1qy5qzn79qlrV1mtkvTMMxoxwm7BAODO0HCHSzp8WI0aGe848/PTypV66imzMwEAAJhk4EBt3SpJHh5asEAVK5odCACAHDt5Mvs5f/6Z8fjZswoOVmysJFWpokWL5Jn9fu8A4FheZgcAbtuhQ2rcWKdPS39325s0MTsTAACASRYv1iefGPWHH+qZZ0xNAwDAbcpJizzDOfHxat3aWIpXtKhWrVKRInbOBgB3gBXucDG//ZbebS9QQKtX020HAAB516FDeuklow4O1ltvmZoGAIDbV6FC9nPuvTeDwd699d13kuTpqfnzVamSfXMBwB2i4Q5Xcmu3vVEjszMBAACY5No1tW6tq1clqVIlzZkji8XsTAAA3Kbg4Ozn3Hpm2+jRmjHDqMePV7Nmdk4FAHeMhjtcxsGDatRIZ85Ikr+/vvpKTz5pciQAAACzWK3q3l0HD0pSgQKKiFDhwmZnAgDg9jVokM1+aIGB1t69/zGybp3eeceou3VTnz6OygYAd4CGO1zDjz/q8cd19qwkFS6sDRv0xBNmZwIAADDPyJFavtyop0xR9ep3+DqffiqLReXLB733XlF7ZQMA4LbMm6eaNTO+Vbhw6pIlCTf+UvnQIbVvr5QUSapfX1On5kZCAMg5Gu5wAT/+qKZNdeGCJBUurHXr9NhjZmcCAAAwz+bNGjLEqPv21QsvmJoGAIC7U7y4vvtO//d/uuee9EEfH4WFJaxde6Z27dS0wUuX1KKFLl+WpPLlFRGhfPlyPS4AZImGO5zd3r1q2lQXL0pSkSJav16PPmp2JgAAAPOcPJm+su/f/9aoUWYHAgDgruXPr+HDde6cSpc2Rn76SZMnXytdOiVtTkqKOnXSkSPG/OXLVaKEGVkBIEs03OHUfvhBTz1ldNuLFtX69apb1+xMAAAA5klKUocOOn9ekgIDtWyZfHzMzgQAgJ14eqZ/X/P1vfluv35as0aSLBbNmqVHHsnVbACQQ15mBwAyZeu2X7ok/d1tr13b7EwAAACm6t1bO3ZIkpeXlixJXwYIAIB7mzVLn35q1EOHKizM1DQAkDlWuMNJ7dypxo2NbntAgLZsodsOAADyunnzNG2aUY8dq8cfNzUNAAC5ZccO9epl1CEh6QeZAIATouEOZ7Rjh559VlevSlKJEtq0KdPzygEAAPKIn35Sz55G3b69Xn/d1DQAAOSWEycsISFKSJCkhx7SnDmyWMzOBACZo+EOp7N9u5o107VrkhQYqE2bVKOG2ZkAAABMdemSQkIUGytJVaumr3MHAMC9xcdbOnbMFxUlSYGBioxUgQJmZwKALNFwh3PZuvXmbnv16mZnAgAAMFVqqjp10rFjklSwoCIiVLCg2ZkAAHA8q1UDBtyzb5+HJG9vLV6soCCzMwFAdmi4w4l8+62ef14xMZJUsqQ2b9YDD5idCQAAwGzvv681ayTJYtF//6tq1cwOBABArhg92m/1aj9b/fnneuIJc+MAQI7QcIezWL9ezZoZ3fZy5bRtm+6/3+xMAAAAZlu9WsOHG/Xbb6tNG1PTAACQW77+WuPGGd32fv3Uvbu5cQAgp2i4wymsXauWLRUXJ0lBQfrmG913n9mZAAAAzHb8uLp1U2qqJDVurA8+sPPrx8Xpt9+M+uRJrytX7Pz6AADcsTfekNUqSU2bpowZY3YaAMgxGu4w35o1at1a8fHS3932f/3L7EwAAABmi49Xmza6eFGSypXTokXy9LTbi1ut+vhjlSunKVOMkU2b8pcpo7ffVkKC3Z4CAMAds63Ju/fe5NmzE+34HRAAHI2GO0z29dcKCTG67eXLa8sW3Xuv2ZkAAACcwMsva+9eScqXT8uXKyDAbq9staprVw0YYHTz01y/rpEj1ayZ8bMZACAPGjpUFossFg0dak4A26p2m4IFrZ9/fr5IEWvm0wHA6dBwh5m++iq9216hgr75RhUrmp0JAADACUyerFmzjPrTT1Wnjj1ffMYMzZ2b6d1vvtGwYfZ8HAAAORcdbRQeHvr882uVKyeZGgcAbpuX2QGQdy1frg4dlJQkSZUqafNmlS1rdiYAAAAnsHu3Bgww6i5d1KOHnV9/9OhsJkyYoMGDlT+/nZ8LwKlMnz79hx9+ePHFF+vWrZvhhNjY2MjIyAMHDsTGxgYFBTVv3vw+ztqCg40fr2vXjPqdd/TUU4mxsaYGAoDbR8Md5li2TB07Gt32ypW1ebPKlDE7EwAAgBOIilLbtsZG6g8+qM8/t/Pr//GHjhzJZs7169qxQ02b2vnRAJzHli1bevXqlZqa2qBBgwwb7itWrAgPD49OW2ws9evXr0ePHhMnTvT19c3FpMhDNmzQm2+mX4aHmxcFAO4CW8rABEuWpK9tr1JF33xDtx0AAECSUlLUubP++kuSihZVRIT9l5nbXjxbJ0/a+bkAnEd0dHTnzp1TU1Mzm7Bu3bq2bdtGR0d7eHjUrVs3ODi4UKFCkqZPn961a9dcTIo85PBhhYUpOdnsHABw12i4I7ctXqxOnYxvolWravNmlS5tdiYAAADnMGiQNmyQJA8PzZ/vkMPkfXxyNC1fPvs/GoCTCA8PP3XqVGZ3ExISwsPDU1JSihQp8ssvv+zevTsyMvLChQvNmzeXtGTJksjIyFwMizzh6lW1bq3LlyXJ09PsNABwd2i4I1ctWqTOnY1ue7VqdNsBAADSRUZq3DijHjpUzZo55CkVK8ojB/8T8K9/OeTpAEz32WefrVixwrZiPUPz58+3tePnz59frVo126C3t/fChQsrVqwoacyYMbkTFXlEaqo6dtSvv0pS/vwqUcLsQABwd2i4I/fMnJm+tv3BB/XttypVyuxMAAAAzuHwYb3wgqxWSWreXP/3f456UIkSql8/mzlly6pOHUcFAGCiAwcODBgwwMPD49NPP81szooVKyRVrVr1ueeeu3Hc398/NDRU0q5du86fP+/oqMg73nhDX30lSRaLZs7kLVYAXB4Nd+SSGTPUo4dsmwQ+9JA2blRAgNmZAAAAnENMjFq31tWrklShgmbNytEi9Dv24YfZvGH/o48cGwCAKeLj4zt06BAXFzdw4MDGjRtnNm3btm2SmjRpcuut4OBgSampqdu3b3dcTuQpc+Zo/HijHjxY7dubmgYA7IGfo5EbvvhCL71kdNtr1dLGjSpe3OxMAAAAzsFqVXi48VZ6X18tX6577nHsExs21NSp8vLK4JbFosGD1aWLYwMAMMUbb7yxf//+Rx55ZNiwYZnNOXfu3OXLlyVVr1791rt16tSxWCySDh8+7LicyDt27dJLLxl1q1YaOtTMMABgLzTc4XDTpqlnT6Pb/vDD2rDB4f8PCQAA4ELGjtWSJUb92Wd6+OHceOh//qNdu9S8efpSd4tFjz+utWuVeSMOgAtbvXr15MmTCxQosGDBAm9v78ymnTx50laULVv21rs+Pj4BAQGSTpw44aCcyDtOn1bbtkpIkKT779fs2by5CoCbyGhZC5CRnTuVtsvfX39ZPvmkcPfuKdkuVP/8c738srEb6SOPaP16FSvm2JwAAAAuZMsWvfOOUffurW7dcu/RtWtr1SqNG6c33pCkjh1j5s3zz73HA8hFZ86c6d69u6QJEyZUrlw5i5kxMTG2wt8/438Q/P39o6Kirl27lvUTbQvhs0bX/kZxcXGXLl3y9fWNjY01N8mVK4WlwpKuXLly4sQVBz0lPt4SFhZ4+rSPpKJFU6dOPXv5cvLly5KUnFza1q06ffq0n19UfHx8XFxc/vz5HZTEFZ0+fdrsCE7Heb6CnEp0dDRfQabgt4fIXlycOnVS/fpatCh9ZPz4wnXqFP3886z+4NSp6d322rW1YQPddgAAgHRnz6pjR+NI+cce07hxJmTw8TEKb2+rCY8H4HhWq7VLly4XLlxo06ZNeHh41pPj4uJsRb5MTq60jdPSwt2wWjVw4D0//eQjycvLOnXqhfLlk80OBQB2wwp3ZK99e61cmcF4QoKlVy95e+vFFzO4+/HHGjDAqOvV05o1KlTIgSEBAABcS1KSQkN15owkBQZq2bL03jcA2NHo0aM3bdpUpkyZadOmZTvZ19fXViQmJmY4ISEhQZJPdv9gWa1Z/Q7Ptv49KCgo2zx5R2xsbP78+f38/IqbfeJZ4cJpReGgoMJZzr1DH3yQ3mSYNMkSFlbixrtpR4yULl3a398nNja2ePHifn5+jkji0vgKupHzfAU5FT8/P76CTMEKd2QjIiLjbnua/v118eLNg2PHpnfbGzTQ2rV02wEAAP6hf39t3y5JXl5atEhlypgdCIA72rNnz5AhQzw8PObOnVssB+84LlCggK24fv16hhNsa9sz23AGyNaKFXr/faPu00c9e5qaBgAcgBXuyMbMmdlMuHJFX36p//wnfWTMGL35plE3bKivvlLBgo6KBwAA4Irmz9ekSUY9YoSefNLMMADc2MaNG5OSkgoXLjxq1KhRo0aljdsWqksaM2bMvHnzJH3wwQd169Yt8/dv/zLcJDo5OTkqKkpS6dKlHR4d7ujXX9W1q1JTJalJE338sdmBAMABaLgjG3v2ZD/nf/9Lb7iPGqVBg4z68cf11Vdi6QMAAMCNfv5ZL71k1KGh6e8LBAAHuXLlyrp16zK89fPPP//888+SevfuLalMmTL+/v4xMTGHDh26dfLRo0dTU1MlVatWzZF54Z4uXlRwsK5elaSKFbVoUfruMQDgTvi3DdmwnRKetehoo7ix2/7EE1q9mm47AADAP1y+rDZtZDtusEoVffGFLBazMwFwXw0aNHjvvfduHb969er48eMltW7dumbNmpIqV65su1WvXr3169dv27bt1j+VNlivXj1HJYabSkpS27b6/XdJKlhQK1eKrbYBuCsa7shGsWLGWV5ZsH2bfO89ffCBMfL001qxQvnzOzYbAACAa7Fa9eKLOnpUkvz9FRHBOTcAHKtBgwYNGjS4dfyvv/6yNdxDQkI6d+58462WLVuuX79+9+7dBw8evGkl++zZsyXVrl27XLlyjkwNN9Snj7ZskSQPD82fr+rVTc4DAI7DoanIRp062c+pW1fvvpvebX/2WUVG0m0HAAC42fDh+vJLSbJY9N//6v77zQ4EALfo2rVrQECApF69esXHx6eNT506dceOHZIGDhxoWji4pk8/1eefG/WIEWrRwtQ0AOBgrHBHNl58UStXZjWhaFEdOKBx44zLZs0UESFf31yIBgAA4Eo2btT77xv1m2+qbVtT0wBAJgoUKDBp0qR27dpt3bq1Ro0arVq1CggI2Lhx48aNGyW1aNEiNDTU7IxwJZs2qX9/o+7cWW++aWoaAHA8Gu7IRsuWattWy5ZlfNdiUYMG6d32555TRITy5cu1dAAAAK7hxAl16KCUFElq1EjDh5sdCAAyFxYWdu3atddee+3o0aNjx45NG2/Xrt0XX3xh4egJ5Ngff6h9eyUnS9LDD6evcwcAN0bDHdmbOzyX+XsAACAASURBVFeFCmnmzJvH/fys9etbVq0yLp9/XsuX020HAAC4WXy82rTRhQuSVLasFi2Sl9P8GF6ihB55RImJiaVLp5idBUDuCQgI+OabbyTdtEt7mvDw8ObNmy9evPjAgQNxcXFBQUEtW7ask5MtR4G/Xbum4GDj21+pUoqMlJ+f2ZkAwPGc5id9ODFfX82YoVdf1YQJmjNHkvz81Lv35TNnfOfONfaOadtWCxbI29vMnAAAAM6pd2/t2SNJ3t5atEglSpgd6Abt2qldO504cVaSVMTkNAByS758+Z588sms5wQGBr722mu5EgduKDVVnTrpl18kyddXK1aobFmzMwFAruDQVOTUww/r//7PqMuUsZ4755nWbQ8NpdsOAACQsWnTNGOGUU+cqPr1TU0DAECuePtt2d4Qb7FoxgzVrWt2IADILTTccSeioiyzZxe01R060G0HAADI2L596tvXqDt1Uq9epqYBACBXzJun0aONetAgdexoahoAyF003HEnrlwxis6dNXeuE21CCgAA4Dyio9WmjeLiJKlmTU2bZnYgAAAc74cf1LOnUT/7rIYNMzUNAOQ6Gu64Damp/7hs3z5h1ix5epqUBgAAwImlpqpjR/3xhyQVLaqICE6KAwC4vzNn1LKlYmMlqVo1LVpE0wBAnkPDHTmVkqJ33km/DAuLmTDhGt84AQAAMjR4sNatkyQPD82bp3/9y+xAAAA4WHy8WrXSqVOSVKyYVq5U4cJmZwKAXEfDHTmSkqLu3fXll8ZloUIaNSrag78+AAAAGVm1SiNHGvW77+q550xNAwCA41mtCg/X999LkpeXli7VffeZnQkAzMDe28heSoq6ddO8eekjgYFWuu0AAAAZOnJEXbrIapWkp57S4MFmBwIAwPFGjtSCBUY9caIaNzY1DQCYh4Y7spGSoq5dNX++2TkAAABcwfXrCgkxTpgvX14LF7J3LQDA/a1dqyFDjPrFF/Xyy6amAQBTsUoZWUlKUlhYere9fXtT0wAAADi9V17RL79Ikq+vli/XPfeYHQgAAAc7eFDt2yslRZIaNNBnn5kdCABM5bwr3A8cOLBw4cLDhw8fO3asZMmS1atXb9as2RNPPJHZ/F27ds2aNevAgQOxsbFBQUEtWrTo3Llzvnz5cjOzm0lMVPv26fu29+unnj21aJGpmQAAAJzYJ59ozhyjnjJFjzxiahoAABwvOlrBwcZbuypUUESEfHzMzgQApnLGhntiYuKQIUM+/vjj5OTktMGvvvpq1KhR7du3nzBhQokSJW76IwMGDPj444/TLvft2xcZGTlhwoRVq1aVL18+l3K7l8REtWunFSuMywEDNHasDh82NRMAAIAT27VLb71l1C+/rO7dTU0DAIDjJScrNFRHj0qSv79WrlRAgNmZAMBszthwHzt27OjRoyVVrFjxhRdeqFSp0p9//rl8+fK9e/cuWrTozJkzmzdv9rjhyM7Ro0fbuu2VK1du1apVyZIlN2zYsGbNmv3797do0eL777/39fU17YNxTYmJCg3VypXG5RtvaMwYUwMBAAA4t3PnFBqqxERJevRRjR9vdiAAABzvtde0ebMkWSyaOVM1atjhNX/8UampklS4sKKj7fCCAJDLnG4P9xMnTnz44YeSGjZs+NNPPw0dOrRTp07vvPPO999/37dvX0nffvvtxIkT0+ZHRUW9//77kqpXr75nz55Ro0b169fv66+/fu+99yTt379/2rRpJn0oriohQW3bpnfb33yTbjsAAEBWkpMVFqZTpySpRAktWyb2NQQAuL2ZM9O3ax8+XKGh9nnZwoVVtKiKFpWH07WsACBHnO5fr9mzZ8fGxloslgkTJhQsWDBt3NPTc8yYMdWqVZMUGRmZNj5jxgzb/GXLlt04f+jQoY899pikTz/9NBfju7y4OLVooVWrjMu33tKoUaYGAgAAcHpvvKGtWyXJ01Nz56psWbMDAQDgYNu36+WXjbpNG739tqlpAMCZOF3D/bvvvpNUsWLFWrVq3XTLy8urcePGkvbu3Wu1Wm2Dq1evllS/fv0qVarcND8kJETS0aNHjxw54ujY7iE2VsHB2rDBuBw6VCNHmhoIAADA6S1apAkTjPqjj/T006amAQDA8Y4fV0iIsZFarVqaM0cWi9mZAMBpOF3D/fTp05Luv//+DO/6+flJSkpKsl2mpqbu3btXUoMGDW6d3Lx5c1vx/fffOyKqm7F12zduNC7ff1/vvWdqIAAAAKf322966SWjbtlSAweamgYAAMeLiVFwsM6fl6SSJRUZKT8/szMBgDNxukNTd+zYkZqa6u3tneHdjRs3SqpatarFYpF04sSJ+Ph4SZUrV751cpUqVby8vJKTk1nhnq3r19Wihb75xrgcNkyDB5saCAAAwOldu6aQEF27JkmVK2v2bNb3AQDcXGqqOnfW/v2S5OurL79UuXJmZwIAJ+N0DXe/zH8xOmnSpH379knq2bOnbeTs2bO2olSpUrfO9/DwCAwMPHXq1JkzZ7J+6LFjx7INlpycnO0cF3X9ulq29Pz2W+N/EIcNSx00KDXDDzclxSJ5SrJarcl/y82oTi75BmZncSK2zwafkxvxVyVDfFoAuBarVd276+BBSfL3V0SEChc2OxMAAA42ZIjSjtWbNEmPPWZqGgBwSk7XcM9QcnLy8OHDhw0bJqlu3brdu3e3jV+/ft1WZNamz58//43TMvOvf/0r2wy2vW7cz/XrlhdfLPHdd8bfhDffvPzCC1cz+1jPnfOSSktKTk6Oiory9fVNtO3ZBklSdHR0fHx8UlKS7S8ebKKioiR5ebnGvza5Iy4u7tKlS3wF3YSvIACuZcQILV9u1DNm6IEHTE0DAIDjLVumESOMeuBAhYebmgYAnJULtMDWrFkzYMCAgwcPSnrwwQe//vprHx8f2620XlVmvTzbuG3bmSzce++9Wdy1rX93y3bhtWsenTsX27vXR5LFoqFDr/znP7FZ/K1I+yRYLBZPT08vLy+3/LTcMS8vLz4tt/L09JSbfgXdMf6qZIhPCwAXsnmz3n3XqAcMUFiYqWkAAHC8ffvUtausVkl65pn0zjsA4CZO3dQ4fPhwnz591q9fL8nT03PAgAEffPBBvnz50iakLWxPSEjI8BVsrfZsF0v+/vvvWdy17RdfunTp28nuAq5cUUiI9u6VJItFEyaoT5/CUlbvhY6JMQovL6/AwEA/P7/ixYs7PqnL8PHxiY2NLV68eBY7I+VBtu1B3O8r6G7ExsZ6e3vzFXQTvoIAuIqTJ9W+vVJSJKlePToOAAA7+Ogj7z/+KObl5TVihJzwf57OnlXLloqNlaQqVbRokTw9zc4EAM7Kw+wAGbNaraNGjapRo4at296iRYuffvpp1KhRN3bbJRUsWNBWXL16NcPXsY2nTUOay5f19NPavVuSLBZNnKg+fczOBAAA4PQSEtSmjc6fl6SSJbV0qby9b/tFOndWsWIqVkxff233gAAAlxQR4blggf+cOb6XLpkd5Rbx8WrdWidPSlLRolq1SkWKmJ0JAJyYM65wt1qtnTt3XrBggaSaNWtOmjSpYcOGGc6sWLGirfjrr79uvRsXFxcdHX3jNNhcuqRnntH//idJFosmTdIrr5idCQAAwBX06WP8EOXtrSVL7nAR4vXrsvVTOMsDAOD8evfWd99Jkqen5s9XpUpmBwIA5+aMK9xff/11W7f9nXfe2bNnT2bddklFixYNDAyU9PPPP996d//+/baiWrVqjknqki5d0tNPp3fbJ0+m2w4AAJAjc+dq+nSj/vhjZf5TKgAAbmLMGM2YYdQff6xmzUxNAwCuwOka7rt27fr0008ljRkz5sMPP/TO7j26jRs3lrR58+Zbb23atEmSt7f3448/7oCkLun8eT35pPbskSRPT82cqZdfNjsTAACAK/jpJ/XsadQdOqh3b1PTAADgACdPGie9Sdq7V/Pm6e23jctu3fTaa2blAgBX4nQNd1u3vVatWgMGDMjJ/NDQUElHjx5du3btjeMJCQlffPGFpGeffbZQoUIOSOp6oqLUpIlsbwawddu7dTM5EgAAgEu4dEkhIYqLk6QaNdLXuQMA4B5iYtSzp+69V6tWGSOrVqlLl/RDwqdONTEdALgS59rD3Wq1rlixQlLRokUnT56c2bQCBQp0797dVrdq1apGjRr79+/v2bPnxo0bK1WqJCkxMbFXr17Hjh2zWCyDBw/OnfBO7tw5NW2qX36RJE9P/fe/6tLF7EwAAACuIDVVnTrp2DFJKlJEEREqUMDsTAAA2E9srJ55Rjt3Znw3Xz4tXKh8+XI3EwC4LOdquJ86dSouLk7S5s2bM9wlxiYwMDCt4W6xWObPn1+vXr0TJ05UqVLlkUceCQgI2LZtW0xMjKT33nuvbt26uRPemZ07p8aN9euvkuTpqVmz1Lmz2ZkAAABcxHvvac0aSbJYNHOm7rvP7EAAANjV8OGZdtslJSRo2jQNH56LgQDAlTnXljK///77HfypGjVq7Nix4+GHH7ZarXv27FmzZk1MTEzRokWnTJny3nvv2T2kyzl79h/d9jlz6LYDAADk1OrV+ugjox48WK1bm5oGAAB7S0rSZ59lM2fSJCUm5koaAHB9zrXC/YknnrBarXfwB2vWrPnDDz/8/PPPBw4ciIuLCwoKatiwYT7e7ySdPKnGjXX0qCR5e2vRIoWEmJ0JAADARRw/rm7dlJoqSU2aiLUcAAD388MPunw5mzlXrujHH8UOAgCQE87VcL9LNWvWrFmzptkpnMiJE2rcWLa3Dfj4aPFitWpldiYAAAAXERenNm108aIkBQVp0SJ5epqdCQAAezt7NkfTTp92cA4AcBdu1XDHjU6cUKNGxulePj5askQtW5qdCQAAwHW88or27pUkX18tX67ixc0OBACAA+TPn6Np/v4OzgEA7oKGu3v68081aqQ//pAkHx8tXargYLMzAQBczejRo0+fPv3JJ59kMSc1NXXTpk3ffffdxYsXS5Qo8eSTT9arVy+L+bGxsZGRkQcOHIiNjQ0KCmrevPl9HEAJpzRpkmbNSq9r17bni6ekGMUdbaYIAIA9Va2ao2mVKzs4BwC4Cxrubuj4cTVqpOPHJSlfPi1bpubNTY4EAHA5Fy9eHDx4sI+PTxYN919//bV9+/b79++/cbB+/foLFiwICgq6df6KFSvCw8Ojo6PTRvr169ejR4+JEyf6+vraMTxwl777TgMGGPVLLyk83G6vvHatxo7VN98Yl926af16/d//qWxZuz0CAIDbUr68Hn1Uu3dnNeexx5TRD3cAgAx4mB0AdnbkiBo2NLrt+fNr1Sq67QCAOzFmzJikpKQsJvz111+NGze2ddvvu+++0NDQMmXKSNqxY8dTTz11+Zazt9atW9e2bdvo6GgPD4+6desGBwcXKlRI0vTp07t27eqwjwO4befOqW1bJSZK0kMPKcv3eNwGq1V9+6pZM23aZJzCKunqVU2dqpo1tWWLfZ4CAMAdqFYtq7teXhozJreiAIDro+HuVg4fVqNG+usvSfLz08qVeuopszMBAFzNmTNn3n777dGjR2c9rW/fvufOnZM0f/78I0eOLFmy5K+//hoxYoSkw4cPv//++zdOTkhICA8PT0lJKVKkyC+//LJ79+7IyMgLFy40b95c0pIlSyIjIx32AQG3ITlZ7drp1ClJKlZMERE53dk2W+PHa8KEjG9duqSWLXXihH0eBADAbYmI0OzZmd7Nn1+zZqlBg1wMBAAujoa7+zh0SI0aGf9/6OenVavUtKnZmQAALqVLly6VK1cuU6bMyJEjrVnuLX306NGIiAhJAwcO7NixY9r4oEGDQkNDJX3++edXr15NG58/f/6pU6dsRbW/11B5e3svXLiwYsWKksawbgrOYdAgffutJHl4aP58Vaxon5eNidE/fwl1s6tX9cEH9nkWAAA59+OPeuEF40yRevX0wgvy8zNu+fmpe3ft26dOnUwMCACuh4a7m/jtNzVqpNOnJalAAa1ercaNzc4EAHA1GzZsOHLkSNatdpuVK1darVaLxdKvX7+bbnXv3l1SXFzchg0b0gZXrFghqWrVqs8999yNk/39/W0N+l27dp0/f/7uPwTgbqxYoY8/Nurhw/Xss3Z75fXrdcNvoDIWEZG+1QwAALngwgWFhOj6dUmqXFmrV2v2bA0caNwdOFAzZ6pKFRMDAoBLouHuDg4eVKNGOnNG+rvb3qiR2ZkAAC7of//73x9/e/3117OYuXXrVkn3339/qVKlbrrVuHFjf3//tDk227Ztk9SkSZNbXyo4OFhSamrq9u3b7/ojALLRrZsCAoqXLx80f77XTbcOHVLXrsYSvxYtNGiQPZ97+HD2cy5dEr91AgDkmqQktW2rP/6QpEKFFBGhokXNzgQAbuHm/9OAy/npJzVtqgsXJKlwYa1Zo3//2+xMAADXVK5cubS6SJEiWcw8dOiQpOrVq996K1++fDVr1ty5c+fhv1uM586ds52hmuH8OnXqWCwWq9V6OCctScAxYmIUEmIsQq9USXPnymKx5+snJORoWlycPR8KAEAWXn01fRe1BQv0wANmBwIAd0HD3bX9+KOeeiq92752rR57zIGPK1VKS5ZIko9PogMfAwBweidPnpRUtmzZDO/axk/8fQSkbXJm8318fAICAqKiok5wZCRMYrXqxRf166+SVKCAIiJUuLCdH3HLW0Ey4OmpkiXt/FwAADI0frymTzfqMWP0/POmpgEA90LD3YXt26enntLFi5JUpIjWrVPduo59YsGCCg2VpNjYFFuXHwCQB1mt1tjYWEm2rWNuZRu/du2a7TImJubG8QznR0VFpc3PjCUHS47p2t8oLi7u0qVLvr6+tv9ekHT9+j1SAUnR0dEnThgLCKZOLbR0qfGWjmHDLhYqdN3uf4+qV/eSSmc9p06dhKioc3Z+cI6dtp0FhBvwFZSh6Ojo+Pj4uLi4/Pnzm50FwB3asEFvvmnUXbqof39T0wCA22EPd1e1d6+aNk3vtq9f7/BuOwAANvHx8baDVfPly5fhBNt4Wosq7u9tMnI4H8hNu3b5jhljdNvDw6+1aXPdEU8pWzb5mWey+Rv+0kvZHasKAMBdO3xY7dopOVmS/v3v9HXuAAB7YYW7S/rhBz39tKKjJaloUa1fr9q1zc4EAMgz0vrmiYkZ7zCWkJAgycfHx3bp6+t7W/MzY+vyZ8a2/j0oKCjrF8lTYmNj8+fP7+fnV7x4cbOzOIsCBYyiWLFiQUE+Z86oX7/0psOUKQV9fAo66NGzZqlBA/3+e8Z3e/dW9+4BDnp0zvEVdCO+gjLk5+cXGxtbvHhxPz8/s7MAuG1XryokRJcuSVLp0lq6VJkshwAA3DlWuLuenTvVuLHRbQ8I0JYtdNsBALnKw8PDtpPA9esZrwW+acOZAn/3OHM4H8gdSUkKDdWZM5IUGKilS5XdL33uSsmS2rVLYWHy+OcP4Pfco4kTNXGiAx8NAICk1FR17KgDByQpf36tWKEyZczOBADuiIa7i9mxQ82a6epVSSpRQps2qWZNszMBAPKeMmXKKPNNn0+dOiWpdOnSN07ObH5ycnJUVNSN84Hc8frr2rFDkry8tGRJbjQdAgK0eLGOHtVDDxkjb7+tP/9Unz7KwQkFAADclYED9dVXkmSxaMYM1aljdiAAcFM03F3J9u03d9tr1DA7EwAgT6pSpYqkQ4cOZXj3yJEjkqpVq2a7LFOmjG31eobzjx49mpqaeuN8IBfs3u3x2WdGPWaMHn889x5dsaIqVDDqunXTd7kBAMBx5szRxx8b9eDB6tDB1DQA4NZouLuMbdvUrJmuXZOkwEBt3qzq1c3OBADIq+rXry/pp59+umb7znSDI0eOnD17Nm2OTb169SRt27bt1pdKG7TNAXLH3LnGUUbt26tvX3OzAADgWLt26aWXjLpVKw0damYYAHB7NNxdw6ZNevZZxcRIUunS+vZbPfCA2ZkAAHlYy5YtJSUlJc2bN++mW7NmzZLk4+Pz3HPP3TR/9+7dBw8evGn+7NmzJdWuXbtcuXKOjAz8g+0E36pVNW2a2VEAAHCk06cVGqqEBEm6/37Nnn3zaSIAAPviX1kXsGGDWrRQbKwklS2rLVtUpYrZmQAAedv999/frFkzSUOHDv3zzz/Txvft2zd+/HhJ4eHhxYoVSxvv2rVrQECApF69esXHx6eNT506dceOHZIGDhyYa+GRl1mt6XWhQoqMVMGC5qUBAMDB4uLUqpVOnZKke+7RypUqVMjsTADg7rzMDoBsrFun1q0VFydJ5cpp82bdd5/ZmQAAkCZMmLBr166oqKhHHnmkZcuWDz744M6dO1evXh0XF1ehQoUPPvjgxskFChSYNGlSu3bttm7dWqNGjVatWgUEBGzcuHHjxo2SWrRoERoaatLHgbzl55+NwmLR7NmqXNnUNAAAOJLVqvBw/e9/kuTtraVL9a9/mZ0JAPIAGu5Obe1atW4t20LAoCBt3sx3RwCAs6hUqdKaNWvat2//559/zpw5M238oYceWrJkSfHixW+aHxYWdu3atddee+3o0aNjx45NG2/Xrt0XX3xhsVhyKTfyqh9+UP/++vFH49LXV9u369FHVaqUqbEAAHCY4cO1cKFRf/qpGjUyNQ0A5Bk03J3XmjUKCTG67eXLa/Nm3Xuv2ZkAAHlGt27dnnzySU9PzyzmPPbYYwcPHlyxYsXOnTujo6MDAwMbNWrUrFkzL6+Mf8AIDw9v3rz54sWLDxw4EBcXFxQU1LJlyzp16jjmIwDSjRunt95SSkr6SFycxo3T7NlatkxPPGFeMgAAHGPFivTDUXv3Vs+eZoYBgDyFhruT+uortWljnGpSvry++UYVK5qdCQCQl1SoUKFChQrZTsufP3+HDh06dOiQw5cNDAx87bXX7ioZcJsWLtQbb2R868IFBQfrxx/5QQsA4FZ+/VVduyo1VZIaNtS4cWYHAoC8hENTndHq1end9goVtGUL/xMIAABwJ5KTlfWJvFev6t13cysNAACOd/GigoN19aokVayoiAj5+JidCQDyEhruTmfZMoWEGN32ypW1fbtysL4QAAAAGdixQ6dOZTNnxQrjRy8AAFxdUpJCQ/X775JUsKBWrtQtB+sAAByLhrtzWbpUHTooKUmSqlTRN9+oTBmzMwEAALisr7/Ofk5MjE6edHwUAAAcr08fffONJHl4aP58Va9udiAAyHvYw92JLFmiTp2UnCxJVapo82aVLm12JgAAAJcVFaXPP8/RzOvXHRzlnwYOVMeOksSZwQAAO5o0Kf0b34gRatHC1DQAkFfRcHcWixapSxej2161qjZvVqlSZmcCAABwWSkp6tJFV67kaHIu/9xVr16uPg4AkBds3aoBA4y6c2e9+aapaQAgD2NLGaewcKE6dza67dWq6Ztv6LYDAADclXfe0fr1OZpZvbpKlHBwGgAAHOmPP9SmjRITJenhh3P6Bi8AgCPQcDffzJnq3FkpKZL04IPaulUlS5qdCQAAwJVFRmrMGKPOdvvavn0dHQcAAAe6dk3BwbpwQZJKlVJkpPz8zM4EAHkYDXeTffGFevRQaqokPfSQNm7kAHEAAIC7cviwunaV1SpJzz+vdet0772ZTg4JUffuuRYNAAA7S01Vp0765RdJ8vXVl1+qbFmzMwFA3kbD3UzTp6tnT6PbXqsW3XYAAIC7FROjkBBj6/by5TV7tkqX1o4dCg6+eaavr95+W4sWyYOfiAEALuvtt7VqlVF/8YUefdTUNAAAGu4mmjYtvdv+8MPauFH33GN2JgAAABcXHq4DByTJ11cREcbPVyVLKjJSBw6oTh1jWteuyceP66OP5O1tWlQAAO7SvHkaPdqoBw1Sp06mpgEASKLhbpapU9Wrl/FO50ce0YYNKlbM7EwAAAAubtw4LVli1FOm6OGH/3H3/vt1//1GXb9+amBgrmYDAMC+9u5Vz55G/eyzGj7c1DQAgL/RcDfB+PF6+WWj216vnjZvptsOAABwt3bu1NtvG/Wrr7IzOwDAnZ05o5YtFRsrSVWratEieXqanQkAIImGe+4bN079+xt1/fpau1aFCpkaCAAAwPWdPavQUCUlSdKjj2rcOLMDAQDgMPHxatVKf/0lScWKadUqFS5sdiYAwN9ouOeqMWP0xhtG3aCB1qxRwYKmBgIAAHB9SUkKC9Pp05JUooSWLVO+fGZnAgAgZ1JS9PXXioqy2C6//FLR0VnNt1r1n//o++8lyctLS5fqvvscnxIAkGM03HPP6NF6802jbtiQbjsAAIB99O+vbdskydNT8+apbFmzAwEAkDO7dqlaNT3/vC5eNBruQ4aofHmNH2/sQ3urkSM1f75RT5igxo1zJSgAIMe8zA6QV4wapUGDjPrxx/XVV/L3NzUQAACAW1i4UJMmGfWIEXrqKVPTAACQY1u36plnFB9/83hMjPr3V1SURoy4+dbatRoyxKi7d9crrzg8JADgdrHCPTcMHZrebX/6aa1dS7cdAADADvbvV48eRt2yZfrefQAAOLmEBHXvnkG3Pc2oUdq16x8jv/2m9u2VkiJJDRpo6lTHJgQA3Bka7g737rt6/32jfuYZrVih/PlNDQQAAOAWrl1TWJiuX5ekypU1Z44sFrMzAQCQM6tX69ixrCZYrZo8Of0yOlotWujKFUmqUEEREfLxcWxCAMCdYUsZxxoyRMOHG/Wzz+rLL+Xra2ogAAAAt2C1qls3/fabJPn7KyJChQqZnQkAgByznT6StW+/NYrkZIWG6uhRSfL318qVCghwYDYAwN1ghbsD/d//pXfbn3uObjsAAIDdDB+uiAhJslg0Y4YeeMDsQAAA3I5z525jzuuva/NmSbJYNHOmatRwYDAAwF1ihbtDWK3q31+ffGJcPv+8li9XvnymZgIAAHAXmzalb9k3YIDCwkxNOZc0OwAAIABJREFUAwDA7StYMKdzZs7UlCnGyLBhCg11YCoAwN1jhbv9Wa3q1y+9296mjb78km47AACAfZw4kX5kXP36+ugjswMBAHD77r8/R3O2b9fLLxuXbdronXccGgoAYAescLczq1Wvv65PPzUu27bVggXy9jY1EwAAgLuIj1ebNrpwQZJKltTSpbf3g9Zzz6lw4bikpKQHHuCkOQCAmdq00VtvKTExqzlPP62QEGNOrVocDw4AroGGuz1ZrerTJ/0Y8bAwzZ8vLz7HAAAAdtK7t/bskSRvby1dqlKlbu+Ph4WpcePrsbGxxYsXd0Q8AAByqFw5vfWWhg3LdELNmlqyROfPS1LJkoqMlJ9frqUDANw5tpSxG6tVvXund9vbtaPbDgAAYE/TpmnGDKMeP14NGpiaBgCAuzN0qHr3zvjWI48oKEi//CJJPj5askTlyuVmNADAnaPhbh9Wq159Nf0Yk/btNW8e3XYAAAC7+fFH9e1r1B076tVXTU0DAMBd8/DQp59qyxa1aSNPT2OwVi1NnaqnntLq1cbIlClq2NCsjACA20bD3Q5SUtS9uz77zLjs2JFuOwAAgD1FRyskRHFxklSjhqZPNzsQAAB28sQTWrZMlSun2i7nzlXx4ho1yrj7xhsKDzctGwDgDtBwv1spKXrxRc2ebVy++KLmzk3/1TQAAADuUmqqOnXSH39IUpEiiohgE1sAgNs6eFAvvCCrVZKeflojR5odCABwm2i43xXb2vY5c4zL//xH06fLg08qAACA/QwZorVrJcli0cyZuu8+swMBAOAwffooNlaSqlTR4sWs5wMA18O+J3cuJUVdu2r+fOOyRw9NnUq3HQAAwJ5WrdKIEUY9ZIhatzY1DQAADnb2rCQVLapVq1SkiNlpAAC3j/bwHUpJ0QsvpHfbe/bU55/TbQcAALCnI0fUpYvxtvqmTfXuu2YHAgDA8Tw9NW+eKlUyOwcA4I6wwv1OJCWpfXtFRBiXvXppyhRZLI56nNWqvXslyWLRww876ikAAABOJS5O7drpyhVJCgrSwoW8rR4A4LYuXkzvKYwbp+eeMy1JgwZ66y2jAADcARruty0xUe3aacUK47J/f40b59gnJierdm1J8vZWYqJjnwUAAOAkevXSvn2S5Our5ctVvLjZgQDAxcXHx2/fvv3w4cPHjh0rWbJk9erVH3vssSKZ71oSGxsbGRl54MCB2NjYoKCg5s2b38cxGo6xZo2iooyGe0iIXn/dzDBNm6ppUzMDAICro+F+exITFRamyEjjcsAAjR1raiAAAAB3NGFC+rn0kyYZiw8AAHfs66+/7tOnz7Fjx24cLFas2EcffdSjRw+PWzZIXbFiRXh4eHR0dNpIv379evToMXHiRF9f39xInGf89ps6dEi/HDLEvCgAAHug4X4bEhMVGqqVK43LgQM1erSpgQAAANzRrl16802j7tlT4eGmpgEA17d8+fK2bdtK8vb2rlevXqVKlf7888+dO3dGR0f36tXr559/njx58o3z161b17Zt25SUFA8Pj9q1a5csWXLLli1Xr16dPn36lStXFi9ebNLH4YYuXVJwsLF/mo23t3lpAAD2wCmfOZWQoDZt0rvtb71Ftx0AAMD+zp1TaKixjV6tWho/3uxAAODirl+/3q9fP0lBQUG7d+/esmXL9OnT169f/9tvvz355JOSpkyZ8vXXX6fNT0hICA8PT0lJKVKkyC+//LJ79+7IyMgLFy40b95c0pIlSyLT3vSNu5OSok6ddOSIJAceCwcAyGU03HOqRQutXm3Ub72lkSNNTQMAAOCOkpMVFqZTpySpWDEtX678+c3OBAAubtasWSdPnpQ0fvz4WrVqpY2XLVt26dKlJUqUkDR16tS08fnz5586dcpWVKtWzTbo7e29cOHCihUrShozZkxu5ndj/ftrzRpJslhUurTV7DgAAPug4Z5TGzYYxQcf0G0HAABwiIEDtXWrJHl4aMECVaxodiAAcH3ffvutpBIlSoSEhNx0q3jx4s8++6ykPXv2pA2uWLFCUtWqVZ977rkbJ/v7+4eGhkratWvX+fPnHR3b7c2erYkTjfq991SoEA13AHATNNxvz4cfcoAJAACAQyxerE8+Merhw/XMM6amAQB3cfz4cUnVq1fP8G65cuUknT9/PiUlxTaybds2SU2aNLl1cnBwsKTU1NTt27c7JmxesXOnevY06pAQvfuuqWkAAHbFoam3YdSo9PO7AAAAYEeHDumll4w6OFiDBpmaBgDcyOjRo2NiYsqWLZvh3X379kmqWLGip6enpHPnzl2+fFmZNOjr1KljsVisVuvhw4cdGdnNnTih1q2VkCBJDz6oOXPYwB0A3AoN95waN079+5sdAgAAwB1du6bWrXX1qiRVqkTrAQDsyXYyaoa2b9++Zs0aSW3atLGN2HZ7l5Rhg97HxycgICAqKurEiRP2D5o3xMWpTRtFRUlS8eKKiFCBAmZnAgDYFQ33nKLbDgAA4AhWq158UQcPSlKBAoqIUOHCZmcCgDxg8+bNoaGhVqs1ICDgjTfesA3GxMTYCn9//wz/lL+/f1RU1LVr17J+cUsOfnGaB7v2Vqv69Cm+Z4+fJC8v6+TJUV5eCbZPQ1JSoJRP0pkzZwoWTDI3p/OIjo6Oj4+Pi4vLzynqNzh9+rTZEZxOXFzcpUuXfH19Y2Njzc7iRPgKMgt7uAMAAMBMI0dq2TKjnjJFmWwyDACwm3Pnzr300ktNmzaNjo4uVKjQ2rVr77nnHtutuLg4W5EvX74M/6xtnJbWnfnkk8KrVvnZ6mHDLj32WIK5eQAAjsAKdwAAAJhm8+b0E+n79tULL5iaBgDcXWJi4rhx40aMGGFbov7vf//7v//9b5UqVdIm+Pr6ps3M8BUSEhIk+fj4ZP0gq9WaxV3b+vegoKDbye7yIiI0YYJR9+2rQYOKScXS7np7p9qKUqVK5bFPTFb8/PxiY2OLFy/u5+dndhank9e+grIWGxubP39+Pz+/4sWLm53FifAVZBYa7gAAADDHyZNq314pKZL0739r1CizAwGAW9uxY0d4ePihQ4cklSxZcujQoT169PDw+Mcb3wv8vaH49evXM3wR29r2zDacQWZ++kkvvCDbryGeekpjxpgdCADgMDTcAQAAYIKkJHXooPPnJSkwUMuWKbvlkgCAOzd16tTevXunpKT4+fkNGjSof//+BTI6rLNMmTK2IsNNopOTk6OioiSVLl3aoWndzIULCgmR7VcY996rBQvkRTMGANwX/8YDAADABH36aMcOSfLy0pIlonUDAI6zYMGCV155xWq1PvHEEzNnzrz33nszm1mmTBl/f/+YmBjbQvibHD16NDU1VVK1atUcGNe9JCWpbVsdOyZJBQtq5Uqx4wUAuDd3OzQ1MTHx6tWrZqcAAABAVubN0+efG/XYsXr8cVPTAIBbO378eLdu3axWa1hY2IYNG7LottvUq1dP0rZt2269lTZom4OcePVVffutJHl4aMECPfCA2YEAAA7mJg33pKSkkSNHVqlSxdfXt3DhwkWKFOnSpcuRI0fMzgUAAICb/fSTevY06vbt9frrpqYBAHc3efLkpKSkMmXKzJgxw9vbO9v5LVu2lLR79+6DBw/edGv27NmSateuXa5cOUdEdT+ffKLp04169Gg1b25qGgBArnCHLWWuX7/etGnT7777Lm3kypUr8+bN+/LLLyMjI5s0aWJiNgAAANzo0iWFhCg2VpKqVtW0aWYHAgB3Z+uSN2jQ4Pjx45nN8fb2rlKliq3u2rXr0KFDz58/36tXr3Xr1vn6+trGp06dumPHDkkDBw50eGi3sGGD0j5VXbpowABT0wAAcos7NNxffvllW7e9Y8eOnTt3Llmy5IYNG4YNGxYTExMaGvrrr7+WLFnS7IwAAABQaqo6dUrfxzYiQgULmp0JANzaxYsXz58/L2nx4sWLFy/ObFpgYODZs2dtdYECBSZNmtSuXbutW7fWqFGjVatWAQEBGzdu3Ljx/9u788CmyvTt41e6sbVlLcpWxIpsgq8K6DAo8sMRRBZZylJEQETZRBFBBR1XUFkUF1zYpVBsscjioIgMzoAgKODGohQEUaTsUOhG27x/nEyoTZqGNs1Jmu/nr4dzTk8uM0+eO3MnOecLSV27do2NjfVOeL924IDi4pSTI0l/+9ul77kDAMo8v2+4//TTT4sXL5YUGxu7ePFii8Ui6YYbbmjatGn37t1Pnz49derU1157zeyYAAAA0PPP69NPJcli0YIF4pZ7AFDa9u/fX4y/6tOnT1pa2pgxY1JSUqZPn27f3rdv37lz5xr/vxsupKWpWzedOCFJtWtr2TKVK2d2JgCAt/h9w33BggVWq7VChQqzZ8/OX/W7dOnSrVu3FStWxMfHT58+PSiojFytHgAAwE998oleesk2fuop9eplahoACAwxMTEbNmwo8rCwsLACW4YOHdqlS5fExMRdu3ZlZGRER0d37969VatWpROzTMnLU1ycdu2SpAoVtGKF6tQxOxMAwIv8vuH+2WefSbrjjjuqVKlSYFfXrl1XrFhx4sSJb7/9tnXr1makAwAAgCQdPKjBg5WXJ0n/93964QWzAwFAYKhevfrtt99evL+94oorxowZ49E4AWH8eH3yiSRZLJo3T3xIAQCBxr+/952VlfXzzz9Luvnmmx33durUyRj88MMPXo0FAACAfDIz1auXTp6UpHr19OGHCg42OxMAAKUgPl72i9pOmqT+/U1NAwAwg3833A8cOJCbmyupQYMGjntr165doUIFSfv27fN2MgAAAPzPiBHasUOSypVTcrKioswOBABAKdiyRcOG2cbdu+v5501NAwAwiX9fUubUqVPGoGbNmk4PiIqK+u23304a36cq3EMPPeT+Y3nfxYuSqpkeI7+MjIwzZ85kZWVxcfz8Tp8+nZGRERwcnJmZaXYWH3LmzBlJ4eHhZgfxIbyCnOIVBJRVs2Zp4ULb+K23+GU9AKBsOnJEsbHKypKkpk21aJF4sw8Agcm/G+4XLlwwBuXLl3d6gPENd/thhZk9e3aRj3X+/PnLTOcxOTkWo+FutVpNjJFfRkZGenp6Xl5eOW61ns+FCxcyMzPLlStn/PAChvT0dJn6CvJBvIKc4hUElElbt2rcONt44MBL3/sDAKAsycjQPffojz8kqXp1rVqlyEizMwEATOLfDXer1WoMLBaLiwNycnJcn+f99993sdf4/nu1atWKE9ETLl60DSwWi4kx8jN6hRUrVvSRPD7CarWmp6dXrVq1YsWKZmfxIcYnXkyV/HgFOcUrCCh7jh1T79627/pdf71cvuECAMBfWa0aOlTffCNJoaFatkwxMWZnAgCYx78b7pUqVTIGhV1/ICsrK/9hhXnwwQdd7DUa7iZeEMPecDc3Rn5BQUGZmZkVK1b0kTw+IjMz02KxhIeH0y7Mz3gBMlXy4xXkFK8goIzJzdW99+r33yWpalUtX64KFczOBABAKZg8WUuX2sZvvqn27U1NAwAwm39fUaxKlSrGoLArmxtXb7cfBgAAAO948kmtWydJQUFaskRXX212IAAASsGKFXr2Wdt49GgNH25qGgCAD/DvhntMTIxxMZlDhw457j19+rRx2eiGDRt6OxkAAEAAW7lSM2bYxs89p7vuMjUNAAClY/duDRqkvDxJuvXWS7UPABDI/LvhXqFChWuuuUbS9u3bHffaN1533XVejQUAABDAfvlF990n41Y7Xbpo0iSzAwEAUApOnlS3bjp3TpKuukrLlysszOxMAAAf4N8Nd0kdO3aUtG7duuzs7AK7PvnkE0mVK1du06aNCckAAAACz/nz6tHjUvdh4UIF+f37TQAACrp4UbGx2r9fkiIitHq1atQwOxMAwDf4/f8Buu+++ySdPHly9uzZ+bf/+eefCxculBQXFxcaGmpKNgAAgIBitWroUO3eLUnly2vqVE2cqIce0ptvmp0MAACPGjNGGzZI/7tVCb+rBwDY+X3DvVWrVvfcc4+k8ePHz5s37+zZs7m5uZs3b+7SpcvZs2cjIiImTpxodkYAAICAMH26kpJs43ffVUSEZs/W7Nn69FNTYwEA4FFvv6333rONp0xR166mpgEA+Bi/b7hLmj9/fpMmTTIzMx944IEaNWpUrVr173//+44dO8LCwhISEurWrWt2QAAAgLLvyy9l/57D6NEaPNjMMAAAlJKNGzVunG0cG6sJE0xNAwDwPWWh4V61atVt27Y99thj1atXz8nJSUtLCwkJ6dy589atW7t06WJ2OgAAgLLv6FHFxSknR5JuuUUzZpgdCACAUvDrr+rZU8Yt5G68UQsXymIxOxMAwMeEmB3AM8LDw2fMmDFt2rTU1NSMjIzatWuXL1/e7FAAAAABwbhx3J9/StIVV2jZMoWFmZ0JAABPS0tTt246cUKSatXSypWqWNHsTAAA31NGGu6GoKCgWrVqmZ3C8/btsw3y8rR/v2JiTE0DAADwV2PHatMmSQoJUWKiuJ4fAKDsycvTgAH66SdJKl9eH39MvQMAOFcWLilThv34o267Tc2a2f6Zm6trrtEdd+jnn02NBQAA8D8JCZo1yzZ+5RW1a2dqGgAASsfEiVq92jaeO1c332xqGgCAD6Ph7rv+8x/dfLM2biy4ff16tWyprVvNyAQAAJDPDz9o2DDb+J579NhjpqYBAKB0LFumqVNt4yef1IABpqYBAPg2Gu4+Ki1N/fopI8P53vPn1bu3LlzwbiYAAIB8zpxRz55KT5ekRo30wQfcOA4A4GdycnT6tE6fVlpaocfs2KHBg2W1SlKnTnrpJa+lAwD4JRruPmrePB096uqA339XQoK30gAAAPyV1ar779f+/ZIUHq7lyxUZWejBeXleywUAwGXYskXVqqlaNd19t/MD/vxT3bvbPl1u3Fgffqjg4FJJ8u23mYcO/Xb8+An7RWUBAH6KhruPWru26GM+/7z0cwAAADjz4ov6+GNJslg0f76aNv3L3tRUPf64Bg60/fOLL9Spk9at83ZIAABKIjNTPXro998lqVo1rV6typXNzgQA8Hk03H2UUdFdO3y49HMAAAA4+OILvfCCbTx+vGJj/7J361a1aKEZM3TihG1LXp7WrtWdd2rsWNtP8gEA8H0PPGC7fVpIiJKSdM01ZgcCAPgDGu4+KjS06GPCwko/BwAAwF8dOqT+/ZWbK0nt22vy5L/sPXpUd9+tY8ec/+3MmXrttVJPCABAyb3yipYssY1nzlSHDqamAQD4DxruPiompuhjrr669HMAAADkk5mpXr1sX12vVUtLligk5C8HTJmikyddneH553X2bCkmBACg5D77TE8/bRsPGaJRo0xNAwDwKzTcfVT37kUfc889pZ8DAAAgn1GjtH27JIWGKilJtWoVPGDZsiLOkJamzz4rlWwAAHjE3r3q18/2W662bfXee2YHAgD4FRruPqpfP11/vasDbrlF3bp5Kw0AAID0/vuaP982fuMNtW1b8IAzZ3T0aNHn2bvXw8EAAPCUU6fUtavtx1j16ys5mau5AgAuDw13HxUSopUrC71oTOPGSk5WEP/rAQAAb9m2TY88YhsPGKARI5wck5np1qkyMjyWCgAAD8rJUZ8+SkmRpPBwrVqlmjXNzgQA8De0bH1X/frauVMTJqhGjUsba9bU00/r229Vu7Z5yQAAQIA5dUr9+ikrS5JatNDs2c4Pq1HDrRu/8zYGAOCbHnlE69dLksWi+fPVooXZgQAAfoiGu0+LjNSrr+r3323/DAnR0aN68UVVqmRqLAAAEEjy8hQXp19/laSqVbV8uSpWdH5kSIhuu63oE3bo4Ml4AAB4xIIFeucd2/jFFxUba2oaAIDfouHuB+yXjrFYZLGYGgUAAASeSZO0dq0kBQUpPl4xMa4OHju2iLN16KBmzTyWDQAAjzh3TsOH28a9emniRFPTAAD8GQ13AAAAFGrVKr36qm38zDO6++4ijr/7bo0aVejeOnUu3XYVAADfsXu3srMl6YYb9MEHfNcNAFB8NNwBAADg3L59uu8+Wa2S9I9/6Jln3Pqrt97Sa6+pSpWC2+++W19/rehoD4cEAKDkLl6UpCuu0MqVXMQVAFAiNNwBAADgxIUL6tlTZ89KUv36SkhQcLBbf2ixaOxYHTqkSZNsW5o21a5d+uQT1a1bWmkBACgG40NlQ1iYkpJUr555aQAAZQINdwAAADgxcqR++kmSypdXcrJq1Li8P4+MVNu2tnF0tJo29XA8AABKbt68S+PZs9269TcAAK7RcAcAAEBBr7+uRYts41mzdNNNpqYBAKAUJCYqPt42rltXgwaZmgYAUFbQcAcAAMBfbNmiJ5+0jYcP1/33m5oGAIBSsH277r//0iVlrrrKzDAAgLKEhjsAAAAuSU1V797Kzpak1q01c6bZgQAA8LSjR9Wjh9LTL22xWMxLAwAoW2i4AwAAwCYnR3366MgRSapeXYmJKlfO7EwAAHhUdrb69NHhw5IUEWF2GgBAmUPDHQAAADaPP67//leSgoKUkMDv6wEAZdCoUdq4UZKCg/XMM2anAQCUOSFmBwAAAIBP+PBDvfGGbTxliu6809Q0AACUgunTNXeubTxjhm680dQ0AICyiG+4AwAAQHv36sEHbeNu3TRhgqlpAAAoBZ9/fumu4IMG6ZFHTE0DACijaLgDAAAEurQ09eyptDRJathQixZx7zgAQFnz88/q21e5uZLUpo3ef9/sQACAMopLygAAAAQ0q1VDhmjPHkmqVEkff6zKlT1z5k6dZLV65lQAAJTE6dPq2lVnzkhSdLSWL+eu4ACA0sI33AEAAALayy8rOdk2fvddNWtmahoAADwtN1f33qt9+ySpQgUlJ+uKK8zOBAAou2i4AwAABK5//1v//Kdt/NhjGjjQ1DQAAJSCceO0Zo0kWSxasEAtW5odCABQptFwBwAACFCHD6tfv0tXs335ZbMDAQDgaR98oDfesI3/+U/17WtqGgBAAOAa7gAAAGXE998rJ0eSrr9eIUW9y8vKUq9eOn5ckq68UsuWKSys1BMCAOBNmzfroYds4x49Lv2oCwCA0kPDHQAAoIz4v//TqVOSdPKkqlUr4uCHH9Y330hSaKiSklS7dqnHAwDAm377TT17KitLkq6/XvHxCuJH/gCA0ke1AQAACDjx8ZozxzaeMUO33mpqGgAAPC0jQ716KTVVkqpX1/LlqlTJ7EwAgMBAwx0AACCwfP/9pd/X9++vhx82NQ0AAJ5mtWrIEH37rSSFhio5WVdfbXYmAEDAoOEOAAAQQE6fVs+eysiQpObNL33PHQCAMuP555WYaBu//bbatTM1DQAgwNBwBwAACBR5eRowQAcOSFJEhJKS+H09AKCs+fhjvfCCbfzII3rwQVPTAAACDw13AACAQPHss/r0U0myWLRwoRo3NjsQAAAe9f33GjhQVqsk3XGHpk83OxAAIPDQcAcAAAgIn3yiKVNs44kT1bOnqWkAAPC0kyfVs6cuXJCkBg20dKlCQszOBAAIPDTcAQAAygjjC31OHTyowYOVlydJHTro+ee9FgoAAG+4eFG9el26bNrq1apRw+xMAICARMMdAADAv+Xmau5ctWyp06dtW/72N02bpsxM2z8zMtSrl06elKToaH34oYKDzYkKAEApGT1a//mPJAUFKSFBzZqZHQgAEKhouAMAAPix8+d1550aNkzbt1/a+MsvmjBBt91W/tixYEkjR2rHDkkqV04ffcQ3/gAAZc3MmZo92zaeOlVdupiaBgAQ2LieGQAAgB8bPFj//rfzXbt2BQ0dGtW378WFC21b3n5brVp5KxkAAF6xbp3Gj7eNBw7UuHGmpgEABDwa7gAAAP5q82YlJ7s64IcfwnbvDjPGAwfqgQe8kQoAAK/59VfFxSknR5Juuknvv292IABAwOOSMgAAAP7qo4+KPsboQfy//0cPAgBQ1qSlqWtXnTghSbVqaeVKVahgdiYAQMCj4Q4AAOCvfv7ZrcOqV9fHH9ODAACUKXl5iovTrl2SVL68VqxQnTrFOYnB+HwaAICSo+EOAADgrzIy3DpsyRJddVXpJgEAwMsmTNAnn0iSxaL589W69eX9+e+/a/hwde1q++eWLWrVSgkJHg4JAAhANNwBAAD8Va1aRR9Tp05ex46lHwUAAC+Kj9eMGbbxpEnq3//y/vyrr3T99Xr/faWlXdr47bcaMED9+/NtdwBAidBwBwAA8FcdOhR9TJ8+maUfBAAA79myRcOG2cbdu+v55y/vz1NT1bWrTp1yvvfDD/X00yWKBwAIcDTcAQAA/FW/foqOdnVAuXLWgQNpuAMAyo4jRxQbq6wsSWrSRIsWKegyGxuvvKLTp10d8Prr+vPP4icEAAQ4Gu4AAAAe8N132r5d27crN9d7D1qxoj74QOXLO99rsejVV0/Vq5fnfDcAAP4mI0P33KM//pCk6tW1erUiIy/7JMuXF3FAdrbt6vAAABQDDXc/EBoqq1VWq7KzzY4CAAAK0a6dWrZUy5a6cMGrj3v77dq4UddfX3B7VJSWL8/q0cO7aQAAKDVWq4YO1TffSFJoqJYtU0zMZZ8kK0uHDxd92L59l31mAAAMNNwBAAD8W8uW2rlTb711acvdd+vIEd15pxe/bA8AQCmbPFlLl9rGb76p9u2Lc5LsbFmtRR9mXLIGAIBioOEOAADg944e1ZQpl/45d65CQsxLAwCAp61cqWeftY1HjdLw4cU8T0SEIiKKPqxOnWKeHwAAGu4AAAD+7eJFxcb+5fZuYWHmpQEAwNN279Z99ykvT5JuvVWvvVais/3jH545BgAAp2i4AwAA+LdHHtFXX5kdAgCA0nHypLp107lzknTVVUpOLunnyuPHy2JxdUCHDrrhhhI9BAAgkNFwBwAA8GNLlujdd23jihVNjQIAgKcZv+Lav1+SIiLpfGTyAAAc0klEQVS0erWiokp6zltu0YsvFro3OloLF5b0IQAAgYyGOwAAgL/64Qc9+KBt3KOHypc3NQ0AAJ42Zow2bJCkoCAtXqzrrvPMaSdN0pIlqlv3LxuDghQbq23bCm4HAOCy0HAHAAAokYwMJSQoM9P2z8WLbT97L22nT6tnT6WnS1KjRnwdDwBQ1syapffes40nT1a3bp48eVyc9u/XzJm2fzZqpAMHlJSkK67w5KMAAAIQDXcAAIDi+/hjXXWVBgxQdrZty6hRio7WvHml+7h5eRo40PYT+/BwLV+uyMjSfUQAALxp40Y99phtHBurJ57w/EOEhenGG23jmjVVv77nHwIAEIBCzA4AAADgrxISdO+9sloLbj97Vg88oLQ0PfpoaT30Cy/oX/+SJItFCxaoaVNJ6t5d589LKund5AAAMNfBg+rVy/Zh9o03auHCIm5zCgCA76DhDgAAUBzHj2vkSCfddrsnntDdd6thQ88/9Lp1eukl23jCBPXubRvPn+/5xwIAwMvS0tS1q44fl6Qrr9TKldwVHADgT7ikDAAAQHHEx+vsWVcHZGdrzhzPP+6hQ4qLU26uJLVvf6nzDgBAGZCXp3vv1U8/SVL58lqxgluYAgD8DA13AACA4ti0qehjNm708INmZqpXL504IUn16ikxUSH8XhEAUIZMnKhVq2zjWbN0882mpgEA4PLRcAcAACiOY8eKPiY11cMPOmqUtm+XpNBQLV2qqCgPnx8AABMtW6apU23jJ57Q/febmgYAgGKh4Q4AAFAcERFFHxMZ6clHfPfdS1dpf/NN/f3vnjw5AADm2rFDgwfbbo7SsaMmTzY7EAAAxULDHQAAoDiuu84zx7hp2zaNHWsbDxig4cM9dmYAAEx39Ki6d1d6uiQ1bqzERAUHm50JAIBioeEOAABQHP37y2Ip4pi4OM881smT6ttXWVmS1KKFZs/2zGkBAPAFmZm65x79/rskVaum1atVubLZmQAAKC4a7gAAAMVx44164AFXB3Ttqs6dPfBAeXmKi9PBg5JUtaqWL1fFih44LQAAPmLUKG3dKkkhIUpK0jXXmB0IAIASoOEOAABQTLNm6d57ne/q3FkJCZ55lIkT9fnnkhQUpMWLFRPjmdMCAOALXn310h1KZs5Uhw6mpgEAoMRouAMAABRTaKji47V2rXr0uHR5mTvvVHKyPvlE4eEeeIiVKzV1qm38z3965ivzAAD4iM8+06RJtvGQIRo1ytQ0AAB4QojZAQqVmZm5adOmX3755cCBA1deeeV11113yy23VKlSpbDj09PTV65cuWvXrvT09Ojo6C5dulzD79AAAPAxZbJe33mn7rxTlSvr3DlJWrZMkZGeOfMvv2jQIFmtkvSPf+jppz1zWgAA3FHaVXvvXvXrp9xcSWrbVu+958FzAwBgGh9tuK9Zs+bhhx8+cOBA/o3VqlWbMmXKsGHDgoIKfjF/xYoVQ4cOPXXqlH3L2LFjhw0b9uabb5YvX94biQEAQFGo15fl/Hn17KmzZyWpfn0tXargYLMzAQAChheqdteul8pccrLCwjxyVgAATOaLDffk5OTevXtLCg0NbdOmTcOGDQ8dOrR58+ZTp04NHz78hx9+mDVrVv7j165d27t379zc3KCgoJYtW1555ZVffvnluXPn5syZc/bs2cTERJP+OwAAwCXU68s1dKh27ZKk8uWVnKzq1c0OBAAIGN6p2ikpkhQerlWrVLOmR04JAID5fO4a7hcuXBg7dqyk6OjorVu3fvnll3PmzPn888/37t17++23S3rnnXfWrFljPz4rK2vo0KG5ublVqlT56aeftm7dunLlyhMnTnTp0kVSUlLSypUrTfpPAQAANtTry/Xaa0pKso3feUc33WRqGgBAIPFm1bZYNG+eWrTw1PkAADCfzzXcFy5cePjwYUmvv/76DTfcYN9et27dZcuW1axZU9J7+S7ttmTJkj/++MMYNGnSxNgYGhq6dOnSBg0aSJo2bZo38wMAAEfU68uyebOeeso2HjlSQ4aYmgYAEGC8WbVfeEF9+njqZAAA+ASfa7j/5z//kVSzZs2ePXsW2FWjRo1OnTpJ+vbbb+0bV6xYIalx48adO3fOf3B4eHhsbKykLVu2HD9+vLRjAwAAF6jX7jt6VLGxys6WpJtv1muvmR0IABBgvFa1+/TRpEklPw0AAL7F5xruBw8elHTdddc53VuvXj1Jx48fzzVuZC5t3LhRUocOHRwP7tatm6S8vLxNmzaVTlgAAOAW6rWbLl5Unz46ckSSatbURx+pXDmzMwEAAozXqnZCgiyWkp8GAADf4nM3TZ06der58+fr1q3rdO/OnTslNWjQIDg4WFJqauqZM2dUSIO+VatWFovFarX+8ssvpRkZAAC4EiD1+tFHlZUlqUQt8nHjtHGjJAUHKz5ehbwhAgCgtHizagcHl/wcAAD4HJ9ruBt3RnVq06ZNn376qaRevXoZW4yrvUty2qAPCwuLioo6duzYb7/95vmgAADAPQFSr59/vqRnWLpUb71lG7/8su68s6QnBADgcgVI1QYAoPT4XMO9MP/+979jY2OtVmtUVNTjjz9ubDx//rwxCA8Pd/pX4eHhx44dS0tLc31yixs/Y3PnGAAA4Ih6XQwTJmjCBLNDAAACT8BW7Y0bub4NAMAzfO4a7o5SU1MffPDBO+6449SpU5GRkZ999ln16tWNXRkZGcagXCE/3ja2p6eneycqAABwRL0GAMBfULUBACghn264Z2dnv/zyyw0bNpwzZ47Vav3b3/62bdu2G2+80X5A+fLl7Uc6PUNWVpaksLAw1w9kdcmdYwJNUlKSJOM3B7CLjY2VlJSUZHYQ38IryBGvIKd4BTlVgirqQ6jXZmG1cYrVxileQY54BTnFK8ipktdK30HVNgtrjlOsOU7xCnLEK8gpXkFOlbxWFqnULykza9asdevWuT6mUqVKS5YsKbDxq6++Gjp06M8//yzpyiuvfO6554YNGxYUFFTgD43BhQsXnJ7Z+NS9sJ/CAQAAL6BeAwDgL6jaAACUUKk33Hfu3Lly5UrXx1SuXLnAlvfee2/06NG5ubkVK1Z88sknH3vsMXvVz69OnTrG4MiRI457c3Jyjh07Jql27drFiQ4AADyBeg0AgL+gagMAUEKl3nB/5plnhg8fXkSIkL/ESEhIGDlypNVqbdeu3fz586+++urC/rBOnTrh4eHnz583vghfQEpKSl5enqQmTZoUKzsAAPAA6jUAAP6Cqg0AQAmVesO9fv369evXd//4gwcPDh482Gq19unTZ/HixaGhoa6Pb9Omzeeff75x40bHXfaNbdq0cT8AAADwOOo1AAD+gqoNAEBJ+NxNU2fNmnXx4sU6derMmzevyG67pO7du0vaunXrnj17Cuz64IMPJLVs2bJevXqlERUAALiJeg0AgL+gagMAUBI+13A36nfbtm0PHjz4UyHy/7Rt0KBBUVFRkoYPH56ZmWnf/t5773311VeSxo8f7/X/CAAA8BfUawAA/AVVGwCAkij1S8pclpMnTx4/flxSYmJiYmJiYYddccUVR48eNcaVKlV6++23+/bt+9///rd58+b33HNPVFTUF1988cUXX0jq2rVrbGysd8IDAIDCUK8BAPAXVG0AAErCtxru+/fvL8Zf9enTJy0tbcyYMSkpKdOnT7dv79u379y5cy0Wi+cCAgCAYqJeAwDgL6jaAAAUm2813GNiYjZs2FDkYWFhYQW2DB06tEuXLomJibt27crIyIiOju7evXurVq1KJyYAACgO6jUAAP6Cqg0AQPFYrFar2RkAAAAAAAAAAPB7PnfTVAAAAAAAAAAA/BENdwAAAAAAAAAAPICGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8IPi5554zO4NP27Nnz7Zt2w4cOBAUFFS1alWz4/iEvLy8gwcPbtu27Y8//oiIiKhYsaLZiXzOp59+un379piYmNDQULOzmOzChQvbt2/fuXNnVlZWlSpVQkJCzE5kvtzc3JSUlC1btpw5cyYyMrJcuXJmJzLBiRMnVq1aFRoaWqNGDddHBtQivHv37vXr19epU6dChQouDmMRdiqgpoqbmCpFol7bUa8dUa9FvS4E9brkAmrCuIkJUySqth1V2xFVW1TtQphWta0oxPr165s2bZr/uWrduvX27dvNzmWmzMzM5557rsC0a9iw4cqVK82O5kM+/vhj45k5fPiw2VnMlJaWNmrUqEqVKtmnSqVKlV555ZXs7Gyzo5kmPT3d8RXUsWPH3bt3mx3N215++WVJ06ZNc3FMAC7CHTt2lPTNN98UdgCLsFMBOFWKxFRxB/XaQL12RL22o147Rb0uiQCcMEViwriDqm2gajuiattRtZ0yq2rTcHcuOTk5KMh2vZ2IiIjy5csb43Llym3atMnsdOa4cOGC/WVpsVjq169frVo1+1wcOnSo2QF9wu+//25/WgL5rcCpU6eaNGliny21a9e2v6B69+5tdjpzpKent2jRwv6c1K1b1/75akhIyBdffGF2QO/JzMxs1KiR67cCAbgI79u3z/hySmFvBViEnQrAqVIkpoo7qNcG6rUj6rUd9dop6nVJBOCEKRITxh1UbQNV2xFV246q7ZSJVZuGuxOpqanh4eGSatSosX79+uzs7PT09I8++sh43dauXTsjI8PsjCZ48sknjQn30EMPnTlzxti4c+fOW265xdi+aNEicxOaLjc39/bbb7e/MgP5rUDnzp2N1eq11147duyY1Wo9ceJEXFyc8czMmzfP7IAmGDFihPGfP2HChLNnz1qt1tzc3NWrV9euXVtSrVq1Tpw4YXZGbzh+/Hj//v2Np6KwtwIBuAjv3r27efPmxtNS2FsBFmFHAThV3MFUKRL12o567Yh6baBeO0W9LokAnDDuYMIUiaptR9V2RNU2ULWdMrdq03B34oknnpAUEhJS4BOepKQk4+l+++23zcpmlj/++CMsLExS586dC+xKS0uLiYmRVKdOHVOy+Y6XXnrJqH8B/lZg/fr1Tl8pFy9evOmmmyTdfPPNZmUzS05OjvG7v/79+xfYtW7dOuPpWrx4sSnZvOOnn36aNGlSly5d7J+iu3grEDiL8Jo1ax599NG2bdva143C3gqwCDsVOFPFfUwVd1CvDdRrR9Rr6rVT1GuPCJwJ4z4mjDuo2gaqtiOqNlXbKR+p2jTcnbjqqqsk9ejRw3GX8XTfdttt3k9lrvj4eGOOOv2ZyRtvvGHsPXLkiPez+Yivv/46JCQkNDT00UcfDfC3Ar169ZLUoEEDx11Llixp1qxZ8+bNjQ+fA8ePP/5ozIrExMQCu/Ly8iIiIiQ98sgjpmTzjnfffVcOCnsrEDiLcN++fR2fFqdvBViEnQqcqeI+pkqRqNd21GtH1GvqtVPUa48InAnjPiZMkajadlRtR1RtqrZTPlK1uZdxQSkpKQcPHpTUpUsXx71du3adOXPm5s2bMzIyXN/ftozZu3evJIvFcsMNNzjubdasmTH4+eefa9Wq5dVkvuHcuXNxcXE5OTmvvvqq8dulgJWdnb127VpJ9957r+PeuLg4+0/eAkpGRoYxyM3NLbDLWIslZWZmejuWF7Vv337BggX2fw4ZMqSwIwNqER4xYkSnTp2M8d69e1999dXCjmQRdhRQU8V9TBXXqNd21GunqNfUa6eo1yUXUBPGfUwY16jadlRtp6jaVG2nfKRq03AvaPfu3cbA6dPdvn37mTNn5uTkpKSk2K8EFAhuvPHGcePGRUZGFrhvr+HQoUPGoG7dut7N5StGjBhx4MCB9u3bP/744wkJCWbHMdOuXbvOnz8v6Y477jA7iw9p0qRJREREWlpaUlKS/dpqhjVr1hjPWOvWrU1K5w2NGjUybuFicPFWIKAW4Xbt2rVr184Yf/nlly7eCrAIOwqoqeI+popr1Gs76rVT1GvqtVPU65ILqAnjPiaMa1RtO6q2U1RtqrZTPlK1abgXdODAAWNQv359x732jfv37y8Ds9B9PXv27Nmzp9Ndubm5s2bNkhQdHd2gQQPv5vIJixYtSkhIqFatWnx8vP2OzwFrz549xqBWrVrHjx+fM2fOhg0bTp48ec0111x//fWDBg0KzPeL4eHhU6ZMefjhh1esWPHggw9OmjSpfv3658+fX758+WOPPSapdevWgfmtBEcswk6xCDtiqjjFVHGBep0f9dop6rX7WISdYhEuDBPGKSaMC1Tt/KjaTlG13cci7FSpLsI03As6d+6cMahSpYrjXvvGs2fPei+TD7t48eKwYcN27NghadKkScHBwWYn8raUlJTRo0dLmjNnTp06dcyOY74jR44Yg717995///0nTpww/rlz585ly5ZNnTp1xowZDzzwgHkBTTN69Ohy5co9+uijc+bMmTNnToUKFey/gOvdu/ecOXPy3+ckkLEIX5ZAXoSZKpclkKeKgXpdAPW6MNRrN7EIXxYWYSbMZWHCULULoGoXhqrtJhbhy+KRRZiGe0Hp6emSQkNDnX6Iar+Y0YULF7wayydt3bp1xIgRO3fulDRkyJBhw4aZncjbLl68GBcXl5aWNmzYsMI+Fgs0aWlpkiwWy4ABA9LS0jp37nzrrbdWrVr1xx9//OCDD86dOzds2LCoqKju3bubndQEYWFhFSpUMBYZ+/sASdWrVzcuMAexCF+OAF+EmSruC/CpIuq1M9RrF6jX7mARdh+LsJgwl4MJQ9V2RNV2gartDhZh93lqEabhXlBISIic3XLBcPHiRWNgsVi8l8n3/Pbbb0899dTSpUutVmtwcPDjjz8+efLkAHxOnn766W+++aZRo0YzZ840O4uvMO5JYrVaL1y4sHz58h49eth3jRs3rl27docPHx41alSHDh3Cw8PNi2mC0aNHG79Iuuuuu+67776GDRseO3Zs06ZNM2fOfP/99zds2PDll18G5t2QCmARdgeLsJgq7mGqGKjXjqjXhaFeu4lF2B0swnZMGHcwYQxUbUdU7cJQtd3EIuwOzy7CgX4lLEeVKlWSlJeXZ59w+dlvcBxoq5hdTk7OK6+80qRJk4SEBKvV2rp1682bN7/yyisB+DO39evXT5s2LTQ0dMmSJU5vsBCY7B+Njhw5Mv/7AEkNGjSYOnWqpD/++OOrr74yIZx5EhMTjfcBkydPXrNmTb9+/W666aa77rpr8uTJO3fujIiI+OWXX+6//36zY/oEFmHXWITtmCquMVXsqNdOUa+dol67j0XYNRbhApgwrjFh7KjaTlG1naJqu49F2LXSWIT5hntBUVFRxiA1NdXxvhNHjx41BjVq1PBqLN+Qmpras2fPzZs3S2rYsOHkyZNjY2PNDmWaGTNmWK3W5s2br1u3bt26dfbt3333nTF45513IiMjJY0bNy40NNSclF4XERFhDJz+nK1jx47G4IcffrCPA4HxPuDaa6998sknC+y69tprJ06c+NRTT3322Wf79++PiYkxI6APYRF2gUU4P6aKC0yV/KjXTlGvnaJeu49F2AUWYUdMGBeYMPlRtZ2iajtF1XYfi7ALpbQI03AvqFGjRsbgwIEDjrPw119/NQaNGzf2aiwfcO7cuU6dOn333XehoaFPPfXUpEmTwsLCzA5lpry8PEk7duwwbqTg6OWXXzYGo0ePDpy3AvZKVq9ePce9VatWjYiISEtLs9/1JUDs3btX0i233OL0imlt2rQxBnv27OGtAItwYViEC2CqFIapUgD12inqtVPUa/exCBeGRdgpJkxhmDAFULWdomo7RdV2H4twYUpvEabhXlCLFi1CQkJycnK+/vrr2267rcDerVu3SqpevXr9+vXNSGem/v37f/fdd5GRkatWrWrXrp3ZcczXokUL++9u8ktNTbWv++XKlZMUUL8EbN68uTHYt2+ffU23O3nypHG/lyZNmng7mamqVq16/Pjx7Oxsp3vt2ytXruzFUD6KRbgwLMIFMFUKw1QpgHrtFPXaKeq1+1iEC8Mi7BQTpjBMmAKo2k5RtZ2iaruPRbgwpbgIW+Hg9ttvl3TTTTcV2J6Tk1O7dm1J9913nynBTGT/AVdSUpLZWXxdfHy88VwdPnzY7CzmuPbaayUNGjTIcdeCBQuMJ+frr7/2ei4z9evXT1L9+vWzsrIc906aNElSUFBQWlqa97OZwpgG06ZNc7o3MBfhDRs2GE/LN99847iXRdipwJwqrjFV3Ee9pl47ol4XQL12RL0utsCcMK4xYdxH1aZqO6JqF0DVdmRi1eamqU6MGDFC0vbt2xMTE/Nvf/31141f6BgHBJR3331XUnR0dCBfTg5uGjp0qKRFixZ99NFH+benpKRMmDBBUsuWLVu2bGlOOJMY19o7dOjQ+PHjjZ9J2m3ZsmX69OmS2rdvH7C3KCmARdgRi7BTTBVHTBW4j3rtiHp9WViEHbEIu8CEccSEgfuo2o6o2peFRdhR6S7CHm/hlwF5eXlt27aVVK5cuYkTJ27evPnzzz8fPXq0cVmoAQMGmB3QBMbCHRoaWt2lffv2mZ3UfHz2np6ebnz8Lql///4LFixITk5+4oknjPtih4aGfv/992ZnNEGfPn2M56Rly5ZvvPHGv/71r/nz5w8ePNhYWKpWrfrbb7+ZndF7jKeisM/eA3MRdv3ZO4uwU4E5VVxjqriPek29dop6nR/12hH1utgCc8K4xoRxH1Wbqu0UVTs/qrYjE6s2DXfnUlNTb7jhBsfPJzp27Jienm52OhNUq1bN9Sc3hj179pid1Hy8FbBarSkpKQ0bNnScIdHR0WvXrjU7nTnOnDkzaNAgi8Xi+LQ0a9bsq6++MjugV7l+K2ANyEXY9VsBFuHCBOBUcY2p4j7qtZV67Qz1Oj/jP5x6nR/1uiQCcMK4xoRxH1XbStV2hqqdn/EfTtXOz8SqzU1TnatZs+bXX389d+7cjz766MCBA8HBwY0bNx4wYED//v2dvpLLttzc3DFjxlj/9+p1oUaNGl7I4+NatGjx7LPPSoqMjDQ7i2liYmK+//77uXPnrlix4tdffw0NDW3RokWrVq1GjhwZsL/nqly58sKFC0eOHBkfH79nz56UlJSoqKgmTZrcdtttgwcPDgkJrNXYeI3YbxzvKAAX4auuusp4Wowr6OXHIuxCAE4VF5gql4V6Leq1M9Tr/KjXjqjXJRGAE8YFJsxloWqLqu0MVTs/qrYjE6u2xZ1TAwAAAAAAAAAA17hpKgAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8gIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAPoOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLgDAAAAAAAAAOABNNwBAAAAAAAAAPAAGu4AAAAAAAAAAHgADXcAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwANouAMAAAAAAAAA4AE03AEAAAAAAAAA8AAa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8gIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAP+P+2dhQ+cmj4/QAAAABJRU5ErkJggg==\"/>" + "<img width=1000 height=400 style='object-fit: contain; height: auto;' src=\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAB9AAAAMgCAIAAAD0h24kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2BT1fvH8U93gYLsqWVPUUAQWcqWIXtvQb5sQfEnIiLIF1CWLBE3yKgge4nIRvYesguUvUtpC22hK78/km+pXaRt2pu279dfJycnuU+SNs+9T84918FkMgkAAAAAAAAAACSPo9EBAAAAAAAAAACQHlBwBwAAAAAAAADABii4AwAAAAAAAABgAxTcAQAAAAAAAACwAQruAAAAAAAAAADYAAV3AAAAAAAAAABsgII7AAAAAAAAAAA2QMEdAAAAAAAAAAAboOAOAAAAAAAAAIANUHAHAAAAAAAAAMAGKLgDAAAAAAAAAGADFNwBAAAAAAAAALABCu4AAAAAAAAAANgABXcAAAAAAAAAAGyAgjsAAAAAAAAAADZAwR0AAAAAAAAAABug4A4AAAAAAAAAgA1QcAcAAAAAAAAAwAYouAMAAAAAAAAAYAMU3AEAAAAAAAAAsAEK7gAAAAAAAAAA2AAFdwAAAAAAAAAAbICCOwAAAAAAAAAANkDBHQAAAAAAAAAAG6DgDgAAAAAAAACADVBwBwAAAAAAAADABii4AwAAAAAAAABgAxTcAQAAAAAAAACwAQruAAAAAAAAAADYAAV3AAAAAAAAAABsgII7AAAAAAAAAAA2QMEdAAAAAAAAAAAbcDY6ACBtCAoKmjRp0tOnT2/duhUeHj5x4sTChQsbHRT+5cqVKzNmzHB1dfX29i5TpsyoUaOyZMlidFAAgFRFvrZ/5GsAQAJI5UYhQQM25GAymYyOAUgDBg0aNHLkyIIFC0r6v//7v5UrV544cSJbtmxGxwWL4ODg/v37//rrr05OTqGhoXXq1ClQoMCKFSuMjgsAkKrI13aOfA0ASBip3BAkaMC2WFIGeD5/f/8///zzwoUL5psffPDBlStXVq9ebWxUiG7z5s2XLl26e/euJFdX1/79+69cufLatWtGxwUASD3ka/tHvgYAJIBUbhQSNGBbFNyB5zOZTE+fPvXx8THfzJ07t6Tr168bGhT+JWvWrOfOnfP39zff5DMCgAyIfG3/yNcAgASQyo1CggZsizXcgefLkSPHrVu3om6eOnVKUsWKFY2LCDHVq1fvwYMHUTdPnTrl6upatmxZA0MCAKQyu83XoaGhrq6uRkdhF8jXAIAE2G0qT/dI0IBtsYY7kGj9+vU7evTowYMHHRwcDAng/v37Fy5cqFGjRnwDAgMDly1btn//fj8/v1dffbVWrVr169e3/vmrVatWuXLlZs2alShRIlu2bDdu3Lh06dLWrVs9PT1HjhwZ36NOnjzp4eFRtGjRxL2YFBAREfHqq682btx46tSpRsUQHh6+adOmpk2bJupRgwYN8vX1bdmyZYUKFXLnzu3r63v58uX9+/d7e3svXbo0zodcvXp1wYIFx48fd3Z2rlKlyqBBgzJnzmyLVwAAaZ7h+dps48aNH3744dmzZ2P0J+E7P4ZE5evAwMCFCxceOnQoIiIib9683bp1q1Spkm1eYVIZla8XLFgwb9681q1b16xZM3/+/CEhIZcvXz558uSqVavWrFmTI0cO65/KmiwcERGxZs2a/fv3X7hwoUSJEvXr12/cuLFNXxAApFuGp/LnHno/13MPk4ODg+fNm3f06NEHDx4UK1asWbNmdevWTfLmbMLYA+oDBw789ttvgYGBERERderU6dy5c9KOcBP+7JK/GwY8hwlAYhw6dKhAgQJXrlwxZOthYWErVqwoWLBgkyZN4htz5MiRWrVqzZ49+/jx4ytXrmzZsqWk1q1b37p1y8qtZM+ePfZ3RcOGDR8/fhzneH9//ylTpri5uU2aNCkpr8rWpk6d+uabbz59+tSoAA4cOFC9evVMmTIl9oGtWrWK/c4XLlzY29s79uDIyMixY8d6enrOmzfv/v37QUFBq1evfvPNN0NCQmzxIgAgbTM2X0cJDAz09PQsUqRI7LsS9Z0fJ+vz9bFjxzw9PceNGxccHGwymfbt21eiRImRI0cm89Ulk1H5esaMGbHfN3d39zVr1lj/JFZm4evXr7/22ms1a9bct29faGjo0aNHS5cu3b59+9DQUFu/LABIb+z/0Dth1hwm7969u2XLlmvXrg0ICHj69Onhw4dbtGjRqFGjoKCgpAZuA0Yl6PDw8KFDh5YrV+748eMmk+nRo0effPJJmTJlTp8+najnseazS/5uGJAwCu5AIgQHB9euXfvIkSOpvN2IiIiePXs2atSoatWqb731lqTGjRvHOfL+/fuvvPLKtWvXonoiIyN79eolqWrVquHh4dZsLkeOHM7OlvWmHBwcypQpM3/+/IiIiBjDzpw5061bt7feeqtWrVrlypWTNHHixCS/Rls5f/58rVq1/Pz8Un/TX331VcuWLatUqdK8eXPzoXtin6FVq1bR1xzIly/f6NGjAwMDY480f6z58uW7evVqVOd3331XvHjxH3/8MVkvAwDSPqPydWwDBgyQFF/B3crv/PhYma8fPnyYP3/+Dz74IHrn+fPnnZycfvrppyS8KJswMF/PmDEj+jvv4eHRrVu3y5cvW/8MVmbhJ0+elCtXrmDBgg8fPozqPHTokJOT04cffmiLlwIA6Zb9H3rHx/rD5Nu3b9euXTsgICBGf6dOndq2bZvEF5BsBiboiRMnenh4RK9mmEym7t27lyxZMr7Jf9El6rNL/m4YkDAK7kAi9O/f/+DBg+a2v79/am56165dly5dMplMv//+ewKZo0+fPosXL47Ref/+fXd3d0lWzkAvUqRIUFDQiRMnDh069OjRo/iGPXz4cO/evffu3TOZTP3797eHgntAQED79u3v379vMplCQ0PN8/hSzfHjx//555/w8PA7d+4kueB++PDhc+fO7du37+7duwmM/O233yStXLkyemf+/PklDRs2LNGhA0D6YmC+jm7Hjh3du3dPoOBu5Xd+fKzM1x9++KGk69evx+hv0qRJlixZfH19k7DpZDI2X8+YMWP69OlXr17dt2+fj49PZGRkYp/Byiw8fPhwSUOHDo3x8FatWjk5OZ0/fz5p8QNARmD/h97xsf4wecSIEWPGjIndf+7cOUdHR0NK3gYm6Fu3bmXKlOk///lPjP4DBw5I+vTTT615Eus/u+TvhgEJc4x9DgWAOH3zzTcdOnR4/fXXJYWHhy9evDg1t16rVq1ixYo9d9j69etXrFhx/Pjx6J25c+d+++23Ja1du9bKzWXOnPnVV1+tUqWKh4dHfGOyZ89evXr1PHnyWPmcKc1kMn3++eczZswwX1F93759Fy5cSM0AKlSo8Morrzg5OSXnSZydnUuXLl2tWrW8efPGNyYkJGTEiBElS5aMcR7c2LFjGzdu3K1bt+QEAABpnbH5OkpISMiUKVNGjx6dwBhrvvMTZk2+Xrp0qaen54svvhijv379+kFBQYsWLUrappPM8HwtycHBwdPTs1q1akWLFk3susBWZuGgoCDz2jWxr6NTuXLliIiI+fPnJ+MVAEB6liYOveNj/WGy+aJrsftLlCgh6dy5c0mOIWmMTdDr1q0LCQmJveR61apVPTw8fv311/Dw8Oc+SaI+u+TvhgEJoOAOWGXTpk1nz54NDQ3duHHjhg0bpk2bVqRIEaODiikwMPDWrVvLly//9NNPY9xVsmRJScePH4+MjDQitNTwxRdflChR4uTJkxs3bly/fv2cOXPMeyrpz7Rp065du9a0adMYNYI+ffps2LDh1VdfNSowADCc/eTr0aNHjxgxIlOmTIZsPcqJEydu3bplnnwdQ4ECBST99ddfqRxSWs/XVmbhY8eOPX36VFLOnDljPEPhwoUlrV+/PlXiBYA0xn5SeUpzcHD45Zdfdu7cGaP/xIkTTk5OZcuWTeV4jE3QGzZskBTfHsvdu3ePHTuWasEAyedsdABAGvDgwYNOnTo9fPjwhx9+iOq8dOmSgSHFKVu2bBUqVDhx4kTskmtERISkRFXbw8PDz5075+PjU7FiRU9PT1sGmgK2bt06fvx4k8kU1fPSSy8l7Wrm9uDKlSunTp0qXLhw+fLlY8+8W7BggaSqVatK8vHxOXLkSJEiRSpWrOji4mJArABgN+wnXx84cCAiIqJmzZo3b9587uCEv/OfK+F8vXXrVknmqWox5MuXT9KRI0cSu8XksKt87evre+LECVdX16pVq7q5uVn5KCuz8MOHD80N87J+0WXNmlXSmTNnnj59av12ASAjsJ9UngoaNGiwbdu2+vXrf/zxx6NHjzb/SB8RETFixIhhw4bFeWn0lGN4gk54j+XChQtHjhwxn/RgW8ncDQPiwwx3ZEQRERHTpk3r2LFj3759E55e9PXXX4eGhubKlSv2AmrJOcss5Rw4cODy5cuTJ0+O0X/27FlJ5cqVc3S06r9+48aNvXr12r17t4ODw8SJE19++eV//vnH9uHGz8/P75NPPmnXrt2HH3546tSp+IYFBwdHna8dYw3Wa9eupWK8NnP+/PkePXosW7bMZDKtX7++SJEiS5YsiT7g1q1b3t7ekvLmzTt16tSvv/7a0dHx4MGDL7/8svmtAIB0I43m69DQ0HHjxo0bN+65I5/7nf9cz83X5suKxDnR3tzp6+ubqC3GkEbzdUBAwEcfffT111/7+/tfvHjxtddeGz58uHl2QsKsz8JFixY1N2KfAm8uZ4SFhV29etU2rwcA7FUaTeWpY8iQIWXKlAkPD584ceIrr7yydevWx48fd+3atXjx4tbsRSQsbSXo4ODgR48eKSX3WGJL/m4YkABmuCMj+vzzz6tWrdqvX786der8/PPPn3322Zdffhl72MSJE7Nlyxb90tX2z83NLfYJd/fu3du2bZukgQMHWvMkAQEBx44dW7hwoflm8+bNBw8eXL169fXr19epU8eW4cavR48eM2fOjIyMrFKlynfffbd69eqmTZvGGBMeHt6rV6+PP/44dUJKHYsWLVqyZIl5vlvz5s1LlizZrl27q1evfvLJJ+YBV65cMTdOnz6dI0eO7777znyzcePGFStWPHLkSNQHBwBpXRrN12PHjh06dGiWLFmeO/K53/kJsyZfBwQESIrz+iLmzoiIiKCgIGuijVMazddeXl5bt2596aWXzDfr1atXvnz506dPr1u3LuHZbdZn4dKlS7u4uISFhQUFBcV4kqjzHsyfDgCkY2k0laeOLFmy7Nixo2vXrlu3br106VKDBg3y5s07c+bMTp06Jf/J01aCjkqICeyx2DxpJnM3DEgYBXdkRB07dqxYsaKkmTNn1qxZc8KECe+9917x4sWjj5k/f35AQEDsxdCfa8uWLQMGDEjso1xdXbdv355CF+v4+uuvw8LCqlev3qtXL2vGz5kzp3Xr1tF7Ro0a9e233w4cOPCff/5xdk7x7w2TyfTll1+aP5Hhw4ePHDly0KBBPj4+MY6BBw4c2L179yScVubr61unTh3zyqqJ8u233zZq1Cixj7LewIEDa9SoEf3s8rZt25YtW3b06NHt2rUzz+yI+mF/1apVO3bsiBpZvHjxDh06zJ07t2PHjs2aNUu5IAEg1aTFfH38+HE/P7/Y18mMzZrv/IRZk68DAwMlxVlEjjqmDQgISFrBPY3m6/r16zdt2jSq2i6pcOHC3bt3//777xcvXtylS5eEQzI3npuFXVxc2rVrt3jx4mPHjsWYr/D333+bG+ZPBwDSsbSYylNTvnz55s2bV6dOndu3bwcHB9+7d2/o0KHOzs7t2rVLztOmuQQdlRAT2GOxbcE9+bthQMIouCMjMqd8STVq1Hj99dcPHTo0d+7c6L+0b9iwYdu2bfPmzUvCk9eoUeOXX35J7KNcXV2tuY55EuzatWvq1KllypRZs2aNlUuSxTh6l5Q3b95y5cqdOXNm8eLF3bt3T4Ew/8XBwaFChQrmdr9+/caPH3/lypUtW7Y0bNgwaszIkSMrV66ctMpyrly5fvnllyTsH1SpUiUJm7Ne9BcYpW7dumfPnv3yyy/nzJkjKWqJ2MaNG8cY+eabb86dO3fEiBEU3AGkD2kuX4eHh48aNcrLy8uap7LmOz9h1uRr82zBOC/iErWCSpIvAZJG83X58uVjd9atW/f7778fNWpUwgX3RGXhKVOmrFu3bu3atUOHDo0advPmzfv375vbST6xAADSijSXylPZ0qVLx40bN2/evMKFCw8aNGjdunV37txp3779qFGjxo4dm+SnTXMJOurkhgT2WGx7xbLk74YBCaPgjoxu4MCBvXr1Wrhw4fjx48316IMHD86ePXvlypVJu2JG5syZa9eubeswkygwMLBHjx5FixbdsmVLMvcqChUqdObMmYMHD6ZCwT26XLlydejQYf78+QsWLIhKirNnz5bUr1+/pD2ng4NDtWrVbBZiCitUqJCkgwcPmm++8MIL5kbJkiVjjCxYsKCkM2fOBAcHp90LxgJAnNJEvp40aVK/fv2ivqiTIMZ3ftKeIXq+Nl9yLfYy4tE7kxNwlLSer83vvI+Pj6+vb5xXbDNLVBYuVKjQunXrOnfu/NVXX3322WeSbty48cEHHwwYMMA8yd1+Kj4AkArSRCpPTQsXLhw+fPi+ffsKFy4sae3atStXrhw8ePCtW7fGjRv3+uuvN2/ePPlbSRMJOuoKsQnssdhkdyVhyd8NA6Jw0VRkdK1atXJ1db1+/fqhQ4ckeXt7Dx8+3MvLKx2sHxcZGdmzZ88cOXLs3r3bnDmssWbNmo0bN0a/OrmZeRLW6dOnbRylFTp27Chp3bp1oaGhklasWHHw4MHx48enfiQp6siRI15eXk+ePInRb37nz58/b97PiDr5MWfOnDFGmk+Ii4yMNORjAoAUZf/5+syZMz4+PlbOFLPyOz8BVuZr8xFsnHPQzFnVzc3NVu9hmsjXN27c+OWXX+7evRujP2qy+ZkzZxJ4eGKzcJ06dY4fPx4cHNytW7c2bdp88cUXs2bNMp8anz179qgLqwJARmD/qTw13b59e9CgQdOnTzdX283atGlz8uTJBg0aSJo2bZqttmX/CTpbtmzmH10S2GPJli2brTaX/N0w4LmY4Y6MLnv27I0aNVq3bt2qVas8PT3fe++9xYsXR/2+mqYNGTIkICDg77//zpo1q5UP2blzZ6tWrSRt3rzZnOajmJNcKvyqHFuDBg1y5szp5+e3fft2d3f3uXPnrl69OmmTIOzW06dP33zzzZCQkHPnzsXY9TG/81myZDGvxlu8ePGsWbM+evQo9r5I1Pl3nKIOIP2x/3z9xRdfRERE9OnTJ3qn+YKZvr6+5v6KFSsOGjTI+u/8+Fifr82H8ffu3Yv9JHfu3JFUtmzZxL7S+KSJfN2jR4/t27fXrFlz9+7d0fvN75uet6uThCycL1++GJ+yj4+PpHr16jk6MvkJQAZi/6k8NW3ZssVkMsVeqz1nzpwbNmyoUqXKsWPHbLUt+0/QTk5OL7744vXr11NhjyX5u2GANfgbAtShQ4d169YtW7Zs7969s2fPjn4RrSTYu3fvyJEjE/soNzc3Ly+vBE5hTqwJEybcvHlzw4YN0ecLfPPNN4MGDYrzwt9mUZPdYl9D5sGDB5IqV65sqwit5+Li0rp16zlz5nz99ddPnz5dt25dMpdve/jwYefOnZOw5NzYsWPffPPN5Gw6PiaTKSwsTNKLL74Y464Y77yDg8Mbb7yxZcuWq1evxhhpfkVubm6lSpVKiSABwFh2nq9Hjx7t5+cXo/PgwYOLFy/28PDo1q2bJPMDrf/Oj4/1+bpGjRr635FqDLdv35bUpEmThLdlvTSRr81vXew/HvP75ubm9vLLLyfwzInKwhEREYcOHXrllVdilOD37dsnybzIDABkKHaeylPTuXPn8ufPH+exubOzc9euXadMmWKrbaWJBF2jRo0lS5bEt8fi4uJSr169RAcal+TvhgHWoOAO6J133nFycrp06dKXX34ZdWmRJCtZsmTPnj0T+yhXV1cb/rY/f/78o0ePLl26NEYe/eOPP4YMGZLAAytVqlS9evW1a9fG2P8IDAw8evSog4PD22+/basgE6Vly5Zz5sz5+++/fXx8kj/LPlu2bD179kzC/kHp0qWTuen4uLu7V61a9Zdffon9u/327dv174uzde3adcuWLSdOnIgx8ty5c5Jq1qzJD/IA0iU7z9evvPJK7E7z2cru7u7RF5lN1Hd+nKzP12XKlKlUqdI///zj7+8fI/JTp05Zs61Esf98/dprrw0YMKBr164x+s3vfIMGDZ6bQ63PwpMmTRo5cmT9+vW3bNkSNezBgwcbNmxo27Ytx/MAMiA7T+WpqXLlypMmTXr8+LGHh0fse588eWL+ydxW7D9Bd+7cecmSJWfPno3Rf+3atUePHtWtW9f6E/cTlvzdMMAqJgAmk/mKHz/88IPRgTzf77//Lqlx48bxDfjrr7+6d+8eFhYWo//8+fONGjWKMbJ///6nTp2K3tm7d+8jR47EeOzcuXMlDRo0KL6N9u/fX9LEiRPjGzB9+vT+/fv7+fnFNyBhjx8/Nh++njt3Lr4xERERV65cOXjwYFBQUFTnzZs3k7bF5DD/LO/u7h7fgLNnzw4YMOCPP/6I3jlv3ryZM2fGGHnx4kVHR8eKFSuGhoZGdYaEhJQoUaJcuXKRkZHRBzdr1szZ2fnEiRO2eBEAYI/SUL4227Bhg6QiRYrE6Lf+O9+U7Hy9ePFiSXPnzo3eGRYWlidPnmrVqkVERETvT/f5+vz58506dYrR+eTJk1KlSmXJksXHxyd6f5z52vosPHz4cEl169aNPmzQoEFZsmQ5e/asbV4PAKQ1aSiVW3PoHTtBR5fAYbKfn1/evHnHjh0b+67g4OAKFSps3749eme6T9Dh4eHlypUrXLhwjPQ6Y8YMSevXr4/eGWeCji7hzy5Ru2FA0lBwB0wHDx5s1KiRpObNmxsdy/OZrydetWrVOO89fPiwh4dHgQIFXoymUKFCuXPndnR0/PDDD6NGhoaGmn/Yr1+/fvRnuHPnTs2aNffs2RPVs2vXrkyZMtWrV+/Ro0fxRdW+fXtJn3zySZz3mk+dltS3b9/Evdr/mTNnTpUqVSRNnTo1vjG3bt16//33JV29etXcExYW9tJLLx0+fDhpG00y89XSHBwcou+pRNe0aVNJHh4ewcHBUZ2RkZGtWrX6+eefo/Yw7ty5U6JEiaJFi8beh9u7d2+WLFlGjBgR1bNo0SInJ6dp06bZ+tUAgL1IW/nabNGiRZJy5swZHh4evd/673yb5OuePXsWKlTo9u3bUT3Dhg3LmTNnjLJvBsnXkydPHjhwYFSODg8Pb9WqVZYsWZYuXRpjZJz52mR1Ft69e3e5cuUePHhgvhkZGTl58mQPD49NmzbZ/lUBQFqQtlJ5wofe8SXo6BI+TN6/f7+Hh8fUqVOjz5a7evVq06ZNJ0+eHH1kBknQJ0+ezJIlS/QfIa5evZorV66BAwfGGBlfgo6S8GeXqENvIGkcTCaTbafMA2nLpUuXli9f3qNHj0KFCrm5ud2/fz/OU7oMN2rUqGvXrj148GDHjh3mK7BVq1atePHi7u7un332WbFixSSFhIQUK1YszlXPzH788ce+fftG3axdu/bOnTs/+eSTSZMmRR/m7+8/YMCAgICA4sWL37x58+TJk++///6QIUNiXFYlMDDwo48+evr06fXr13fu3GkymVxdXevWrZsvX77MmTN///33USPv3btXqlSpwMDAihUrHj16NLGvfd26dSaTKTg4uHPnzm+++ebOnTvjG7lr167OnTvfuHHDfHPt2rX9+vW7ceNGAsvW25CXl9e2bdsePXq0Z88e88K4JUqUqFKlSubMmdu1axd9kdzRo0ePGzeuatWqBw4ciP4MkZGR//3vf//++++SJUuGh4fv2bOnfv36U6ZMifNv8vDhwx988EF4eHjlypW9vb39/Py++eabWrVqpfTLBABDpJV8HaVv374PHz7ctm2beWH3SpUqvfzyy40aNTIv5q7EfOcnM1+btzVt2rT58+e3a9cuT548f/75Z0RExPfff1+kSJHowzJIvpa0cuXKadOmeXp65siRY/fu3QULFvz222+LFy8eY1h8+VpWZ+H58+fPnDmzcuXKjo6Ou3fvLl68+NSpU0uWLJmCrw0A7FVaSeXWHHqbxZmgrT9MlnTlypWxY8fu3bu3YsWKuXPn9vHxCQoKmjhxYvXq1aMPyzgJ2tvbe9CgQVmzZn377bdv3ry5atWqvn37xl4XN74Ebf1nl6hDbyAJKLgjQ/P19Z0+ffr48eMdHByqVq166NCh33//vWPHjkbHFYejR4+aTCZnZ2dHR0cHBwfzL2YRERFPnz59+eWXzcuZhYaGRv30Hafy5cvnypUr6mZkZKSPj0+JEiXiHBweHn769OmCBQvmyZMnzgFhYWGHDx92c3NzdnZ2cHCIiio8PDw0NNR8qmCUoKAgPz+/L7/88ocffkjUC9+/f//p06d79+4dEBCQJ0+eiIiIGzduFChQIM7BkyZNOnr06JIlS8w3W7ZsWbt27Y8++ihRW0yyixcv+vv7u7i4RP+MIiMjw8LCzOccRB986dKlIkWKxLfj4u3t7ezsHH2HID6PHz/29vYuWbKkrZa0AwA7lIbydZTdu3c7Ozu7uLi4uLiYc4F5FZfYxdbnfucnM19HH3n27Nng4OBixYrFNzgj5Osod+7cuXfvXrly5RJYtz3hfG1NFg4LC7ty5Yq/v3/x4sVz5sxpg7gBIA1KQ6ncmkNvszgTdKIOk83Ma7kEBgaWLVvW3d09zqgyVIK+e/fu5cuXs2bNWqZMmfhScJwJ2vrPLor1h95A4qT0FHrAbgUHBw8bNuzJkyfmmxMmTJDUtm1bY6NK36KvaWMNb2/v6CfTmU8/nDVrVnzjmzdvPmPGDHN7165d5cuXDwkJSVqoAAA7Qb5OfeRrAIANkcpthQQNpBWORhb7AeNERET897//HammDMMAACAASURBVDFihJubm7mna9eujo6O69evN5/6DZu7fPlyos7Punfv3rx58z7++OOonu7du0tauHBhfA/Zu3ev+WLugYGBgwcPXrFiRXwTBAAAaQL5OvWRrwEANkQqtxUSNJCGUHBHBvXVV1/1798/R44cUT0vvfRSvXr1njx5MnfuXAMDS8dmzZo1YMAAKwcHBQVNmTLliy++iL4QbevWrbNly3bw4MHDhw/Hfsi5c+eCg4MrVqz44MGDnj17fv/996VKlbJN6AAAg5CvUx/5GgBgQ6RyWyFBA2kIBXdkRN9+++0777wT40JhkoYOHSrp66+/DggIkDRnzpwzZ86kfnjp0ubNm3PkyFGwYEFrBkdERIwdO3bkyJGurq7R+zNnztyvXz9Jo0aNMvcMGzbM9L8LUezZs6dKlSqbN28eO3bsjBkz4lwdDwCQhpCvUx/5GgBgQ6RyWyFBA2mL05gxY4yOAUhVy5cvL1CgwJtvvhn7LvM1r/7666+9e/devHjR29v7vffeS/0I06Vdu3YNHjw4+q/rCRg/fnzfvn3z5csX+6633nrr8uXLq1atunfv3ooVKypWrFi5cmXzXYcOHXJ2dn799df79Onzwgsv2DJ6AECqI18bgnwNALAVUrkNkaCBtMUh6rcsIIMIDAzMli1bAgOCg4MvXLjwwgsvxP4dHqnjuZ+Rn5+fj49P0aJFc+XKlWpRAQBSE/na/pGvAQAJIJUbhQQNGM6YgvvkyZNv3bo1Y8aMBMY8efJk9+7d3t7ePj4++fPnL1++fLVq1bJnzx7f+ODg4DVr1pw+fTo4ONjT07NZs2YlSpRIgdgBAMhAbt26NW7cuDx58owdOzbOAZGRkVu3bt2/f/+DBw/y5s1bp04d86WW4kO+BgAgJXCUDQCAnTCg4P7gwYMCBQq4uro+fvw4vjF//vnn4MGDfXx8onfmzJnzq6++6tOnj6NjzKXnV69e3bt37xhXuO7Tp88333zDJZUBAEgak8nUsGHDrVu3Fi9e/OLFi7EHnDlzplOnTidPnozeWbNmzUWLFnl6esYeT74GACAlcJQNAID9cE79TU6ZMiUsLCzGpRuiW7FiRbt27SS5uLjUqFGjZMmSV69e3bt3r5+fX//+/f/555/Zs2dHH79x48Z27dpFREQ4OjpWqVIlf/78O3bsCAwM/PnnnwMCApYsWZLiLwkAgPRo8uTJW7duje/eGzdu1KtX7+7du5JKlChRqVKlvXv33rx5c8+ePQ0bNjxw4ECMGXPkawAAUghH2QAA2BFTKrp169ann35qvshDlixZ4hzz+PHjl156SZKnp+fRo0ej+q9fv16nTh1zzOvXr4/qf/LkSaFChSRlz579zJkz5s7Q0NBmzZqZB69evTpFXxQAAOnSwYMHXVxczMm0ePHisQe0bdvWfO9vv/0W1TlhwgRz54cffhh9MPkaAICUwFE2AAD2JuZZYymke/fupUqVKlSo0MSJE00JLmIzb96869evS5o+fXqlSpWi+l988cVly5blzZtX0g8//BDV/9tvv928edPcKFu2rLnTxcVl8eLFRYsWlTRlypQUeEEAAKRnjx496ty5c1hYWHwXXLp48eLKlSslDRs2rEuXLlH9n376afv27SX9+OOPgYGBUf3kawAAbIujbAAA7FMqFdw3b9584cKFhHcCzP7++29JefPmbdOmTYy7cufO3bhxY0mHDx+O6ly9erWkMmXKNG3aNPpgDw8P8wH/vn377t+/n+xXAABABjJo0KBLly7VrVs3ahp7DGvXrjWZTA4ODkOHDo1xV69evSSFhIRs3rw5qpN8DQCAbXGUDQCAfUqlgvuhQ4cu/88HH3yQwMgrV65IKl++fJz3ms+Du3//fkREhLln165dkurXrx97cIsWLSRFRkbu3r07WdEDAJCRLFq0aOHChTlz5ly4cGHsS6iZ7dy5U1K5cuUKFCgQ46569ep5eHhEjTEjXwMAYFscZQMAYJ9S6aKp5hRuFuMSajFMnjz58ePHL774Ypz3Hjt2TFLRokWdnJwk3b1719/fX/HsOrz++usODg4mk8nb2zs5wQMAkHFcvnx5wIABkn7++Wfz+q1xOn/+vOLJv25ubq+++urevXuj8i/5GgAAm+MoGwAA+5RKBXfrRV2zJbbdu3dv2LBBUtTp7eZ16CTFuevg6uqaJ0+ee/fuXbt2zfaBAgCQ7oSHh3fp0iUwMPA///lP7LPOozOn4PgO3c39UfmXfA0AgIE4ygYAIDXZXcE9Ptu2bWvfvr3JZMqTJ8/HH39s7nz8+LG5YT51PTYPD4979+49evQo4Sc3X9IdAAD7ZM3yrDbxxRdf7N+/v1SpUjNmzEg4nuDgYCWYfyVF5V/yNQAgI0i1fG0rHGUDADKsFM3aqbSGe3LcvXu3b9++DRo08PPzy5Yt219//ZUrVy7zXSEhIeaGm5tbnI8195uLAgAAIAE7duyYOHGii4vL4sWLs2TJksDIJ0+emPdOrMy/5GsAAOwKR9kAAKQcu57hHhoaOnXq1AkTJph/PK9evfqvv/5aunTpqAHu7u5RI+N8hqdPn0pydXVNeEMJ/6Zh/mU+zc1WSFHBwcG+vr6ZM2fOnTu30bHYEV9f3+Dg4Ny5c2fOnNnoWOyI+WxTT09PowOxI/wHxSnj/Ac9eqSmTRV1pbGpU/XRR/EOTrXZYX5+ft26dYuMjJwwYcJrr72W8OCoI3Ar8y/52ih828Qp43zbJAr5Ojb+g+LEf1Cc0tBsbo6y7RbfOXHiOydOZO3Y+A+KU5r+Dzp+XLVqKShIkho21J9/ytlGZexUyNr2W3Dfs2dP7969zddky58//5gxY/r06ePo+K8p+VHz74LMb38sCZ/wDgBAKgsMVOPG2rdPkhwcNG2aPvzQ6JgkSf/5z39u3rxZr169qDPKE+Do6JgpU6aQkBAr8y/5GgAAe8BRNgAgTbh7Vy1aWKrtpUtr6VKbVdtTh50G+8MPP7z//vsRERGZM2f+9NNPP/roozjPbS9UqJC5cevWrdj3hoeH37t3T1LBggVTNFoAAKwREKDGjbV/vyQ5OGj6dH3wgdEx/c+ff/4pKSAgoGnTptH7T58+Len27duNGzeWVKpUqW+++UZSoUKFLl68GGf+lXTz5k1Fy7/kawAADMdRNgAgTQgLU4cOMl/DO1s2rVyp7NmNjimR7LHgvmjRooEDB5pMptq1a8+dO7dYsWLxjSxUqJCHh8fjx4/NP9HHcPHixcjISElly5ZNwXABALCCv78aN9aBA5Lk4KCZMzV4sNExxXLkyJE4+4ODgzdu3CjJ19fX3FO6dOmLFy/GmX8lXbhwQdHyL/kaAABjcZQNAEgrBg3Szp2S5OSkRYtUrpzRASWe3RXcr1y50rNnT5PJ1KFDBy8vLxcXl4TH16hRY9OmTbt27Yp9V1RnjRo1bB8oAABW8/dXo0Y6eFCSHBw0a5YGDTI6pn/7/PPPw8PDY/evXbv22LFjOXLkGDJkiKJNZ6tZs+b69etPnDjx6NGjrFmzRn/IhQsX7ty5Yx4T1Um+BgDAKBxlAwDSimnT9PPPlvaUKXrnHUOjSSq7K7jPnj07LCysUKFCc+bMee5+gKSWLVtu2rTpwIEDZ8+ejfEb+/z58yVVqVLlpZdeSqlwAQB4nocP1aiRDh2SJAcHffutBg40OqZYPv/88zj7b9y4cezYsZw5c44ZMyZ6f8uWLT/77LOwsDAvL68BAwZEv2vevHmSXF1do69OQ74GAMAoHGUDANKEzZs1fLil3aOHhg41NJpkcHz+kNRlzt+1atW6cuXKqXhEP7Xt3XffzZMnj6T+/fs/efIkqv+HH37Ys2ePpGHDhqX6iwAAwOLhQzVs+Kza/t139lhtT4Jy5co1adJE0pgxY65evRrVf+zYsenTp0vq3bt3zpw5o/rJ1wAAGIWjbACA/Tt/Xh06yHzedfXq+uknowNKBvua4f7gwYP79+9LWrJkyZIlS+Ibli9fPvO56pKyZMny7bffduzYcefOna+88kqrVq3y5MmzZcuWLVu2SGrevHn79u1TJ3gAAGK4f1/16+vkSUlyctKcOXr3XaNjsp2ZM2fu27fv3r17lStXbtmyZYUKFfbu3fvHH3+EhIQUKVJk7Nix0QeTrwEAMARH2QAA+xcYqDZt5O8vSQULavlyubkZHVMy2FfB/dKlS0l4VIcOHR49ejRkyJCLFy9+/fXXUf0dO3b85ZdfHBwcbBcgAADWundPDRo8q7bPnasePYyOyaZKliy5YcOGTp06Xb16de7cuVH9FStWXLp0ae7cuWOMJ18DAJD6OMoGANi5iAh16aIzZyQpUyatXq3/XTssrTKg4N6zZ886deo4OTnFvqt48eLbt29/7jO4urrG6Ondu3ezZs2WLFly+vTpkJAQT0/Pli1bvv7667aJGACARLp7V/Xr6/RpSXJy0rx56tbN6JiSZNiwYd26dcuUKVOc91arVu3s2bOrV6/eu3evn59fvnz56tat26RJE2fnuHcwyNcAAKQEjrIBAGnXsGFav16SHBw0d67SQapxMJlMRsdg78y/3vNGRRccHOzr65s5c+bYExgzMl9f3+Dg4Ny5c2fOnNnoWOzItWvXJHl6ehodiB3hPyhO6ek/6O5d1atn+X3eyUnz56tr1yQ+FTnIerxXsfFtE6f09G1jQ+Tr2PgPihP/QXEiByUW71hsfOfEie+cOJG1Y+M/KE5p4j9owYJnK6+OHq3//jfFt5gKOcjuLpoKAECadufOv6rtCxYkvdoOAAAAAEB6tXev+va1tFu10hdfGBqN7djXGu4AAKRp16+rXj1dvChJLi5askStWxsdEwAAAAAAdubWLbVvr6dPJalcOc2fL8f0MjM8vbwOAACMdu2a6ta1VNtdXbV0KdV2AAAAAABiCglRq1a6dUuScuXSunXKls3omGyHGe4AANiAudru4yP9r9resqXRMQEAAAAAYGdMJr33ng4dkiQXFy1frmLFjI7Jpii4AwCQXFevqm5dXb4sSa6uWrZMLVoYHRMAAAAAAPZn3Dj9/rulPWuW6tQxMpiUQMEdAIBkuXJFdevqyhVJcnPT8uVq1szgkAAAAAAAsEOrV+u//7W0hwxRv36GRpMyKLgDAJB0Fy6oXj3duCFJmTJpzRo1bGh0TAAAAAAA2J8TJ9S9uyIjJalBA02danRAKYOLpgIAkETe3qpb11Jtz5xZa9dSbQcAIMO5edPoCAAASAsePFCbNnr8WJKKFtXixXJOp1PB0+nLAgAghZ0/r3r1LBdVz5xZ69apXj2jYwIAAKkrOFhNmxodBAAAdi8sTO3aycdHkrJm1dq1yp3b6JhSDDPcAQBItHPnVLeupdqeJYv++INqOwAAGVG/fvrnH6ODAADA7g0erB07JMnRUYsWqXx5g+NJURTcAQBInLNnVa+ebt+W/ldtr1vX6JgAAECqmzVLXl5GBwEAgN2bNUs//mhpT5igZs0MjSblsaQMAACJcOKEGjSQr68kvfCCNmxQ9epGxwQAAFLd/v36+GOjgwAAwO5t2aKPPrK0u3fXJ58YGk2qYIY7AADWOn78X9X2v/6i2g4AQEZ0967atVNoqCRVrGh0NAAA2KuLF9Wxo8LDJemNN/TTT0YHlCoouAMAYJVjx55V27Nn18aNqlbN6JgAAECqCw9Xx466eVOScubUypVGBwQAgF169EitW8vPT5IKFNCKFXJ3NzqmVMGSMgAAPN/Ro2rY0LKjkD27Nm3S668bHRMAADDC8OH6+29JcnTUb7+paFGjAwIAwP5ERqpLF506JUnu7lq9WoUKGR1TamGGOwAAz3HkyLNqe44c2ryZajsAABnU6tWaPt3SHjtWjRsbGg0AAPbq00/1xx+S5OCgOXNUtarRAaUiCu4AACRk717Vq2eptufJox07VKWK0TEBAAAjnD+vd9+VySRJzZtrxAijAwIAwC4tXKgpUyztESPUpYuh0aQ6Cu4AAMRrzx41aaLAQEnKm1dbt+rVV42OCQAAGOHxY7VpY9krKFFCCxbIkeNpAABiOXJE/fpZ2k2aaOxYQ6MxAmu4AwAQt9271bSpHj2S/ldtL1/e6JgAAIARTCa9957OnJGkTJm0dKmyZzc6JgAA7M/t22rZUiEhklS2rBYvlpOT0TGlOgruAJDhHD+ur76SpIoV9dlnRkdjr3bt0jvvWKrt+fJp61a9/LLRMQEAAINMnqxlyyzt779XpUqGRgMAgF168kStWunmTUnKmVNr1+qFF4yOyQgU3AEgw7lzx3LEaK4mI7adO/XOO3r8WJLy59fWrSpXzuiYAACAQbZv1+efW9pDhujddw2NBgAAu2QyqXdvHTwoSS4uWrZMJUoYHZNBWHMOAIB/2bxZjRtbqu0vvqidO6m2AwCQcd2+ra5dFR4uSdWrP7sEHAAAiG7CBC1aZGnPnKl69QyNxlAU3AEAeGbjxmfrzb30knbsUMmSRscEAAAMEham9u11+7Yk5cunZcvk6mp0TAAA2J8NGzR6tKX93nsaMMDQaIxGwR0AAIs//1SrVpZqe+HC2rFDxYsbHRMAADDOBx9ozx5JcnbWkiUqVMjogAAAsD9nz6pzZ0VESFKtWvr+e6MDMhoFdwAAJGnDBrVtqydPJMnTU9u2qVgxo2MCAADG+e23ZyWDyZNVu7ah0QAAYJf8/NSihQICJKlIEa1cydlgFNwBAJDWr1fr1pZqu3luO9V2AAAysn/+Ud++lnbr1vrwQ0OjAQDALpnXXrt4UZI8PLR2rfLkMTomO0DBHQCQ0f3xh9q21dOnklSkiHbsUNGiRscEAACM8/Ch2rRRcLAklS6tefPk4GB0TAAA2J8PPtC2bZLk6KjfftMrrxgdkH2g4A4AyNCWL1ebNpZqe8mS2r1bRYoYHBIAADBQZKS6ddOlS5KUNatWrlS2bEbHBACA/fnuu2drr40frxYtDI3GnlBwBwBkXMuWqUsXhYVJUunS2r6di6EBAJDRjR2rP/+UJAcHzZ2rcuWMDggAAPuza5eGDrW027XTp58aGo2dcTY6AAAAjLF0qbp2VXi4JJUurW3bVLCg0TEBAABDbd6s8eMt7eHD1a6dodEAAJAkJ07I21uPHrkVKxaaO7ftn//KFbVtq9BQSapUSfPns/bavzDDHQCQEf3++7Nqe5ky2r6dajsAABnd1avq3FkREZJUt67GjTM6IAAAkmTBAnXooN69s27dmsnmT/74sVq00P37kpQ/v9auVebMNt9I2kbBHQCQ4SxerO7dLdX2smW1fbsKFDA6JgAAYKgnT9S2rR48kKSXXtKSJXLmhHAAAP4tMlJdu+rkSUlyd9eqVXrxRaNjsj8U3AEAGcvcuerWzVJtr1BBO3cqf36jYwIAAEYbOFBHjkiSi4sWL1aePEYHBACA/fn8c61da2l/+62qVTM0GntFwR0AkIH88ov69FFkpCRVrKgtW5QS69kBAIC05fvv9euvlvasWapZ09BoAACwS8uXa+JES/uTT9S7t6HR2DEK7gCAjOLnn9Wvn6XaXqkS1XYAACBJBw9q6FBLu1s39etnaDQAANilY8f07rsymSSpUSN99ZXRAdkxCu4AADtSsWImBwc5OMjb28bP/NNPz6rtr72mLVuUK5eNNwEAANKcBw/UsaOePpWkChX0449GBwQAgP25c0ctWig4WJJKl9bvv8vJyeiY7BgFdwBA+vfDD+rf3/JTfOXK2rxZOXMaHRMAADBaRIS6dNGVK5KUI4dWrlTmzAaHBACAvXnyRK1b68YNScqRQ+vWKXt2o2OybxTcAQDp3PTpGjDAUm2vUUPbtlFtBwAAkvTZZ9q0SZIcHeXlpWLFjA4IAAD78/772r9fkpyc9NtvKlnS6IDsHgV3AEB6NnWqPvrI0q5ZU3/9pWzZDA0IAADYhzVrNGWKpT16tJo2NTQaAADs0uTJmjPH0p4+XU2aGBpNGkHBHQCQbk2Zoo8/trRr1dKGDcqa1dCAAACAffD2fnblt4YN9fnnRgcEAID92bhRn31maffsqcGDDY0m7aDgDgBInyZP1iefWNpvvkm1HQAAWDx+rDZtFBAgSYULa/FirvwGAEBM586pUydFREhSzZr64QejA0o7KLgDANKhSZM0fLil/dZb+vNPeXgYGhAAALAbvXvr9GlJcnfXypXKlcvogAAAsDMPH6pFC/n7S1Lhwlq5Um5uRseUdlBwBwCkN2PG6NNPLe2339Zff1FtBwAAFlOnaulSS/u77/Taa4ZGAwCA/YmIUNeuunBBkjJl0ooVypvX6JjSFGejAwAAwJZGj9a4cZZ2o0ZatUqZMhkaEAAA6YWvr775JlNYmLOnp/OAAUZHkyR792rECEt74ED16mVoNAAA2KWhQ7VhgyQ5OGjePFWubHRAaQ0FdwBA+jFqlMaPt7QbN9aqVXJ3NzQgAADSkbt3NW5cFklly0amxYL7nTtq315hYZL0xhuaNs3ogAAAsD/z5mnWLEt7zBh16GBoNGkTS8oAANKJkSOfVdubNqXaDgAAngkLU4cOunVLkvLm1fLlrEULAEBMe/aof39Lu00bjRplaDRpFjPcAQBpnsmkjz7SjBmWm++8oxUrOIoGAADP/N//adcuSXJykpeXXnzR6IAAALAzV6+qTRs9fSpJFStqwQI5OBgdU9rEDHcAQNpmMmno0GfV9rZttWoV1XYAAPDM4sXPzo6fMEENGxoaDQAA9ickRG3b6t49ScqXT2vXKksWo2NKs5jhDgBIw0wmffDBs0Podu20aJFcXAyNCQAA2JOTJ9Wnj6XdsqU+/tjQaAAAsD8mk3r21JEjkuTioiVL9NJLRseUllFwBwCkVSaTBg/W7NmWmx066Lff5ExmAwAA//PokTp0UFCQJJUqpfnzOTseAICYvvhCS5da2rNnq3ZtQ6NJ+1hSBgCQJplMev/9Z9X2jh2ptgMAgH8xz9c7d06SPDy0cqVeeMHomAAAsDMrV2r8eEt76NBnp4UhyahMAADSnshI/ec/+vVXy81OnbRwIdV2AADwL19+qZUrJcnBQXPm6OWXjQ4IAAA7c/y4evSQySRJDRtq8mSjA0oXmOEOAEhjIiL03nvPqu29ejG3HQAAxLR1q8aMsbT/7//UoYORwQAAYIfu3lWLFs8WXluyhCNr26DgDgBIS8zV9vnzLTd799Yvv8iRbAYAAKK5dk2dOikiQpJq1NBXXxkdEAAAdiYsTB076vp1ScqWTStXKkcOo2NKL/jZAgCQZkREqGdPeXlZbv7nP/rxR6rtAACkNvOJ53bryRO1bStfX0nKn1/LlsnFxeiYAACwM4MG6e+/JcnRUYsWsfCaLVGlAACkDRERevfdZ9X2Pn2otgMAkEoCAzVmjJo2tdw8f97xrbe0bJmhMcXv/fd1+LAkubho6VIVLGh0QAAA2Jlp0/Tzz5b211/rnXcMjSbdYYY7ACANiIhQ9+5avNhys18/ff+9HBwMjQkAgIzB21tNmsjH51mPyaRdu7Rrlzp21MKF9jV//OefNWeOpT19ut5809BoAACwP5s3a/hwS7tHDw0damg06REzAwEA9i4sTO3bP6u29+9PtR0AgFQSHKzGjf9VbY9uyRJ9/HHqBpSg48f1wQeWdpcuGjTI0GgAALA/3t7q0EHh4ZJUvbp++snogNIjCu4AALsWGqoOHbRqleXmRx9RbQcAIPV8+60uX05owOzZunQptaJJkJ+f2rRRSIgkvfLKszPlAQCAWWCgWreWv78kFSyo5cvl5mZ0TOkRBXcAyEBMJv35p77+2nLz0CFNnqwHDwyNKUGhoWrfXqtXW25+/LGmTjU0IAAAMpjnLtQeEfHsd3EDRUaqa1fLbwPZs2vlSmXObHRMAADYk8hIdemiM2ckKVMmrV7NZU5SCgV3AMgo7t1TgwZ65x1t3WrpefBAw4erRAm7OE6OLTRU7dpp7VrLzWHDNGWKoQEBAJDxnD9vmzEpbdQo/fWXJDk4aO5clShhdEAAANiZjz/W+vXS/3Ll668bHVD6RcEdADKEp0/VpIm2bYvjLn9/deigjRtTPaYEhYaqbVutW2e5OXy4Jk82NCAAADKkJ0+ePyY4OOXjSNC6dZowwdL+/HO1bm1oNAAA2J8FCzR9uqU9apQ6dTI0mvSOgjsAZAizZuno0XjvDQ/XgAEKC0vFgJ6nXz/98YelPXy4Jk40NBoAADKq/PmfP8bYE9IvXlSPHjKZJKlBA33xhZHBAABgh/btU9++lnarVuTKFEfBHQAyhLlznzPg8mX9/XeqhGKdvXstjf/+l2o7AACGqV/fNmNSSEiIOnSwXPzN01OLF8vJybBgAACwQ7dvO7Rrp6dPJalcOc2fL0fqwSmMNxgA0r+QEJ09+/xhhw+nfCjPY56eFmXsWI0ebVAoAABA+vDD55SwX35ZDRqkVjSxDBigY8ckyd1dK1Yod27DIgEAwA6Fhzt07Oh265Yk5cqltWuVLZvRMWUAFNwBIP17+NCqYX5+KRzH8wQHO9y86RB1c/x4jRplYDgAAEAVKuirr+K994UXtGiRnJ1TMaBoZs7U/PmW9rffqkoVY8IAAMBurVuX+cgRR0kuLlq+XMWLGx1QxkDBHQDSv5w5rRqWK1cKx5Gg4GCHXr3yhIRYbn70kUaONDIeAABg9skn8vKKYzH3WrW0f79efdWImKQ9ezRsmKXdp4969zYmDAAA7Nnp067mxrffqk4dQ0PJSCi4A0D65+5u1cFwtWopH0o8AgLUtu0L+/e7R/X062dYMAAAIIauXXXlimbPttzMl890+LB27VKZMsbEc/euOnSwXO/99dc1a5YxYQAAkCYMHvzsoqlIBRTcASBDeO60r1KlVLNmqoQSi7+/3n5bhw8bdDo6AACwgpubate2tHPmNFWubFgk4eHq2FHm5Whz59by5XJzMywYAADs0P37z9p1VZTV9gAAIABJREFU6kRMm2ZcKBkSBXcAyBAGDFCNGvHe6+qqn34yZgHWhw/VsKEOHpQkBwflzWt63iMAAECGNny4/v5bkhwd5eUlT0+jAwIAwJ48eKC1ay3t7NkjFywINepqKxmWMQV3f3//e/fuWTMyMjLS39/fZLK2/hIaGhoYGJiM0AAgfXJx0R9/qEWLOO7Km1dr1jybs5aa/P3VqJEOH5YkBweNHev3wgsGhAEAANKKVas0fbql/eWXatTI0GgAALAzYWFq104BAZabHTs+zpWLaW2pzYCCu8lkqlixYrFixRIetmzZspo1a7q5ueXIkcPd3f3tt9/etGlTfIPDwsImTpxYunRpd3f3F154IXv27N27d79w4YKtYweANCxHDq1Zox071KyZpSdfPs2erUuX1LixAfGY57YfOiRJDg6aNOlxjx6PDYgDAACkEefPq2dPmadjtWih4cONDggAADszeLB27Hh2M0+eCMNCycAMKLjv3Lnz6tWrCY8ZMmRIhw4d9u7dGx4eLik0NHTz5s2NGzeeMGFC7MFBQUFvvfXWiBEjvL29zXPhAwICvLy8KlWqtHXr1pR4CQCQdtWurUGDLO1KlTRwoDw8DAjj/n3VqWOZ2+7oqLlz1avXk6tXnaNOUjp2TJGRBgQGAADs0+PHatNG5l2FkiW1YIEcHIyOCQAAezJrln780eggkPoF9wcPHvTp0yfhMXPnzp01a5akN954w8vL6/Tp0z///HPp0qVNJtPIkSP/+uuvGOMHDBiwf/9+SV26dPnzzz+PHj06adIkDw+PoKCg9u3b37lzJ4VeCwAgae7dU/36+ucfSXJy0ty5qltXnTplq1274N27lkPnTp1Urpw2bjQyTgAAYCdMJvXqpTNnJClLFq1cKZahAwAguq1b9dFHlnbZsoaGkuGl0pr5J06cOH369K5du7y8vB4/TmjFgKdPn44ePVpSqVKlNmzYkCNHDknlypVr0KDBG2+8ce/evZEjRzaOtvbBqVOnvLy8JLVv397Ly8vBwUFSpUqVypUr17Jly4cPH06ePHka1+IFALthrrafOiVJTk769VdVqaIqVeTr6xpj5PnzatJEc+eqZ8/UDxMAANiRyZO1fLml/f33Kl/e0GgAALAzly+rUyeFh0tS5cqqWVNnzxodUwaWSjPcGzVq1LVr1x9++CHharukTZs23bx5U9I333xjrrabFSlS5LPPPpN09OjRf8yzIiVJv/76q8lkypQp008//eQQ7ZTCZs2atWjRQtLChQsjWZUAAOzD3buqV+9ZtX3ePHXtqu7d5esb93iTSf36yds7NWMEAAD2Zft2ff65pT10qLp3NzQaAADszKNHatHCclhdoIDGj7cs3ypp3z53b28DVhTP4FLpHe/YseO7/1OhQoUERppXjMmePXvDhg1j3NW8efPoY6K3GzRokD179jjH+/r6Ho76KwMAGOfOHdWrp9OnJcnJSQsWqFs3bdyoI0cSelRoqGbNSp0AAQCA3bl+XR07WqbsVa+uiRONDggAAHsSGakuXSzT2tzcVLSomjTR3r2We7duzfTaa+7duyvqemlIBam0pMzMmTOj2mPGjDlx4kR8I813ValSxdEx5o8BxYoVK1my5IULF6JmuD99+vT8+fOS3njjjdhPFbXyzD///FO1atXkvQIAQLLcuKG6dXXxoiS5uOj339WmjSRt3vz8x27alLKxAQAA+xQWps6ddf++JOXLp+XL5RpzCToAADK0Tz/VH39IkoODcuR4VmqPYjLJy0sXL2rbNmXKlPoBZkR2d07BhQsXJBUtWjTOe4sXLx41RpKPj09ERER84wsWLJgpU6bo4wEAhrh+/Vm13dVVS5ZYqu2Sbt16/sNv3EjB2AAAgJWcnJQ9u+mFFyKzZUulLQ4Zoj17JMnFRUuXqmDBVNouAABpgpeXpkyxtF95RXfuxDty/35NmpQ6QSG1Zrhbz8/PT1LevHnjvNfc/+DBg+iDExifJ0+ea9euRY2Pz08//fTcwJ67+nyGEhwcHBQUZDKZ3N3djY7FjgQFBQUHB7u7u3PZgOiCgoLEf9C/Gf4fFBLiJGWSFBER8fj/2bvTgKiqPgzgz7DvIoK7KIkL5pKpZfrmbqkhKAq4b7hlZWJaZlpm5r7kVu5boonJZmoqLoli6NubmYYCaYqiIouAzrAN8364t4HYRAPOMPP8Pp175j+XZ5AB/HPvOY9VFf3h4uMVb71lefOmEQAzM+zaldm7d672K8LIyOKpP4zMzTWPHz+p6JxERERUuubNERubrFQqHR0dAauK/nABAdiwQR4vX44uXSr6AxIREVUlv/yCSZPkcc+eiIh4Sv0332DuXBgbV3Qu0rGGe3Z2dm5uLoCSmlDSFetS/67goIz1JZmk/fIsmba5TwBUKlVaWlpWVlbBjWopNTU1MzPTyMgoMzNTdBYdkpaWBsDa2lp0EB0i/B2UkWEhNdxzcnIq+pvb3bsmQ4bUvH3bCICpqebrr5Nee01V8GPWqVMNqFb6SRo2rPCcREREpFN++w0TJ8rjIUMwdarQNERERDrm3j14ekKpBAA3N0yahBMnnvKUxERcu4YXX6yEdIZOtxruGo1GGpTUhJIKpKb8c9SXZKL2V7niSNe/29jYlH4Sg2JsbJyVlWVpaclPS0FZWVlGRkY2NjaWXBOrACsrK/Ad9E/C30GWlqbaJBWa4fZto6FD7aRuu7k5tm173KePMfCPjzhgAFatwt/fzovXv38uv4SIiIgMR2oqvLzkJkLLltiyRXQgIiIiXZKZiQEDcPcuADg4ICwMZ8+W6Yn377PhXhl0q+Fubm5ubGysVqtLukA4KysLBS6V1Q7KWF+SjRs3lvKo1HB3cHAo/SQGRalUqtVqKysrfloKysvLMzc3r169utRiJom0mAy/VAoS/g6ytZUHpqamFZchNhb9+8vLr1taIjQUvXvbFi17/XUMH47du0s8j7MzPvzQysaGbysiIiKDkJeHESNw4wYA2NoiMBC8VZKIiKqQJ08QEAAA1tYYPrz8z6/RwM8PFy4AgIkJ9u+HqysuXSrTc6s95fZyKh+61XAHYG9vn5ycXNLSAUlJSVKNtlgalFQvrd6uLSMiosoRE4MePeS/t1tZITQUvXqVWLxxIxIScPJkMQ/VrYtDh8Cr24mIiAzH/Pk4fBgAFAps3w43N9GBiIiInkVqqry0ev36FdJwX7QIe/bI4zVr0KMHgDJdt25qiiZNyj8PFWUkOkBhTZo0AXDr1q1iH42Pj9fWAGjcuLG0mEyx9ampqdKltU341UREVImuX0f37vnd9rCw0rrtUs2xY1iy5HHjxjnayerVMW0afvsNLVtWcFwiIiLSGcePY8ECefzxxxg0SGgaIiIiHXPkCD79VB6PG4e335bHbm5o2/Ypz33rLV7hXkl0ruHeqlUrAL/88kvRh1QqVXR0NICWf3dfLC0tXV1dS6rXTrZkt4aIqLJcu4YePZCQAADW1jh4ED17Pv1ZxsYYNy7z5Ml7Li7yau6RkVi1Co6OFZmViIiIdMmtWxg6FGo1APTsifnzRQciIiLSJdHR+T8o//MffPPNPx796iuYlLyUia0tFi+u2HikpXNLyrz55pubN2++f//+L7/80q5du4IPHT16NCcnB0C/fv0K1sfGxh4/fjw7O9vMzKxg/Q8//ACgWrVqnTp1qpTsRESGTuq237sHANbW+OEHdOv2bGfQ/n5gpHN/ESYiIqIKlJmJQYOQnAwADRpg714YG4vOVKUsXbo0ISHhq6++KqUmLy/vxIkTP//8c3Jycs2aNbt161b6f5aVSmVoaOjVq1eVSqWzs7O7u7t0xRsREVW+lBR4eCAtDQAaNUJQEP7ZB0WXLggIwLhxePKk8HOdnLBvH5o1q6SopHMN9759+zo5OT18+HDRokXff/+9dj4vL2/JkiUAWrRo0b59e+38qFGj1q1bl5ycvGnTpnfffVc7f+/evR07dgAYNmyYqalp5b0AIiJDFR2NHj1w/z4AWFvj0CF07So6ExEREVURU6ZAukXZ3BwHDsDJSXSgKiU5OXnOnDlmZmalNNz/+OOPIUOG/P777wUnO3fuvGfPHmdn56L1ISEhfn5+BfdL8/f3nzBhwpo1aywsLMoxPBERPVVuLry9ERcHADY2CAsr/geljw9eeQWrVuHbb5GaCgBOTuqxY/NmzDDlD9bKpHMXEFpZWX3yyScADhw4MGPGDGnR9mvXro0ePfrnn38GsHDhQmnddkmHDh0GDBgAYObMmVu3bk1LS1Or1ZGRke7u7mlpaba2trNnzxb0UoiIDMilS+jSRe62V6uG8HB224mIiKisvv4a27fL47Vr0aGD0DRV0LJly6TbwUty586dHj16SN12V1dXb2/vevXqATh37lzv3r0fPXpUqP7o0aODBw9OSUkxMjJ65ZVXPDw87OzsAGzevHn06NEV9jqIiKh4U6fi5EkAUCiwbRtatSqxslEjrF6NsWPlw0mT0j/7LIfd9kqmcw13AFOnTh06dCiAFStWODs7Ozg4uLm57d69G8Ds2bM9PT0L1W/bts3NzS0zM3P8+PGOjo7Vq1fv3Lnz//73PzMzsz179tSvX1/AayAiMiSXLqFXLyQlAUC1ajh6FB07is5EREREVURUFKZPl8cjR2LCBKFpqpp79+59/PHHS5cuLb1s2rRpDx48ABAQEBAbGxsYGHjnzp1FixYBiImJ+fzzzwsWZ2Vl+fn5qdVqe3v7K1euREVFhYaGJiUlubu7AwgMDAwNDa2wF0RERIVt25a/XPuCBfD2FpqGykBAw71Ro0Zdu3Z9/fXXSypQKBQBAQHr169v2rQpgNTUVAAvv/zy/v37v/zyy6L11atXv3DhwvTp02vUqJGbm5uRkWFiYtKvX7+oqCjpFwIiIqo4v/6KXr3kFVft7XHsGF59VXQmIiIiqiISEzF4MLKyAOCll7Bxo+hAVcfIkSObNm1ar169xYsXazSaUirj4uKCgoIAzJw5c9iwYdr5WbNmeXt7A9i4cWN6erp2PiAg4O7du9LAzc1NmjQ1Nd27d6+LiwuAZcuWVcALIiKiYpw9i7fflseDB+Pjj4WmobIR0HAfM2bM6dOnjxw5UkqNQqGYMmXK9evXk5KSYmJi0tLSfvnll8GDB5dUb2Njs2LFisTExISEhD///DMjI+PQoUMvvfRSBcQnIqJ8v/yS322vXh3HjuGVV0RnIiIioipCrcbIkbhzBwAcHBAUBEtL0ZmqjuPHj8fGxpbeapeEhYVpNBqFQuHv71/oobFjxwJQqVTHjx/XToaEhABo3rx5v379Chbb2NhIDfrz588/fPjw378EIiIq3V9/wcsL2dkA0LYtdu5EgWW2SXfp4pIyBdWoUaNJkybSanFPZWRkVKdOnRdeeIFbuBARVYJffkHv3pB20pK67VxxlYiIiMru449x7BgAGBlh9264uIgOVKVcvHjx5t/ef//9UirPnDkDoEWLFnXq1Cn0UI8ePWxsbLQ1koiICAA9e/YseioPDw8AeXl5Z8+e/devgIiISvP4MTw8IP19s3ZthIbCykp0JiobE9EBiIioSoqMRN++kG4+dnJCeDhatxadiYiIiKqO0FAsXy6PP/8cffsKTVMFNWjQQDu2t7cvpfL69esAWrZsWfQhc3Pz1q1bR0ZGxsTESDMPHjyQ9lAttr5Dhw4KhUKj0WjriYioIuTlYcQI/P47AFhYIDgYBb7rk67T9SvciYhIB507hz595G57zZo4cYLddiIiInoGMTEYPRrSaiju7pg9W3QgvRYfHw+gfv36xT4qzd++fbtgcUn1ZmZmTk5OBeuJiKgizJ0L7QbV69ahY0ehaegZ8Qp3IiJ6NmfPol8/ZGQAQK1aCA9Hcdc/ERERERXv8WN4eSEtDQBcXfHttzDilWAVRqPRKJVKANLSMUVJ8xnS73bA48ePC84XW5+YmKitL4miDMsMs2tfkEqlSk1NtbCwkP69SJKSkpKZmalSqSy5w0MBCQkJoiPoHJ16B927ZwzUA6BWq2/fvvscZzh82GrRIkdpPGlSeu/ej571+2VGRnXAFkB6enp8fCbfQZWMDXciInoGERHo1w/Sf8Rq1cKJE3jxRdGZiIiIqOrQaODnh6tXAcDSEoGBKHU1FPq3MjMzpY1Vzc3Niy2Q5rUtKpVKVXD+qfVERFS+rl41mz69hnQTWNeumR999Eh0InpmbLgTEVFZ/fQT3N3lbnvt2jhxAi1aiM5EREREVcqKFQgMlMfffIO2bYWmMQDavnl2dnaxBVlZWQDMzMykQwsLi2eqL4nU5S+JdP27s7Nz6ScxKEql0tLS0srKytHRUXQWHWJlZaVUKh0dHa24WWQRfAcVpFPvIO1tW8bGxs/6z3T/PiZOhPSnz2bNEBJiYW//PP/QtrbywM7OrkEDJ76DKhnv3CMiojI5dgx9+8rd9gYNEBHBbjsRERE9m8jI/OXa33sPo0cLTWMYjIyMpJUEnjx5UmxBoQVnrK2tpUEZ64mIqLxkZmLgQNy5AwDVq+PgQd4EVlWx4U5ERE939Cg8PeU/szdogFOn4OoqOhMRERFVKffvY/Bg5OQAQMeOWL5cdCCDUa9ePZS86PPdu3cB1K1bt2BxSfW5ubmJiYkF64mIqLy8+y5+/hkAjI0REIAmTUQHoufFhjsRET3FkSMYMACZmQDg7IxTp9C4sehMREREVKXk5MDHB/fuAUCtWvj+ezxtSRIqN82aNQNw/fr1Yh+NjY0F4ObmJh3Wq1dPunq92Pq4uLi8vLyC9UREVC6WLcPWrfJ45Ur07Ss0Df07bLgTEVFpDh+Gl5fcbW/YEKdPs9tOREREz8zfHxERAGBign378PdV1FQZOnfuDOC3337LyMgo9FBsbOz9+/e1NZJOnToBiJD+wf5JOynVEBFRuTh6FB9/LI/HjMHUqULT0L/GhjsREZXo0KH8bnujRjh1Ci4uojMRERFRVbNnD9avl8dLlqBrV6FpDI+npyeAnJyc3bt3F3pox44dAMzMzPr161eoPioqKjo6ulD9zp07AbRv375BgwYVGZmIyIBcv44hQ6BWA0DnztiwQXQg+tfYcCciouIdOICBA5GVBQBNmiAigt12IiIiema//44JE+TxgAHw9xeaxiC1aNGib9++AObNm3fr1i3t/K+//rpq1SoAfn5+Dg4O2vnRo0c7OTkBmDx5cqZ05QUAYMOGDefOnQMwc+bMSgtPRKTfUlPRvz8ePQKAhg0RFARzc9GZ6F8zER2AiIh00fffY9gweVuzpk1x8iRv/SYiIqJn9ugRvLygVAJAs2bYuRMKhehMBmn16tXnz59PTExs166dp6dnmzZtIiMjf/jhB5VK1ahRo/nz5xcstra2Xrduna+v75kzZ1q1ajVgwAAnJ6fw8PDw8HAA/fv39/b2FvQ6iIj0ilqN4cMRGwsAlpY4cAA1a4rOROWBDXciIiosMBDDhyM3FwCaNcPJk6hbV3QmIiIiqmo0Gowbh7g4ALCxQVAQ7OxEZzJUTZo0OXLkyJAhQ27durVt2zbt/EsvvRQYGOjo6Fio3sfHJyMjY+rUqXFxccuXL9fO+/r6btmyRcE/mxARlQd/fxw5AgAKBXbsQLt2ogNROWHDnYiI/mHfPowYIXfbmzfHiRPsthMREdHzWLAAwcEAoFBg+3a0aCE6kP4aM2ZMt27djI2NS6np2LFjdHR0SEhIZGRkSkpKrVq1unfv3rdvXxOT4tsCfn5+7u7u+/btu3r1qkqlcnZ29vT07NChQ8W8AiIig7NjB9aulcfz5sHHR2gaKldsuBMRUb7vvsPIkXK33c0NJ06gTh3RmYiIiKgKCg/H55/L4w8/xODBQtPou0aNGjVq1OipZZaWlkOHDh06dGgZT1urVq2pU6f+q2RERFScc+cwebI89vLC3LlC01B546apREQk2749fyWZNm3w00/sthMREdHzuH0bQ4dCrQaA7t2xYIHoQERERDrj1i14eSErCwBeegm7dnGDE33DhjsREQHA1q0YPx55eQDw0ksID4eTk+hMREREVAVlZmLQICQlAUD9+vjuO5SwZgkREZHBUakwaBASEwHA0RFBQbC2Fp2Jyhsb7kREhC1bMHGi3G1v2xbh4SiydRYRERFRmbz7Lv77XwAwNcV336FmTdGBiIiIdINGgzFj8MsvAGBqiu+/h4uL6ExUAXilARGRwWnQABMnAsCLLwLA5s2YPFnutr/8Mo4dQ40aIuMRERFR1bVpE7Zulcdr1qBzZ6FpiIiIdMm8eQgMlMfr16NrV6FpqMKw4U5EZHBefBEbN8rjjRvx9tvQaACgXTscOwYHB4HRiIiIqAr79VdMmyaPhw/P3w6OiIiIgoLwxRfy2N8fEyYITUMViUvKEBEZrg0b8rvt7dvj+HF224mIiOg5paRg0CCoVADQujU2bRIdiIiISGdcuoRRo+T/fffujaVLRQeiisSGOxGRgVq5Mr/b3qkTTpxA9eqiMxEREVHVlJeHYcNw8yYAVK+OoCBYWYnOREREpBsePICnJ548AYCmTbFvH7cT13NsuBMRGaLly/HBB/K4c2f8+CPs7IQGIiIioqpszhwcPQoARkbYvRuNG4sOREREpBtycuDri9u3AcDODkFBvNZN/7HhTkRkcJYtw8yZ8vj113HkCGxthQYiIiKiquzgQSxeLI8//RT9+glNQ0REpEveeQc//QQARkbYswcvvig6EFU8NtyJiAzLkiX48EN53KULDh9mt52IiIieX2wsRo7MX5R2zhzRgYiIiHTGqlXYvFkeL1uGt94SmoYqCxvuREQGZMkSzJolj7t2xaFDsLERGoiIiIiqsidP4OWFtDQAaNgQe/fC2Fh0JiIiIt2QmZl/uduoUZg+XWgaqkRsuBMRGYrPPsvvtr/xBo4cYbediIiI/pUpU3DlCgBYWODAAdSoIToQERGRzkhJQW4uALz2GjZtEp2GKhEb7kREBuHTTzF/vjzu0wehobC0FBqIiIiIqrivvsKuXfL466/Rrp3QNERERDomLw8A6tbF/v0wNxedhiqRiegARERU4ebMwZdfyuO+fREUBAsLoYGIiIioijt/Hh99JI/ffhtjxwpNQ0REpDOkPrvE0hIhIahXT1waEoENdyIiPffJJ1i4UB7364cDB3S62/7qq+qGDU0AWFmJjkJEREQlSExUeHsjOxsAXn0Vq1aJDkRERAbv7FmLo0dtLCzQqxe8vUUmWbAgf7x1Kzp0EBeFBGHDnYhIb2k0mD4dX30lH771Fg4c0PUb2TZuzLay4s8mIiIi3ZWbi9Gjze/eBYCaNfH997r+2wURERmCa9dMd+2yAGBtLbLhvmMHNm+Wx3Z2GDpUWBISiGu4ExHpJ40G06bld9sHDUJwMP8/TERERP/Wl19WP3vWCICxMb79FvXriw5ERESkGyIjMXly/qGdnbgoJBQb7kREekijwfvvY80a+dDbG3v3wtRUaCYiIiKq+oKDzbdts5XGCxfijTfExiEiItIV8fEYNAhZWaJzkA5gw52ISN9oNHjvPaxdKx/6+GDPHnbbiYiI6N+6cgXTptlIYy8vzJwpNg4REZGuUKkwaBDu3weA6tVFpyHR2HAnItIrGg3efRfr18uHvr4ICIAJF0UnIiKifyctDV5eUCoVAJo0ydu+HQqF6ExEREQ6QKPBuHG4eBEAjI1Ru7Y8n5CAAQNw/LjAaCQGG+5ERPojLw9+fvj6a/lw6FDs3s1uOxEREf1bGg38/BAbCwDW1pq9e7O5Li0REZFkwQJ89508VqsRHS2P8/IQGoo33sC4ccjNFZWOBGDDnYhIT6jVGDcO27fLh+PGsdtORERE5WPhQhw4II+XLk12c8sTGoeIiEhXhIRg3ryn1GzfznXYDAsb7kRE+kDqtu/cKR/6+WHzZhjxezwRERH9aydO4LPP5PHbb6vc3ZVC4xAREemKP/7A6NHIK8OfodeuxfXrFR+IdAObMUREVZ5ajTFjsGuXfDhhAjZtYrediIiIykF8PIYOhVoNAJ06Yc6cJ6ITERER6YTkZHh4ID0dACwtn1KsVmP//koIRTqB/RgioqpNrcbo0di9Wz6cOBEbNrDbTkREROUgKwuDBuHhQwCoXRv798PMTHQmIiIiHZCTA29v/PknANjawt7+6U+5erWiQ5GuYEuGiKgKy8mBjw8CAuTDSZPYbSciIqJy8957uHgRAExNERiIunVFByIiItIN772HU6cAwMgIAQHIzn76UzIyKjpUvjZt4O0ND4+sF17gbq0CcDc9IqKqKjsbQ4YgOFg+9PfHihVQKIRmIiIiIn3x7bfYvFker1iB118XmoaIiEhnrFuHjRvl8aJF6N8fNWsiOfkpz6pVq6Jz5Rs1CqNGISkpQ6lUAdaV94EJAK9wJyKqorKz4eub322fPh0rV7LbTkREROXj0iVMmiSPhw7Fe+8JTUNERKQzzpzBBx/I4xEj8OGHANC169OfWJYa0g9suBMRVT3Z2fD2RkiIfDhjBlasEBqIiIiI9EhKCry8oFIBQKtW+de5ExERGbibNzFokLyAzMsv51/nPnkyjI1Le2LduvDyqvB4pCPYcCciqmKysjB4MMLC5MMPP8SyZUIDERERkR7Jy8OIEbh5EwBsbREYCGveiU5ERARkZMDDA0lJAFCnDkJDYWUlP9SmDT7/vMQnmppi2zbY2FRGSNIFbLgTEVUlUrf94EH58KOPsGSJ0EBERESkXz77DEeOAIBCgR070Ly56EBEREQ6IC8Pw4fjyhUAsLBAcDDq1/9HwSef4JtvUK1a4Se6uODoUbz5ZiXlJF3AhjsRUZWhVMLdHT/8IB9+9BEWLxYaiIiIiPTLDz9g4UJ5/MknvPmdiIhI9vHH+Ze+bdmCV18tpmbyZNy+jZUr5UNbW4SGIiYG3btXUkjSESaiAxAeQEjWAAAgAElEQVQRUZkolfDwwIkT8uHnn+PTT4UGIj2Vl5cXGRkZHR0dGxtrZ2fXtGnTjh07Ojs7l1J/4sSJn3/+OTk5uWbNmt26devUqVMp51cqlaGhoVevXlUqlc7Ozu7u7q6urhXwOoiI6JnFxWHkSOTlAUDPnpg3T3AeIiIiHbF7N5YulcezZmH48BIr7ezg7Y3p0wGgWjV4eFRGPNI1bLgTEVUBSiX698fJk/LhF19gzhyhgUhPXb58eeLEiVFRUQUnzczM3nvvvc8++8zW1rZQ/R9//DFkyJDff/+94GTnzp337NlTbI8+JCTEz88vJSVFO+Pv7z9hwoQ1a9ZYWFiU3+sgIqJnplLBxwePHgGAszO+++4pm78REREZiP/9D5MmyeM+fbBggdA0VBWw4U5EpOuePEH//jh1Sj5csACffCI0EOmpW7dudezYUaVSKRSKTp06NWvW7NGjR+fOnXvw4MGKFSvi4+P37dtXsP7OnTs9evR48OABAFdX17Zt20ZGRt69e/fcuXO9e/eOioqyt7cvWH/06NHBgwer1WojI6P27dvXrl379OnT6enpmzdvTktLK3RyIiKqZG+/jV9/BQBzc3z/PRwdRQciIiLSAffuwdMTSiUANG/OP0hTmXANdyIinfbkCdzd87vtCxey204VZdq0aSqVytbW9uTJk2fPnt26deuBAwfi4uIGDRoEIDAwMCQkpFC91G0PCAiIjY0NDAy8c+fOokWLAMTExHz++ecFi7Oysvz8/NRqtb29/ZUrV6KiokJDQ5OSktzd3aWTh4aGVt5LJSKif1q7Fjt3yuN169Chg9A0REREuiEzEwMH4s4dAHBwwMGDxeyJSlQUG+5ERLorLQ29euH0aQBQKPDVV/j4Y8GRSF+lpKRI/fQPPvigW7du2nkbG5stW7ZYW1sDCA8P187HxcUFBQUBmDlz5rBhw7Tzs2bN8vb2BrBx48b09HTtfEBAwN27d6WBm5ubNGlqarp3714XFxcAy5Ytq8CXR0REJfv5Z8yYIY8nTMD48ULTEBER6QaNBuPHQ1pu08QE+/eDm09RGbHhTkSko9LS8Oab+Pln4O9u+/vvi85E+is6OloaeBTZ1sfe3r5ly5YALl++rJ0MCwvTaDQKhcLf379Q/dixYwGoVKrjx49rJ6VufvPmzfv161ew2MbGRmrQnz9//uHDh+X1coiIqIwePMDgwcjOBoCXXsLq1aIDERER6YbFixEQII9Xr0aPHkLTUJXChjsRkS569AhvvCH/LV2hwJo1mDpVdCbSa8nJyW3atGnTpk3jxo2LPqrRaACYmORv/XLmzBkALVq0qFOnTqHiHj162NjYaGskERERAHr27Fn05FKLPy8v7+zZs//+hRARUdnl5sLXF3fvAoCDA4KCYGkpOhMREZEO+PFHzJ0rj8eOxZQpQtNQVcOGOxGRzpG67RcuAIBCgbVr8e67ojORvvPw8Lh06dKlS5fs7OwKPXTz5s0rV64A6NSpk3by+vXrAKQr3wsxNzdv3bo1gJiYGGnmwYMHjx49Kqm+Q4cOCoWiYD0REVWOjz7CTz8BgJERAgLg4iI6EBERkQ64dg1DhkCtBoD//AcbNogORFUNG+5ERLolNRW9e+PiRQBQKLB+Pd55R3QmMjxZWVlJSUlXrlxZuXJlz549lUpl48aNp02bpi2Ij48HUL9+/WKfLs3fvn27YHFJ9WZmZk5OTgXriYiooCVL4OAABwcsWVKepw0JwapV8nj+fPTpU54nJyIiqqJSUtC/P9LSAKBhQwQFwcxMdCaqakyeXkJERJXl4UP06gVpoWwjI2zdijFjBEciw/TRRx+tLrCO75AhQ1auXOno6CgdajQapVIJQFo6pihpPiMjQzp8/Phxwfli6xMTE7X1JZEuhC8du/YFqVSq1NRUCwsL6d+LJCkpKZmZmSqVypJrZxSQkJAgOoLO0Z130P371VJTqwG4fz/t9u20cjnnjRumI0fW0miMAPTqpRo+/GEZv33yHURERHosNxfe3oiLAwAbG4SFwclJdCaqgniFOxGRrkhMRM+ecrfd2BjbtrHbTrri3Llzhw4d0h5mZmZKq7qbm5sXWy/Na1tUKpWq4PxT64mIqEI9eaKYONHx8WMjAI0a5a5alWzE/xcSEREB77+PkycBQKHAtm1o3Vp0IKqaeIU7EZFOkLrtV64AgLExtm/HyJGiM5EBW7ly5fLly+/du3f16tVFixadOXNmwoQJiYmJs2fPRoG+eXZ2drFPz8rKAmD2972XFhYWz1RfEqnLXxLp+ndnZ+fST2JQlEqlpaWllZWV9u4EAmBlZaVUKh0dHa2srERn0Tl8BxWkO++gatW0g2rOztVKrX06jQa+voiNBQBLSwQFmbRsWfz6YMXiO4iIiPTV9u34+mt5/MUX8PYWmoaqMl7JQESG4s4dLFmCJUsQECA6ShEPHqBHj/xu+44d7LaTYEZGRiYmJg0aNOjTp8+pU6e6du0KYMGCBUlJSdKj0koCT548KfbphRacsba2lgZlrCciooqzdCn275fH33yDtm2FpiEiItINZ89i8mR5PGgQZs8WmoaqODbcichQ3LyJWbMwaxY2bhQd5Z/u30ePHrh6FQCMjbFzJ0aMEJ2JqAAjI6OZM2cCUKlUFy5ckCbr1auHkhd9vnv3LoC6desWLC6pPjc3NzExsWA9ERFVkFOnMGeOPJ46FaNHC01DRESkG/76C15ekG7HbdsWu3ahDLtHEZWIDXciIpHu3MHrr+OPPwDA1BSBgRg+XHQmMkjvvfder1695s+fX+yjrq6u0iA5OVkaNGvWDMD169eLrY+NjQXg5uYmHdarV0+6er3Y+ri4uLy8vIL1RERUEe7dw/DhyM0FgI4dsWyZ6EBEREQ64PFjeHjg4UMAqF0boaHgqmn0L7HhTkQkTHw8uneXN0A3M8O+ffDyEp2JDJVKpTpx4kRgYGCxj/7111/SoGnTptKgc+fOAH777beMjIxCxbGxsffv39fWSDp16gQgIiKi6Mm1k1INERFVhJwceHvj3j0AqFUL33+Pp22cQUREpP80Gowbh99/BwAzMwQGokED0Zmo6mPDnYhIjDt3jAp12wcOFJ2JDFj79u0BXLt27Xfpl81/OnDgAAAjI6NWrVpJM56engBycnJ2795dqHjHjh0AzMzM+vXrp52U6qOioqKjowvV79y5UwrQgL/bEhFVmPffx7lzAGBign378PdaX0RERAZt7tz8rU3Wr8frrwtNQ/qCDXciIgHu3jUZMKDan38CgJkZ9u/HgAGiM5Fh8/T0rFatmlqtHjduXHx8vHZeo9Fs2bJly5YtAMaNG2f1992VLVq06Nu3L4B58+bdunVLW//rr7+uWrUKgJ+fn4ODg3Z+9OjRTk5OACZPnpyZmamd37Bhw7lz5wBIy8QTEVFFCAjAN9/I46VL0bWr0DRERES64cABLFwoj2fMwPjxQtOQHjERHYCIyODcuKEYPLhmQoIxAAsLBAejTx/Rmcjg1alTZ+nSpZMmTfrvf//r5ub2xhtvNG7cODU19eLFi5cvXwbg4uIiddK1Vq9eff78+cTExHbt2nl6erZp0yYyMvKHH35QqVSNGjUqtBy8tbX1unXrfH19z5w506pVqwEDBjg5OYWHh4eHhwPo37+/t7d3Zb5eIiLDcfkyJk6UxwMHYto0oWmIiIh0w6+/YtQoaDQA8MYbWLxYdCDSI2y4ExFVqrg49OljkZCgAGBpiZAQvPGG6ExEAIAJEybk5OTMnTs3NTU1ODhYO69QKEaPHr148WJp41OtJk2aHDlyZMiQIbdu3dq2bZt2/qWXXgoMDHR0dCx0fh8fn4yMjKlTp8bFxS1fvlw77+vru2XLFoVCUTEvi4jIoKWmwssLSiUANGuGHTvAb7dERET378PTM//n4759MDYWnYn0CBvuRESVJyYGPXrg7l2p264JC1P06iU6E9HfFArFO++8M2TIkEOHDsXFxd26datmzZrNmzfv2LHjiy++WOxTOnbsGB0dHRISEhkZmZKSUqtWre7du/ft29fEpPhfMPz8/Nzd3fft23f16lWVSuXs7Ozp6dmhQ4eKfFlERFVbdjZu35bHt28jO/sZNjvNy8OIEZCWsLOxQVAQ7OwqJCQREVEVkp0NHx9I62hWr46wMNjbi85E+oUNdyKiSnL9Onr0QEICAFhaanbvTu/Vq5roUESF1ahRY9SoUWWvt7S0HDp06NChQ8tYX6tWralTpz5XNCIiw6LRYPVqLFqExER5Zvt2HDqE2bMxdWqZLlSfPx+HDwOAQoHt29GiRQWmJSIiqireeQcREQBgbIzdu9G0qehApHe4aSoRUWW4di2/225tjW3bHnbpkiM6FBEREemovDwMHw5///xuuyQxEdOmYcQI5OU95QzHj2PBAnn80UcYPLhCchIREVUty5djyxZ5vGIF+vUTmob0lO5e4Z6VlXX69Ono6Oj4+PgXXnihRYsWXbp0MS55RSWlUhkaGnr16lWlUuns7Ozu7u7q6lqZgYmISiJ12+/dAwBraxw4kOXmlglYic5FREREOmrdOuzdW+Kje/bgtdfw7rslFty6hWHDoFYDQPfu+OKL8k9IRERU5Rw7hlmz5PHo0Xj/faFpSH/paMM9LCzM39//xo0bBSdbt269Zs2arl27Fq0PCQnx8/NLSUnRzvj7+0+YMGHNmjUWFhYVHpeIqGTR0ejRA/fvA4C1NQ4dQocO6qQk0bGIiIhIV+XlYfHip9QsWoQpU2BU3B3LmZkYNAjSLxsNGmDfPpSwswYREZEBuX4dvr7yX6M7dcLGjaIDkf7SxSVlDh486OnpeePGDTMzs+7du48cObJz585GRkaXL1/u3bv3xYsXC9UfPXp08ODBKSkpRkZGr7zyioeHh52dHYDNmzePHj1axCsgIpJduoQuXeRue7VqCA9HcX80JCIiIsr322/yjXGlSEjA778X/9CUKfjlFwAwNcXevXByKud4REREVU5qKvr3x6NHAODsjKAgmJuLzkT6S+ca7unp6WPHjgXQuHHj33///eTJk7t27Tp79uyFCxccHR1zcnKGDh2q0Wi09VlZWX5+fmq12t7e/sqVK1FRUaGhoUlJSe7u7gACAwNDQ0OFvRgiMmyXLqFXL/n6smrVcPQoOnYUnYmIiIh03p07ZSq7fbuYyW++wfbt8njtWnTuXG6piIiIqii1GiNGIDYWACwtceAAatUSnYn0ms413KOiopKTkwGsX7++aYF9gtu1a7dw4UIAf/755/Xr17XzAQEBd+/elQZubm7SpKmp6d69e11cXAAsW7asMvMTEUn+9z/06oXkZACwt8exY3j1VdGZiIiIqCooeeOqfzA1LTxz4QL8/eXxiBGYNKk8UxEREVVRH3yAw4cBQKHA9u1o3150INJ3Otdw//XXX6XBa6+9VuihTp06FaoBEBISAqB58+b9/rmvsI2Njbe3N4Dz588/fPiw4gITERX1yy/o3VvutlevjmPH8MorojMRERFRFeHi8jxlycnw9UVWFgC0acOlaYmIyIAkJiouXzaTxleu/OMmsJ07sXq1PP70U/j6Vno4Mjw613DX7nH64MGDQg9pZywtLbWTERERAHr27Fn0VB4eHgDy8vLOnj1bEVGJiIr13/+id29IuzhL3fYOHURnIiIioqrDzQ0F7vUtXrNmaNYs/1CtxrBh+OsvAKheHUFBsLKquIBERES6IisLM2ageXPL0FBraeb4cTRuDD8/pKcjMjL/fq+BA/Hpp8JykkHRuYZ73759FQoFgOXLlxd6aOXKlQCsrKy6dOkizTx48ODRo0cAWrZsWfRUHTp0kE4VExNToZmJiLQiI9GzJ1JTAcDJCadP8241IiIiemYLFjxbwezZOHYMAIyMsHs3XnihooIRERHpjpwceHpixQr5Bi+t3Fxs24bXX8fAgfn3fn37LYx0rg9K+knnvtCaNGmyZMkSAJs2bfL09AwODr548eK+ffu6dOly6NAhIyOjTZs2OTg4SMXx8fHSoH79+kVPZWZm5uTkBOB2sdsJERGVt3Pn0KcP0tMBoGZNnDiB1q1FZyIiIqIqyNsbc+cW/5BCgc8+w+DB+TOhodBuXPXpp/jnWptERER6a9UqHD1a4qOXLyMxEQBq1EBQEKytKy0XGToT0QGKMXPmzIYNGw4fPjwsLCwsLEw7b29vHxwc3K1bN+3M48ePpYGNjU2xp7KxsUlMTMzIyCj9IzZu3PipqRISEp5aYzhUKlVKSoqlpWV2drboLDokJSVFpVLl5OQUXPWIpMWgTEzEf7dJSjIDHAFkZ2cnJCSV+/mjosxGjarx+LECgJNT3t69STVq5Bb7nYPvoGLxHURERFTQ/Pl47TV8/jmiovInX30V8+ahT5/8mZgYjB4NjQYAevfGnDmVnZOIiEgIjQZr1z69zNQUBw7w3i+qVOJbYEVdu3Zt9erVubm50qGtra3UMX/06NGqVauaNWtWp04d6SGVSiUNzM3Niz2VNK9UKkv/iDdu3HhqKm0eApCbm6tWq3Nzc/lpKYiflmKp1WroxjtIrTaWBhqNptzzREWZjx1b48kTBQBHR/WePYmurjklfRB+qRSLnxYiIqJC+vZF376YMQMrVgDAjBn5V7JLHj+GlxfS0gCgYUPs3QtjYwE5iYiIKt+1a7hz5+ll77yDrl0rPg1RATrXcI+JienatWtiYqKLi8uSJUvefPNNOzu7lJSUoKCgTz75JCws7Nq1axERETVr1kSBHVZLuko0KysLgJmZWekf9M8//yzlUen697p16z7Hy9FXSqXS1NTUysrK0dFRdBYdYmZmplQqHR0drbhHVQFS81QX3kGOjgppYGZmVr55zpxRjBtn/OQJANSujWPH4ObmVEo930HF4juIiIioWNq7eYveC+/nh6tXAcDCAkFBqFGjUoMREREJdO9emcratq3gHERF6FzDfdq0aYmJiQ4ODhEREfXq1ZMmHRwcxo8f/8orr7zyyisxMTHz5s37+uuvAVj//SvnE6nRVYR0bXtJC85ovVCGG0t0YUEM3WFSgOgsOoSflmJJnw1d+JxoL/hSKBTlmOfYMQwYAOl+mwYNcPIkXF2fcmkZv1SKxU8LERHRM1mxAoGB8vjrr/Hyy0LTEBERVa4yrkXKC7qo8unWpqmPHj06cuQIgEmTJmm77VqtW7cePHgwgICAAGlGW1PsAuu5ubmJiYnQjUtriUgv/fgjPD3lbruzM06dgqur6ExERERkACIj8fHH8njKFIwdKzQNERFRpXN1hVEZ+prNmlV8FKJ/0q2G++3bt6VBq1atii1o3bo1gPT09NTUVAD16tWTrl6/fv160eK4uLi8vDwAbm5uFRSYiAzZkSMYOBCZmcDf3fYybMBMRERE9G/dvw9vb+TkAMCrr2LlStGBiIiIKp2TE7p1e0pN8+YoocVIVIF0q+HeqFEjhUKBEq5Y187b29vb29tLM506dQIQERFRtFg7KdUQEZWjw4fh5SV32xs2xOnT3PSciIiIKkNODnx8IP2HqWZNfP89zM1FZyIiIhJhyRKUsm+jQiHvOk5UyXSr4W5nZ+fq6gogKChIuji9IJVKdfjwYQAvv/yy1JcH4OnpCSAqKio6OrpQ/c6dOwG0b9++QYMGFZ2ciAzKoUP53fZGjXD6NFxcnvkkubkID0d4OE6fLu98REREpL8++ADSlUXGxti9G/Xriw5EREQkSPv22L27+FXaTU2xbh369av0TES61nAHMHnyZACRkZH+/v6ZUjcLAJCamjpmzJjY2FgAEydO1M6PHj3ayclJemLB+g0bNpw7dw7AzJkzKy08ERmC77/HwIHIygKAJk0QEYFGjZ7nPCqVondv9O4NT89yzUdERET6a+9erF0rjxctQu/eQtMQERGJ5u2N9evx93W5AGBmBl9fXLiAKVPExSLDZiI6QGH+/v4//vjj8ePH16xZExwc3KVLl7p16968efPkyZMpKSkAxo4d6+vrq623trZet26dr6/vmTNnWrVqNWDAACcnp/Dw8PDwcAD9+/f39vYW9mKISO/s34/hw+UlU5s2xcmTKLLBMxEREVGFSEzE8uXy2NMTM2YITUNERKQDYmMxfTo0mvyZKVOwapW4QEQ62HBXKBTBwcELFy5csWJFfHx8QECA9iE7O7tPP/106tSphZ7i4+OTkZExderUuLi45drfQAFfX98tW7YoCv6Ri4joXwgMxPDhyM0FgGbNcPIk6tYVnYmIiIgMxv79ePIEAJo2xc6d4H90iIjIwGVkYOBApKYCgI1N3uPHRgB/PpJ4OtdwB2Btbf3ll19OmjTpp59+io6OvnPnjouLi5ubW8+ePaXVY4ry8/Nzd3fft2/f1atXVSqVs7Ozp6dnhw4dKjk5Eemx777DyJFyt715c5w8iTp1RGciIiIiQ5KUBAA2NggKQrVqotMQEREJlZeHYcNw9SoAWFjA1/fJ1q22okMRAbrZcJc4OzuPHDmy7PW1atUqevE7EVG52LsXo0bJ3XY3N5w4wW47ERERCaBQYOtWvPii6BxERESiffghfvgBABQKfPNN1o0buaITyerX/8cSN2SAdG7TVCIiXbNtG0aMkLvtbdrgzBl224mIiKjypKfn3x3/wQfw8RGahoiISAd8+y1WrJDHs2fDx0ctNA7RP7DhTkRUmq1bMWEC8vIA4KWXEB4OR0fRmYiIiMhg3L6Nb7+VL5Tr1AkLF4oOREREJNr585gwQR57emL+fKFpiIpgw52IqESbN2PiRLnb3rYtu+1ERERUqTIzMWiQvHR77drYvx+mpqIzERERCZWQAG9vZGUBgJsbdu2CEbubpGP4JUlEVLxNmzB5stxtf/llhIejRg3RmYiIiMiQvPsu/vtfADA1RWAg6tYVHYiIiEgolQoDBuDuXQCoUQMHD8LOTnQmoiLYcCciKsaGDfnd9nbtcPw4HBxEZyIiIiJDsnkztm6VxytX4vXXhaYhIiISTaOBnx8uXgQAU1Ps34/GjUVnIioOG+5ERIWtWoUpU/IXSz15kt12IiIiqlSXLuH99+XxsGF4912haYiIiHTAl19i7155vGYNuncXmoaoZGy4E5H+y83F7t346CP58H//w7RpiIsrvnjFCkyfLnfbO3fGkSO8Q42IiIgqVUoKvLygUgFAq1bYvFl0ICIiItFCQ/HZZ/L4nXcwebLQNESlYsOdiPRcQgL+8x+MHInz5+WZJ0+wejVefBHr1hUuXr4cM2bI4//8h912IiIiqmx5eRg+HDdvAoC9PYKCYGUlOhMREZFQf/yBUaPkRV9ffx0rV4oORFQqNtyJSJ9lZuLNNxEVVcxD2dl47z3s2pU/s3QpZs6Ux6+/jiNHYGtbGSGJiIiItObOxY8/AoBCgW3b4OoqOhAREZFQycnw8EB6OgA0aoQDB2BmJjoTUalMRAcgIqpAa9fiypXSCj74AF5esLHBkiWYNUue7NIFhw7BxqYSAhIRERHlO3gQixbJ4zlzMHCg0DSkd7Kysk6fPh0dHR0fH//CCy+0aNGiS5cuxsbGJdUrlcrQ0NCrV68qlUpnZ2d3d3dX/gmIiCpXTg68vfHnnwBga4uDB+HkJDoT0dOw4U5E+mz37qcUJCXhyBFcvYrPP5dn3ngDISGwtKzoaERERET/EBeHUaPkjWR69cpfqZaoXISFhfn7+9+4caPgZOvWrdesWdO1a9ei9SEhIX5+fikpKdoZf3//CRMmrFmzxsLCosLjElHV8f77uHcPAFavRp065XzyqVNx6hQAGBlh9260bFnO5yeqCGy4E5Heys19yuXtkrVrEREhj998E8HB7LYTERFRZVOp4OODR48AwNkZe/ei5MuOiZ7ZwYMHPT09AZiZmXXu3Ll+/fo3btw4f/785cuXe/fufe7cuQ4dOhSsP3r06ODBg9VqtZGRUfv27WvXrn369On09PTNmzenpaXt27dP0OsgIl3044+IiQGABQvKueG+fj02bJDHCxfCw6M8T05UcbiGOxHprceP5T1VSqfttvfpw2vbiYiISIy338avvwKAhQUOHICjo+hApEfS09PHjh0LoHHjxr///vvJkyd37dp19uzZCxcuODo65uTkDB06VCPdWwEAyMrK8vPzU6vV9vb2V65ciYqKCg0NTUpKcnd3BxAYGBgaGirsxRCRwYiIwPTp8tjbGx9+KDQN0bNgw52IKsOVK/DxgY8P5s+vvA9ardozbKXSty+Cg8G7Y4mIiKjyrVmDnTvl8bp1aN9eaBrSO1FRUcnJyQDWr1/ftGlT7Xy7du0WLlwI4M8//7x+/bp2PiAg4O7du9LAzc1NmjQ1Nd27d6+LiwuAZcuWVWZ+IjJAf/0FLy9kZwPAyy9jxw4oFKIzEZUZG+5EVBkSE7F/P/bvx08/Vd4HVSjw2mtlqnzrLXbbiYiISIzz5zFzpjyeOBF+fkLTkD76Vbp7AnityC/HnTp1KlQDICQkBEDz5s379etXsNjGxsbb2xvA+fPnHz58WHGBicjAZWSgf38kJQFA7doIDYWVlehMRM+CDXci0meTJj295q23cOAAzM0rPg0RERHRPz14AG9v+Qq+l17CV1+JDkT6SLvH6YMHDwo9pJ2xLLCuYkREBICePXsWPZWHhweAvLy8s2fPVkRUIqK8PAwfLu/HZmGBkBDUry86E9EzYsOdiPTZkCHw8iqtoHt3BAez205EREQC5ObC1xd37wKAgwOCgriXDFWIvn37KhQKAMuXLy/00MqVKwFYWVl16dJFmnnw4MGjR48AtGzZsuipOnToIJ0qRtohkYiovM2ejYMH5fH69Xj1VaFpiJ4LG+5EpM8UCgQEYMoUGBX33a57dxw7BlPTSo9FREREBHz4obzanpER9uyBi4voQKSnmjRpsmTJEgCbNm3y9PQMDg6+ePHivn37usRk4b0AACAASURBVHTpcujQISMjo02bNjk4OEjF8fHx0qB+cdeUmpmZOTk5Abh9+3ZlxSciA7J/P5YulccffYRx44SmIXpeJqIDEBFVLAsLrF+P99/H0qXYujV/3tsbe/bAhN8FiYiISIR9+7BqlTxesABvvik0Dem7mTNnNmzYcPjw4WFhYWFhYdp5e3v74ODgbt26aWceP34sDWxsbIo9lY2NTWJiYkZGRukfUVGG/Q3ZtS9IpVKlpqZaWFgolUrRWXRISkpKZmamSqWy5B1ABSQkJIiO8A+5uXWlBmNCQoKFRe5zn+fKFbPRo2tpNAoA3bplTpqUWPZvEiqVKj3dAqgOICMj4/bt1OeOoU/4DhKFV7gTkUFwdcX9+/mHI0di715224mIiEiM69cxcaI87t8fs2YJTUMG4Nq1a6tXr87NlRthtra20uDRo0erVq26d++etlKlUkkD8xJWXZTm2RQmovKVmGg8fryTSqUA0Lhxzrp1ScbGojMRPS92m4hI/6nV8PPDoUPyYa1a2LGj+EVmiIiIiCpaRgYGDkR6OgA0aYJvv0UZLgUmen4xMTFdu3ZNTEx0cXFZsmTJm2++aWdnl5KSEhQU9Mknn4SFhV27di0iIqJmzZoosMNqtrSZbxFZWVkAzMzMSv+gGo2mlEel69+dnZ2f4+XoK6VSaWlpaWVl5ejoKDqLDrGyslIqlY6OjlZWVqKz6BzdeQdpL2WrW7fu84XKzISPD6S//Tk44McfTV1dn22nVKVSaWeXJY1tbW2dnW2fJ4fe4TtIFDaciEjPqdUYMwY7d+bPNG3KbjsRERGJodFg3DhERwOAtTWCglCtmuhMpO+mTZuWmJjo4OAQERHh7e1tZ2cHwMHBYfz48cePHzc3N4+JiZk3b55UbG1tLQ2ePHlS7Nmka9tLWnCGiOg5jB+PqCgAMDFBYCBcXUUHIvp32HMiIn2mVmPsWOzeLToHEREREQBgyRJ8/708/vprtGwpNA0ZgEePHh05cgTApEmT6tWrV+jR1q1bDx48GEBAQIA0o60pdpHo3NzcxMREAHXr1q24zERkUBYvxt/fgfDVV+jZU2gaovLAhjsR6S3p2vZvv5UP+/cXmoaIiIgM3qlTmDtXHk+bhlGjhKYhw6DdmLRVq1bFFrRu3RpAenp6amoqgHr16klXr1+/fr1ocVxcXF5eHgA3N7cKCkxEBuXHHzFnjjweOxbvvCM0DVE5YcOdiPSTWo1Ro/KvbZ80CTNmCA1EREREhi0+Hr6+kDatfO01LFkiOhAZhkaNGkkLphd7xbp23t7e3t7eXprp1KkTgIiIiKLF2kmphojo37h2DUOGQK0GgP/8Bxs2iA5EVE7YcCciPZSTAx8f7NkjH06ejG++4XZkREREJExODoYOxcOHAFCrFvbvx9O2nCQqH3Z2dq6urgCCgoKki9MLUqlUhw8fBvDyyy8r/v512dPTE0BUVFS0tNtAATt37gTQvn37Bg0aVHRyItJvKSno3x9paQDQsCEOHOBPRtIfbLgTkb7JzoaPD4KC5MPp09ltJyIiIsHeew/nzgF/bwdXZCVtogo0efJkAJGRkf7+/pmZmdr51NTUMWPGxMbGApg4caJ2fvTo0U5OTtITC9Zv2LDh3LlzAGbOnFlp4YlIL+XmwscHcXEAYGODsDDUrCk6E1H5MREdgIioPEnd9tBQ+fCDD7B8udBAREREZPB278bGjfJ42TJ06SI0DRkef3//H3/88fjx42vWrAkODu7SpUvdunVv3rx58uTJlJQUAGPHjvX19dXWW1tbr1u3ztfX98yZM61atRowYICTk1N4eHh4eDiA/v37e3t7C3sxRKQXpk3DiRMAoFBg61a0bi06EFG5YsOdiPRHdja8vREWJh/OnImlS4UGIiIiIoP322+YNEkeDxmCadOEpiGDpFAogoODFy5cuGLFivj4+ICAAO1DdnZ2n3766dSpUws9xcfHJyMjY+rUqXFxccsLXMDi6+u7ZcsWBe8eJaJ/Yft2rF8vj7/4Aj4+QtMQVQA23IlIT2RlYfBg/PCDfPjhh9yLjIiIiARLTYWXF5RKAGjeHJs2iQ5Ehsra2vrLL7+cNGnSTz/9FB0dfefOHRcXFzc3t549e0qrxxTl5+fn7u6+b9++q1evqlQqZ2dnT0/PDh06VHJyIiooIgJZWUhMtHjllSzRWZ7T2bOYPFkeDxqE2bOFpiGqGGy4E5E+UKng6Ynjx+XDjz7C4sVCAxEREZHBy8vDiBG4cQMAbG0RFARbW9GZyLA5OzuPHDmy7PW1atUqevE7EQk0bBju3AFQ8+ef77q6ik7z7G7dgpcXsrMBoG1b7NzJ7dZIP3HTVCKq8pRKeHjkd9vnzasa3fbUVPk3i9xcZGSIzUJERETl7/PPcfgwACgU2L4dbm6iAxEREYnz+DE8PPDwIQDUqoXQUFhbi85EVDHYcCeiqk2pRP/+CA+XD+fPx2efCQ1UBjdvKiZOdOzQwUE6VCpRowbGjkViothcREREVG6OH8eXX8rjWbMwaJDQNEREREJpNBg3DpcvA4CZGQID0aCB6ExEFYYNdyKqwp48gbs7Tp6UD7/4AnPnCg1UBhcuoFMni6NHrfLy8idzcrBjB9q2RVycuGRERERUTm7dwtChUKsBoEcPfPGF6EBERERCzZ2L/fvl8fr16NJFaBqiCsaGOxFVVVK3/dQp+fDLLzFnjtBAZfD4MQYORHp68cvUJSRg0CD5P+dERERURWVmwssLyckA0KABvvsOxsaiMxEREYlz4AAWLpTHH3yA8eOFpiGqeGy4E1GVlJaG3r1x+jQAKBRYtapqbG6+ZQsSEkoruHwZwcGVlYaIiIj+z959BjR19WEAf5Kwh4KKWC24R+vWaq1U654giuDAvarVah1179VKXdW6Wq0LFygo7u1r3avuvVdFFFCRTZL3Q66AMsUkJyHP79O5957c+4CGC/+ce44O9O+Pf/8FAHNzbNgAJyfRgYiIiMQ5fx7dukGtBoAmTeDnJzoQke6x4E5Exuf1azRrhhMngHfV9sGDRWfKnh07su6jWV2NiIiIjNGiRVixQmovWIDatYWmISIiEio0FJ6eiI4GgLJlERDAp77IJJiJDkBE9HFevUKzZjh1CgBkMsybh4EDRWfKtgcPtNOHiIiIDNCpUxg6VGp37ozvvxeahoiISKiEBLRrh8ePAcDREVu3wsFBdCYivWDBnYiMyatXaNoUp08DgEyGP/7AgAGiM30MeTYeK5KlP8E7ERERGbSwMHh7Iz4eACpXxp9/ig5EREQk1IABOHIEABQKrFmDMmVEByLSF04pQ0RGIzISTZqkVNsXLDCyajuAokWz7lOsmM5jEBERkXYplejcGU+eAICjI4KDYWMjOhMREZE4s2Zh2TKpPXs2WrQQmoZIv1hwJyLjEBmJxo1x5gwAyGRYtAj9+4vO9PHc3bXTh4iIiPTp+XPcu4d796RZaNMaPRr79gGAXI61a1GihD7TERERGZa9ezFqlNTu1g0//SQ0DZHeseBOREbgxQt89x3OnQMAhQIrVqBfP9GZcqRXL7i4ZNahWjV4euorDREREWXPoEEoWRIlS6a//nlICGbNktqTJqF5c31GIyIiMiw3b6J9eyiVAFC7NudYI1PEOdyJyNCFhaFRI1y+DAAKBZYvR9euojPllK0ttmxBo0bqyMh0Zmp3cUFQULbmeSciIiIDcesWunWDWg0A7u4YO1Z0ICIiInEiI+HhgVevAMDVFcHBsLTU06Xbt4/29ISjo2PevHq6IlFGWNchIoP2/DkaNEiptq9cacTVdo1q1XDiRJynZ4xZqk88razQty/On+cE7kRERMbk7Vu0aYPXrwGgWDGsXMkPzomIyHRpVjS5fRsArK0RFARnZ/1d3d5eVbSoskQJ5M+vv4sSpYu/DxKR4dJU269eBQCFAqtWoXNn0Zm0wcVFPX/+y/PnIzSbtraIiMCSJfy1gIiIyJio1ejVC9euAYCVFYKCeCsnIiKTNmMGdu4EAJkMK1bgq69EByIShAV3IjJQoaFo0ED6I1ahwOrV6NRJdCatsrVVaxoKBaytxWYhIiKijzZ7NgIDpfbixahWTWgaIiIi0VavlhoTJ6J9e6FRiITiHO5EZIgeP0aDBrhzBwDMzREQgDZtRGciIiIieuf4cYwZI7V//BHdu4sMQ0REZDjatMGECaJDEAnFEe5EZHAePUL9+lK13cICgYGsthMREZEBCQ2FtzcSEwGgVi3Mni06EBERkThJSSntypXh7w+ZTFwaIgPAEe5EZFg01fZ794B31XZPT9GZiIiIiN5JTISPD549A4CCBbFxIywsRGciIiISJDYW//0ntR0cEBwMW1uhgYgMAAvuRGRAHj5E/fq4fx8ALCywaRM8PERnIiIiIkplyBAcPQoACgXWrMHnn4sOREREJIhajR49EBcnbf7xB0qUEBqIyDBwShkiMhQPHqBePanabmmJoCBW24mIiMiwHD2KhQul9owZaNxYaBoiIiKhJk9GQEDKZs2a4qIQGRIW3IlI565csfjrL6l97RqWL0ds7Id9bt9GnTp48AAAbGywbRvc3fWZkYiIiChryb/StG6NYcOERiEiIhJq0yZMmSI6BJFBYsGdiHQoOhqDB+dv2bJQ8ofeoaHo1QulSuHAgZRut26hfn08eQIANjbYupXjxYiIiMhQPHworS4DID4eAMqWxapVXBGOiIhM14UL6N4dajUA2NiITkNkYFhwJyJdUSrRpg02b05nwZT//kPLlvjnHwC4eRP16+PpU+Dd2PaGDfUblIiIiCg9kZHyvn3tS5TA2bMpO2UyeHrC3l5cLCIiIqFevkTbtoiOBoDixfHZZ6IDERkYFtyJSFdWrsS+fRkejY9Hnz64ehX160trmtvaYvt2NGigt4BEREREGXrxQublVSg42FKlem+/Wo3ffkPfvoJiERERCZWYCG9v6dkve3ts2waFQnQmIgPDgjsR6UryJKcZuXULdevi2TPgXbW9fn095CIiIiLK2rBhFvfumWV0dOlSBAXpMw4REZFB+PFHHD4MAHI51q1D+fJQKqVDH3xETWSyWHAnIp1QKnHuXNbdIiIAIG9e7NuHevV0nImIiIgoe548QXBwFgP2Zs3STxYiIiJD8fvvKUPrZszAgwcoVw5370p7vvkGgwfjxQtR6YgMRYZDNoiIPkVkZMqn3JnLmxe7d6NWLR0HAipWlKa4cXDQ+bWIiIjIqO3fLy0El4nTpxEVxcnciYjIVOzbh+HDpXbHjti1C4cOvdfh1SvMm4fAQOzZg4oV9R+QyFCw4E5EOpE3L+TyrB8os7LC3r2oWVMfkRwc0KiRPi5ERERExk4z5V3mVCo8e8aCOxERmYT79+Hri6QkAPjmG6jVH1bbkz17hpYtce0a7Oz0GZDIgHBKGSLSCXNzlC+fdbfp0/VUbSciIiLKPkvLbHWzsdFxDiIiIgMQFQUPD7x8CQCFC2PKFAQEZNb/8WMsWKCfaESGiAV3ItKVrl2z6ODkhB9+0EsUIiIioo8hk2XdJ08eODvrPgoREZFQKhV8fXH1KgBYWWHLFhw7lvXEa5s36yEakYFiwZ2IdGXgQFSpkuFRuRxLlsDaWo+BiIiIiLLh5UvMnZt1N09PmJvrPg0REZFQI0Zg+3YAkMmwfDlq1MCdO1m/6vZtXeciMlwsuBORrlhaYtcu1KwZn/aQlRWWL4eXl/5DEREREWVGpULnznj8OItudnaYNEkfeYiIiATy98fs2VJ77Fh07AgAiYlZvzA+nUoAkalgwZ2IdKhQIQQEPP/559cKhbRHJkPfvrhzB926CU1GRERElJ5x47BnDwDIZGjSJCbdPnnzIjgYJUroNRgREZGenTiBPn2ktqcnJk+W2kWKZP1aFxddpSIyfCy4E5FunT1ruXhxHqVS2qxZE0uWZOv2TERERKRn27ZhxgypPXp04tKlLzdufN24MeTv/myyt8f33+PSJTRuLCojERGRPvz3H3x8pIHqX3yB1atT7obZuQnyRkmmjAV3ItKhf/5B9+4Fo6NT1h2ztRUYh4iIiChDt2+jSxdpFbhGjTBqVCKAevUS9+5NmQdv6VL8+SdcXcWlJCIi0r3YWLRujadPASB/fmzbhjx5Uo42aYKvvsrs5RYWGDRItwmJDBkL7kSkK4cPo0ULaKrt+fKJTkNERESUsehoeHnh9WsAKFoU69cjeUI8IGVMn0yWzmuJiIhyE7UavXrhzBkAMDfHxo0oWfK9DnI5/P3h5JT+y2Uy/PUXSpfWeU4ig8WCOxHpxJ49aN4c0dEAULiw8vffRQciIiIiylj//rhyBQCsrBAUhAIFRAciIiISZPp0rF8vtefPR/366fQpVw5nz8Ld/cOPor/4Anv2cM02MnUsuBOR9u3ejdatERsLAIULJ23Y8JyTthMREZHB+v13rF4ttRcuRPXqQtMQERGJExKCiROl9oAB6Ncvw56urti2DXfvolAhac/GjbhyhbO3E7HgTkTatmsX2rRBXBwAuLoiICCsaNEk0aGIiIiI0nfiBEaOlNr9+qFnT6FpiIiIxLl+HV27QqUCgDp1MGdO1i8pXjxlevdKlVImYSMyZWaiAxBRrrJjB9q2ldYxL1oUhw5BoWC1nYiIiAzU8+fw8UFCAgDUrAlOgkdERCYrPBweHnjzBgCKFUNQECwsRGciMk6GW3BXqVRbt27dtGnT3bt3FQpF+fLlfXx8GjVqlFH/EydOrFy58urVqzExMa6urh4eHp07d7a0tNRnZiITt307vL2lanuxYjh0CMWK4dEj0bGIiIiI0pOUhHbt8PQpAOTLh4AA8K8HIiIyTYmJ8PHB3bsAYG+PbdsyXBOViLJkoAX30NDQDh06HD58OHnPsWPH/vrrrw4dOvj7+5uZfRh72LBhc1I96HL+/PmQkJB58+Zt27ataNGiegpNZNo2bYKvLxITAaB0aRw6BM7bTkRERIbs55/xzz8AIJdj3ToUKyY4DxERkSiDBuHQIQCQy7FmDSpUEB2IyJgZYsE9NjbW3d393Llzcrm8adOmDRs2BBAQEHDmzJkNGza4uLj89ttvqfv/9ttvmmp7mTJlWrduXahQoX379u3atevy5cseHh6nT5+2srIS85WQzvzwA86cAYDFi1Gjhug0BGzciE6dpGp72bI4cIDVdiIiIjJoGzZg3jypPX06mjYVmoaIiEichQuxZInUnj4drVoJTUNk/AxxLYMZM2acO3dOJpMtXbp0586dw4YNGzZs2MmTJ9u3bw9g1qxZ9+/fT+4cFhY2efJkABUqVDh79qyfn9+QIUN27tw5ceJEAJcvX/7rr79EfSGkO7du4dw5nDuHqCjRUQgIDEwZ2162LA4eZLWdiIiIDNqNG/j+e6ndqlXKoqlERESm5sgRDB0qtX18eE8k0gKDK7i/ffv2999/B9C/f/+ePXsm75fL5fPnz1coFGq1euvWrcn7//7775iYGJlMtmnTJnt7++T9kyZNqlWrFoA//vhDj/GJTM6GDejUCUlJAFCuHA4dQuHCojMRERERZSwqCl5e0riN0qWxejVkMtGZiIiIRHjwAG3bSouHV6uGlSt5TyTSAoObUmbPnj1v3rwB0Lt37w8OFSxYcOfOnW/evEk9Lfv27dsBuLm5lS1b9oP+Xl5eJ0+evHPnzu3bt0uXLq3j4ESmaP16dO0qVdu/+AIHD6JQIdGZiIiIiDKmVqNHD1y/DgC2tti8GXnzZv2qEiVQvToAODrqNh4REZHeREXBwwMvXgBAoUIICYGNjehMRLmCIRbcAZQtW7ZKlSppjzZp0iT1pkql+vfffwF8++23aTu7u7uPGDECwOnTp1lwJ9K65cvRpw9UKgCoXBn796NAAdGZiIiIiDL1668ICpLaixejfPnsvurXX3UXioiISN9UKnTujCtXAMDKClu24PPPRWciyi0MbkqZK1euAEgern737t1du3YdOnQoIiIibedHjx7FxcUBKFOmTNqjZcuWNTMzA3D79m0dJiYySX//nVJtr1KF1XYiIiIyAgcPYsIEqT1kCLp0EZqGiIgo227cwNChCAuTNqdPdzx8+JNOOHYskidsXrgQX3/9SWcjotQMboT7nTt3ABQqVOj8+fP9+/c/efJk8qEKFSosWbLEzc0teU9oaKim8dlnn6U9lVwud3Z2fvr06bNnzzK/6P79+7MMpqnsk0ZcXFx8fLxCoRD1bVGpLDQfFyUkJMTFqYRkSCs+Pj4+Pj4uLk4uN7iPsrRr+XLFwIHm78a2q3bsSLSzU2f0fyE+Ph5AQkICYAFApVLFxSXoL6tB0ryDlEqz1HsE5jEQpvMOIiIiIR4/RocOUCoB4JtvMGOG6EBERETZM20aJk2SbmEa27bZbNuGDh2wfDmsrT/6hBs3ws9Pao8ciVRLKBKRFhhcwf3Vq1cAHjx48O2338bExAAoXLhwREREXFzclStX6tatO3v27MGDB2s6R0dHaxo2GcwyZW1tnbpbRho3bpxlsLDkjxEJiI2NjYyMjI6OVqb+ea9HCQkFASsAr169CgszlEql5j+qSqWyzsHtznisW2c3Zkw+tRoAKlRIWL06LClJlcn7Izw8HMCrV3mBggASEhL4btK8g5TKOKAwAJVKxe8JTOYdREREQsTHo23blGlqN22ChYXoTERERNng54fx49M/tGEDEhJSpkrLpn//Rffu0PxR37Qppk//1IRE9AHDKrgnJCQkJiYC2Lt3r5WV1fTp03/88cc8efIolcqDBw/27dv3/v37o0aNatasWbly5SCNmQUAzdQxaWn2Zzl0tFGjRpkc1Yx/t7Ky+vgvKNdSq9WWlpZWVlaivi3JA2AtLCwM51/GyspKrVYL/LbowapV1mPG2GtuzJUrJwUGvnFwyOKvVUtLSwAW7/6olcvlufj7k02ad5CFhcXGja8AmJnxJwxgGu8gIiISZdAgnDkDAObmCAxE4cKiAxEREWXD48eYNCmzDsHB2LEDLVtm94ShofD0REwMAJQrh4AAKBSfmJGIPmRYBffUFi5c2PPdMy0KhaJx48a7d++uUKFCfHz8hAkTAgMDkWpgu2bOirQ0pfYsB0vu27cvk6MymQxAwYIFP/IryM1iYmJkMpmNjU0BQfN2J49IcnBwMJx/GblcHhMTU6BAgYweuTB2c+di5EjpY/DatbFrl1mePFn/B9C8DSMjHTSbFhYWfDclv4PKl3cQncWA5Pp3EBERieLvj7/+ktqzZqFOHaFpiIiIsi0gAFnOP7pqVXYL7nFxaN0aT54AQL582LYNefN+akIiSsuw5sm1sLAwNzcHULx48Z5pZpAqU6aMl5cXgLNnz2r22Nvbaxpv3rxJ94Sa/cndiCjHZs/G0KFStd3NDbt3I08e0ZmIiIiIsnLxIvr2ldodOmDQIKFpiIiIPsa//2qnj8aAATh1CgDMzBAYiFKlch6MiDJhWAV3vBtIXqVKlXSPli9fHsCDBw/evn0LoHjx4pr9TzQfz70vNjY2IiIidTciyplZs/Dzz1L722+xaxf4MRYREREZvshIeHkhNhYAKlTAsmWiAxEREX2M16+z7hMZma1T+flh+XKpPXcuGjbMeSoiypzBFdw1k7NnNOu6ZnYXCwsLzQy/jo6Ozs7OAC5dupS28+XLlzWNL774QkdpiUzBb79h+HCpXacOq+1ERERkHFQqdOqEe/cAwN4egYGwtRWdiYiI6GPkz591n+zM9btnD8aOldo9euDHHz8pFRFlzuAK7m5ubgAuXLigVCrTHj1//jyAL7/8MnmV1AYNGgA4ePBg2s4HDhwAYG5uXrduXd0FJgIQHQ0/P8yfb71qVW4rRfv5YeRIqV23LnbuhJ2d0EBERERE2TNpEnbtAgCZDCtXgoNwiIjI6Hz9ddZ9atfOosONG2jfHpoym5sblizRQjAiyoTBFdw1s7Q/e/Zs4cKFHxy6ePFiSEgIgG+//TZ5p4+PD4A7d+7s3r07def4+Phly5YBaNasWR5ONU06FhWFUaMwdartH3/kqv9skyZh1Cip3aQJdu9mtZ2IiIiMw/btmD5dao8ZAy8voWmIiIhypF27rNc1TbMG4nsiIuDhIU1NU7QogoNhYaG1eESULoMruFeuXNnd3R3AiBEj5syZkzzO/cCBAx4eHkqlsmDBgpMmTUru37p164oVKwLo27fv7du3NTsTEhL69et37949mUw2btw4fX8NRLnCxImYPFlqN22KLVtgbS00EBEREVH2PHiA7t2hUgFAw4Ypv9IQEREZFycn/P47ZLIMO/Tvjzp1MjyalIR27XDnDgDY2WHrVhQsqP2QRPQBgyu4A1iyZImLi0t8fPywYcPs7e2rV69esGDBRo0aPX782NraetmyZfny5UvuLJPJ1q5da2dn9+jRo7Jly9aoUaNFixb58+dfuXIlgIkTJ9asWVPYV0JktMaPx5QpUrtZM1bbiYiIyGjExqJtW4SHA4CLC9avh0IhOhMREVFOde+OFSvSWUpNocCIEZg/P7PXDh6MAwcAQCbD33+jUiVdhSSi1Ayx4F6kSJFjx455eHjIZLLY2Nh///33xYsXAOrVq3fp0iUPD48P+lesWPHYsWPVqlVTq9Vnz57dtWvX27dvHR0dFy1aNHHiRBFfAZFxGzsW06ZJ7ebNsXkzrKyEBiIiIiLKtv798e+/AGBpiaAgODmJDkRERPRpunXD/fuYOzdlJFzv3lE3b8LPL7MPlVesQPJszVOmoF07neckIg0z0QHS5+LisnXr1qdPn54+fTo8PLxEiRKVK1fOn/HazJUqVTp37tylS5euXr0aGxvr6upap04dS0tLfWYmyh3GjMGvv0rtli0RFAS+k4iIiMhYLFiAlStT2jVqiAxDRESkLfnzY/BgzJ6NJ08AoHfvNyVLphn0nsrRo+jXT2p7eWHsWN1Hqs6YKwAAIABJREFUJKJ3DLTgrlGkSJE2bdpkv3+lSpUq8fEYopxSqzFkCObNkzbd3bFpE6vtREREZDROnsSwYVK7Sxf07i00DRERkSAPH6JtWyQkAECVKli9OrNZ4IlI6wxxShki0j+1Gj/9lFJt9/ZGcDCr7URERGQ0nj+Hj09KceHPP0UHIiKi3KVcOeTLh3z5EBYmOkqm3r5Fq1ZSSGdnbN0KW1vRmYhMjEGPcCci/VCrMWgQFiyQNn18sG4dzPjjgYiIiIxEUhLat5eess+XD8HBXO+diIi07PVrREYCgEolOkrG1Gr06oVLlwDA3ByBgXBxEZ2JyPRwhDuRqVOr8eOPKdX29u1ZbSciIiIjM2oUDh8GALkca9ageHHRgYiIiESYMAGBgVJ70SLUrSs0DZGpYsGdyKSp1RgwAIsWSZsdOmDNGlbbiYiIyJhs2YI5c6T25Mlo3lxoGiIiIkGCgzF9utQeOpRrmRAJw7oakelSKtG7N1aulDY7doS/PxQKkZGIiIiIPsrNm+jWDWo1ALi7Y8wY0YGIiIhEuHABXbtKN8QmTeDnJzoQkQnjCHciE6VUomfPlGp7z55Ys4bVdiIiIjImb9/Cywtv3gBAqVLw94ecf98QEZHpef4crVohOhoAypZFQACfXCcSib+QEpkipRI9emD1ammzd28sXco/UImIiMiYqNXo2RPXrgGAtTUCA+HgIDoTERGR3iUmol07PH4MAHnyIDiYN0QiwVhgIzI5SiW6d4e/v7TZpw/+/JPVdiIiIjIyM2di40apvXgxqlYVmoaIiEiQ/v3xzz8AoFBg/Xp8+aXoQEQmj0+YEJkWpRJdu2LdOmmzb18sXgyZTOfXtbdH9eoAUKaMzq9FREREud6hQxg7VmoPHIhu3YSmISIiEmT2bCxbJrVnzUKLFkLTEBEAFtyJTEpiIjp0QHCwtNmvHxYt0ke1HUCNGjh7Vh8XIiIiolzv2TN06oSkJACoVQuzZokOREREJMLevRg1Smp37YrBg4WmIaJ3OIsEkalISEC7dinV9iFD9DS2nYiIiEiLNDPVPnsGAM7O2LQJFhaiMxEREendzZto3176+Ll2bfz1l+hARPQOC+5EJkFTbd+yRdocNgxz5ggNRERERJQjP/2Eo0cBwMwMAQEoUkR0ICIiIr2LjpZ5eeHVKwAoXBgbN8LSUnQmInqHU8oQ5SpJSYiKAgAzM9jbSzsTEuDjg61bpc3hw/Hbb2LiEREREX2KtWuxeLHU9vPDd98JTUNERCTI+PH5rl0DAGtrbNmCwoVFByKiVDjCnShXOXMG+fIhXz40bSrtiY9H27Yp1fYRI1htJyIiIqN06RK+/15qt26NIUOEpiEiIhLn+HErADIZli9HjRqi0xDR+zjCnSg3i42Fpyf27ZM2R47EjBlCAxERERHlSGQkvLwQEwMAZcti1SouRUNERKZu/Hh06CA6BBGlwRHuRLlWTAxatUqptk+axGo7ERERGSWVCl264O5dALCzQ3Aw8uQRnYmIiEjvEhJS2l5emDRJWBIiygRHuBPlTioVPDxw8KC0OWUKxo8XGoiIiIgop6ZOxY4dACCTYcUKfPml6EBERER69+gRwsOldunSiatWmfNhLyLDxII7GZ/oaERESO3Hj4VGMWA3buD1a6k9dSrGjROahoiIiCin9u3D1KlSe8QIeHsLTUNERCRCbCzatoVSKW3OmBFhZ+csNBERZYhTypAxiY7G0KFwdsaFC9Ke7t1RvToOHRIayyAlV9tnzmS1nYiIiIzVw4fw9ZXqC/XrY9o00YGIiIj0Tq1Gz544ezZlT5EiSeLiEFEWWHAnoxEZCTc3zJ2L6Oj39v/7Lxo1wrJlgmIZmNTfHJkMc+fi55/FpSEiIiL6BHFxaNsWL18CwOefY8MGmPEBXSIiMj1TpmDDBtEhiCjbWHAno/HDD7h4Mf1DKhV++AGXL+s3kOF5/RqDB6dszpv33iYRERGRcRkwAOfOAYC5OTZsQMGCogMRERHp3ebNmDJFatvZCY2SgTx54OgIR0coFKKjEBkGFtzJONy6hcDAzDokJeHXX/WVxiC9eoWmTXH1qrRZvDgGDhQaiIiIiOgTLFmC5cul9vz5cHMTmoaIiEiEixfRpQtUKgBo1AgODqIDpefMGUREICICJUuKjkJkGFhwJ+OwezfU6iz67NqllygGSVNtP3UqZU+hQuLSEBEREX2a06dTHtTr1An9+glNQ0REJEJ4OLy8pJljixfH+vWiAxFR9rDgTsbh0aOs+7x6lbJSqEmJjETjxjh9GgBkMtFpiIiIiD5NeDjat0d8PABUqoS//hIdiIiISO8SE+HtjXv3AMDeHtu2oUAB0ZmIKHu46hAZh2xOBGaC84W9eIFGjXDpEgDI5Rg9GtOni85EREbu1q1b58+fv3XrVnR09Jdfflm5cuXKlStn1FmlUh04cODkyZPh4eEFCxasV69e7dq1Mzl5TExMSEjI1atXY2JiXF1d3d3dS5UqpYMvgoiMlUoFX188eAAAjo4IDoaNjeBIRLnJixcvQkJC7t69q1Aoypcv36hRIycnp4w6865NJNCPP+J//wMAuRzr1qF8ecF5iCj7WHAn41CsWNZ9nJwMdP0Q3QkLQ6NG0mqxCgX+/htlyrDgTkQ5FxkZOXr06KVLl6o080S+06JFiz/++KNEiRIf9L927VqHDh0uv79otZub27p161xdXdOef8uWLb169YqIiEjeM2TIkD59+syfP9/Kykp7XwcRGbGxY7F3LwDI5VizhrPBEmlNUlLS5MmT/fz8EhMTk3c6ODjMmDGjb9++afvzrk0k0Pz5KQ94zZgBd3ehaYjoI7HgTsahZUsoFFAqM+vTqpW+0hiGsDA0bIgrVwBAocDy5ejaFSdOiI5FREZLqVQ2aNDgwoULAIoVK1ajRg0rK6szZ87cuHFj586dR44cuXDhQuqa+5MnTxo0aPD8+XMApUqVqlq16vHjx58+fXrs2LHGjRufOnXK4f1Fnfbs2ePt7a1UKuVy+VdffVWoUKH//e9/b968Wbp06evXrwMCAvT89RKRAdq8GX5+Unv8eLRoITQNUe7Su3fvVatWAciTJ0/dunUBHD58+NWrV/369bO3t/f19U3dmXdtIoH278ewYVK7SxcMHy40DRF9PM7hTsbB1RW9e2fWwdoaY8boK40BeP4cDRqkVNtXrkTXrqIzEZGRW7hwoabaPnTo0Fu3bgUGBq5evfr69esrV640NzePiorq3LmzMtUnn4MHD9ZU29euXXv79u3AwMAnT578+uuvAG7dujV58uTUJ4+Pj+/Vq5dSqXRwcLhy5cqpU6dCQkJevnzp7u4OIDAwMCQkRK9fLREZnlu30L071GoAaN4cEyaIDkSUi/j7+2uq7T179gwPD9+2bdu2bdtu3rypmTWuX79+kZGRyZ151yYS6P59dOyIpCQAqF4df/4pOhARfTwW3MlozJ2LBg3SP2RlhfXrkWaqAz25fTtlKNbr1/J588xfvNDtFUND0aABrl4FAIUCq1ahc2fdXpGIcj21Wj19+nQAlStXnjlzprm5efKhbt26jR8/HsCJEycuXryo2Xnnzp3g4GAAw4cPTz0mbtSoUT4+PgD+/PPPN2/eJO9fu3bt06dPNY0vvvhCs9Pc3Hz9+vXFixcHMHPmTB1/iURk0N6+hZcXND82ihaFvz/k/EuFSEuUSuXEiRMBNG3adOnSpWZm0pPun3322erVqwFERUXt2LEjuT/v2kSiREXBwwMvXwLAZ58hJATW1qIzEdHH46+xZDSsrbFnD2bNQuHCKTvlcri74/RpeHoKiKRUYsQIlCuH33+X9iQkyMaMMS9WDMuW6eqimmr7tWsAoFDA3x+dOunqWkRkOq5fvx4WFgbg+++/l6epcnV+97HeuXPnNI2tW7eq1WqZTDZkyJAPOvfo0QNAbGzsvn37kndu2bIFQLly5Vq8P0OEnZ2dpkB/4sSJF7r+uJKIDFj//tJgAisrBAUhf37RgYhykSNHjty/fx/AkCFDPrjLV6pUafz48QMGDEiuwoN3bSJBNMuGJ98Nt2xBkSKiMxFRjrDgTsbEzAzDhuHJE9SqJe3ZsgXbtqFiRTF5Bg7EzJl4f2VBAIiJQZ8+Oqm5P36MOnVw/ToAmJtj40Z07Kj9qxCRCXrw4IGmUTG9H6mff/65TCYD8OzZM82ef/75B8CXX3752WeffdC5QYMGdnZ2yX00jhw5AqBhw4ZpT96qVSsAKpXq6NGjn/plEJFxmjMH/v5Se9EiVK8uNA1RrqMZve7s7NyoUaO0R6dMmbJgwYIOHTok7+Fdm0iIkSOxfTsAyGT4+2/UrCk6EBHlFAvuZHxkMtjYSG1bW2Exjh7F4sWZdRg6FM+fa/OKjx6hfn3cuQMAFhYIDESbNto8PxGZsipVqmimc62eXqHrwoULarUaQKlSpTR7bt68CaBChQppO1taWlaqVAnArVu3NHueP3/+6tWrjPrXqFFDU81P7k9EJuX4cYweLbV/+AE9eghNQ5QbadZoqVq1qkKh0OyJiYlJSEhItzPv2kRC+Ptj1iypPXo03l/GmIiMDAvuRDmU5QD2qCgEBGjtcppq+927AGBhgY0b0bq11k5ORFS4cGF3d3d3d3eb5I8031GpVJo53O3s7Jo2barZ+fjxYwCff/55umfT7H/06FHqzhn1t7CwcHJySt2fiExHaCh8fKCp+339NebOFR2IKDe6ceMGgEKFCkVFRY0ePdrV1dXW1tbOzq5SpUoDBw5MvVwqeNcmEuHcOfTtK7WbN8eUKULTENEnM8u6CxGl5/TprPucOqWdaz18iPr1cf8+AFhYYNMmeHho58xERJmLjo7u27fvnj17AAwfPjx//vwA1Gp1TEwMAM3UMWlp9kdFRWk23759m3p/uv3DwsKS+2dEM6Quc/z7P7XY2NjIyEgrKyvNvxdpRERExMXFxcbGWnMZslT+++8//V80KUnWsWPB//6zBODoqJozJ/T58yT9x8gI30Hp4jvIGCXPt169evXbt29r2omJiZcvX758+fKmTZvWrVtXv359zX7etUXhz5x0GdTPHKWyCKAA8PTp04QEpbZOGxam8PAoFBurAFCqVOLMmc+fPk0zcW2aDM+fP3/0SGsZcgG+g9JlUO8gk8IR7kQ5FB6edR/N2uKf6MED1KsnVdstLREUxGo7EelJcHBwxYoV165dC6BLly6ace4A4uLiNDPMWFpapvtCzf7kX3ZjY2NT78+yPxGZiKlTHU6ftgSgUGD+/Jeff25A1XaiXEOpVMbHxwNYtWrV7du3mzRpEhIScuvWraNHj44ZM8bc3Dw0NNTX11czjQx41ybSr/h4WZ8+TqGhCgAODqq//35hb59htZ2IjAVHuBPlkIMDwsKy6JMv36de5fZt1K+Pp08BwMYGISFIb6EjIiItO3/+/ODBgzWrnlpbW0+ZMmXo0KHJQ9WS/wLPaPpXzR/2FhYWmk0rK6uP6p8RTZU/I5p4rq6umZ/EpMTExFhbW9vY2BQoUEB0FgNiY2MTExNToECBtBMokT7fQevXY+VKqf3LL+jcuaDeLp1NfAeli+8go5OYmKhpqNXqQYMGzZs3T7NZunRpNzc3Nze3li1bhoaGTpw4UXOId21R+DMnXQb1M+fdIggoUqRIoUJaOKFajc6dceECAJibIzhYXrdu4WxmcHZ2dnUtooUQuQXfQekyqHeQSeEId6IcqlYt6z5Vq37SJW7efK/avnUrq+1EpHNxcXFDhgypUaOGptru5eV16dKln3/+WS5P+Z1BLpdrnkmMjo5O9yQfTDhj+26F62z2J6Jc7/Jl9OkjtT09MXy40DREuZqVlZXmJl6gQIEZM2Z8cLRFixYNGzYEcPDgQc0e3rWJ9OaXX7BundSeNw/vJnYiIqPHgjtRDnXrlkUHKyt06JDz89+8iQYNUqrt27ahYcOcn42IKDtevnxZq1at33//XalU1q5d+8SJE0FBQaVKlUrbs0iRIsh40uenT58CKFy4cOrOGfVPSkoKCwtL3Z+IcreoKLRrB00pr0wZrFqFbEz1TEQ55+joCKBatWrpzuFbo0YNADdv3tSMheddm0g/du3CxIlSu39//PCD0DREpFUsuBPlULNmaNcusw4TJyLHj0jeuIH69aH5FdfWFtu3o0GDHJ6KiCib3r5927x584sXL1pbWy9YsODo0aO1atXKqHPZsmUB3Lx5M92jmgXZvvjiC81mkSJFNOPg0u1/584dlUqVuj8R5WJqNbp3x40bAGBnh+Bg5M0rOhNRblemTBkA9vb26R7Nly8fAKVSmVxw512bSNeuX0fHjlAqAaBOHcydKzoQEWkVC+5EObdqFTp3Tme/QoEpUzBqVA5Pe/066tfHs2fAu2o7nywjIj0YOnTo2bNn7ezs9u3bN2DAAFmmI07d3NwAXLx4MSoq6oNDt2/fDg0NTe6jUbt2bQBHjhxJe6rknZo+RJS7/fILgoOl9t9/o3x5oWmITEP16tUBXL16Nd2j169fB1CyZMnkGX551ybSqYgItGqF168BoFgxBAUhqzURiMjIsOBOlHNWVvD3x9Gj8PWV9pibqwcNSrp2DePH5/CcFy+ibl2EhgJA3rzYvx/16mklLBFRZsLDw/39/QFMmzYtdaE8I56engASExPXrFnzwaGVK1cCsLCwaNGixQf9T506pfmrPrVVq1YB+Oqrr1xcXD7lSyAiw3fgQMrj88OGZfGwIBFpS6tWrQDcuHFj7969HxwKCwsLCQkBUC3VElW8axPpTmIivL1x5w4A2Nlh61Y4OYnORETaxoI70adyc8Ps2VLbwUH1668JZcrk8FQXLqBRI7x8CQB582LPHmQ8nQMRkTYFBATExcUBqFq16pWMRUZGavp/+eWXzZs3BzBp0qSHDx8mn+f8+fNz584F0KtXL80j6hrdunVzcnIC0K9fP82FNJYsWXLs2DEAw7lmIlFu9+gROnSQHp+vXRu//io6EJHJaNiwYcWKFQH07t379OnTyfvDwsJ8fX0jIiIsLCzGjRuXvJ93bSLd+eknHDoEAHI51q5FxYqiAxGRDpiJDkBEkvPn0bgxwsMBwMEBe/agZk3RmYjIZCQPYfvuu+8y6bZ48eJ+/fpp2vPmzTtx4kRYWFj16tU9PT0rV658/Pjx7du3x8bGFitWbMqUKalfaGtru2DBgvbt2//zzz8VK1Zs3bq1k5PT/v379+/fD8DDw8PHx0c3XxkRGYT4eHh7S6MKChXCxo0wNxedichkyOXyJUuWNGjQ4PHjx25ubvXr169YseLjx48PHDgQEREBYNy4cRUqVEjuz7s2kY4sWoTFi6X2tGlo1UpoGiLSGRbciQzCv/+icWNERACAgwP27kWNGqIzEZEpuXv37se+pHTp0rt27erQocPDhw+XL1+evL9KlSqBgYEFChT4oH+7du2ioqIGDRp0586dWbNmJe9v3779smXLMp8ynoiM3Y8/4swZADA3R2AgChcWHYjIxNSuXTskJKRHjx7Pnj3bt2/fvn37NPvz588/b968Tp06fdCfd20irTtyBEOGSG1v75yv+kZEho8FdyLxzp1DkyZStd3REXv34quvRGciIhMzderUESNGZNmtzPtzZtWqVev69etbtmw5fvx4RESEs7Nz/fr1mzdvbmaW/i8YvXr1cnd3DwgIuHr1amxsrKurq6enZw1+wEiU2/n7Y9kyqT1nDurUEZqGyFQ1bdr09u3bISEhp06dCg8PL1GiROXKlevVq5c/f/50+/OuTaRFDx6gbVskJABA1apYtQr83IooF2PBnUiw48fRvDnevAEAJyfs349KlURnIiLTU7169Zy90NraumPHjh07dsxmf2dn50GDBuXsWkRkjC5cQN++UrtjR/z4o9A0RKbN1tbW19fX19c3m/151ybSirdv0aoVXrwAgEKFsHUrbGxEZyIiXeKiqUQiHTuGZs2kanvBgjhwgNV2IiIiyj0iIuDlhdhYAKhYEUuXig5ERET08c6fR9++0kokAPr3x9692X2tSoVOnXD5MgBYWWHzZnz+ec6THDuGu3dx5Mh/Tk7KnJ+FiHSMI9yJhDl6FC1aICoKAJydsX8/Uq1URERERGTcNCWG+/cBwN4egYGwtc36VaGhiIkBgEKFOACQiIgEU6sxejR++w1qdcrOzZuxeTPatsXq1VnfqsaNw9atUnvBAtSq9Ul5XF0BwMws6ZPOQkQ6xhHuRGIcOYLmzVOq7QcOsNpOREREucqECdi9GwBkMqxciXLlsvWqPn1QsiRKlsTBgzpNR0RElLWJE+Hn9161PVlQELKcn2nTJsyYIbVHjECvXlqOR0SGiQV3IgEOH0aLFnj7FgAKFcLBgyhfXnQmIiIiIu3Zvh2//iq1x46Fl5fQNERERB/v3r2Ucnm6QkKwfXuGR8+fR7duUrG+aVP88ouW4xGRwWLBnUjf9u5F8+ZStd3FBUeO4MsvRWciIiIi0p47d9ClC1QqAGjYEJMmCc5DRESUAxs2IDExiz5r1qS/PzQUrVpJk6SVK4cNG6BQaDkeERkszuFOpFd79qB1a8TFAYCLCw4dQsmSojMRERERaU9sLNq1w6tXAODqyhIDEREZq/Pnc9gnLg5t2uDJEwBwdMTWrXBw0HI2IjJkHOFOpD+7dqVU211dtVxtj43FH3/g+++lzXPn0LkzTp/W2vmJiIiIsuOHH6Tqg5UVgoJQoIDoQERERDny5k3WfTQfMH9gwACcPAkACgXWrkXp0loORkQGjgV3Ij3ZuRNeXlK1vWhRLVfb799HjRoYNAhXrkh7EhKwdi2++Qbjx2vtKkRERESZmz8fq1ZJ7QUL8NVXQtMQERF9gux8Zuzk9OGe337D8uVSe+5cNG+u5VREZPhYcCfShx07UqrtxYrh0CGUKKG1k8fEoFkzXL2aziGVCtOm4ffftXYtIiIiooycPInhw6V2nz7o1UtoGiIiok/zzTdZ93Fze29zzx6MGSO1u3fHwIHaT0VEho8FdyKdCwpCmzaIjweA0qVx5AiKF9fm+efPx61bmXWYMAEREdq8IhEREdEHnj+HtzcSEgCgShXMmyc6EBER0adp3x5582bWQSZ779PlGzfQoQOUSgBwc8OSJbqNR0QGiwV3It3atAkdO0orm5cpg0OH8PnnWr7EunVZdIiKwvbtWr4oERERUbKkJLRvj6dPASBfPgQHw9padCYiIqJP4+SE+fMhk2XYYdgw1KwptSMj0aqVNKV70aIIDoalpT5CEpEBYsGdSIcCA1Oq7WXL4tAhFCmi5UuoVLh+PetuyXO7ExEREWndiBE4fBgA5HKsXavlh/mIiIhE6doV/v7pjHO3sMDkyfDzkzaVSnTqhNu3AcDaGkFBKFhQrzmJyKCw4E6kKwEB6NQJSUkAUK4cDh5E4cLav0pcnHSJzEVFaf/SRERERAA2b05ZMGbqVDRrJjQNERGRVnXqhIcPsXAhrKykPWPG4O5dTJgA+bui2uDB2LULAGQyrFyJ6tXFRCUiA8GCO5FObNiAzp2lUvgXX+iq2g7AxgZ2dll3c3bWydWJiIjIxN28ie7doVYDgIcHRo/O+amePsX48Th6VNqcNg3r12drYAEREZFO5c2L/v3h4CBtDhz43lSxK1diwQKpPXky2rXTdzwiMjQsuBNp3/LlKWPbK1fG4cP47DMdXq5u3az7fPedDgMQERGRaXr7Fl5eePMGAEqVwurVmU10m7m1a1G2LKZNk2a/BXDqFHx94eaGJ0+0k5aIiIzCo0e4dw/37hnHZ67HjqFfP6nt5YVx44SmISLDwII7kZatWmXWpw9UKgCoUgX798PJSbdXHDAgiw4VK2arKE9ERESUfWo1evTAtWsAYG2NwMCUoX8fa+tWdO2K6Oh0Dp0+jSZN0j9ERES50nffoWRJlCxpBB+4PnwILy/ExwNAlSqf9MEzEeUmLLgTaVNcnOzHHy001faqVbF/PwoU0PlFW7RAnz4ZHrWzw4oVUCh0HoOIiIhMym+/YdMmqb1kCapWzeF5EhMxcKA0WCFd169jzpwcnpyIiEhH3r5Fq1YICwMAZ2ds3QpbW9GZiMgwsOBOpE1RUXLNn4tffYUDB5A/v56uu3gxJk9OWcIlWYUKOHyYC7YQERGRlh06lPLU/E8/oWvXnJ/qf//Do0dZ9Fm9OufnJyIi0jq1Gr164dIlADA3R0AAXFxEZyIig8GCO5H2ff019u2Do6P+rqhQYMIEPHiA4cOlPYULY88eXLyIatX0F4OIiIhMwePHaN9emlr3m2/w22+fdLZ//826z507iIr6pKsQERFp0cSJCAyU2gsXctU0InoPC+5EWrB0aUr7669Ve/bkfA7TT+HsjDZtpHbRomjSBHK+xYmIiEirEhPRsSNevAAAZ2ds3AgLi086oWbN1SxFRn7SVYiIiLRl505Mmya1hw7NbIpXIjJNrMYRfao5czBhgtQ2N1eHhMTnzSs0EBEREZHODBqEY8cAwMwMAQEoUuRTT5jNKfh0vQo9ERFRNg0cCLUaABo3hp+f6DREZHjMRAcgyolq1aSx2/nyCU4ya1bKLC4A8uZV2durxcUhIiIi0qG1a7FkidSeOVM7T9B/803WfapWhbW1Fq5FRET06WJiAKBMGQQGwox1NSJKgz8YyCjNnCk6AQBg5kyMGPHeHplMUBQiIiIiHbt0Cd9/L7Xbt8fgwdo57ddfo1Ilad25jPTurZ1rERERaUWePAgOFjOXLBEZPk4pQ5RDfn4p1fZatYRGISIiItKxyEh4eUlj+sqWxV9/ae3McjmWLoWNTYYd6tdPKfQTERGJkrzoiFyOdetQvrzQNERkwIym4H7u3LkNGzY8fPgwkz5Pnz7dv3//1q1bL1y4oFZzWg/SIT8/jBoltb/7DmvWCE1DREREpEsqFTp3xt27AGCZ3qS4AAAgAElEQVRvj82bkSePNs9fsyb27kXRoukc8vVFSAgf2CciIsHmzpU+dQYwcSJathSahogMm3EU3B8+fNiwYcOOHTseOXIk3Q4PHjxo1qyZi4tL48aNPT09q1atWqxYsXXr1uk5J5mIiRNTqu1NmmDXLtjaCg1EREREpEtTpmDnTgCQybB8Ob74QvuXcHPDrVtYswYuLtIeb2+cO4e1a2Fvr/3LERERZd+ePe8t3sbnrogoc0ZQcFcqlb6+vq9fv86ow927d7/66qs9e/ao1WozMzNHR0cAjx496tSp06xZs/SYlEzChAmYMkVqN2uGkBAu4UVERES52b59mDZNao8cCW9vXV3IwgKdOqFyZWmzWzdUq6araxEREWXTzZvo0AFKpegcRGQ8jKDgPnny5OPHj2fSwdfXNzw8XC6XL1myJDw8/OXLl6dOnSpdujSAkSNHXrhwQV9JKfcbNw5Tp0rt5s2xeTOsrIQGIiIiItKlhw/RsaNUZWjQIOUXISIiIlPw5g28vPDqFQDIjaCERkQGwdB/Whw5cuSXX36RyWQZddi9e/fp06cB/PLLL3379s2TJ49cLq9Zs+aOHTvy5s2rUqmmT5+ux7yUm40Zg+T/TS1asNpOREREuVxcHNq2RXg4ALi4YMMGzqVOREQmRKmEry+uXQMAa2s4OooORERGwqAL7pGRkZ06dVIqlT///HNGfQICAgAULFhw6NChqfeXLl3a29sbwPbt22NjY3UdlXI3tRpDhuDXX6XNli0RHAxLy5QOtrYYORKDBsV26xYlJCERERGR1vXvj3PnAMDcHOvXw8lJdCAiIiI9Gj4cO3YA75YwMTcXHYiIjIRBF9z79Onz+PHjFi1aDBo0KKM++/btA9C0aVPzND/5PDw8AMTFxR09elSnOSl3U6sxeDB+/13a9PbG5s3vVdsB2NtjxgyMHx89cOAb/SckIiIi0rpFi7BihdT+4w+4uQlNQ0REpF+rV2PuXKk9fjw6dBCahoiMiuEW3JcuXRoUFFSwYMEVyb/ppxEVFfX06VMAVatWTXu0fv36msaNGzd0FJJyPbUagwZh/nxp08cH69bxY20iIiLK5U6dQvLjo507o29foWmIiIj068QJfP+91G7dGhMnCk1DRMbGQAvuN27cGDx4MICVK1cWLFgwo253797VNIoWLZr2aJ48eRwcHFJ3I/ooajUGDsSCBdJmu3asthMREVHuFxYGb2/ExwNA5cr480/RgYiIiPTov/9S7oNffolVq7hcKhF9HENc9ig+Pr5jx44xMTGDBg1q3rx5Jj3fvJGm79AU1tNycHB49erV69evM79i48aNs0wVFhaWZR/TERsbGxERERMTo1KpRGfRFbUao0fbr1hhrdls3Tpu7tw3ERGZvSQiIiI2NlatVltbW+sjYnoiI80BRwCJiYlhYZGiYqQWHh4OwIorzKZiCu+gHDCEdxARESmV6NIFT54AgKMjgoNhYyM6ExERkb7ExqJ1a/z3HwDkz49t25Anj+hMRGRsDLHgPnLkyAsXLlSsWNHPzy/znjExMZpGRrU8TdUmOjo68/Ps378/y1RxcXFZ9jEdcXFx8fHxMpkst35bVCqMGJF/40ap6ufpGTN79sukJCQlZfYqzbclLi5OJpPpI2V6EhLUmoZKpTKQf534+HjwHfS+XP8OyhlDeAcREdGYMdi7FwDkcqxdixIlRAciIiLSF7UaPXvizBkAMDfHpk28DxJRThhcwX3nzp3z58+3srJat25dlkNizcyk/EqlMt0OiYmJALKs3WhWXs2IZvx7JjPbmKCYmBi5XG5jY5M/f37RWbRPqUS/fuYbNyo0m926KRctksvlWf8HUCgUMTEx+fPntxE3EszRUXrUzdzc3ED+02oK7gYSxkDk7ndQjhnCO4iIyMSFhGDmTKk9cSIyfdaUiIgot5k6FRs2SO0//kC9eiLDEJHxMqyCe2hoaI8ePdRq9cyZMytUqJBlf1tbW00jo1Gimv12dnaZn6dRo0ZZXosTYqSmUqksLS0tLS1z37dFqUTfvlizRtrs1Qt//aWQyxXZea2lpaVSqbSyshL4bbGwkBpyudxA/nUsLS3Bd9D7cvE76FMYwjuIiMiU3btn1q0b1GoAaNkS48aJDkRERKRHW7Zg8mSpPXAgFwwnopwzrIL76tWrw8LCHB0d3759O2PGjOT9yXO1b9++/cmTJwB8fHxKlizp5OSk2f/8+fO0Z1Or1ZqJ1wsUKKDz6JQrKJXo3j2l2t6nD5Ys4eooRERElPtFR8v69nXSrHxUtKjIBeK2bRNzXSIiMmUXL6JLF2jW2GrYEHPmiA5ERMbMsArumvUDIyMjR48enW6HgICAgIAAABUqVChZsmTx4sUtLCwSEhLu3buXtvPTp08TEhIAlCtXTpepKZdQKtGtG9aulTa//x6LF7PaTkRERCZhxIj8t26ZA7CyQnAwOOcZERGZjvBweHnh7VsAKF4cGzbAzLCqZURkZAzrR4irq+t3332Xdn98fPzJkycBlCtXztnZGYBm4mOFQlG5cuUzZ85ojn7g1KlTmka1atV0GJpyhcREdOiA4GBps18/LFoELtxIREREpmD2bGzfLq2fsXgx+LszERGZjsREeHtDM4zT3h5bt4KzJBDRJzKsgruvr6+vr2/a/U+ePHFxcQEwduzYzp07pz7UsmXLM2fOHDhwIDw8/IPlBwMDAwG4urpWrlxZl6nJ6CUkoEMHbN4sbQ4ZgtmzWW0nIiIik3D8OJIfLh0wAN27iwxDRESkZwMH4n//AwC5HOvWIRvrCRIRZcHo58vo2bOnZlaZce+v63Tq1KmgoCAA/fv3FxSNjENCAtq3T6m2Dx2KOXNYbSciIiKTEBoKb28kJgJA1aoJs2eLDkRERKRH8+fjzz+l9owZcHcXmoaIcgujL7i7uLj8/PPPAJYsWdKlS5cdO3acPn36l19+adasmVKpLFOmzMCBA0VnJMOVkAAfH2zZIm3+/DP4dyYRERGZiMREtGuHZ88AIH9+5eLFLywtRWciIiLSl/37MWyY1O7cGcOHC01DRLmIYU0pkzNTp059/Pixv7//mjVr1qxZk7y/ZMmS27dvt7GxEZiNDFl8PHx8sG2btDliBPz8hAYiIiIi0qOhQ3HkCAAoFJg3L/yzz5SiExEREenJ/fvo2BFJSQBQvXrKOHciok9nHAX3PHnyTJw4EUClSpXSHpXL5atXr/bx8VmxYsXVq1djY2NdXV09PT1/+OEHOzs7vYcl4xAfD29vbN8ubY4ciRkzhAYiIiIi0qP167FggdSeMQN16sQJjUNERKQ/UVFo1QovXwLAZ58hJAQcq0lEWmQ0BfdJkyZl3sfDw8PDw0MvccjoxcTA0xP790ubrLYTERGRSbl8GX36SG1PTwwbhsePhQYiIiLSF5UKvr64cgUArKywZQuKFBGdiYhyF6Ofw53oY8XEoFWrlGr75MmsthMREZEJiYpCu3aIjgaAMmWwejWXiyciIhMyapT0sLtMhr//Rs2aogMRUa5jHCPcibQlJgYeHjh4UNqcOhXjxgkNRERERKRHajW6dcONGwBgZ4fgYOTJIzoTERGRvvj7Y+ZMqT16NHx9haYholyKBXcyIdHR8PDAoUPS5rRpGDtWaCAiIiIi/Zo2DZs3A++G9ZUvLzoQERGRvpw7h759pXbz5pgyRWgaIsq9WHAnUxEdjZYtcfiwtPnLLxg9WmggIiIiIv06cACTJ0vtYcPwf/buPMDGsv/j+OfMZoyxZox10JOtUAr1WCpLi2IwzNhD84iKsqTUj1KUPRES8dh3k0HZJWt6RCXJkkS2wdjG7DPn98e5mxGz4Zy5zznzfv31va/7cu7PTMZM37nOdYWFmZoGAIBcdOaMWrZUXJwkVaumhQvl6Wl2JgBuioY78oQrV/Tss/ruO0myWDR+vF5/3exMAAAAuejECbVvr5QUSapfXx99ZHYgAAByS3y8WrXSqVOSVKyYVq5U4cJmZwLgvmi4w/1duaJnntHu3ZJkseiTT/Taa2ZnAgAAyEXx8WrTRhcuSFLJklq6VN7eZmcCACBXWK0KD9f330uSt7eWLtV995mdCYBbo+EON3f5sp55xvjOarFo4kT17m12JgAAgNzVu7f27JH+bjSUKmV2IAAAcsuIEVqwwKgnTFDjxqamAZAH0HCHO7t8WU8/rf/9T5IsFk2apFdeMTsTAABA7po2TTNmGPX48WrQwNQ0AADkojVr9O67Rv3ii3r5ZVPTAMgbaLjjNly7prVrJcnHx7NWLbPTZOfSJT39tLGYy2LR5Ml8ZwUAAHnOjz+qb1+j7thRr75qahoAAHLRwYPq0ME4v6RBA332mdmBAOQNNNxxG86cUViYJFWq5LNxo9lpsnT+vJo21c8/S5KHh2bMULduJkcCAADIZdHRCglRXJwk1aih6dPNDgQAQG6JjlZwsK5ckaQKFRQRIR8fszMByBs8zA4A2F9UlJo0Mbrtnp6aOZNuOwAAyHNSU9Wpk/74Q5KKFFFEhPz8zM4EAECuSEpSaKiOHpUkf3+tXKmAALMzAcgzWOEOd3PunJo21S+/SJKnp/77X3XpYnamXHTPPQoNlaTKlc2OAgAATDVkiLEZoMWimTN1331mBwIAILe8/ro2b5YkDw/Nm6caNcwOBCAvoeEOt3LunJo00YEDkuTpqVmz1Lmz2ZlyV+XKWrLE7BAAAMBsq1ZpxAijHjJErVubmgYAgFw0c2b6du3Dh6tlS/u8bM2aKlNGkry97fOCANwVDXe4j7Nn1aSJfv1Vkjw9NWeOOnY0OxMAAECuO3JEXbrIapWkpk317rtmBwIAILds26aXXzbqtm01aJDdXnndOru9FAD3xh7ucBMnT6phQ6Pb7u2tJUvotgMAgLwoLk7t2hlnxAUFaeFCeXqanQkAgJyJjjbO+pb011+3/cePH1ebNkpMlKRatTR7tiwWe8YDgJyg4Q53cPKkGjUyjkPx8dHixQoJMTsTAACAGXr10r59kuTrq+XLVby42YEAAMiBqCi98IICA3XunDHSsKFatix84IBPDl8hJkbBwTp/XpJKltTKlZwWDsAcNNzh8k6cUKNG+v13SfLx0ZIl7FIKAADyqAkTNGeOUU+apNq1TU0DAEDOHD+uRx7R3LlKTv7H+M6d3q1aBa5bl/17tVJT1amT9u+XJF9fffmlypZ1TFYAyA4Nd7i2P//8R7d96VK7HYcCAADgWnbt0ptvGnXPngoPNzUNAAA5Y7WqXbtMN5BJTLR07eqTtuw9M4MHa+VKo540SY89Zs+EAHBbaLjDhR0/rkaNdOyYJOXLp2XLFBxsdiYAAAAznDun0ND0XWvHjzc7EAAAObN+vb7/PqsJ165ZJk7MasKyZRo50qgHDuRXzgBMRsMdrurIETVsqD/+kKT8+bVqlVq0MDsTAACAGZKTFRamU6ckqVgxLV+u/PnNzgQAQM6sWXNXc/btU9euslol6ZlnNGKE3YIBwJ2h4Q6XdPiwGjUy3nHm56eVK/XUU2ZnAgAAMMnAgdq6VZI8PLRggSpWNDsQAAA5dvJk9nP+/DPj8bNnFRys2FhJqlJFixbJM/v93gHAsbzMDgDctkOH1LixTp+W/u62N2lidiYAAACTLF6sTz4x6g8/1DPPmJoGAIDblJMWeYZz4uPVurWxFK9oUa1apSJF7JwNAO4AK9zhYn77Lb3bXqCAVq+m2w4AAPKuQ4f00ktGHRyst94yNQ0AALevQoXs59x7bwaDvXvru+8kydNT8+erUiX75gKAO0TDHa7k1m57o0ZmZwIAADDJtWtq3VpXr0pSpUqaM0cWi9mZAAC4TcHB2c+59cy20aM1Y4ZRjx+vZs3snAoA7hgNd7iMgwfVqJHOnJEkf3999ZWefNLkSAAAAGaxWtW9uw4elKQCBRQRocKFzc4EAMDta9Agm/3QAgOtvXv/Y2TdOr3zjlF366Y+fRyVDQDuAA13uIYff9Tjj+vsWUkqXFgbNuiJJ8zOBAAAYJ6RI7V8uVFPmaLq1e/wdT79VBaLypcPeu+9ovbKBgDAbZk3TzVrZnyrcOHUJUsSbvyl8qFDat9eKSmSVL++pk7NjYQAkHM03OECfvxRTZvqwgVJKlxY69bpscfMzgQAAGCezZs1ZIhR9+2rF14wNQ0AAHeneHF9953+7/90zz3pgz4+CgtLWLv2TO3aqWmDly6pRQtdvixJ5csrIkL58uV6XADIEg13OLu9e9W0qS5elKQiRbR+vR591OxMAAAA5jl5Mn1l37//rVGjzA4EAMBdy59fw4fr3DmVLm2M/PSTJk++Vrp0StqclBR16qQjR4z5y5erRAkzsgJAlmi4w6n98IOeesrothctqvXrVbeu2ZkAAADMk5SkDh10/rwkBQZq2TL5+JidCQAAO/H0TP++5ut7891+/bRmjSRZLJo1S488kqvZACCHvMwOAGTK1m2/dEn6u9teu7bZmQAAAEzVu7d27JAkLy8tWZK+DBAAAPc2a5Y+/dSohw5VWJipaQAgc6xwh5PauVONGxvd9oAAbdlCtx0AAOR18+Zp2jSjHjtWjz9uahoAAHLLjh3q1cuoQ0LSDzIBACdEwx3OaMcOPfusrl6VpBIltGlTpueVAwAA5BE//aSePY26fXu9/rqpaQAAyC0nTlhCQpSQIEkPPaQ5c2SxmJ0JADJHwx1OZ/t2NWuma9ckKTBQmzapRg2zMwEAAJjq0iWFhCg2VpKqVk1f5w4AgHuLj7d07JgvKkqSAgMVGakCBczOBABZouEO57J1683d9urVzc4EAABgqtRUdeqkY8ckqWBBRUSoYEGzMwEA4HhWqwYMuGffPg9J3t5avFhBQWZnAoDs0HCHE/n2Wz3/vGJiJKlkSW3erAceMDsTAACA2d5/X2vWSJLFov/+V9WqmR0IAIBcMXq03+rVfrb688/1xBPmxgGAHKHhDmexfr2aNTO67eXKads23X+/2ZkAAADMtnq1hg836rffVps2pqYBACC3fP21xo0zuu39+ql7d3PjAEBO0XCHU1i7Vi1bKi5OkoKC9M03uu8+szMBAACY7fhxdeum1FRJatxYH3xg59ePi9Nvvxn1yZNeV67Y+fUBALhjb7whq1WSmjZNGTPG7DQAkGM03GG+NWvUurXi46W/u+3/+pfZmQAAAMwWH682bXTxoiSVK6dFi+TpabcXt1r18ccqV05TphgjmzblL1NGb7+thAS7PQUAgDtmW5N3773Js2cn2vE7IAA4Gg13mOzrrxUSYnTby5fXli26916zMwEAADiBl1/W3r2SlC+fli9XQIDdXtlqVdeuGjDA6OanuX5dI0eqWTPjZzMAQB40dKgsFlksGjrUnAC2Ve02BQtaP//8fJEi1synA4DToeEOM331VXq3vUIFffONKlY0OxMAAIATmDxZs2YZ9aefqk4de774jBmaOzfTu998o2HD7Pk4AAByLjraKDw89Pnn1ypXTjI1DgDcNi+zAyDvWr5cHTooKUmSKlXS5s0qW9bsTAAAAE5g924NGGDUXbqoRw87v/7o0dlMmDBBgwcrf347PxeAU5k+ffoPP/zw4osv1q1bN8MJsbGxkZGRBw4ciI2NDQoKat68+X2ctQUHGz9e164Z9Tvv6KmnEmNjTQ0EALePhjvMsWyZOnY0uu2VK2vzZpUpY3YmAAAAJxAVpbZtjY3UH3xQn39u59f/4w8dOZLNnOvXtWOHmja186MBOI8tW7b06tUrNTW1QYMGGTbcV6xYER4eHp222Fjq169fjx49Jk6c6Ovrm4tJkYds2KA330y/DA83LwoA3AW2lIEJlixJX9tepYq++YZuOwAAgCSlpKhzZ/31lyQVLaqICPsvM7e9eLZOnrTzcwE4j+jo6M6dO6empmY2Yd26dW3bto2Ojvbw8Khbt25wcHChQoUkTZ8+vWvXrrmYFHnI4cMKC1Nystk5AOCu0XBHblu8WJ06Gd9Eq1bV5s0qXdrsTAAAAM5h0CBt2CBJHh6aP98hh8n7+ORoWr589n80ACcRHh5+6tSpzO4mJCSEh4enpKQUKVLkl19+2b17d2Rk5IULF5o3by5pyZIlkZGRuRgWecLVq2rdWpcvS5Knp9lpAODu0HBHrlq0SJ07G932atXotgMAAKSLjNS4cUY9dKiaNXPIUypWlEcO/ifgX/9yyNMBmO6zzz5bsWKFbcV6hubPn29rx8+fP79atWq2QW9v74ULF1asWFHSmDFjcicq8ojUVHXsqF9/laT8+VWihNmBAODu0HBH7pk5M31t+4MP6ttvVaqU2ZkAAACcw+HDeuEFWa2S1Ly5/u//HPWgEiVUv342c8qWVZ06jgoAwEQHDhwYMGCAh4fHp59+mtmcFStWSKpatepzzz1347i/v39oaKikXbt2nT9/3tFRkXe88Ya++kqSLBbNnMlbrAC4PBruyCUzZqhHD9k2CXzoIW3cqIAAszMBAAA4h5gYtW6tq1clqUIFzZqVo0Xod+zDD7N5w/5HHzk2AABTxMfHd+jQIS4ubuDAgY0bN85s2rZt2yQ1adLk1lvBwcGSUlNTt2/f7ricyFPmzNH48UY9eLDatzc1DQDYAz9HIzd88YVeesnotteqpY0bVby42ZkAAACcg9Wq8HDjrfS+vlq+XPfc49gnNmyoqVPl5ZXBLYtFgwerSxfHBgBgijfeeGP//v2PPPLIsGHDMptz7ty5y5cvS6pevfqtd+vUqWOxWCQdPnzYcTmRd+zapZdeMupWrTR0qJlhAMBeaLjD4aZNU8+eRrf94Ye1YYPD/x8SAADAhYwdqyVLjPqzz/Tww7nx0P/8R7t2qXnz9KXuFosef1xr1yrzRhwAF7Z69erJkycXKFBgwYIF3t7emU07efKkrShbtuytd318fAICAiSdOHHCQTmRd5w+rbZtlZAgSfffr9mzeXMVADeR0bIWICM7dyptl7+//rJ88knh7t1Tsl2o/vnnevllYzfSRx7R+vUqVsyxOQEAAFzIli165x2j7t1b3brl3qNr19aqVRo3Tm+8IUkdO8bMm+efe48HkIvOnDnTvXt3SRMmTKhcuXIWM2NiYmyFv3/G/yD4+/tHRUVdu3Yt6yfaFsJnja79jeLi4i5duuTr6xsbG2tukitXCkuFJV25cuXEiSsOekp8vCUsLPD0aR9JRYumTp169vLl5MuXJSk5ubStW3X69Gk/v6j4+Pi4uLj8+fM7KIkrOn36tNkRnI7zfAU5lejoaL6CTMFvD5G9uDh16qT69bVoUfrI+PGF69Qp+vnnWf3BqVPTu+21a2vDBrrtAAAA6c6eVceOxpHyjz2mceNMyODjYxTe3lYTHg/A8axWa5cuXS5cuNCmTZvw8PCsJ8fFxdmKfJmcXGkbp6WFu2G1auDAe376yUeSl5d16tQL5csnmx0KAOyGFe7IXvv2Wrkyg/GEBEuvXvL21osvZnD34481YIBR16unNWtUqJADQwIAALiWpCSFhurMGUkKDNSyZem9bwCwo9GjR2/atKlMmTLTpk3LdrKvr6+tSExMzHBCQkKCJJ/s/sGyWrP6HZ5t/XtQUFC2efKO2NjY/Pnz+/n5FTf7xLPChdOKwkFBhbOce4c++CC9yTBpkiUsrMSNd9OOGCldurS/v09sbGzx4sX9/PwckcSl8RV0I+f5CnIqfn5+fAWZghXuyEZERMbd9jT9++vixZsHx45N77Y3aKC1a+m2AwAA/EP//tq+XZK8vLRokcqUMTsQAHe0Z8+eIUOGeHh4zJ07t1gO3nFcoEABW3H9+vUMJ9jWtme24QyQrRUr9P77Rt2nj3r2NDUNADgAK9yRjZkzs5lw5Yq+/FL/+U/6yJgxevNNo27YUF99pYIFHRUPAADAFc2fr0mTjHrECD35pJlhALixjRs3JiUlFS5ceNSoUaNGjUobty1UlzRmzJh58+ZJ+uCDD+rWrVvm79/+ZbhJdHJyclRUlKTSpUs7PDrc0a+/qmtXpaZKUpMm+vhjswMBgAPQcEc29uzJfs7//pfecB81SoMGGfXjj+urr8TSBwAAgBv9/LNeesmoQ0PT3xcIAA5y5cqVdevWZXjr559//vnnnyX17t1bUpkyZfz9/WNiYg4dOnTr5KNHj6ampkqqVq2aI/PCPV28qOBgXb0qSRUratGi9N1jAMCd8G8bsmE7JTxr0dFGcWO3/YkntHo13XYAAIB/uHxZbdrIdtxglSr64gtZLGZnAuC+GjRo8N577906fvXq1fHjx0tq3bp1zZo1JVWuXNl2q169euvXr9+2bdutfyptsF69eo5KDDeVlKS2bfX775JUsKBWrhRbbQNwVzTckY1ixYyzvLJg+zb53nv64ANj5OmntWKF8ud3bDYAAADXYrXqxRd19Kgk+fsrIoJzbgA4VoMGDRo0aHDr+F9//WVruIeEhHTu3PnGWy1btly/fv3u3bsPHjx400r22bNnS6pdu3a5cuUcmRpuqE8fbdkiSR4emj9f1aubnAcAHIdDU5GNOnWyn1O3rt59N73b/uyzioyk2w4AAHCz4cP15ZeSZLHov//V/febHQgAbtG1a9eAgABJvXr1io+PTxufOnXqjh07JA0cONC0cHBNn36qzz836hEj1KKFqWkAwMFY4Y5svPiiVq7MakLRojpwQOPGGZfNmikiQr6+uRANAADAlWzcqPffN+o331TbtqamAYBMFChQYNKkSe3atdu6dWuNGjVatWoVEBCwcePGjRs3SmrRokVoaKjZGeFKNm1S//5G3bmz3nzT1DQA4Hg03JGNli3Vtq2WLcv4rsWiBg3Su+3PPaeICOXLl2vpAAAAXMOJE+rQQSkpktSokYYPNzsQAGQuLCzs2rVrr7322tGjR8eOHZs23q5duy+++MLC0RPIsT/+UPv2Sk6WpIcfTl/nDgBujIY7sjd3rgoV0m837voAACAASURBVMyZN4/7+Vnr17esWmVcPv+8li+n2w4AAHCz+Hi1aaMLFySpbFktWiQvp/kxvEQJPfKIEhMTS5dOMTsLgNwTEBDwzTffSLppl/Y04eHhzZs3X7x48YEDB+Li4oKCglq2bFknJ1uOAn+7dk3Bwca3v1KlFBkpPz+zMwGA4znNT/pwYr6+mjFDr76qCRM0Z44k+fmpd+/LZ874zp1r7B3Ttq0WLJC3t5k5AQAAnFPv3tqzR5K8vbVokUqUMDvQDdq1U7t2OnHirCSpiMlpAOSWfPnyPfnkk1nPCQwMfO2113IlDtxQaqo6ddIvv0iSr69WrFDZsmZnAoBcwaGpyKmHH9b//Z9RlyljPXfOM63bHhpKtx0AACBj06ZpxgyjnjhR9eubmgYAgFzx9tuyvSHeYtGMGapb1+xAAJBbaLjjTkRFWWbPLmirO3Sg2w4AAJCxffvUt69Rd+qkXr1MTQMAQK6YN0+jRxv1oEHq2NHUNACQu2i4405cuWIUnTtr7lwn2oQUAADAeURHq00bxcVJUs2amjbN7EAAADjeDz+oZ0+jfvZZDRtmahoAyHU03HEbUlP/cdm+fcKsWfL0NCkNAACAE0tNVceO+uMPSSpaVBERnBQHAHB/Z86oZUvFxkpStWpatIimAYA8h4Y7ciolRe+8k34ZFhYzYcI1vnECAABkaPBgrVsnSR4emjdP//qX2YEAAHCw+Hi1aqVTpySpWDGtXKnChc3OBAC5joY7ciQlRd2768svjctChTRqVLQHf30AAAAysmqVRo406nff1XPPmZoGAADHs1oVHq7vv5ckLy8tXar77jM7EwCYgb23kb2UFHXrpnnz0kcCA6102wEAADJ05Ii6dJHVKklPPaXBg80OBACA440cqQULjHriRDVubGoaADAPDXdkIyVFXbtq/nyzcwAAALiC69cVEmKcMF++vBYuZO9aAID7W7tWQ4YY9Ysv6uWXTU0DAKZilTKykpSksLD0bnv79qamAQAAcHqvvKJffpEkX18tX6577jE7EAAADnbwoNq3V0qKJDVooM8+MzsQAJjKeVe4HzhwYOHChYcPHz527FjJkiWrV6/erFmzJ554IrP5u3btmjVr1oEDB2JjY4OCglq0aNG5c+d8+fLlZmY3k5io9u3T923v1089e2rRIlMzAQAAOLFPPtGcOUY9ZYoeecTUNAAAOF50tIKDjbd2VaigiAj5+JidCQBM5YwN98TExCFDhnz88cfJyclpg1999dWoUaPat28/YcKEEiVK3PRHBgwY8PHHH6dd7tu3LzIycsKECatWrSpfvnwu5XYviYlq104rVhiXAwZo7FgdPmxqJgAAACe2a5feesuoX35Z3bubmgYAAMdLTlZoqI4elSR/f61cqYAAszMBgNmcseE+duzY0aNHS6pYseILL7xQqVKlP//8c/ny5Xv37l20aNGZM2c2b97sccORnaNHj7Z12ytXrtyqVauSJUtu2LBhzZo1+/fvb9Gixffff+/r62vaB+OaEhMVGqqVK43LN97QmDGmBgIAAHBu584pNFSJiZL06KMaP97sQAAAON5rr2nzZkmyWDRzpmrUsMNr/vijUlMlqXBhRUfb4QUBIJc53R7uJ06c+PDDDyU1bNjwp59+Gjp0aKdOnd55553vv/++b9++kr799tuJEyemzY+Kinr//fclVa9efc+ePaNGjerXr9/XX3/93nvvSdq/f/+0adNM+lBcVUKC2rZN77a/+SbddgAAgKwkJyssTKdOSVKJElq2TOxrCABwezNnpm/XPny4QkPt87KFC6toURUtKg+na1kBQI443b9es2fPjo2NtVgsEyZMKFiwYNq4p6fnmDFjqlWrJikyMjJtfMaMGbb5y5Ytu3H+0KFDH3vsMUmffvppLsZ3eXFxatFCq1YZl2+9pVGjTA0EAADg9N54Q1u3SpKnp+bOVdmyZgcCAMDBtm/Xyy8bdZs2evttU9MAgDNxuob7d999J6lixYq1atW66ZaXl1fjxo0l7d2712q12gZXr14tqX79+lWqVLlpfkhIiKSjR48eOXLE0bHdQ2ysgoO1YYNxOXSoRo40NRAAAIDTW7RIEyYY9Ucf6emnTU0DAIDjHT+ukBBjI7VatTRnjiwWszMBgNNwuob76dOnJd1///0Z3vXz85OUlJRku0xNTd27d6+kBg0a3Dq5efPmtuL77793RFQ3Y+u2b9xoXL7/vt57z9RAAAAATu+33/TSS0bdsqUGDjQ1DQAAjhcTo+BgnT8vSSVLKjJSfn5mZwIAZ+J0h6bu2LEjNTXV29s7w7sbN26UVLVqVYvFIunEiRPx8fGSKleufOvkKlWqeHl5JScns8I9W9evq0ULffONcTlsmAYPNjUQAACA07t2TSEhunZNkipX1uzZrO8DALi51FR17qz9+yXJ11dffqly5czOBABOxuka7n6Z/2J00qRJ+/btk9SzZ0/byNmzZ21FqVKlbp3v4eERGBh46tSpM2fOZP3QY8eOZRssOTk52zku6vp1tWzp+e23xv8gDhuWOmhQaoYfbkqKRfKUZLVak/+Wm1GdXPINzM7iRGyfDT4nN+KvSob4tABwLVarunfXwYOS5O+viAgVLmx2JgAAHGzIEKUdqzdpkh57zNQ0AOCUnK7hnqHk5OThw4cPGzZMUt26dbt3724bv379uq3IrE2fP3/+G6dl5l//+le2GWx73bif69ctL75Y4rvvjL8Jb755+YUXrmb2sZ475yWVlpScnBwVFeXr65to27MNkqTo6Oj4+PikpCTbXzzYREVFSfLyco1/bXJHXFzcpUuX+Aq6CV9BAFzLiBFavtyoZ8zQAw+YmgYAAMdbtkwjRhj1wIEKDzc1DQA4Kxdoga1Zs2bAgAEHDx6U9OCDD3799dc+Pj62W2m9qsx6ebZx27YzWbj33nuzuGtb/+6W7cJr1zw6dy62d6+PJItFQ4de+c9/YrP4W5H2SbBYLJ6enl5eXm75abljXl5efFpu5enpKTf9Crpj/FXJEJ8WAC5k82a9+65RDxigsDBT0wAA4Hj79qlrV1mtkvTMM+mddwDATZy6qXH48OE+ffqsX79ekqen54ABAz744IN8+fKlTUhb2J6QkJDhK9ha7dkulvz999+zuGvbL7506dK3k90FXLmikBDt3StJFosmTFCfPoWlrN4LHRNjFF5eXoGBgX5+fsWLF3d8Upfh4+MTGxtbvHjxLHZGyoNs24O431fQ3YiNjfX29uYr6CZ8BQFwFSdPqn17paRIUr16dBwAAHbw0Ufef/xRzMvLa8QIOeH/PJ09q5YtFRsrSVWqaNEieXqanQkAnJWH2QEyZrVaR40aVaNGDVu3vUWLFj/99NOoUaNu7LZLKliwoK24evVqhq9jG0+bhjSXL+vpp7V7tyRZLJo4UX36mJ0JAADA6SUkqE0bnT8vSSVLaulSeXvf9ot07qxixVSsmL7+2u4BAQAuKSLCc8EC/zlzfC9dMjvKLeLj1bq1Tp6UpKJFtWqVihQxOxMAODFnXOFutVo7d+68YMECSTVr1pw0aVLDhg0znFmxYkVb8ddff916Ny4uLjo6+sZpsLl0Sc88o//9T5IsFk2apFdeMTsTAACAK+jTx/ghyttbS5bc4SLE69dl66dwlgcAwPn17q3vvpMkT0/Nn69KlcwOBADOzRlXuL/++uu2bvs777yzZ8+ezLrtkooWLRoYGCjp559/vvXu/v37bUW1atUck9QlXbqkp59O77ZPnky3HQAAIEfmztX06Ub98cfK/KdUAADcxJgxmjHDqD/+WM2amZoGAFyB0zXcd+3a9emnn0oaM2bMhx9+6J3de3QbN24safPmzbfe2rRpkyRvb+/HH3/cAUld0vnzevJJ7dkjSZ6emjlTL79sdiYAAABX8NNP6tnTqDt0UO/epqYBAMABTp40TnqTtHev5s3T228bl9266bXXzMoFAK7E6Rrutm57rVq1BgwYkJP5oaGhko4ePbp27dobxxMSEr744gtJzz77bKFChRyQ1PVERalJE9neDGDrtnfrZnIkAAAAl3DpkkJCFBcnSTVqpK9zBwDAPcTEqGdP3XuvVq0yRlatUpcu6YeET51qYjoAcCXOtYe71WpdsWKFpKJFi06ePDmzaQUKFOjevbutbtWqVY0aNfbv39+zZ8+NGzdWqlRJUmJiYq9evY4dO2axWAYPHpw74Z3cuXNq2lS//CJJnp7673/VpYvZmQAAAFxBaqo6ddKxY5JUpIgiIlSggNmZAACwn9hYPfOMdu7M+G6+fFq4UPny5W4mAHBZztVwP3XqVFxcnKTNmzdnuEuMTWBgYFrD3WKxzJ8/v169eidOnKhSpcojjzwSEBCwbdu2mJgYSe+9917dunVzJ7wzO3dOjRvr118lydNTs2apc2ezMwEAALiI997TmjWSZLFo5kzdd5/ZgQAAsKvhwzPttktKSNC0aRo+PBcDAYArc64tZX7//fc7+FM1atTYsWPHww8/bLVa9+zZs2bNmpiYmKJFi06ZMuW9996ze0iXc/bsP7rtc+bQbQcAAMip1av10UdGPXiwWrc2NQ0AAPaWlKTPPstmzqRJSkzMlTQA4Pqca4X7E088YbVa7+AP1qxZ84cffvj5558PHDgQFxcXFBTUsGHDfLzfSTp5Uo0b6+hRSfL21qJFCgkxOxMAAICLOH5c3bopNVWSmjQRazkAAO7nhx90+XI2c65c0Y8/ih0EACAnnKvhfpdq1qxZs2ZNs1M4kRMn1LixbG8b8PHR4sVq1crsTAAAAC4iLk5t2ujiRUkKCtKiRfL0NDsTAAD2dvZsjqadPu3gHADgLtyq4Y4bnTihRo2M0718fLRkiVq2NDsTAACA63jlFe3dK0m+vlq+XMWLmx0IAAAHyJ8/R9P8/R2cAwDcBQ139/Tnn2rUSH/8IUk+Plq6VMHBZmcCALia0aNHnz59+pNPPsliTmpq6qZNm7777ruLFy+WKFHiySefrFevXhbzY2NjIyMjDxw4EBsbGxQU1Lx58/s4gBJOadIkzZqVXteubc8XT0kxijvaTBEAAHuqWjVH0ypXdnAOAHAXNNzd0PHjatRIx49LUr58WrZMzZubHAkA4HIuXrw4ePBgHx+fLBruv/76a/v27ffv33/jYP369RcsWBAUFHTr/BUrVoSHh0dHR6eN9OvXr0ePHhMnTvT19bVjeOAuffedBgww6pdeUni43V557VqNHatvvjEuu3XT+vX6v/9T2bJ2ewQAALelfHk9+qh2785qzmOPKaMf7gAAGfAwOwDs7MgRNWxodNvz59eqVXTbAQB3YsyYMUlJSVlM+Ouvvxo3bmzrtt93332hoaFlypSRtGPHjqeeeuryLWdvrVu3rm3bttHR0R4eHnXr1g0ODi5UqJCk6dOnd+3a1WEfB3Dbzp1T27ZKTJSkhx5Slu/xuA1Wq/r2VbNm2rTJOIVV0tWrmjpVNWtqyxb7PAUAgDtQrVpWd728NGZMbkUBANdHw92tHD6sRo3011+S5OenlSv11FNmZwIAuJozZ868/fbbo0ePznpa3759z507J2n+/PlHjhxZsmTJX3/9NWLECEmHDx9+//33b5yckJAQHh6ekpJSpEiRX375Zffu3ZGRkRcuXGjevLmkJUuWREZGOuwDAm5DcrLatdOpU5JUrJgiInK6s222xo/XhAkZ37p0SS1b6sQJ+zwIAIDbEhGh2bMzvZs/v2bNUoMGuRgIAFwcDXf3ceiQGjUy/v/Qz0+rVqlpU7MzAQBcSpcuXSpXrlymTJmRI0das9xb+ujRoxEREZIGDhzYsWPHtPFBgwaFhoZK+vzzz69evZo2Pn/+/FOnTtmKan+vofL29l64cGHFihUljWHdFJzDoEH69ltJ8vDQ/PmqWNE+LxsTo3/+EupmV6/qgw/s8ywAAHLuxx/1wgvGmSL16umFF+TnZ9zy81P37tq3T506mRgQAFwPDXc38dtvatRIp09LUoECWr1ajRubnQkA4Go2bNhw5MiRrFvtNitXrrRarRaLpV+/fjfd6t69u6S4uLgNGzakDa5YsUJS1apVn3vuuRsn+/v72xr0u3btOn/+/N1/CMDdWLFCH39s1MOH69ln7fbK69frht9AZSwiIn2rGQAAcsGFCwoJ0fXrklS5slav1uzZGjjQuDtwoGbOVJUqJgYEAJdEw90dHDyoRo105oz0d7e9USOzMwEAXND//ve/P/72+uuvZzFz69atku6///5SpUrddKtx48b+/v5pc2y2bdsmqUmTJre+VHBwsKTU1NTt27ff9UcAZKNbNwUEFC9fPmj+fK+bbh06pK5djSV+LVpo0CB7Pvfw4eznXLokfusEAMg1SUlq21Z//CFJhQopIkJFi5qdCQDcws3/pwGX89NPatpUFy5IUuHCWrNG//632ZkAAK6pXLlyaXWRIkWymHno0CFJ1atXv/VWvnz5atasuXPnzsN/txjPnTtnO0M1w/l16tSxWCxWq/VwTlqSgGPExCgkxFiEXqmS5s6VxWLP109IyNG0uDh7PhQAgCy8+mr6LmoLFuiBB8wOBADugoa7a/vxRz31VHq3fe1aPfaYAx9XqpSWLJEkH59EBz4GAOD0Tp48Kals2bIZ3rWNn/j7CEjb5Mzm+/j4BAQEREVFneDISJjEatWLL+rXXyWpQAFFRKhwYTs/4pa3gmTA01MlS9r5uQAAZGj8eE2fbtRjxuj5501NAwDuhYa7C9u3T089pYsXJalIEa1bp7p1HfvEggUVGipJsbEpti4/ACAPslqtsbGxkmxbx9zKNn7t2jXbZUxMzI3jGc6PiopKm58ZSw6WHNO1v1FcXNylS5d8fX1t/70g6fr1e6QCkqKjo0+cMBYQTJ1aaOlS4y0dw4ZdLFTout3/HlWv7iWVznpOnToJUVHn7PzgHDttOwsIN+ArKEPR0dHx8fFxcXH58+c3OwuAO7Rhg95806i7dFH//qamAQC3wx7urmrvXjVtmt5tX7/e4d12AABs4uPjbQer5suXL8MJtvG0FlXc39tk5HA+kJt27fIdM8botoeHX2vT5rojnlK2bPIzz2TzN/yll7I7VhUAgLt2+LDatVNysiT9+9/p69wBAPbCCneX9MMPevppRUdLUtGiWr9etWubnQkAkGek9c0TEzPeYSwhIUGSj4+P7dLX1/e25mfG1uXPjG39e1BQUNYvkqfExsbmz5/fz8+vePHiZmdxFgUKGEWxYsWCgnzOnFG/fulNhylTCvr4FHTQo2fNUoMG+v33jO/27q3u3QMc9Oic4yvoRnwFZcjPzy82NrZ48eJ+fn5mZwFw265eVUiILl2SpNKltXSpMlkOAQC4c6xwdz07d6pxY6PbHhCgLVvotgMAcpWHh4dtJ4Hr1zNeC3zThjMF/u5x5nA+kDuSkhQaqjNnJCkwUEuXKrtf+tyVkiW1a5fCwuTxzx/A77lHEydq4kQHPhoAAEmpqerYUQcOSFL+/FqxQmXKmJ0JANwRDXcXs2OHmjXT1auSVKKENm1SzZpmZwIA5D1lypRR5ps+nzp1SlLp0qVvnJzZ/OTk5KioqBvnA7nj9de1Y4ckeXlpyZLcaDoEBGjxYh09qoceMkbeflt//qk+fZSDEwoAALgrAwfqq68kyWLRjBmqU8fsQADgpmi4u5Lt22/utteoYXYmAECeVKVKFUmHDh3K8O6RI0ckVatWzXZZpkwZ2+r1DOcfPXo0NTX1xvlALti92+Ozz4x6zBg9/njuPbpiRVWoYNR166bvcgMAgOPMmaOPPzbqwYPVoYOpaQDArdFwdxnbtqlZM127JkmBgdq8WdWrm50JAJBX1a9fX9JPP/10zfad6QZHjhw5e/Zs2hybevXqSdq2bdutL5U2aJsD5I65c42jjNq3V9++5mYBAMCxdu3SSy8ZdatWGjrUzDAA4PZouLuGTZv07LOKiZGk0qX17bd64AGzMwEA8rCWLVtKSkpKmjdv3k23Zs2aJcnHx+e55567af7u3bsPHjx40/zZs2dLql27drly5RwZGfgH2wm+Vatq2jSzowAA4EinTys0VAkJknT//Zo9++bTRAAA9sW/si5gwwa1aKHYWEkqW1ZbtqhKFbMzAQDytvvvv79Zs2aShg4d+ueff6aN79u3b/z48ZLCw8OLFSuWNt61a9eAgABJvXr1io+PTxufOnXqjh07JA0cODDXwiMvs1rT60KFFBmpggXNSwMAgIPFxalVK506JUn33KOVK1WokNmZAMDdeZkdANlYt06tWysuTpLKldPmzbrvPrMzAQAgTZgwYdeuXVFRUY888kjLli0ffPDBnTt3rl69Oi4urkKFCh988MGNkwsUKDBp0qR27dpt3bq1Ro0arVq1CggI2Lhx48aNGyW1aNEiNDTUpI8DecvPPxuFxaLZs1W5sqlpAABwJKtV4eH63/8kydtbS5fqX/8yOxMA5AE03J3a2rVq3Vq2hYBBQdq8me+OAABnUalSpTVr1rRv3/7PP/+cOXNm2vhDDz20ZMmS4sWL3zQ/LCzs2rVrr7322tGjR8eOHZs23q5duy+++MJiseRSbuRVP/yg/v3144/Gpa+vtm/Xo4+qVClTYwEA4DDDh2vhQqP+9FM1amRqGgDIM2i4O681axQSYnTby5fX5s26916zMwEA8oxu3bo9+eSTnp6eWcx57LHHDh48uGLFip07d0ZHRwcGBjZq1KhZs2ZeXhn/gBEeHt68efPFixcfOHAgLi4uKCioZcuWderUccxHAKQbN05vvaWUlPSRuDiNG6fZs7VsmZ54wrxkAAA4xooV6Yej9u6tnj3NDAMAeQoNdyf11Vdq08Y41aR8eX3zjSpWNDsTACAvqVChQoUKFbKdlj9//g4dOnTo0CGHLxsYGPjaa6/dVTLgNi1cqDfeyPjWhQsKDtaPP/KDFgDArfz6q7p2VWqqJDVsqHHjzA4EAHkJh6Y6o9Wr07vtFSpoyxb+JxAAAOBOJCcr6xN5r17Vu+/mVhoAABzv4kUFB+vqVUmqWFEREfLxMTsTAOQlNNydzrJlCgkxuu2VK2v7duVgfSEAAAAysGOHTp3KZs6KFcaPXgAAuLqkJIWG6vffJalgQa1cqVsO1gEAOBYNd+eydKk6dFBSkiRVqaJvvlGZMmZnAgAAcFlff539nJgYnTzp+CgAADhenz765htJ8vDQ/PmqXt3sQACQ97CHuxNZskSdOik5WZKqVNHmzSpd2uxMAAAALisqSp9/nqOZ1687OMo/DRyojh0liTODAQB2NGlS+je+ESPUooWpaQAgr6Lh7iwWLVKXLka3vWpVbd6sUqXMzgQAAOCyUlLUpYuuXMnR5Fz+uatevVx9HAAgL9i6VQMGGHXnznrzTVPTAEAexpYyTmHhQnXubHTbq1XTN9/QbQcAALgr77yj9etzNLN6dZUo4eA0AAA40h9/qE0bJSZK0sMP5/QNXgAAR6Dhbr6ZM9W5s1JSJOnBB7V1q0qWNDsTAACAK4uM1JgxRp3t9rV9+zo6DgAADnTtmoKDdeGCJJUqpchI+fmZnQkA8jAa7ib74gv16KHUVEl66CFt3MgB4gAAAHfl8GF17SqrVZKef17r1uneezOdHBKi7t1zLRoAAHaWmqpOnfTLL5Lk66svv1TZsmZnAoC8jYa7maZPV8+eRre9Vi267QAAAHcrJkYhIcbW7eXLa/ZslS6tHTsUHHzzTF9fvf22Fi2SBz8RAwBc1ttva9Uqo/7iCz36qKlpAAA03E00bVp6t/3hh7Vxo+65x+xMAAAALi48XAcOSJKvryIijJ+vSpZUZKQOHFCdOsa0rl2Tjx/XRx/J29u0qAAA3KV58zR6tFEPGqROnUxNAwCQRMPdLFOnqlcv453OjzyiDRtUrJjZmQAAAFzcuHFassSop0zRww//4+799+v++426fv3UwMBczQYAgH3t3auePY362Wc1fLipaQAAf6PhboLx4/Xyy0a3vV49bd5Mtx0AAOBu7dypt9826ldfZWd2AIA7O3NGLVsqNlaSqlbVokXy9DQ7EwBAEg333DdunPr3N+r69bV2rQoVMjUQAACA6zt7VqGhSkqSpEcf1bhxZgcCAMBh4uPVqpX++kuSihXTqlUqXNjsTACAv9Fwz1VjxuiNN4y6QQOtWaOCBU0NBAAA4PqSkhQWptOnJalECS1bpnz5zM4EAEDOpKTo668VFWWxXX75paKjs5pvteo//9H330uSl5eWLtV99zk+JQAgx2i4557Ro/Xmm0bdsCHddgAAAPvo31/btkmSp6fmzVPZsmYHAgAgZ3btUrVqev55XbxoNNyHDFH58ho/3tiH9lYjR2r+fKOeMEGNG+dKUABAjnmZHSCvGDVKgwYZ9eOP66uv5O9vaiAAAAC3sHChJk0y6hEj9NRTpqYBACDHtm7VM88oPv7m8ZgY9e+vqCiNGHHzrbVrNWSIUXfvrldecXhIAMDtYoV7bhg6NL3b/vTTWruWbjsAAIAd7N+vHj2MumXL9L37AABwcgkJ6t49g257mlGjtGvXP0Z++03t2yslRZIaNNDUqY5NCAC4MzTcHe7dd/X++0b9zDNasUL585saCAAAwC1cu6awMF2/LkmVK2vOHFksZmcCACBnVq/WsWNZTbBaNXly+mV0tFq00JUrklShgiIi5OPj2IQAgDvDljKONWSIhg836mef1ZdfytfX1EAAAABuwWpVt2767TdJ8vdXRIQKFTI7EwAAOWY7fSRr335rFMnJCg3V0aOS5O+vlSsVEODAbACAu8EKdwf6v/9L77Y/9xzddgAAALsZPlwREZJksWjGDD3wgNmBAAC4HefO3cac11/X5s2SZLFo5kzVqOHAYACAu8QKd4ewWtW/vz75xLh8/nktX658+UzNBAAA4C42bUrfsm/AAIWFmZoGAIDbzAI6EQAAIABJREFUV7BgTufMnKkpU4yRYcMUGurAVACAu8cKd/uzWtWvX3q3vU0bffkl3XYAAAD7OHEi/ci4+vX10UdmBwIA4Pbdf3+O5mzfrpdfNi7btNE77zg0FADADljhbmdWq15/XZ9+aly2basFC+TtbWomAAAAdxEfrzZtdOGCJJUsqaVLb+8HreeeU+HCcUlJSQ88wElzAAAztWmjt95SYmJWc55+WiEhxpxatTgeHABcAw13e7Ja1adP+jHiYWGaP19efI4BAADspHdv7dkjSd7eWrpUpUrd3h8PC1PjxtdjY2OLFy/uiHgAAORQuXJ66y0NG5bphJo1tWSJzp+XpJIlFRkpP79cSwcAuHNsKWM3Vqt6907vtrdrR7cdAADAnqZN04wZRj1+vBo0MDUNAAB3Z+hQ9e6d8a1HHlFQkH75RZJ8fLRkicqVy81oAIA7R8PdPqxWvfpq+jEm7dtr3jy67QAAAHbz44/q29eoO3bUq6+amgYAgLvm4aFPP9WWLWrTRp6exmCtWpo6VU89pdWrjZEpU9SwoVkZAQC3jYa7HaSkqHt3ffaZcdmxI912AAAAe4qOVkiI4uIkqUYNTZ9udiAAAOzkiSe0bJkqV061Xc6dq+LFNWqUcfeNNxQeblo2AMAdoOF+t1JS9OKLmj3buHzxRc2dm/6raQAAANyl1FR16qQ//pCkIkUUEcEmtgAAt3XwoF54QVarJD39tEaONDsQAOA20XC/K7a17XPmGJf/+Y+mT5cHn1QAAAD7GTJEa9dKksWimTN1331mBwIAwGH69FFsrCRVqaLFi1nPBwCuh31P7lxKirp21fz5xmWPHpo6lW47AACAPa1apREjjHrIELVubWoaAAAc7OxZSSpaVKtWqUgRs9MAAG4f7eE7lJKiF15I77b37KnPP6fbDgAAYE9HjqhLF+Nt9U2b6t13zQ4EAIDjeXpq3jxVqmR2DgDAHWGF+51ISlL79oqIMC579dKUKbJYHPU4q1V790qSxaKHH3bUUwAAAJxKXJzatdOVK5IUFKSFC3lbPQDAbV28mN5TGDdOzz1nWpIGDfTWW0YBALgDNNxvW2Ki2rXTihXGZf/+GjfOsU9MTlbt2pLk7a3ERMc+CwAAwEn06qV9+yTJ11fLl6t4cbMDAYCLi4+P3759++HDh48dO1ayZMnq1as/9thjRTLftSQ2NjYyMvLAgQOxsbFBQUHNmze/j2M0HGPNGkVFGQ33kBC9/rqZYZo2VdOmZgYAAFdHw/32JCYqLEyRkcblgAEaO9bUQAAAAO5owoT0c+knTTIWHwAA7tjXX3/dp0+fY8eO3ThYrFixjz76qEePHh63bJC6YsWK8PDw6OjotJF+/fr16NFj4sSJvr6+uZE4z/jtN3XokH45ZIh5UQAA9kDD/TYkJio0VCtXGpcDB2r0aFMDAQAAuKNdu/Tmm0bds6fCw01NAwCub/ny5W3btpXk7e1dr169SpUq/fnnnzt37oyOju7Vq9fPP/88efLkG+evW7eubdu2KSkpHh4etWvXLlmy5JYtW65evTp9+vQrV64sXrzYpI/DDV26pOBgY/80G29v89IAAOyBUz5zKiFBbdqkd9vfeotuOwAAgP2dO6fQUGMbvVq1NH682YEAwMVdv369X79+koKCgnbv3r1ly5bp06evX7/+t99+e/LJJyVNmTLl66+/TpufkJAQHh6ekpJSpEiRX375Zffu3ZGRkRcuXGjevLmkJUuWRKa96Rt3JyVFnTrpyBFJDjwWDgCQy2i451SLFlq92qjfeksjR5qaBgAAwB0lJyssTKdOSVKxYlq+XPnzm50JAFzcrFmzTp48KWn8+PG1atVKGy9btuzSpUtLlCghaerUqWnj8+fPP3XqlK2oVq2abdDb23vhwoUVK1aUNGbMmNzM78b699eaNZJksah0aavZcQAA9kHDPac2bDCKDz6g2w4AAOAQAwdq61ZJ8vDQggWqWNHsQADg+r799ltJJUqUCAkJuelW8eLFn332WUl79uxJG1yxYoWkqlWrPvfcczdO9vf3Dw0NlbRr167z5887Orbbmz1bEyca9XvvqVAhGu4A4CZouN+eDz/kABMAAACHWLxYn3xi1MOH65lnTE0DAO7i+PHjkqpXr57h3XLlykk6f/58SkqKbWTbtm2SmjRpcuvk4OBgSampqdu3b3dM2Lxi50717GnUISF6911T0wAA7IpDU2/DqFHp53cBAADAjg4d0ksvGXVwsAYNMjUNALiR0aNHx8TElC1bNsO7+/btk1SxYkVPT09J586du3z5sjJp0NepU8disVit1sOHDzsysps7cUKtWyshQZIefFBz5rCBOwC4FRruOTVunPr3NzsEAACAO7p2Ta1b6+pVSapUidYDANiT7WTUDG3fvn3NmjWS2rRpYxux7fYuKcMGvY+PT0BAQFRU1IkTJ+wfNG+Ii1ObNoqKkqTixRURoQIFzM4EALArGu45RbcdAADAEaxWvfiiDh6UpAIFFBGhwoXNzgQAecDmzZtDQ0OtVmtAQMAbb7xhG4yJibEV/v7+Gf4pf3//qKioa9euZf3ilhz84jQPdu2tVvXpU3zPHj9JXl7WyZOjvLwSbJ+GpKRAKZ+kM2fOFCyYZG5O5xEdHR0fHx8XF5efU9RvcPr0abMjOJ24uLhLly75+vrGxsaancWJ8BVkFvZwBwAAgJlGjtSyZUY9ZYoy2WQYAGA3586de+mll5o2bRodHV2oUKG1a9fec889tltxcXG2Il++fBn+Wds4La0788knhVet8rPVw4ZdeuyxBHPzAAAcgRXuAAAAMM3mzekn0vftqxdeMDUNALi7xMTEcePGjRgxwrZE/d///vd///vfKlWqpE3w9fVNm5nhKyQkJEjy8fHJ+kFWqzWLu7b170FBQbeT3eVFRGjCBKPu21eDBhWTiqXd9fZOtRWlSpXKY5+YrPj5+cXGxhYvXtzPz8/sLE4nr30FZS02NjZ//vx+fn7Fixc3O4sT4SvILDTcAQAAYI6TJ9W+vVJSJOnf/9aoUWYHAgC3tmPHjvDw8EOHDkkqWbLk0KFDe/To4eHxjze+F/h7Q/Hr169n+CK2te2ZbTiDzPz0k154QbZfQzz1lMaMMTsQAMBhaLgDAADABElJ6tBB589LUmCgli1TdsslAQB3burUqb17905JSfHz8xs0aFD//v0LZHRYZ5kyZWxFhptEJycnR0VFSSpdurRD07qZCxcUEiLbrzDuvVcLFsiLZgwAuC/+jQcAAIAJ+vTRjh2S5OWlJUtE6wYAHGfBggWvvPKK1Wp94oknZs6cee+992Y2s0yZMv7+/jExMbaF8Dc5evRoamqqpGrVqjkwrntJSlLbtjp2TJIKFtTKlWLHCwBwb+52aGpiYuLVq1fNTgEAAICszJunzz836rFj9fjjpqYBALd2/Pjxbt26Wa3WsLCwDRs2ZNFtt6lXr56kbdu23XorbdA2Bznx6qv69ltJ8vDQggV64AGzAwEAHMxNGu5JSUkjR46sUqWKr69v4cKFixQp0qVLlyNHjpidCwAAADf76Sf17GnU7dvr9ddNTQMA7m7y5MlJSUllypSZMWOGt7d3tvNbtmwpaffu3QcPHrzp1uzZsyXVrl27XLlyjojqfj75RNOnG/Xo0Wre3NQ0AIBc4Q5byly/fr1p06bfffdd2siVK1fmzZv35ZdfRkZGNmnSxMRsAAAAuNGlSwoJUWysJFWtqmnTzA4EAO7O1iVv0KDB8ePHM5vj7e1dpUoVW921a9ehQ4eeP3++V69e69at8/X1tY1PnTp1x44dkgYOHOjw0G5hwwalfaq6dNGAAaamAQDkFndouL/88su2bnvHjh07d+5csmTJDRs2DBs2LCYmJjQ09Ndffy1ZsqTZGQEAAKDUVHXqlL6PbUSEChY0OxMAuLWLFy+eP39e0uLFixcvXpzZtMDAwLNnz9rqAgUKTJo0qV27dlu3bq1Ro0arVq0CAgI2bty4ceNGSS1atAgNDc2d8C7t/9u778CoyvTt49ek0ZJQg9KCGJEm+IKALosiP1xBpEgglKCCIkqzIqigawWVoliw0CUQTDBIcVFEFndpggIWmhIQRJHQIaSSZN4/zuwQM5PJkEzmTDLfz18P55ycuZx95rln75k55+BBxcYqJ0eS/va3S99zBwCUe2W+4b5r165FixZJiomJWbRokcVikdS6devmzZv37t37zJkzU6ZMeeONN8yOCQAAAL34oj7/XJIsFs2fL265BwCl7cCBA8X4q/79+6empj7yyCPJycnTpk2zbx8wYMCcOXOM/98NF1JT1auXTp6UpLp1tXSpKlQwOxMAwFvKfMN9/vz5Vqu1UqVKs2bNyl/1e/To0atXr+XLl8fFxU2bNi0goJxcrR4AAKCM+uwzvfKKbfzMM+rb19Q0AOAfoqKi1q9fX+RhISEhBbYMGzasR48eCQkJu3fvzsjIiIyM7N27d7t27UonZrmSl6fYWO3eLUmVKmn5ctWrZ3YmAIAXlfmG+xdffCHptttuq1atWoFdPXv2XL58+cmTJ7/77rv27dubkQ4AAACSdOiQhg5VXp4k/d//6aWXzA4EAP6hZs2at956a/H+9oorrnjkkUc8GscvjBunzz6TJItFc+eKDykAwN+U7e99Z2Vl/fzzz5JuvPFGx73dunUzBj/++KNXYwEAACCfzEz17atTpySpQQN9/LECA83OBABAKYiLk/2ithMnatAgU9MAAMxQthvuBw8ezM3NldSoUSPHvXXr1q1UqZKk/fv3ezsZAAAA/mfkSO3YIUkVKigpSRERZgcCAKAUbNmi4cNt49699eKLpqYBAJikbF9S5vTp08agdu3aTg+IiIj47bffThnfpyrcQw895P5jed/Fi5JqmB4jv4yMjLNnz2ZlZXFx/PzOnDmTkZERGBiYmZlpdhYfcvbsWUmhoaFmB/EhvIKc4hUElFczZ2rBAtv4nXf4ZT0AoHw6elQxMcrKkqTmzbVwoXizDwD+qWw33NPS0oxBxYoVnR5gfMPdflhhZs2aVeRjXbhw4TLTeUxOjsVouFutVhNj5JeRkZGenp6Xl1eBW63nk5aWlpmZWaFCBeOHFzCkp6fL1FeQD+IV5BSvIKBc2rpVY8faxvfcc+l7fwAAlCcZGbrrLv3xhyTVrKmVKxUebnYmAIBJynbD3Wq1GgOLxeLigJycHNfn+fDDD13sNb7/XqNGjeJE9ISLF20Di8ViYoz8jF5h5cqVfSSPj7Barenp6dWrV69cubLZWXyI8YkXUyU/XkFO8QoCyp/jx9Wvn+27ftdfL5dvuAAAKKusVg0bpm+/laTgYC1dqqgoszMBAMxTthvuVapUMQaFXX8gKysr/2GFefDBB13sNRruJl4Qw95wNzdGfgEBAZmZmZUrV/aRPD4iMzPTYrGEhobSLszPeAEyVfLjFeQUryCgnMnN1d136/ffJal6dS1bpkqVzM4EAEApmDRJS5bYxm+/rc6dTU0DADBb2b6iWLVq1YxBYVc2N67ebj8MAAAA3vH001q7VpICArR4sa6+2uxAAACUguXL9fzztvGYMRoxwtQ0AAAfULYb7lFRUcbFZA4fPuy498yZM8Zloxs3buztZAAAAH5sxQpNn24bv/CC7rjD1DQAAJSOPXs0ZIjy8iTp5psv1T4AgD8r2w33SpUqXXPNNZK2b9/uuNe+8brrrvNqLAAAAD/2yy+6914Zt9rp0UMTJ5odCACAUnDqlHr10vnzknTVVVq2TCEhZmcCAPiAst1wl9S1a1dJa9euzc7OLrDrs88+k1S1atUOHTqYkAwAAMD/XLigPn0udR8WLFBAmX+/CQBAQRcvKiZGBw5IUliYVq1SrVpmZwIA+IYy/3+A7r33XkmnTp2aNWtW/u1//vnnggULJMXGxgYHB5uSDQAAwK9YrRo2THv2SFLFipoyRRMm6KGH9PbbZicDAMCjHnlE69dL/7tVCb+rBwDYlfmGe7t27e666y5J48aNmzt37rlz53Jzczdv3tyjR49z586FhYVNmDDB7IwAAAB+Ydo0JSbaxu+/r7AwzZqlWbP0+eemxgIAwKPefVcffGAbT56snj1NTQMA8DFlvuEuad68ec2aNcvMzHzggQdq1apVvXr1v//97zt27AgJCYmPj69fv77ZAQEAAMq/r7+W/XsOY8Zo6FAzwwAAUEo2bNDYsbZxTIzGjzc1DQDA95SHhnv16tW3bdv2xBNP1KxZMycnJzU1NSgoqHv37lu3bu3Ro4fZ6QAAAMq/Y8cUG6ucHEm66SZNn252IAAASsGvvyo6WsYt5Nq00YIFsljMzgQA8DFBZgfwjNDQ0OnTp0+dOjUlJSUjI6Nu3boVK1Y0OxQAAIBfMG4c9+efknTFFVq6VCEhZmcCAMDTUlPVq5dOnpSkOnW0YoUqVzY7EwDA95SThrshICCgTp06ZqfwvP37bYO8PB04oKgoU9MAAAD81eOPa+NGSQoKUkKCuJ4fAKD8ycvT4MHatUuSKlbUp59S7wAAzpWHS8qUYz/9pFtuUYsWtn/m5uqaa3Tbbfr5Z1NjAQAA/E98vGbOtI1fe02dOpmaBgCA0jFhglatso3nzNGNN5qaBgDgw2i4+67//Ec33qgNGwpuX7dObdtq61YzMgEAAOTz448aPtw2vusuPfGEqWkAACgdS5dqyhTb+OmnNXiwqWkAAL6NhruPSk3VwIHKyHC+98IF9euntDTvZgIAAMjn7FlFRys9XZKaNNFHH3HjOABAGZOTozNndOaMUlMLPWbHDg0dKqtVkrp10yuveC0dAKBMouHuo+bO1bFjrg74/XfFx3srDQAAwF9Zrbr/fh04IEmhoVq2TOHhhR6cl+e1XAAAXIYtW1SjhmrU0J13Oj/gzz/Vu7ft0+WmTfXxxwoMLJUk332XefjwbydOnLRfVBYAUEbRcPdRa9YUfcyXX5Z+DgAAAGdeflmffipJFovmzVPz5n/Zm5KiJ5/UPffY/vnVV+rWTWvXejskAAAlkZmpPn30+++SVKOGVq1S1apmZwIA+Dwa7j7KqOiuHTlS+jkAAAAcfPWVXnrJNh43TjExf9m7datatdL06Tp50rYlL09r1uj22/X447af5AMA4PseeMB2+7SgICUm6pprzA4EACgLaLj7qODgoo8JCSn9HAAAAH91+LAGDVJuriR17qxJk/6y99gx3Xmnjh93/rczZuiNN0o9IQAAJffaa1q82DaeMUNdupiaBgBQdtBw91FRUUUfc/XVpZ8DAAAgn8xM9e1r++p6nTpavFhBQX85YPJknTrl6gwvvqhz50oxIQAAJffFF3r2Wdv4vvs0erSpaQAAZQoNdx/Vu3fRx9x1V+nnAAAAyGf0aG3fLknBwUpMVJ06BQ9YurSIM6Sm6osvSiUbAAAesW+fBg60/ZarY0d98IHZgQAAZQoNdx81cKCuv97VATfdpF69vJUGAABA+vBDzZtnG7/1ljp2LHjA2bM6dqzo8+zb5+FgAAB4yunT6tnT9mOshg2VlMTVXAEAl4eGu48KCtKKFYVeNKZpUyUlKYD/9QAAgLds26ZHH7WNBw/WyJFOjsnMdOtUGRkeSwUAgAfl5Kh/fyUnS1JoqFauVO3aZmcCAJQ1tGx9V8OG2rlT48erVq1LG2vX1rPP6rvvVLeueckAAICfOX1aAwcqK0uSWrXSrFnOD6tVy60bv/M2BgDgmx59VOvWSZLFonnz1KqV2YEAAGUQDXefFh6u11/X77/b/hkUpGPH9PLLqlLF1FgAAMCf5OUpNla//ipJ1atr2TJVruz8yKAg3XJL0Sfs0sWT8QAA8Ij58/Xee7bxyy8rJsbUNACAMouGexlgv3SMxSKLxdQoAADA/0ycqDVrJCkgQHFxiopydfDjjxdxti5d1KKFx7IBAOAR589rxAjbuG9fTZhgahoAQFlGwx0AAACFWrlSr79uGz/3nO68s4jj77xTo0cXurdevUu3XQUAwHfs2aPsbElq3VoffcR33QAAxUfDHQAAAM7t369775XVKkn/+Ieee86tv3rnHb3xhqpVK7j9zjv1zTeKjPRwSAAASu7iRUm64gqtWMFFXAEAJULDHQAAAE6kpSk6WufOSVLDhoqPV2CgW39osejxx3X4sCZOtG1p3ly7d+uzz1S/fmmlBQCgGIwPlQ0hIUpMVIMG5qUBAJQLNNwBAADgxKhR2rVLkipWVFKSatW6vD8PD1fHjrZxZKSaN/dwPAAASm7u3EvjWbPcuvU3AACu0XAHAABAQW++qYULbeOZM3XDDaamAQCgFCQkKC7ONq5fX0OGmJoGAFBe0HAHAADAX2zZoqefto1HjND995uaBgCAUrB9u+6//9IlZa66yswwAIDyhIY7AAAALklJUb9+ys6WpPbtNWOG2YEAAPC0Y8fUp4/S0y9tsVjMSwMAKF9ouAMAAMAmJ0f9++voUUmqWVMJCapQwexMAAB4VHa2+vfXkSOSFBZmdhoAQLlDwx0AAAA2Tz6p//5XkgICFB/P7+sBAOXQ6NHasEGSAgP13HNmpwEAlDtBZgcAAACAT/j4Y731lm08ebJuv93UNAAAlIJp0zRnjm08fbratDE1DQCgPOIb7gAAANC+fXrwQdu4Vy+NH29qGgAASsGXX166K/iQIXr0UVPTAADKKRruAAAA/i41VdHRSk2VpMaNtXAh944DAJQ3P/+sAQOUmytJHTroww/NDgQAKKe4pAwAAIBfs1p1333au1eSqlTRp5+qalXPnLlbN1mtnjkVAAAlceaMevbU2bOSFBmpZcu4KzgAoLTwDXcAAAC/9uqrSkqyjd9/Xy1amJoGAABPy83V3Xdr/35JqlRJSUm64gqzMwEAyi8a7gAAAP7r3//WP/9pGz/xhO65x9Q0AACUgrFjtXq1JFksmj9fbduaHQgAUK7RcAcAAPBTR45o4MBLV7N99VWzAwEA4GkffaS33rKN//lPDRhgahoAgB/gGu4AAADlxA8/KCdHkq6/XkFFvcvLylLfvjpxQpKuvFJLlyokpNQTAgDgTZs366GHbOM+fS79qAsAgNJDwx0AAKCc+L//0+nTknTqlGrUKOLghx/Wt99KUnCwEhNVt26pxwMAwJt++03R0crKkqTrr1dcnAL4kT8AoPRRbQAAAPxOXJxmz7aNp0/XzTebmgYAAE/LyFDfvkpJkaSaNbVsmapUMTsTAMA/0HAHAADwLz/8cOn39YMG6eGHTU0DAICnWa267z59950kBQcrKUlXX212JgCA36DhDgAA4EfOnFF0tDIyJKlly0vfcwcAoNx48UUlJNjG776rTp1MTQMA8DM03AEAAPxFXp4GD9bBg5IUFqbERH5fDwAobz79VC+9ZBs/+qgefNDUNAAA/0PDHQAAwF88/7w+/1ySLBYtWKCmTc0OBACAR/3wg+65R1arJN12m6ZNMzsQAMD/0HAHAADwC599psmTbeMJExQdbWoaAAA87dQpRUcrLU2SGjXSkiUKCjI7EwDA/9BwBwAAKCeML/Q5deiQhg5VXp4kdemiF1/0WigAALzh4kX17XvpsmmrVqlWLbMzAQD8Eg13AACAsi03V3PmqG1bnTlj2/K3v2nqVGVm2v6ZkaG+fXXqlCRFRurjjxUYaE5UAABKyZgx+s9/JCkgQPHxatHC7EAAAH9Fwx0AAKAMu3BBt9+u4cO1ffuljb/8ovHjdcstFY8fD5Q0apR27JCkChX0ySd84w8AUN7MmKFZs2zjKVPUo4epaQAA/o3rmQEAAJRhQ4fq3/92vmv37oBhwyIGDLi4YIFty7vvql07byUDAMAr1q7VuHG28T33aOxYU9MAAPweDXcAAICyavNmJSW5OuDHH0P27Akxxvfcowce8EYqAAC85tdfFRurnBxJuuEGffih2YEAAH6PS8oAAACUVZ98UvQxRg/i//0/ehAAgPImNVU9e+rkSUmqU0crVqhSJbMzAQD8Hg13AACAsurnn906rGZNffopPQgAQLmSl6fYWO3eLUkVK2r5ctWrV5yTGIzPpwEAKDka7gAAAGVVRoZbhy1erKuuKt0kAAB42fjx+uwzSbJYNG+e2re/vD///XeNGKGePW3/3LJF7dopPt7DIQEAfoiGOwAAQFlVp07Rx9Srl9e1a+lHAQDAi+LiNH26bTxxogYNurw/37RJ11+vDz9Uauqljd99p8GDNWgQ33YHAJQIDXcAAICyqkuXoo/p3z+z9IMAAOA9W7Zo+HDbuHdvvfji5f15Sop69tTp0873fvyxnn22RPEAAH6OhjsAAEBZNXCgIiNdHVChgvWee2i4AwDKj6NHFROjrCxJatZMCxcq4DIbG6+9pjNnXB3w5pv688/iJwQA+Dka7gAAAB7w/ffavl3btys313sPWrmyPvpIFSs632ux6PXXTzdokOd8NwAAZU1Ghu66S3/8IUk1a2rVKoWHX/ZJli0r4oDsbNvV4QEAKAYa7mVAcLCsVlmtys42OwoAAChEp05q21Zt2yotzauPe+ut2rBB119fcHtEhJYty+rTx7tpAAAoNVarhg3Tt99KUnCwli5VVNRlnyQrS0eOFH3Y/v2XfWYAAAw03AEAAMq2tm21c6feeefSljvv1NGjuv12L37ZHgCAUjZpkpYssY3ffludOxfnJNnZslqLPsy4ZA0AAMVAwx0AAKDMO3ZMkydf+uecOQoKMi8NAACetmKFnn/eNh49WiNGFPM8YWEKCyv6sHr1inl+AABouAMAAJRtFy8qJuYvt3cLCTEvDQAAnrZnj+69V3l5knTzzXrjjRKd7R//8MwxAAA4RcMdAACgbHv0UW3aZHYIAABKx6lT6tVL589L0lVXKSmppJ8rjxsni8XVAV26qHXrEj0EAMCf0XAHAAAowxYv1vvv28aVK5saBQAATzN+xXXggCSFhWkCzxCMAAAczklEQVTVKkVElPScN92kl18udG9kpBYsKOlDAAD8GQ13AACAsurHH/Xgg7Zxnz6qWNHUNAAAeNojj2j9ekkKCNCiRbruOs+cduJELV6s+vX/sjEgQDEx2rat4HYAAC4LDXcAAIASychQfLwyM23/XLTI9rP30nbmjKKjlZ4uSU2a8HU8AEB5M3OmPvjANp40Sb16efLksbE6cEAzZtj+2aSJDh5UYqKuuMKTjwIA8EM03AEAAIrv00911VUaPFjZ2bYto0crMlJz55bu4+bl6Z57bD+xDw3VsmUKDy/dRwQAwJs2bNATT9jGMTF66inPP0RIiNq0sY1r11bDhp5/CACAHwoyOwAAAEBZFR+vu++W1Vpw+7lzeuABpabqscdK66Ffekn/+pckWSyaP1/Nm0tS7966cEFSSe8mBwCAuQ4dUt++tg+z27TRggVF3OYUAADfQcMdAACgOE6c0KhRTrrtdk89pTvvVOPGnn/otWv1yiu28fjx6tfPNp43z/OPBQCAl6WmqmdPnTghSVdeqRUruCs4AKAs4ZIyAAAAxREXp3PnXB2Qna3Zsz3/uIcPKzZWubmS1Lnzpc47AADlQF6e7r5bu3ZJUsWKWr6cW5gCAMoYGu4AAADFsXFj0cds2ODhB83MVN++OnlSkho0UEKCgvi9IgCgHJkwQStX2sYzZ+rGG01NAwDA5aPhDgAAUBzHjxd9TEqKhx909Ght3y5JwcFaskQRER4+PwAAJlq6VFOm2MZPPaX77zc1DQAAxULDHQAAoDjCwoo+Jjzck4/4/vuXrtL+9tv6+989eXIAAMy1Y4eGDrXdHKVrV02aZHYgAACKhYY7AABAcVx3nWeOcdO2bXr8cdt48GCNGOGxMwMAYLpjx9S7t9LTJalpUyUkKDDQ7EwAABQLDXcAAIDiGDRIFksRx8TGeuaxTp3SgAHKypKkVq00a5ZnTgsAgC/IzNRdd+n33yWpRg2tWqWqVc3OBABAcdFwBwAAKI42bfTAA64O6NlT3bt74IHy8hQbq0OHJKl6dS1bpsqVPXBaAAB8xOjR2rpVkoKClJioa64xOxAAACVAwx0AAKCYZs7U3Xc739W9u+LjPfMoEyboyy8lKSBAixYpKsozpwUAwBe8/vqlO5TMmKEuXUxNAwBAidFwBwAAKKbgYMXFac0a9elz6fIyt9+upCR99plCQz3wECtWaMoU2/if//TMV+YBAPARX3yhiRNt4/vu0+jRpqYBAMATgswOUKjMzMyNGzf+8ssvBw8evPLKK6+77rqbbrqpWrVqhR2fnp6+YsWK3bt3p6enR0ZG9ujR4xp+hwYAgI8pl/X69tt1++2qWlXnz0vS0qUKD/fMmX/5RUOGyGqVpH/8Q88+65nTAgDgjtKu2vv2aeBA5eZKUseO+uADD54bAADT+GjDffXq1Q8//PDBgwfzb6xRo8bkyZOHDx8eEFDwi/nLly8fNmzY6dOn7Vsef/zx4cOHv/322xUrVvRGYgAAUBTq9WW5cEHR0Tp3TpIaNtSSJQoMNDsTAMBveKFq9+x5qcwlJSkkxCNnBQDAZL7YcE9KSurXr5+k4ODgDh06NG7c+PDhw5s3bz59+vSIESN+/PHHmTNn5j9+zZo1/fr1y83NDQgIaNu27ZVXXvn111+fP39+9uzZ586dS0hIMOm/AwAAXEK9vlzDhmn3bkmqWFFJSapZ0+xAAAC/4Z2qnZwsSaGhWrlStWt75JQAAJjP567hnpaW9vjjj0uKjIzcunXr119/PXv27C+//HLfvn233nqrpPfee2/16tX247OysoYNG5abm1utWrVdu3Zt3bp1xYoVJ0+e7NGjh6TExMQVK1aY9J8CAABsqNeX6403lJhoG7/3nm64wdQ0AAB/4s2qbbFo7ly1auWp8wEAYD6fa7gvWLDgyJEjkt58883WrVvbt9evX3/p0qW1a9eW9EG+S7stXrz4jz/+MAbNmjUzNgYHBy9ZsqRRo0aSpk6d6s38AADAEfX6smzerGeesY1HjdJ995maBgDgZ7xZtV96Sf37e+pkAAD4BJ9ruP/nP/+RVLt27ejo6AK7atWq1a1bN0nfffedfePy5cslNW3atHv37vkPDg0NjYmJkbRly5YTJ06UdmwAAOAC9dp9x44pJkbZ2ZJ044164w2zAwEA/IzXqnb//po4seSnAQDAt/hcw/3QoUOSrrvuOqd7GzRoIOnEiRO5xo3MpQ0bNkjq0qWL48G9evWSlJeXt3HjxtIJCwAA3EK9dtPFi+rfX0ePSlLt2vrkE1WoYHYmAICf8VrVjo+XxVLy0wAA4Ft87qapU6ZMuXDhQv369Z3u3blzp6RGjRoFBgZKSklJOXv2rApp0Ldr185isVit1l9++aU0IwMAAFf8pF4/9piysiSVqEU+dqw2bJCkwEDFxamQN0QAAJQWb1btwMCSnwMAAJ/jcw13486oTm3cuPHzzz+X1LdvX2OLcbV3SU4b9CEhIREREcePH//tt988HxQAALjHT+r1iy+W9AxLluidd2zjV1/V7beX9IQAAFwuP6naAACUHp9ruBfm3//+d0xMjNVqjYiIePLJJ42NFy5cMAahoaFO/yo0NPT48eOpqamuT25x42ds7hwDAAAcUa+LYfx4jR9vdggAgP/x26q9YQPXtwEAeIbPXcPdUUpKyoMPPnjbbbedPn06PDz8iy++qFmzprErIyPDGFQo5Mfbxvb09HTvRAUAAI6o1wAAlBVUbQAASsinG+7Z2dmvvvpq48aNZ8+ebbVa//a3v23btq1Nmzb2AypWrGg/0ukZsrKyJIWEhLh+IKtL7hzjbxITEyUZvzmAXUxMjKTExESzg/gWXkGOeAU5xSvIqRJUUR9CvTYLq41TrDZO8QpyxCvIKV5BTpW8VvoOqrZZWHOcYs1xileQI15BTvEKcqrktbJIpX5JmZkzZ65du9b1MVWqVFm8eHGBjZs2bRo2bNjPP/8s6corr3zhhReGDx8eEBBQ4A+NQVpamtMzG5+6F/ZTOAAA4AXUawAAygqqNgAAJVTqDfedO3euWLHC9TFVq1YtsOWDDz4YM2ZMbm5u5cqVn3766SeeeMJe9fOrV6+eMTh69Kjj3pycnOPHj0uqW7ducaIDAABPoF4DAFBWULUBACihUm+4P/fccyNGjCgiRNBfYsTHx48aNcpqtXbq1GnevHlXX311YX9Yr1690NDQCxcuGF+ELyA5OTkvL09Ss2bNipUdAAB4APUaAICygqoNAEAJlXrDvWHDhg0bNnT/+EOHDg0dOtRqtfbv33/RokXBwcGuj+/QocOXX365YcMGx132jR06dHA/AAAA8DjqNQAAZQVVGwCAkvC5m6bOnDnz4sWL9erVmzt3bpHddkm9e/eWtHXr1r179xbY9dFHH0lq27ZtgwYNSiMqAABwE/UaAICygqoNAEBJ+FzD3ajfHTt2PHTo0K5C5P9p25AhQyIiIiSNGDEiMzPTvv2DDz7YtGmTpHHjxnn9PwIAAPwF9RoAgLKCqg0AQEmU+iVlLsupU6dOnDghKSEhISEhobDDrrjiimPHjhnjKlWqvPvuuwMGDPjvf//bsmXLu+66KyIi4quvvvrqq68k9ezZMyYmxjvhAQBAYajXAACUFVRtAABKwrca7gcOHCjGX/Xv3z81NfWRRx5JTk6eNm2affuAAQPmzJljsVg8FxAAABQT9RoAgLKCqg0AQLH5VsM9Kipq/fr1RR4WEhJSYMuwYcN69OiRkJCwe/fujIyMyMjI3r17t2vXrnRiAgCA4qBeAwBQVlC1AQAoHovVajU7AwAAAAAAAAAAZZ7P3TQVAAAAAAAAAICyiIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAPoOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLgDAAAAAAAAAOABNNwBAAAAAAAAAPAAGu4AAAAAAAAAAHgADXcAAAAAAAAAADyAhjsAAAAAAAAAAB4Q+MILL5idwaft3bt327ZtBw8eDAgIqF69utlxfEJeXt6hQ4e2bdv2xx9/hIWFVa5c2exEPufzzz/fvn17VFRUcHCw2VlMlpaWtn379p07d2ZlZVWrVi0oKMjsRObLzc1NTk7esmXL2bNnw8PDK1SoYHYiE5w8eXLlypXBwcG1atVyfaRfLcJ79uxZt25dvXr1KlWq5OIwFmGn/GqquImpUiTqtR312hH1WtTrQlCvS86vJoybmDBFomrbUbUdUbVF1S6EaVXbikKsW7euefPm+Z+r9u3bb9++3excZsrMzHzhhRcKTLvGjRuvWLHC7Gg+5NNPPzWemSNHjpidxUypqamjR4+uUqWKfapUqVLltddey87ONjuaadLT0x1fQV27dt2zZ4/Z0bzt1VdflTR16lQXx/jhIty1a1dJ3377bWEHsAg75YdTpUhMFXdQrw3Ua0fUazvqtVPU65LwwwlTJCaMO6jaBqq2I6q2HVXbKbOqNg1355KSkgICbNfbCQsLq1ixojGuUKHCxo0bzU5njrS0NPvL0mKxNGzYsEaNGva5OGzYMLMD+oTff//d/rT481uB06dPN2vWzD5b6tata39B9evXz+x05khPT2/VqpX9Oalfv77989WgoKCvvvrK7IDek5mZ2aRJE9dvBfxwEd6/f7/x5ZTC3gqwCDvlh1OlSEwVd1CvDdRrR9RrO+q1U9TrkvDDCVMkJow7qNoGqrYjqrYdVdspE6s2DXcnUlJSQkNDJdWqVWvdunXZ2dnp6emffPKJ8bqtW7duRkaG2RlN8PTTTxsT7qGHHjp79qyxcefOnTfddJOxfeHCheYmNF1ubu6tt95qf2X681uB7t27G6vVG2+8cfz4cavVevLkydjYWOOZmTt3rtkBTTBy5EjjP3/8+PHnzp2zWq25ubmrVq2qW7eupDp16pw8edLsjN5w4sSJQYMGGU9FYW8F/HAR3rNnT8uWLY2npbC3AizCjvxwqriDqVIk6rUd9doR9dpAvXaKel0Sfjhh3MGEKRJV246q7YiqbaBqO2Vu1abh7sRTTz0lKSgoqMAnPImJicbT/e6775qVzSx//PFHSEiIpO7duxfYlZqaGhUVJalevXqmZPMdr7zyilH//PytwLp165y+Ui5evHjDDTdIuvHGG83KZpacnBzjd3+DBg0qsGvt2rXG07Vo0SJTsnnHrl27Jk6c2KNHD/un6C7eCvjPIrx69erHHnusY8eO9nWjsLcCLMJO+c9UcR9TxR3UawP12hH1mnrtFPXaI/xnwriPCeMOqraBqu2Iqk3VdspHqjYNdyeuuuoqSX369HHcZTzdt9xyi/dTmSsuLs6Yo05/ZvLWW28Ze48ePer9bD7im2++CQoKCg4Ofuyxx/z8rUDfvn0lNWrUyHHX4sWLW7Ro0bJlS+PDZ//x008/GbMiISGhwK68vLywsDBJjz76qCnZvOP999+Xg8LeCvjPIjxgwADHp8XpWwEWYaf8Z6q4j6lSJOq1HfXaEfWaeu0U9doj/GfCuI8JUySqth1V2xFVm6rtlI9Ube5lXFBycvKhQ4ck9ejRw3Fvz549Z8yYsXnz5oyMDNf3ty1n9u3bJ8lisbRu3dpxb4sWLYzBzz//XKdOHa8m8w3nz5+PjY3Nycl5/fXXjd8u+a3s7Ow1a9ZIuvvuux33xsbG2n/y5lcyMjKMQW5uboFdxlosKTMz09uxvKhz587z58+3//O+++4r7Ei/WoRHjhzZrVs3Y7xv377XX3+9sCNZhB351VRxH1PFNeq1HfXaKeo19dop6nXJ+dWEcR8TxjWqth1V2ymqNlXbKR+p2jTcC9qzZ48xcPp0d+7cecaMGTk5OcnJyfYrAfmDNm3ajB07Njw8vMB9ew2HDx82BvXr1/duLl8xcuTIgwcPdu7c+cknn4yPjzc7jpl279594cIFSbfddpvZWXxIs2bNwsLCUlNTExMT7ddWM6xevdp4xtq3b29SOm9o0qSJcQsXg4u3An61CHfq1KlTp07G+Ouvv3bxVoBF2JFfTRX3MVVco17bUa+dol5Tr52iXpecX00Y9zFhXKNq21G1naJqU7Wd8pGqTcO9oIMHDxqDhg0bOu61bzxw4EA5mIXui46Ojo6OdrorNzd35syZkiIjIxs1auTdXD5h4cKF8fHxNWrUiIuLs9/x2W/t3bvXGNSpU+fEiROzZ89ev379qVOnrrnmmuuvv37IkCH++X4xNDR08uTJDz/88PLlyx988MGJEyc2bNjwwoULy5Yte+KJJyS1b9/eP7+V4IhF2CkWYUdMFaeYKi5Qr/OjXjtFvXYfi7BTLMKFYcI4xYRxgaqdH1XbKaq2+1iEnSrVRZiGe0Hnz583BtWqVXPca9947tw572XyYRcvXhw+fPiOHTskTZw4MTAw0OxE3pacnDxmzBhJs2fPrlevntlxzHf06FFjsG/fvvvvv//kyZPGP3fu3Ll06dIpU6ZMnz79gQceMC+gacaMGVOhQoXHHnts9uzZs2fPrlSpkv0XcP369Zs9e3b++5z4Mxbhy+LPizBT5bL481QxUK8LoF4XhnrtJhbhy8IizIS5LEwYqnYBVO3CULXdxCJ8WTyyCNNwLyg9PV1ScHCw0w9R7RczSktL82osn7R169aRI0fu3LlT0n333Td8+HCzE3nbxYsXY2NjU1NThw8fXtjHYv4mNTVVksViGTx4cGpqavfu3W+++ebq1av/9NNPH3300fnz54cPHx4REdG7d2+zk5ogJCSkUqVKxiJjfx8gqWbNmsYF5iAW4cvh54swU8V9fj5VRL12hnrtAvXaHSzC7mMRFhPmcjBhqNqOqNouULXdwSLsPk8twjTcCwoKCpKzWy4YLl68aAwsFov3Mvme33777ZlnnlmyZInVag0MDHzyyScnTZrkh8/Js88+++233zZp0mTGjBlmZ/EVxj1JrFZrWlrasmXL+vTpY981duzYTp06HTlyZPTo0V26dAkNDTUvpgnGjBlj/CLpjjvuuPfeexs3bnz8+PGNGzfOmDHjww8/XL9+/ddff+2fd0MqgEXYHSzCYqq4h6lioF47ol4XhnrtJhZhd7AI2zFh3MGEMVC1HVG1C0PVdhOLsDs8uwj7+5WwHFWpUkVSXl6efcLlZ7/Bsb+tYnY5OTmvvfZas2bN4uPjrVZr+/btN2/e/Nprr/nhz9zWrVs3derU4ODgxYsXO73Bgn+yfzQ6atSo/O8DJDVq1GjKlCmS/vjjj02bNpkQzjwJCQnG+4BJkyatXr164MCBN9xwwx133DFp0qSdO3eGhYX98ssv999/v9kxfQKLsGsswnZMFdeYKnbUa6eo105Rr93HIuwai3ABTBjXmDB2VG2nqNpOUbXdxyLsWmkswnzDvaCIiAhjkJKS4njfiWPHjhmDWrVqeTWWb0hJSYmOjt68ebOkxo0bT5o0KSYmxuxQppk+fbrVam3ZsuXatWvXrl1r3/79998bg/feey88PFzS2LFjg4ODzUnpdWFhYcbA6c/Zunbtagx+/PFH+9gfGO8Drr322qeffrrArmuvvXbChAnPPPPMF198ceDAgaioKDMC+hAWYRdYhPNjqrjAVMmPeu0U9dop6rX7WIRdYBF2xIRxgQmTH1XbKaq2U1Rt97EIu1BKizAN94KaNGliDA4ePOg4C3/99Vdj0LRpU6/G8gHnz5/v1q3b999/Hxwc/Mwzz0ycODEkJMTsUGbKy8uTtGPHDuNGCo5effVVYzBmzBj/eStgr2QNGjRw3Fu9evWwsLDU1FT7XV/8xL59+yTddNNNTq+Y1qFDB2Owd+9e3gqwCBeGRbgApkphmCoFUK+dol47Rb12H4twYViEnWLCFIYJUwBV2ymqtlNUbfexCBem9BZhGu4FtWrVKigoKCcn55tvvrnlllsK7N26daukmjVrNmzY0Ix0Zho0aND3338fHh6+cuXKTp06mR3HfK1atbL/7ia/lJQU+7pfoUIFSX71S8CWLVsag/3799vXdLtTp04Z93tp1qyZt5OZqnr16idOnMjOzna61769atWqXgzlo1iEC8MiXABTpTBMlQKo105Rr52iXruPRbgwLMJOMWEKw4QpgKrtFFXbKaq2+1iEC1OKi7AVDm699VZJN9xwQ4HtOTk5devWlXTvvfeaEsxE9h9wJSYmmp3F18XFxRnP1ZEjR8zOYo5rr71W0pAhQxx3zZ8/33hyvvnmG6/nMtPAgQMlNWzYMCsry3HvxIkTJQUEBKSmpno/mymMaTB16lSne/1zEV6/fr3xtHz77beOe1mEnfLPqeIaU8V91GvqtSPqdQHUa0fU62LzzwnjGhPGfVRtqrYjqnYBVG1HJlZtbprqxMiRIyVt3749ISEh//Y333zT+IWOcYBfef/99yVFRkb68+Xk4KZhw4ZJWrhw4SeffJJ/e3Jy8vjx4yW1bdu2bdu25oQziXGtvcOHD48bN874maTdli1bpk2bJqlz585+e4uSAliEHbEIO8VUccRUgfuo146o15eFRdgRi7ALTBhHTBi4j6rtiKp9WViEHZXuIuzxFn45kJeX17FjR0kVKlSYMGHC5s2bv/zyyzFjxhiXhRo8eLDZAU1gLNzBwcE1Xdq/f7/ZSc3HZ+/p6enGx++SBg0aNH/+/KSkpKeeesq4L3ZwcPAPP/xgdkYT9O/f33hO2rZt+9Zbb/3rX/+aN2/e0KFDjYWlevXqv/32m9kZvcd4Kgr77N0/F2HXn72zCDvln1PFNaaK+6jX1GunqNf5Ua8dUa+LzT8njGtMGPdRtanaTlG186NqOzKxatNwdy4lJaV169aOn0907do1PT3d7HQmqFGjhutPbgx79+41O6n5eCtgtVqTk5MbN27sOEMiIyPXrFljdjpznD17dsiQIRaLxfFpadGixaZNm8wO6FWu3wpY/XIRdv1WgEW4MH44VVxjqriPem2lXjtDvc7P+A+nXudHvS4JP5wwrjFh3EfVtlK1naFq52f8h1O18zOxanPTVOdq1679zTffzJkz55NPPjl48GBgYGDTpk0HDx48aNAgp6/k8i03N/eRRx6x/u/V60KtWrW8kMfHtWrV6vnnn5cUHh5udhbTREVF/fDDD3PmzFm+fPmvv/4aHBzcqlWrdu3ajRo1ym9/z1W1atUFCxaMGjUqLi5u7969ycnJERERzZo1u+WWW4YOHRoU5F+rsfEasd843pEfLsJXXXWV8bQYV9DLj0XYBT+cKi4wVS4L9VrUa2eo1/lRrx1Rr0vCDyeMC0yYy0LVFlXbGap2flRtRyZWbYs7pwYAAAAAAAAAAK5x01QAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwANouAMAAAAAAAAA4AE03AEAAAAAAAAA8AAa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8gIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAPoOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLgDAAAAAAAAAOABNNwBAAAAAAAAAPAAGu4AAAAAAAAAAHgADXcAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwANouAMAAAAAAAAA4AE03AEAAAAAAAAA8AAa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICGOwAAAAAAAAAAHvD/Aa+ZFDpDNvnvAAAAAElFTkSuQmCC\"/>" ] }, "execution_count": 14, @@ -1282,9 +1282,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAOECAIAAAA+D1+tAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeZwU5YH44bfnhuFSRkEuQRREBBEPPBGVRCXGM4oRdY2JbvglrsZ4bIy7ZrMaV7zWxZAYdU08UTEoGEEF8YghXqgIAnKEQxSQS4Zzrv790dneXo6ZYZDpmXmf5w8+1VXVVW8PNM2Xqq5KJJPJAAAAQHxysj0AAAAAskMQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAARCov2wMAoDGZN2/epEmT0g+POeaYvn37ZnE8tffggw9WVFRsd1Hr1q179uzZs2fP4uLi2m9wzpw5U6ZMSU0feuihAwYMqPEpa9asOeKII1LT3bt3f+mll2q/OwDYHQQhADthxIgRDzzwQPrhWWedNXbs2CyOp/Z+/OMfb9mypZoVEonEOeecM2LEiP322682G5w6derw4cNT0zfccENtgrCysnL+/Pmp6bw8H8EAZJ9TRgGorbKysmeeeSZzzoQJE9atW5et8Xy9ksnks88+26tXrwkTJmR7LDX4/e9/v///GDVqVLaHA0AjJggBqK0XX3xx7dq1mXO2bNnSWI4Q1lJZWdnFF1/82WefZXsg1Vm7du38/7F69epsDweARkwQAlBbjz/++LYzn3zyyfofyS56/vnnv8jw0Ucf3Xnnnc2bN08tXbVq1SOPPLI79tu2bds1/+Pdd9/dHbsAgJ3iCwwA1MpXX331wgsvpKbbtm27adOmjRs3hhAmT568cuXKkpKS2mxk+fLl5eXlqemSkpKioqLMpRs2bFizZk1quqioaKttlpeXL1y4cP78+RUVFd26devatetOXQMm05577tm+ffv0w/bt2/ft27eysvKGG25IzXn77bfrtuVPP/109uzZzZo16927d4cOHbZaWlVVtX79+tR0YWFhy5Ytt11h6dKlCxYsWL16dZcuXbp27dq2bdu6jSSEsGHDhg8++GD58uW5ubnt27c/9NBDCwsLq3/KggULZs6cmZube9hhh7Vr1y5k/Jbl5eWlf2jr1q1Lnyq8xx57pH4jPv300xkzZpx22mnNmjVLb7C8vHzJkiWLFi1avXp1+/btO3Xq1KVLl0QisdWr/vzzz1PTBQUFe++9dwhh7ty5M2fOzM/P79OnT5cuXdIrb9y48e233169enXXrl0PPPDAOv8ZAODvkgBQCw899FD6s+OKK674zne+k344atSoWm7ku9/9bvpZd9xxx1ZLr7766vTS66+/Pj1/zZo1N91001b5lJOTc8EFF8yYMaOWu85soTfffHPbFTK/OvjNb36zxg0+/PDD6fVvuOGGBQsWnHDCCZkjPOuss5YsWZL5lL/97W/ppQMGDMhcVF5e/tBDD+27775bfUwfffTRL774Ynq1F1988bDDDuvcuXN6hQ4dOhx22GGZP65kMrly5cpLLrmkoKAgc1PNmjW78sorS0tLt/tyli9f/o1vfCO9ckFBwXXXXVdRUdG7d+/UnI4dO6ZXvvnmm9Nrjhw58quvvjrzzDNTD9MvubS09Fe/+tW2/1Nw4IEH/u53v6uqqkpv7csvv0wvPeSQQ7744oshQ4ak5yQSiTPOOGPFihWVlZW33nprZgG2bNnyrrvuqqysrPE3C4AdEYQA1MpJJ52U/of4K6+88tRTT6UfDhw4sJYbGTduXPpZJ5xwwlZLe/XqlV46bdq01MzS0tLM+VvJy8t79dVXa7PrGoPw2muvTa/w7//+7zVuMDMIL7nkkm2PB4YQDj744LKysvRTqgnCiy66aEevMYTwy1/+MrXao48+ut0Vzj333PSmXnjhhdRBtu3q0qXLti//o48+yjwKl3b55ZfXGIT33nvvcccdl36YCsLy8vKBAwdW84r+5V/+Jb21zCBMHffbdv0BAwakr+m6lXvuuafG3ywAdkQQAlCzpUuX5uT8/Wvne+21V0VFxfr169NfukskEp999llttlNWVrbnnnumnpWXl7dmzZr0osWLF6f/id+jR4/0/O9973uZ//rv2bPnMcccs8cee6TntG3bdsWKFTXuOjMI77zzzgkZHn300UsuuSR9HmPPnj0zB7YjmUGYttXJkCGEe++9N/2UHQXhH/7wh8yn7LPPPgMHDsw8DJhIJCZNmpSsxRHCZcuWtW7dOnNrHTp02GuvvTLndO7cecOGDem9V1ZWHnTQQZkrFBYWpl9I+vYYOwrCww8/PPO5qSD8t3/7t6322KdPnzZt2mS+otmzZ6e2lhmEmStsO3O7i4qLi7ds2VLj7xcA2+WiMgDUbPTo0VVVVanpc845Jzc3t7i4OH1eXzKZzDxgWI38/Pxzzz03NV1RUZF5Z/bM6QsuuCA9nfnFxQULFsyePfutt976/PPPL7zwwtT8VatWvfrqqzv1cq699trTMlx88cWPPPJIMpkMIQwYMOCVV17JTJdaOvHEEz/44IOysrIZM2b069cvPf/Pf/5zjc8dP358enrcuHGff/7566+/vmjRov/6r/9KzUwmk2PGjAkhnHbaae+9994111yTXn/48OHvvffe7bffnn5pX331VWq6e/fu06ZNW7p06YoVK95444199tknNX/JkiW33npreguPPvroJ598kppu0aLFs88+u27duuXLl1933XUhhIqKiuoH/95774UQBg4cOHz48OHDh6dO6UyNNoSQn58/efLkxYsXT58+fcWKFekDoclkckeX1enXr9/7779fVlY2bdq0bt26ZS4aNmzY4sWLN2/e/Mwzz+Tn56dmbtiw4dNPP61+kADsiCAEoGaZ1xc977zzUhOZXyOs/bVG0yEXMmIv7CAIP//88/Tho6KionTSFBUV3Xjjjcf+j6/x1gtDhgzp2LHjzj6rc+fO48aN69evX15eXu/eve++++70olmzZtX49I8++ig93bVr19REIpH48Y9/fPLJJ6deY2VlZY3b+eyzzx577LHUdE5Ozp/+9KdDDz009fD4448fPXp0es177rmnrKwsNX3nnXem599///3nnHNOQUHBXnvtNWLEiMsuu6zGnSYSieeff/71118fNWrUqFGj9thjj40bN27YsGHffffdd999zz333PTJxvn5+ZknHs+dO3e7Gxw9enT//v3z8vIOPfTQzPTt2rXrww8/3Llz54KCgu985zuZ3zPMPPQKwE5xlVEAajB79uxp06alpvfee+9Bgwalpk8//fRmzZpt2rQphPDee+/Nmzdv//33r3FrAwcO7Nix49KlS0MIEyZMqKqqysnJqaysnDx5cmqFvn37pr80mHme59KlS7t163bmmWcOGTLkpJNO6t27d20Ovu2sm2+++Z133hk7dmz6AFRtfPOb32zRokX64SGHHJKeTl83tRqZL/Ooo44aMmTIt771rVNPPbV9+/aTJk2q/TDefPPN9PTpp5/es2fPzKUDBw7s379/6rdy06ZN77///tFHH11eXj579uzUCu3btz///PMzn/Lzn//8v//7v6vf6VlnnXXGGWdkzmnevPn8+fO3Wm3t2rXvv//+vffem56z3cRt37595rAzr0lz7LHHZv6mZC6qTS0DsF2OEAJQg8zDg6nzRVPTxcXFp512WnpR5gGoauTk5AwdOjQ1vWrVqr/+9a8hhHfffTcdTpnni7Zt2zbz0p3Lli27//77zzzzzLZt237jG9+455576nYH+fvvv39qhldffXXUqFEHHHBAaumf/vSnzAvM1MZW19JMf7uyltKn0YYQNm7cOGbMmO9973upLwf+y7/8S7rGa7RkyZL0dN++fbdd4eCDD05Pp760uWDBgvRJob17905/YzBlv/32S3/nc0f69++/3fnJZHLq1Kk333zzN77xjfbt2++xxx6DBw/OPBa6XVt9ATJTHc7jBaBGghCAGjzxxBPp6VmzZv0gQ+pAX0otgzBs76zRHX2BMIQwZsyY008/fastlJWVTZo06ZprrunWrds//dM/1fg9t60cdNBBR2U48cQThw8f/uabb6avVfPb3/72iy++2Klt7oqbbrrp2muv3eomgclkctq0abfccsthhx02ePDgFStW1Lid0tLS9HTqLoJbSZ9zG0JIfdVw0aJF212a1qlTp+p3ut1OW7Ro0UknnXTMMcf88pe/nDRp0vLly1Pzd+q4KwD1QBACUJ2pU6cuWLAg/fD1119/KEPmDdxnzpw5Y8aM2mzzsMMOyzwcFzKCcMCAAVtdR6SkpGT8+PFz5sy58cYbt7oYZgihoqJi5MiR//qv/7rzr2xr7dq1O/roo1PTZWVl77///q5vs5by8vLuuOOOpUuX/ud//ufAgQPTx2DTJk+efNZZZ9W4nVatWqWn07d6z5QZ8Kn7OmZegHS7zVmHMK6qqjrvvPNee+211MO99trrwgsvvPvuu1977bXf//73O7s1AHYrQQhAdTLPF61R7S8tk75D/fTp06dPn/7OO++kHm51eDCtR48et95668yZM+fOnXvHHXcce+yxmUsfeOCB2g+yGhs2bEhP7+xRx13Xtm3bq6666vXXX1++fPnDDz981llnZR4znDp16syZM6vfQmZLbzdoM88+3XfffUMImV/7nDFjxlZfxlu8ePF27wlRvTfeeCN9BdHjjz9+0aJFjz/++E9+8pMTTjghfagQgAZCEAKwQxUVFU8//XT64T777NNxG5mHmGp584nwf88aveaaa1IdkpOTs9VFTX71q1+lT+xMfdtw//33v/baa//85z+///77BQUFqdVWrVpVXl5e11f5d1OnTn3rrbfSD9PX59zdJk6cmH6No0aNCiG0bdv20ksvHTt27KJFi9L3hQ8hLFu2rPpNHX/88enbRb788supG0KkPffcc5m3lzjiiCNCCC1btmzfvn1q5ueff75V0v/yl7+swyuaM2dOevrkk09u1qxZ+uHYsWPrsEEAdh9XGQVgh15++eX0AaJ27dp99tln6d5IW7t2bbt27VL3MJg/f/4777xz5JFH1rjlnj17HnrooR988EEIIX190eOPP75Dhw6Zq5WUlKTPSr322mvHjh2b7s9169alD+IdeOCBO/XltEceeSR9QmMIYdOmTXPmzHn++efTG+zRo0fqAFo92G+//dKvceHChUcffXS6RTdt2pS6iGtK+pIwmb8Lmed5tmvX7oc//GGqKkMIQ4YMefjhhwcPHlxZWTl27Ngf/vCH6TVvvPHG9E/siiuuSIffFVdcsWXLlm9/+9vLly8fOXLkQw89VIdXlHlNnT/+8Y/nnHPOwQcfvGbNml/84heZ10EFoCEQhADs0FbXF922BkMIbdq0GTx48Isvvph6OHr06NoEYQjhwgsvTAVh2rbniw4ZMqRNmzZr164NIbz11lsdOnTo2rVrYWHhihUrMk9lPOWUU2r3gv6u+lNM8/Pz03fzqwc9evQ4/PDDU0fzli9f3r9//86dO7du3XrdunWpC4Gm9OvXL32dmMw7Jf7ud79btGjR0Ucf/c///M8hhFtvvXXMmDGpSvzyyy9PP/30goKCqqqqzDNge/XqlXkZ1Z/+9Kf33Xdf6l6OmzZt+sEPfrCLr+iwww5LT0+fPr1v377NmzffuHHjVqtVVVXt4o4A2HVOGQVg+zZs2PD888+nH251MmemzLsmPP3008lksjbbHzp0aCKRSD/My8vLvNN9SqdOncaOHZs+NbSiomLevHkzZ87MrMGjjz76tttuq80ea6Nz585PPvlk6nTKejNu3LguXbqkHy5ZsmTGjBmZNVhSUjJmzJj0w2OPPTZ9/ZgtW7aMGzcufXZomzZt/vjHP3bv3j29cllZWWYN9u/ff8yYMZkHVFu1avX4449v934P/fr1q/Eqo9s66KCDLrnkksw5qRps3rz51VdfnZ45ffr0nd0yAF87QQjA9j333HPpi6y0a9du4MCBO1rzrLPOSt+/bunSpW+88UZttt+5c+fjjz8+/XDw4MFb3c0vZdCgQbNnz77mmmu2vSFez549f/3rX0+aNKmoqKg2e9yR5s2b9+nT55xzzrnrrrvmzJmT2bf1Y5999pk+ffrdd9+deYmXlJKSkp/97GcfffRRZuO1b99+7NixhxxyyHa3duyxx3788cfXX3/9Vj/Pjh07jhgx4p133tn2Yq2nnnrqe++9d9xxx6XntG7devjw4W+88UY1Nwasxm9+85vrrrsufVGc3Nzcb33rW++///7PfvazdN7/6U9/GjduXB02DsDXKFHL/8cFgKxbu3bt0qVLV69evffee3fu3Hln7//eKGzatGnp0qXLli1r1apVp06dqr8v/JYtW1auXNm8efNWrVpte7OKZDI5b968FStW5OTktG/ffqv7eWzXF1988be//W3vvffu3r176vhtjx495s6dG0LYb7/95s+fv1OvZfPmzXPnzl2/fn2PHj3atm27U88FoH4IQgCI2ieffJL+Ol/Pnj0zzyYtLS3dY489UteAPfPMM5977rnsDBGA3cYpowAQtWHDhvX5HzfeeGN6fmVl5VVXXZW+M2E9f68SgPrhCCEARO2uu+5KX3Q0kUicdNJJAwcOLCsrGz9+fPq6LwcccMC7775bt+8TAtCQCUIAiN3VV19977337mhpt27dXnjhhW0vRQNAEyAIAYDw4Ycfjhw58vXXX//ss8+2bNmSk5PToUOH7t27f+973xs2bFj6KrIANDGCEAD4X8lkcvXq1a1atcq8ugwATZUgBAAAiJSrjAIAAERKEAIAAERKEAIAAERKEAIAAERKEAIAAETKbYV2VSKRyPYQAACAJmu33hjCEUIAAIBIOUL49XA7R9jK4sWLQwhdunTJ9kCgYfHWgO3y1oDtqoezER0hBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiFRetgcAAAA0cYlEIttDaKCSyWR2B+AIIQAAQKQcIQQAAOpD1o+GNSgN5KipI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AOrP7NmzJ06cuGTJkpKSkoMPPviUU04pKCjI9qAAAIAQQpgxI4wZk4X99u4dzjsvC/ttIKIIwlWrVl1++eVjx47NnNmzZ8/f/e53AwcOzNaoAAAAsqvpnzJaWlo6aNCgVA127Nhx6NChgwYNysnJmTNnzre+9a1PP/002wMEAADIjqYfhFdfffWMGTMSicRDDz302WefjR49esqUKX/5y19atmy5fv36yy67LNsDBAAAyI4mHoRz5879wx/+EEK45ZZbMttvwIABt9xySwjhrbfe+uyzz7I2PgAAgOxp4t8hfPzxxysrKwsLC3/0ox9ttWjYsGGp80WXL1/eqVOnbIwOAAAgm5p4EP7pT38KIXz7299u3br1Vovatm173333ZWNQAAAADUJTPmW0srLy448/DiEcfvjh6Znr1q1LJpPZGxQAAEBD0ZSDcOHChVu2bAkhtG/ffsGCBRdffHHr1q1bt27dqlWrY4455s4776ysrMz2GAEAALKmKZ8y+uWXX6Ym5s6d+6Mf/WjDhg2ph+vXr586derUqVOfeuqpP/7xj507d65+O3vuuWeN+3JlGtjKF198EULIyWnK/+sEdeCtAdvlrUGj8+WXX65atSqEkJ+f37179zpvJ+sd0ZSDcP369amJX/3qV4lE4kc/+tHZZ5/dtWvXefPm/fd///fTTz/93nvvXXHFFRMmTKh+O2vWrKlxX1VVVV/DiKEJSZ2b7a1BA9ds5Uv5WxbV5x7bf/VVCKFFVesQwvq9zq0qaFufe4cGy6cGjc53v/vdyZMnhxBycnKWLl3avn37um0n63/sm3IQVlRUpCaSyeSYMWPOOeec1MPu3bufcsop++677x133DFx4sSxY8eeffbZ1Wxn9erV1SxNHT90nVLYSupvN28NGrhEZXFYl1uvuyzPDSG0bp4bQmjVoX0oaleve4eGyqcGjcvnn38+ZcqU1HRVVdVTTz111VVX1W1TWf9j35SDsHnz5qmJb33rW+kaTLv55pvvv//+devWvfrqq9UH4R577FHjvpzhAFtJvSm8NWjoEomQSNTvDhP/+2tOTvAegRCCTw0amyeffDL1vxjFxcUbNmx44okn6hyEWf9j35Tfdenv/h177LHbLi0uLj7ooINCCKkrkQIAANTG448/HkI48MADL7/88hDCO++8M3/+/GwPqo6achDuv//+qeBu2bLldldIFePmzZvrdVgAAECjNWvWrA8++CCEcNFFFw0dOjQ184knnsjqoOquKQdhUVFR6hjgzJkzt7vCrFmzQgh9+/at12EBAACN1mOPPRZCSCQSw4YNGzBgQJcuXYIgbLDOOOOMEMLo0aOXL1++1aJJkyb97W9/CyH0798/CyMDAAAam2QymWq/4447rmvXrolE4rzzzgshzJ49O3XYsNFp4kH4wx/+sKioaO3atUOHDk3d3yZl2rRp3//+90MI3bt3/4d/+IfsDRAAAGg03nrrrYULF4YQLr744tSc888/PzWR+mJho9PEg7Bz58633HJLCOH1118/6KCDzj333Guvvfa000476qijFi9enJub+8ADDzRr1izbwwQAABqBVPUVFhamDgyGEI488sh99903hDB69Ois31SwDpp4EIYQfvrTn44YMaKwsHDt2rV//OMf77rrrokTJ5aXl/fp0+evf/3riSeemO0BAgAAjUB5efkzzzwTQjj99NPbtGmTnp+Kw6VLl77xxhtZG1xdNeX7EKZdd911w4YNe/bZZ2fOnLl58+aDDjrokEMOOemkk/Lz87M9NAAAoHGYOHHiqlWrQggXXXRR5vyhQ4feeeedIYQnnnhi0KBBWRlbnUURhCGEDh06XHnlldkeBQAA0Filri/aqlWrY445Zu3aten5+++/f+fOnZcsWfLss8/++te/blyHnWIJQgAAgDorLS0dP358CGHdunXt2rXb7jqrV6+eOHHit7/97fod2i5p+t8hBAAA2EXPPvvspk2balyt0d2Q0BFCAACAGqSuL9q8efNp06YVFhZuu8LgwYPnz58/bty4DRs2FBcX1/sA60gQAgAAVOeLL7549dVXQwhnnHFGz549t7vOBRdccOutt27cuPG5554bNmxY/Q6w7pwyCgAAUJ0nn3wydY/BCy+8cEfrDB06NDXRuO5QLwgBAACqk2q8Pffc89RTT93ROn369Ondu3cI4ZVXXlm5cmX9DW7XCEIAAIAdmjVr1rRp00II3/nOd6q/pUTqIGFFRUXq/vWNgiAEAADYofQpoNWcL5qSPmu0EV1r1EVlAAAAdui8884bPHhwIpEYOHBg9Wv26NHjz3/+c3l5eU5OoznwJggBAAB26JBDDqn9yscee+zuG8nu0GjKFQAAgK+XIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUG9MDAADZd/DB4eCDsz2I+DhCCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClXGQUAABqAtTPC4jFZ2G+b3qHLeVnYb8PgCCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECk3JgeAACgOslkcs6cOdtd1KJFi44dOyYSiXoe0tdFEAIAAFRnw4YNvXr12tHS4uLinj17/tM//dMll1zS6MrQKaMAAAB1t2HDhmnTpl166aUnnHDCli1bsj2cnSMIAQAAauXSSy+dm2HOnDlTpkwZOXJk9+7dQwhvvvnmz372s2yPcec4ZRQAAKBWWrduvf/++2fO6dGjx6BBg/7hH/7h0EMPnT9//q9//evbb789Pz8/WyPcWY4QAgAA7JKWLVteccUVIYSysrIZM2Zkezg7QRACAADsqo4dO6YmNmzYkN2R7BRBCAAAsKtmz54dQsjNze3Zs2e2x7ITBCEAAMAu+fTTT0eOHBlCuOCCC/baa69sD2cnuKgMAABArcyePfuxxx5LP6yqqlq2bNmMGTOeeuqpsrKyI488ctSoUVkcXh0IQgAAgFp56aWXXnrppe0u6tWr14svvtiqVat6HtIucsooAABArRQUFLTeRiKRCCHMmjXrgAMOeOaZZ7I9xp0jCAEAAGpl+PDha7dRWlo6efLkPn36rFmz5oILLhg/fny2h7kTBCEAAEDdFRcXn3TSSVOmTGnbtm1VVdWNN96Y7RHtBEEIAACwq9q2bXvBBReEEGbMmLF27dpsD6e2BCEAAMDXoEuXLqmJL7/8MrsjqT1BCAAA8DWYP39+CKGgoKBbt27ZHkttCUIAAIBdtXTp0ieffDKE0Ldv37y8RnN7v0YzUAAAgOyqrKzcvHnzVjOXLVs2derUG264obS0NIRwyy23ZGNodSQIAQAAauW+++677777qlnhmmuuOeWUU+ptPLtOEAIAAOyS3Nzc3r17jxgxonHVYBCEAAAA1WvWrNmUKVN2tLRNmzYHHnhgUVFRfQ7p6yIIAQAAqpObmzto0KBsj2K3cJVRAACASAlCAACASAlCAACASAlCAACASAlCAACASAlCAACASAlCAACASAlCAACASLkxPQAA0AC0OTi0OTjbg4iOI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AAAAgCgkEolsD4GtOUIIAAAQKXq0/pcAACAASURBVEcIAQCA3SuZTGZ7CGyfI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AHa7Dz/88M9//vOOlu61115Dhw6tz/EAAAA0EE0/CB955JF77rlnR0sPOeQQQQgAAMSp6Z8yOnfu3GwPAQAAoCFq+kE4b968EMK//du/lW/P+++/n+0BAgAAZEcTP2W0qqpqwYIFIYRevXrl5TXxFwsAALBTmvgRwsWLF5eVlYUQevbsme2xAAAANCxNPAhTXyBMJBIHHHBAak6qDwEAAGjiQZj6AmGXLl3ee++9U045paSkpKioqFu3bmeeeeb48eOzPToAAIBsauJfq0sdIVy6dOnAgQPTMxcuXLhw4cJx48YNHTr0wQcfbNGiRfUbmTRpUo072rx58y4OFZqYLVu2BG8NGrzc8vJERUV97rGysjKEUFFREUKo3LIlGbxHIASfGpA9TTwIU0cIKyoqevToceWVVx5xxBF5eXkfffTRbbfdNm/evKeeeqqkpOS+++6rfiPf+MY3atzRihUrvp4RQ1OxatWqEEJhYWG2BwLVaf7VV/mbNtTnHjdu3BhCyM3NDSGsX7myMr8+dw4Nl08NyJYmHoRLliwpLCwcMGDAiy++WFxcnJp52GGHffe73x0yZMhrr732m9/85uKLLx4wYEA1Gxk8eHA1S1PHD4uKir7GYUMTkPpQ99aggSsoKMgtr9ePwtQlr1O/FhYWVhV4j0AIPjUge5p4EH7wwQfbnd+sWbNRo0YdfPDBVVVV48ePrz4IX3nllWqWJhKJEMLee++9K+OEpid12o+3Bg3dxlYhFNfnDlMni6b+j7K4pCQUeY9ACD41IHua+EVlqtGrV6/99tsvhPDxxx9neywAAABZEG8QhhB69OgRQli0aFG2BwIAAJAFTfmU0fXr169fvz4nJ2dHpx+sWbMmhJC+RSEAAEBUmvIRwokTJ+6zzz7t2rWbOXPmtkvLy8tnzZoVQujTp0+9Dw0AACD7mnIQnn766S1btgwh3Hrrrdsuvfvuu9euXZtIJE499dR6HxoAAED2NeUgLCoq+v73vx9CePLJJ3/yk5+Ulpam5peVld16663/+q//GkL4x3/8xyOPPDKbowQAAMiSRDKZzPYYdqOysrKTTjrprbfeCiE0a9bsgAMOqKysnDt3bllZWQjhyCOPfPnll1u3br0ru0jddqJp/xihDhYvXhxC6NKlS7YHAtVa+GRYN6c+d/jVV1+FEP7+0dNjeChqV597hwbLpwZsVz20RlM+QhhCKCgoeOGFF66//vri4uJNmzZNnz595syZZWVlxcXFt99++1/+8pddrEEAAIDGqylfZTSlTZs2t99++89+9rNPPvlk4cKFubm5ffv27dGjR25ubraHBgAAkE1NPwhT2rRpc8wxxxxzzDHZHggAAEBD0cRPGQUAAGBHBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkIg3CCRMmjB49etOmTdkeCAAAQNbkZXsAWfDcc8+dffbZIYQlS5Z06tQp28MBAADIjuiOEC5duvT73/9+tkcBAACQfXEFYVVV1UUXXbR69epsDwQAACD74grC22677bXXXkskEtkeCAAAQPZFFIRvv/32L37xi/z8/KuuuirbYwEAAMi+WC4qs27dugsvvLCiouL222/v0KFDtocDAACQfbEcIRw+fPiCBQtOPPHEa6+9NttjAQAAaBCiCMJHHnnkiSee2HPPPR999NGcnCheMgAAQI2a/imj8+bN+/GPfxxCeOCBBzp27FiHLZx//vk1rrNy5co6bBmasNTlfJs3b57tgUB1CktLczdurM89btq0KYSQn58fQti8enVVQW597h0aLJ8akC1NPAjLy8svvPDC0tLSyy+//JxzzqnbRp555pka19lYv/+egIZv8+bNwVsjS954o2jjxsZxNkRubqiszOYA9s8LrWt95enc3GRl5a5ep3rTpvwQQrNmIYSw+pO/huTuuvB1hw4V7dpVVbPCxraDQ6KJ/zOARsSnBmRLE/8kuOmmm959992ePXv+53/+Z5038vTTT1ezNHX8sKSkpM7bhyYpdRjEWyMrli3LW7OmcdxfJz8/lJdncwCtWzUPhUW1XLmgIFlWtqs/2C1bEiGEsrLCEEJVcll+YtMubnBHmpdVtU4mq1thzz1CbuFu2jvsLJ8akC1NOQgnT558xx135OfnP/7447tyBsJ5551X4zrOcICtNGvWLHhrZElBQcjPz/Ygaifr48zLy639d8tzc8Oufw89tbvUr7khJ2e3fZk/Ly+n+h9vfvPmgpCGw6cGZEtTDsK77rormUz26dPnlVdeeeWVV9LzP/zww9TEqFGjWrVqFUL46U9/mp/1f5UAAADUr6YchFVVVSGEadOmTZs2bbsr3HbbbamJH//4x4IQAACITVMOwr59+6a+oLyV5cuXz549O4Rw1FFHFRYWhhByc13kDQAAiE5TDsIRI0Zsd/5jjz128cUXhxCeeeaZTp061e+gAAAAGorGcV1yAAAAvnaCEAAAIFKCEAAAIFJN+TuEO9K3b9+bb745hJC65wQAAECcIg3Cvn37ZnsUAAAAWeaUUQAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEjlZXsA9WTmzJkffvjhnDlzKioqevTo0a9fv379+mV7UAAAANlUf0FYWVm5Zs2aOj+9devW+fn5dXjiypUrr7nmmkcffXSr+Weeeebdd9+933771XlIAAAAjVr9BeHcuXN79epV56dPmTJl0KBBO/usysrKk08+efr06SGEXr169evXLy8v79133509e/bzzz//8ccff/TRRy1atKjzqAAAABqvJv4dwvvuuy9Vg3fffffMmTOfeOKJRx555JNPPvmP//iPEMKCBQtuuummbI8RAAAgO+rvCOE+++zzwAMP1H79devWjRgxYvny5amHeXl1GepDDz0UQhg0aNBPfvKT9MxEInHDDTeMHz/+rbfemjRpUh02CwAA0ATUXxC2bt36Bz/4QS1Xfv7553/xi1+karBdu3b33nvvcccdt7N7rKys/PTTT0MIZ5xxxrZLjzvuuLfeemvOnDllZWUFBQU7u3EAAIDGrsFdZXTZsmVXXnnlmDFjUg+/973v3XXXXXvssUcdNrV8+fIDDzwwhHDIIYdsuzSZTKYmcnNz6zpYAACARqwBBWEymXzooYeuu+66tWvXhhD233//3/3udyeeeGKdN9ihQ4cPP/xwu4vKyspefvnlEMKAAQMEIQAAEKeGEoSffvrpFVdc8frrr4cQ8vLyfvrTn/7iF78oKir6GndRUVFRWlq6atWqt99++7e//e2HH37YrFmzESNGfI27AAAAaESyH4Tl5eV33HHHv//7v2/evDmEcPjhhz/44IPbPclzF73wwgtnn312+uHhhx8+atSoI444osYnJhKJGtdZvHjxLg0OmpzPP/8820OI15o1Lb/6qnFcRDovL1RUZHMAG3M3tijaUsuVk8lkWVnNnwjV27Llf3dXnkzkJ2q79521YUPFV19V98Ndt2RJMsdX6GkofGpAtmQ5CN95550f/OAHH3/8cQihuLj4l7/85VVXXVU/53DOmjXr6aef7tu3b2FhYT3sDgAalFZLfhNCVVZ2ncxttq7TDzPnjB7d4osvGsc3OBKJcPXVX2V7FABfm6wF4fr162+66aaRI0dWVVWFEE455ZTf/va3Xbt23X17PPPMM8vLy9euXTtv3rz777//kUceufPOO6dPnz5x4sTqjwGmLz+zXanndunS5WseLjQJ3hpZscceodq/txqQ/PxQXp7NATRv3rwwv7b/LVhYGGpxykgtN1UYQsgNRXlhd/1WFRcXtm5d/So52QrCkNe8zf/9y2HPPcPGjdkZy85KJEKXLjX8ZKkznxpQ/7JzTtGECRN69+597733VlVVlZSUPProoxMnTtytNRhCSCQSeXl5JSUlRx111MMPP/zzn/88hPDyyy9PmDBht+4XAACgYarvIPzyyy8vvPDCIUOGpL50d9FFF82aNeuiiy6q52GEEK6//vrUwb3XXnut/vcOAACQdfUahH/4wx969er15JNPhhC6dev20ksvPfrooyUlJbtpdw8++ODgwYPPPffc7S5t0aJFu3btQgirVq3aTQMAAABoyOrvO4Rz5sy59NJLU9OFhYWDBg0aN27cuHHjavn0q6666oADDtipPRYVFU2ePDmEsHLlym2zc9OmTStWrAgh9OjRY6c2CwAA0DTUXxBmXpply5YtDz/88E49/Tvf+c7OBuHhhx+emnj66af/3//7f1stHTt2bOp6Nv369dupzQIAADQN9ReE+fn5++67b52fXoeb1Pfs2XPAgAFvv/32TTfd1K9fv2OOOSa96C9/+cvVV18dQujdu/egQYPqPCoAAIDGq/6CsHv37gsXLqy33YUQEonEgw8+2L9//zVr1hx33HEnnXRSr169EonEzJkzp0yZkkwm8/PzH3vsMfchBAAA4pTlG9PvbgcffPCECROuvPLKWbNmTZ48OfWVwpRjjz125MiRzhcFAACi1cSDMIRw8sknf/TRRy+88MLs2bPnz59fUFDQq1evPn36OFMUAACIXNMPwhBCfn7+2Wefne1RAAAANCz1fWN6AAAAGghBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEKnogrC0tDTbQwAAAGgQogjC9evX//M//3P//v1btmzZqlWrdu3anXzyyY899li2xwUAAJBNedkewG73l7/85fzzz1+6dGl6zooVK1599dVXX331wQcfHDNmTElJSRaHBwAAkC1N/AhhWVnZpZdeunTp0ry8vJ///OfvvPPOkiVLXnrppVNPPTWE8Prrr19++eXZHiMAAEB2NPEgvOeee+bOnRtC+P3vf3/LLbccccQRnTp1+uY3vzlhwoThw4eHEJ577rlx48Zle5gAAABZ0MSD8Omnnw4h9O3b98ILL9xq0Z133tmsWbMQwhtvvJGFkQEAAGRbUw7Cqqqq6dOnhxAGDhyYSCS2Wtq8efM+ffqEED788MMsDA4AACDbmvJFZUpLSw855JAQwvHHH7/dFTZs2BBCaNWqVb0OCwAAoGFoykHYunXr9957b0dLp0+f/sknn4QQ+vfvX4+DAgAAaCiachBWY82aNcOGDUsmky1atEhdXaYazzzzTI0b3Lhx49c0NGgiNm3aFLw1sqSsLK+8fOvz5Bus8vJs7r2iorIqt6qWK1dWJquqdvUHW1VVlf61MlmVk6jt3ndWRUVVeXmy2lVyQthde69Bsrz8//7l0Ij+0CYSYePGrP6pbaJ8akC2xBiEU6ZMueyyyxYuXJhIJH7729+2bdu2+vXPP//8Gre5cuXKr2l00ESsWbMmhJC6dNMOVshZtqzR/BXUoUNF69ZZ+qfzztuwoeXGjY3jK+J5eaE4saw4L2t/hSbL15bn1PYf94lEctejpby8PISQk5MTQihP5obE7kqLLVsqNm6sqHaVrAVhMje57v9+bq5f32LjxtysDGZnJRJh5cqvsj2KJqjGTw1gN2k0/xr7WsybN+/6668fO3ZsCKFZs2YjR44cNmxYjc8677zzqlmaOn7YvHnzr2uQ0DQUFRWFat8ac+fmTZ5cUI8j2iVDhpTts0/1/7ZuQAoKCvLzG8fBlry80LnZ7C7N38nWALZUtUy1WW3k5oZar7tDqd39/ddkbk5id6V7Xl5eDX8MEjkhma0gzN/qL4eCgoL8/MbxvxiJhA/93aLGTw1gN4klCDdu3HjLLbfcddddZWVlIYTjjz/+wQcf7NGjR22em7p3xY6krl9aUlLytYwTmozUaT/VvDXatAmN6HO/TZvmjehdXlwctmzJ9iBqJz8/FOYX5ufnZ2sAyWR+fqK2e8/PD1W7HFCpk0VTLzkR8vPC7vqPhsLCGt9i2TtlNK958f99R7Vo0Wj+QkgkQklJIxlro1Ljpwawm0QRhB988MHQoUNTd6g/8MADb7vttrPOOivbgwIAAMiyph+EH3zwwaBBg9atW9eiRYtbb731Rz/6UW5u4/iWAgAAwG7VxINw8eLFp5566rp163r27DlhwoRu3bple0QAAAANRRMPwhEjRqxYsWKvvfZ644039t5772wPBwAAoAFpHFf0qpvS0tJHHnkkhHDdddepQQAAgK005SOE7777bmlpaQhh/Pjxb7/99o5WO+64466++up6HBcAAECD0JSDcP78+amJN998s5rV8vKa8g8BAABgR5pyC+Xm5p5wwgk1rnbQQQfVw2AAAAAamqYchJdddtlll12W7VEAAAA0UE35ojIAAABUQxACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAPz/9u49SIrq7h/wmdldFhAhKEhQLtEoeOFi0CJ5ASVELbUCKSUSyhBjKhfFWIlGKoWWGIwxF62UUWPwgub1Eo0opVEjYhT0jaKBRUmBuApIEAUBEZVw2csw8/ujf9kisLuwwEzDnuf5g+rtc2b6O8OePf2Z7ukGiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBIRRcI33zzzYcffvjjjz9OuxAAAICURRcIr7jiivPPP/+dd95JuxAAAICUxRUIly1bNmvWrLSrAAAA2C9EFAirq6tHjx6dy+XSLgQAAGC/UJ52AUX3zDPP/O1vf5s/f/6cOXMKhULa5QAAAOwvWn8gvO+++6ZNm5Z2FQAAAPud1h8IL7nkkrPOOitZfuutt2644YZ06wEAANhPtP5AOHz48OHDhyfLL774okAIAACQiOiiMgAAAGyv9R8h3HtnnHHGLvusW7euBJXAAeSjjz4KIbRt27apDhs2lG/eXFnCivbKhg2169YdMNco/ve/223efGB83ldeHmra1dSX1adVQF2+LpPd3a1nMoX6+sxebrG+vj6EkM1mQwj1hfJCplivvaZm2+bN25rtkg0hX6StN69Qlt/y3/PmAfRLm8mEdes2p11FK7TLWQMoEoFw155//vld9qmpqSlBJXAAqa2tDc0Ojbq6NrlcWQkr2iv//Gdh4cIiVtshu7pnm5f31bP1bZOt7dSC/rl82/JsOn/EyspCNl+Tz6cTS0II27Zty+92KMrnC/n83gbC5MX+/38L2/KZYr32Dz8sfPRRcxGrELJ7+2L2VC5k57/yXwPqk09yuVyJAuFB5R8d1+m5PX54JhPKVm7d44cXMpWZQu0eP3wvFbJtM/nU9lhqD/5Crt2RTbbW1i5f3v7//u+AmRf+539qundv/jMXODAIhLv23HPNTRvJ8cPDDjusVOXAgSEJhM0MjUMOyR500IFxQCCEkMuFjRuLuYE2ays6frCvnuywdiFX0YL+NflObbOf7qutt0hZWdhS36ki25Jy96lCeWVFpm43O7dpE/b+7kVJFKyoSF5ym4pQxB3KLVuaay2EbCalI4T1hbbrP/qvDy0OOihsK9WudcfyT7p3WLXHD89kQqfsXrxv5R1Drqh/TZpTaNMpU5fOYA8h5DtW5Ds3OSnU1tauWNFu/fqWfJqVqnbtOhx2mPuZ0RoIhLt2+umn77KPMxxgB5WVlaHZodGmTSg/cP4ClZcXt9ry8rLkHMJ9IpsNLXqysrAvt94i2WzIZrNpbT2EkC1ks5nd3XpL39gmniTb8G9ZyGaL9mX+XVab4hHCbCFb/t8jqthD7L+3Vb43v3KZTCgv34v/tfLyNPe+KipCPr2tt2kTmp4UKisrKyoqyg+ciaGystzeH63DAfPxPAAAAPuWQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAidcDc7GWf+NznPjd58uQQwuGHH552LQAAACmLLhBee+21aVcBAACwX3DKKAAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApsjzjXwAAFAJJREFUgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIlWedgEl8uqrr957772LFy/esmVLr169Ro0a9a1vfauysjLtugAAAFITRSCcMGHCTTfd1PDjggULnnjiiVtuueWpp57q3bt3ioUBAACkqPUHwhtvvDFJg3369DnnnHM++9nPPvfcc88888yiRYtGjRo1b968tm3bpl0jAABAClr5dwjXrVv385//PITQr1+/+fPn33DDDT/5yU9mzJgxefLkEMKiRYvuuuuutGsEAABIRysPhPfcc8+WLVsymcz06dMPPvjghvXXXnvtl770pRDC73//+/SqAwAASFMrD4R//etfQwhDhw7t27fvDk2jR48OISxbtmzp0qUpVAYAAJC21hwI8/n866+/HkIYNmzYzq0jR45MFubNm1fSsgAAAPYPrTkQrly5sqamJoTQp0+fnVv79u1bXl4eQnCEEAAAiFNrvsromjVrkoXu3bvv3JrNZrt167Zq1aoPPvig+ef5+OOPd7mtfD6/BxVCK5YMimaGRj4fCoVMCSvaK4VCKBSK+vzFfPb9eOuFwn7w2kv7a7j96y0UQvG2vuv3tZhb3+W2d/h/L/YQ22Hbe/fwvXyGEr7URjae5tYL+XxoblLIFwo7/mLsz/L5gr0/WofWHAg3b96cLLRv377RDu3atdu+W1MOOeSQXW7r/fffb2F10Moln8hks02ehrBhQ0Uu166EFe2V2tp8LlfEUyrqsltr9t3zlxXCtm0t6F+zLYRCOieMZLOhNp9Ja+shhLp8ptD0b+kO8tlCXW5vI1RNriyEEHLZEEIun9m221tvqUJZobbZaguFskxKgbC+UJbLfbr9mrq6Qm6v39vd3XrYvDfDLZMJn26u3eOH57M12Xxujx++l/I1W7PbUtt6zfqP67Y2ub+0Zs2aTz/tkMsdMDcDW79+y0EHpfZmwj7UmgNhXV1dspCcGrqzZH1yWmkzOnfu3Exrcvywmb1eiFMmkwnNDo0TTth2wgmbSljRfq5rCN9NuwZKYdWqVSGEI444Iu1CUvaFkOLwP2gvh5u/XHusmb2lTCbTr9/mM888sN5du3+0Bq05EDYcGKytbfyTvCQKJscJm7Fhw4ZmWpO93h49euxJidB6JSeLGhqwA0MDGmVoQFpa8wcbDTce3LhxY6MdkvXb358QAAAgHq05EB555JHJQqNf8Nu6dWty6K+hGwAAQFRacyDs3Llzt27dQggLFy7cuXXRokXJwnHHHVfSsgAAAPYPrTkQhhC+8pWvhBBmz569c9OsWbNCCBUVFaeeemqpywIAANgPtPJAOGbMmBDCsmXLZs6cuf362trau+++O4Rw1llndezYMZ3iAAAAUtXKA+E555zTv3//EMLFF1+8dOnSZGVdXd348eOXL1+eyWQmTZqUaoEAAACpac23nQghZDKZBx98cMiQIStXruzbt+9JJ53UtWvXl156adOmTSGEyZMnDx48OO0aAQAA0tHKjxCGEPr37z9nzpxBgwYVCoX58+c/88wzmzZt6ty585QpUyZPnpx2dQAAAKlp5UcIEwMGDHjttdcWLly4ePHirVu39urV65RTTqmsrEy7LgAAgDRFEQgTAwYMGDBgQNpVAAAA7C9a/ymjAAAANEogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApMrTLqCVyGQyaZcAAADQMo4QAgAARMoRwn2jUCikXQLsX5LD5oYG7MDQgEYZGtCoEpyH6AghAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQyhUIh7RoAAABIgSOEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACJVnnYBB7bq6urly5eXlZX16dPnqKOOSrscAPYjb7755sKFC88888zOnTs30y2Xyy1YsGD16tUdO3bs169f165dS1YhpGI3hwbEY+PGjUuWLPnggw+OPvroY445pry8uYy2z2eNTKFQ2MuniNPs2bN/9KMfvfnmmw1rBg8efPvttw8aNCjFqiBdo0eP/vvf/95U6/jx46+//vpS1gPpOuuss5599tmqqqqTTz65qT633XbbL37xi3Xr1iU/lpeXn3vuuX/4wx/EQlqx5odGPp/v0aNHXV1dUw9/4IEHzj777GIWCKXz2muvXXrppXPnzm1Y06ZNmwsuuOA3v/lNly5ddu5fjFnDEcI98dhjj40ZMyafz4cQDj744Pr6+pqamnnz5g0ZMmTWrFlDhw5Nu0BIx+uvv/7RRx811bpp06ZSFgPpWrZs2axZs5rvc/nll99yyy3JcpcuXTZs2JDL5R599NGqqqp58+bJhLRKuxwaK1eu/OCDD5rpUFtbu6+LgnTcc889F110UZIpOnTo0K1btxUrVtTV1d1zzz2PP/747NmzBw4cuH3/Is0aAmGLrVu37sILL8zn8126dJk2bdopp5ySy+VmzJhxwQUXbN269Rvf+MY777zTtm3btMuEUqutrX3vvfdCCN/85jePPPLInTsMGTKk5EVBOqqrq8eOHZvL5ZrpM2PGjGReHzJkyB133NG/f//169dPmTJl8uTJK1asuPjiix977LFS1QslsjtDY+nSpcnClVdeWVZWtnOHvn37FqU4KK21a9dOmDAhn8/37Nnzj3/842mnnZbJZLZu3Xrrrbdee+21GzZsGDdu3Pz58xtiRRFnjQItNHHixBBCeXn5yy+/vP36Rx55JHlLb7vttrRqgxQ1nEFdXV2ddi2QjhkzZlx++eXDhg3LZDIN82xVVVWjnb/4xS+GEHr16rVu3brt1//whz8MIWQymUWLFpWkaii6Fg2NKVOmhBC6detW4iKhxC699NJkLMydO3eHpttvvz1pmjp1asPK4s0arjLaYtOmTQshjBo1aodTQ8eMGfP5z38+hNCQDCEqyWe6ZWVlyUCACN13330333xz8nFh8z3ffffd5BsjEyZM2OEkn6uuuiqEUCgUHn300eKVCqW0+0Mj/Gc26dOnT/HrgjTNnDkzhHD66acPHjx4h6bx48cfcsghIYSqqqpkTVFnDYGwZZYtW7ZixYoQwsiRI3duHTVqVAjhlVde2bp1a4kLg9QtW7YshHDkkUdWVFSkXQuk45JLLvnf/0hOJ2nKc889lyzsPJv06NHjxBNPDCE8//zzRaoTSmz3h0b4z2zivFBat/r6+uXLl4cQTjrppEY7HH/88SGEt99+O/mxqLOG7xC2TMNJcV/4whd2bh0xYsTNN9+cy+WWLVvWv3//0pYGKUs+0z322GNzudzMmTOrq6u3bNnSr1+/gQMHHn300WlXB6UwfPjw4cOHJ8svvvjiDTfc0FTPZDbp1KlTo7csGjFixD//+c+33nqrSHVCie3+0AjbzSYff/zxzJkzlyxZ0q5duwEDBgwaNOiwww4rRblQfLW1tVdccUUI4Zxzzmm0w8qVK0MIPXr0SH4s6qwhELZMEuVDCL179965tWHlO++8IxASm+Qz3XXr1h1//PENlwRIjBs37pZbbjn00ENTKg32O8ls0qtXr0Zbk9lkw4YNn3zyyWc+85mSVgapyufzyeh44YUXrr/++k8++aShqbKy8pprrpk4cWLzt2iDA0KHDh1++9vfNtX6+OOPJ4Hwy1/+crKmqLOGU0ZbZuPGjclCo+91w8pPP/20dDXB/iEJgfPmzVu6dGnv3r2//vWvjxgxIrnp8IMPPtivX78PP/ww7Rphf5HMJk1N22YTorVy5crkDoRPP/30v//97/79+48dO3bw4MFt27atra2dNGnS2WefvTtfRIQD17x587773e+GEHr37v3tb387WVnUWUMgbJktW7aEECoqKrLZRt66du3aJQubN28uaVmQtoZ7TnTv3n3OnDkrVqyYPn367Nmz33///csuuyyEsGbNmmQBCP+ZTZq6R5HZhGg1nGAydOjQFStWLFy48OGHH547d+6SJUtOO+20EMLzzz8/derUVGuEYtmyZcvkyZOHDRuWHOh74okn2rRp09AUijZrCIQtk5ylsG3btkZb6+vrk4Xtr6oMMaitrf3lL3/561//evbs2dvfb7B9+/Y333zz1772tRDCn//854Zv4ULkzCbQqO7du//617++8cYbZ86c2fDtqRBCz549//KXvxxxxBEhhEmTJqVXIBRFoVB44IEH+vTpc91119XX1x933HGzZs3a/q70RZ01nITdMgcddFAIIZ/P19fX73wpxZqammShQ4cOpa4MUtWxY8crr7yyqdZrrrnmySefDCEsWLAguWoWRC6ZTRpmjR2YTYhWv379+vXr12hThw4dLr/88p/+9KcffvjhqlWrknAIrcAbb7xx8cUXv/LKKyGE9u3bT5gw4eqrr66srNy+T1FnDUcIW6bhvh9r167duXXNmjXJQpcuXUpXE+z3TjjhhOQs60WLFqVdC+wXktmk0akk/Gc2yWQyLsUE22u4Yp/ZhFbj7rvvPvnkk1955ZWysrIf/OAHS5cuve6663ZIg6HIs4ZA2DINd8VpuNzo9v71r38lC8cee2zpaoL9Xrt27dq3bx9C2PkPHMQpmU3ee++9hvN8tpfMJj179kwGDpBo2Nk1m9A63H///RdddFFtbe2JJ55YVVV11113HX744Y32LOqsIRC2zIABA5JTeP/xj3/s3Dp37twQwqGHHtroTSmgFbvzzjvHjx//q1/9qtHW1atXb9q0KYTQ1IlAEJvkTsR1dXULFizYuTWZTQYNGlTqsiBtEyZMGD9+/PTp0xttXbJkSbJgNqEVePXVV7/3ve8VCoUxY8bMnTu30ZucNyjqrCEQtkynTp2GDRsWQnjkkUd2aNq2bdtjjz0WQvjqV7/a6DVIoXW78847J02a1HCcfHtPPPFEsrD916MhZiNGjEguCrfzbFJdXf3GG2+EEJKrMUFUVq9efeedd06cODGfz+/cmswm3bt3b/gKDxy4brzxxlwuN3DgwIceeqjhaqJNKeqsIbe02CWXXBJCeO2116ZNm7b9+t/97nerV69u6ABROe+88yoqKgqFwoUXXpjcQqrB4sWLr7766hDC2LFj+/Tpk1KBsH9p167dd77znRDCHXfcsf13EAqFwsSJE0MIXbt2HTNmTFrlQVrOP//8EMLy5cuvuuqqHZoeeuihZFf4Zz/7WQqVwT61atWqp556KoRw2WWXJacfNq+os0bGzT1bqlAonHrqqS+//HJlZeWECRNGjhy5adOmJ598csqUKfl8fty4cX/605/SrhFScNNNN02YMCGEcPTRR1966aXHHHPM+vXrq6qqpk6dWldX17lz5+rq6m7duqVdJpTIiy++OGLEiBBCVVXVySefvHOH1atXn3jiiR9++GHPnj2vuOKKESNGvP322/fdd9+MGTNCCFOnTv3+979f6qKh+JofGoVC4dxzz02OBI4YMWLcuHGHH374ihUrnn322WTl0KFDX3rpJXdk4UD39NNPjxw5MoTQqVOnZgLh6NGj77rrrmS5iLNGgZZbu3Zto6f5nnnmmVu2bEm7OkjNj3/840bPlx48ePDixYvTrg5K6oUXXkh+/6uqqprqM2fOnJ3PfMtkMpMmTSplqVBKuxwaGzduPOWUUxrda73gggs2bNhQ4oKhGG699dbdSWpjx47d/lFFmjUcIdxDdXV1d9999/Tp05cvX15WVnbssceOGzfu/PPP95EVkVu8ePGtt95aXV397rvvdu3adeDAgUOHDr3wwgvLysrSLg1KasWKFffee28I4aKLLmrqqnEhhLVr1952223PPvvs6tWrO3bseNJJJ40fP37o0KGlKxRKazeHxowZM+6///7ly5evWbPmqKOOGjBgwKhRo84444zSFQrFNGvWrJdeemmX3fr163feeedtv6YYs4ZACAAAECkXlQEAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQqf8HQmtgkt6F9dYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAOECAIAAAA+D1+tAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeZwU5YH44bfnhuFSRkEuQRREBBEPPBGVRCXGM4oRdY2JbvglrsZ4bIy7ZrMaV7zWxZAYdU08UTEoGEEF8YghXqgIAnKEQxSQS4Zzrv790dneXo6ZYZDpmXmf5w8+1VXVVW8PNM2Xqq5KJJPJAAAAQHxysj0AAAAAskMQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAARCov2wMAoDGZN2/epEmT0g+POeaYvn37ZnE8tffggw9WVFRsd1Hr1q179uzZs2fP4uLi2m9wzpw5U6ZMSU0feuihAwYMqPEpa9asOeKII1LT3bt3f+mll2q/OwDYHQQhADthxIgRDzzwQPrhWWedNXbs2CyOp/Z+/OMfb9mypZoVEonEOeecM2LEiP322682G5w6derw4cNT0zfccENtgrCysnL+/Pmp6bw8H8EAZJ9TRgGorbKysmeeeSZzzoQJE9atW5et8Xy9ksnks88+26tXrwkTJmR7LDX4/e9/v///GDVqVLaHA0AjJggBqK0XX3xx7dq1mXO2bNnSWI4Q1lJZWdnFF1/82WefZXsg1Vm7du38/7F69epsDweARkwQAlBbjz/++LYzn3zyyfofyS56/vnnv8jw0Ucf3Xnnnc2bN08tXbVq1SOPPLI79tu2bds1/+Pdd9/dHbsAgJ3iCwwA1MpXX331wgsvpKbbtm27adOmjRs3hhAmT568cuXKkpKS2mxk+fLl5eXlqemSkpKioqLMpRs2bFizZk1quqioaKttlpeXL1y4cP78+RUVFd26devatetOXQMm05577tm+ffv0w/bt2/ft27eysvKGG25IzXn77bfrtuVPP/109uzZzZo16927d4cOHbZaWlVVtX79+tR0YWFhy5Ytt11h6dKlCxYsWL16dZcuXbp27dq2bdu6jSSEsGHDhg8++GD58uW5ubnt27c/9NBDCwsLq3/KggULZs6cmZube9hhh7Vr1y5k/Jbl5eWlf2jr1q1Lnyq8xx57pH4jPv300xkzZpx22mnNmjVLb7C8vHzJkiWLFi1avXp1+/btO3Xq1KVLl0QisdWr/vzzz1PTBQUFe++9dwhh7ty5M2fOzM/P79OnT5cuXdIrb9y48e233169enXXrl0PPPDAOv8ZAODvkgBQCw899FD6s+OKK674zne+k344atSoWm7ku9/9bvpZd9xxx1ZLr7766vTS66+/Pj1/zZo1N91001b5lJOTc8EFF8yYMaOWu85soTfffHPbFTK/OvjNb36zxg0+/PDD6fVvuOGGBQsWnHDCCZkjPOuss5YsWZL5lL/97W/ppQMGDMhcVF5e/tBDD+27775bfUwfffTRL774Ynq1F1988bDDDuvcuXN6hQ4dOhx22GGZP65kMrly5cpLLrmkoKAgc1PNmjW78sorS0tLt/tyli9f/o1vfCO9ckFBwXXXXVdRUdG7d+/UnI4dO6ZXvvnmm9Nrjhw58quvvjrzzDNTD9MvubS09Fe/+tW2/1Nw4IEH/u53v6uqqkpv7csvv0wvPeSQQ7744oshQ4ak5yQSiTPOOGPFihWVlZW33nprZgG2bNnyrrvuqqysrPE3C4AdEYQA1MpJJ52U/of4K6+88tRTT6UfDhw4sJYbGTduXPpZJ5xwwlZLe/XqlV46bdq01MzS0tLM+VvJy8t79dVXa7PrGoPw2muvTa/w7//+7zVuMDMIL7nkkm2PB4YQDj744LKysvRTqgnCiy66aEevMYTwy1/+MrXao48+ut0Vzj333PSmXnjhhdRBtu3q0qXLti//o48+yjwKl3b55ZfXGIT33nvvcccdl36YCsLy8vKBAwdW84r+5V/+Jb21zCBMHffbdv0BAwakr+m6lXvuuafG3ywAdkQQAlCzpUuX5uT8/Wvne+21V0VFxfr169NfukskEp999llttlNWVrbnnnumnpWXl7dmzZr0osWLF6f/id+jR4/0/O9973uZ//rv2bPnMcccs8cee6TntG3bdsWKFTXuOjMI77zzzgkZHn300UsuuSR9HmPPnj0zB7YjmUGYttXJkCGEe++9N/2UHQXhH/7wh8yn7LPPPgMHDsw8DJhIJCZNmpSsxRHCZcuWtW7dOnNrHTp02GuvvTLndO7cecOGDem9V1ZWHnTQQZkrFBYWpl9I+vYYOwrCww8/PPO5qSD8t3/7t6322KdPnzZt2mS+otmzZ6e2lhmEmStsO3O7i4qLi7ds2VLj7xcA2+WiMgDUbPTo0VVVVanpc845Jzc3t7i4OH1eXzKZzDxgWI38/Pxzzz03NV1RUZF5Z/bM6QsuuCA9nfnFxQULFsyePfutt976/PPPL7zwwtT8VatWvfrqqzv1cq699trTMlx88cWPPPJIMpkMIQwYMOCVV17JTJdaOvHEEz/44IOysrIZM2b069cvPf/Pf/5zjc8dP358enrcuHGff/7566+/vmjRov/6r/9KzUwmk2PGjAkhnHbaae+9994111yTXn/48OHvvffe7bffnn5pX331VWq6e/fu06ZNW7p06YoVK95444199tknNX/JkiW33npreguPPvroJ598kppu0aLFs88+u27duuXLl1933XUhhIqKiuoH/95774UQBg4cOHz48OHDh6dO6UyNNoSQn58/efLkxYsXT58+fcWKFekDoclkckeX1enXr9/7779fVlY2bdq0bt26ZS4aNmzY4sWLN2/e/Mwzz+Tn56dmbtiw4dNPP61+kADsiCAEoGaZ1xc977zzUhOZXyOs/bVG0yEXMmIv7CAIP//88/Tho6KionTSFBUV3Xjjjcf+j6/x1gtDhgzp2LHjzj6rc+fO48aN69evX15eXu/eve++++70olmzZtX49I8++ig93bVr19REIpH48Y9/fPLJJ6deY2VlZY3b+eyzzx577LHUdE5Ozp/+9KdDDz009fD4448fPXp0es177rmnrKwsNX3nnXem599///3nnHNOQUHBXnvtNWLEiMsuu6zGnSYSieeff/71118fNWrUqFGj9thjj40bN27YsGHffffdd999zz333PTJxvn5+ZknHs+dO3e7Gxw9enT//v3z8vIOPfTQzPTt2rXrww8/3Llz54KCgu985zuZ3zPMPPQKwE5xlVEAajB79uxp06alpvfee+9Bgwalpk8//fRmzZpt2rQphPDee+/Nmzdv//33r3FrAwcO7Nix49KlS0MIEyZMqKqqysnJqaysnDx5cmqFvn37pr80mHme59KlS7t163bmmWcOGTLkpJNO6t27d20Ovu2sm2+++Z133hk7dmz6AFRtfPOb32zRokX64SGHHJKeTl83tRqZL/Ooo44aMmTIt771rVNPPbV9+/aTJk2q/TDefPPN9PTpp5/es2fPzKUDBw7s379/6rdy06ZN77///tFHH11eXj579uzUCu3btz///PMzn/Lzn//8v//7v6vf6VlnnXXGGWdkzmnevPn8+fO3Wm3t2rXvv//+vffem56z3cRt37595rAzr0lz7LHHZv6mZC6qTS0DsF2OEAJQg8zDg6nzRVPTxcXFp512WnpR5gGoauTk5AwdOjQ1vWrVqr/+9a8hhHfffTcdTpnni7Zt2zbz0p3Lli27//77zzzzzLZt237jG9+455576nYH+fvvv39qhldffXXUqFEHHHBAaumf/vSnzAvM1MZW19JMf7uyltKn0YYQNm7cOGbMmO9973upLwf+y7/8S7rGa7RkyZL0dN++fbdd4eCDD05Pp760uWDBgvRJob17905/YzBlv/32S3/nc0f69++/3fnJZHLq1Kk333zzN77xjfbt2++xxx6DBw/OPBa6XVt9ATJTHc7jBaBGghCAGjzxxBPp6VmzZv0gQ+pAX0otgzBs76zRHX2BMIQwZsyY008/fastlJWVTZo06ZprrunWrds//dM/1fg9t60cdNBBR2U48cQThw8f/uabb6avVfPb3/72iy++2Klt7oqbbrrp2muv3eomgclkctq0abfccsthhx02ePDgFStW1Lid0tLS9HTqLoJbSZ9zG0JIfdVw0aJF212a1qlTp+p3ut1OW7Ro0UknnXTMMcf88pe/nDRp0vLly1Pzd+q4KwD1QBACUJ2pU6cuWLAg/fD1119/KEPmDdxnzpw5Y8aM2mzzsMMOyzwcFzKCcMCAAVtdR6SkpGT8+PFz5sy58cYbt7oYZgihoqJi5MiR//qv/7rzr2xr7dq1O/roo1PTZWVl77///q5vs5by8vLuuOOOpUuX/ud//ufAgQPTx2DTJk+efNZZZ9W4nVatWqWn07d6z5QZ8Kn7OmZegHS7zVmHMK6qqjrvvPNee+211MO99trrwgsvvPvuu1977bXf//73O7s1AHYrQQhAdTLPF61R7S8tk75D/fTp06dPn/7OO++kHm51eDCtR48et95668yZM+fOnXvHHXcce+yxmUsfeOCB2g+yGhs2bEhP7+xRx13Xtm3bq6666vXXX1++fPnDDz981llnZR4znDp16syZM6vfQmZLbzdoM88+3XfffUMImV/7nDFjxlZfxlu8ePF27wlRvTfeeCN9BdHjjz9+0aJFjz/++E9+8pMTTjghfagQgAZCEAKwQxUVFU8//XT64T777NNxG5mHmGp584nwf88aveaaa1IdkpOTs9VFTX71q1+lT+xMfdtw//33v/baa//85z+///77BQUFqdVWrVpVXl5e11f5d1OnTn3rrbfSD9PX59zdJk6cmH6No0aNCiG0bdv20ksvHTt27KJFi9L3hQ8hLFu2rPpNHX/88enbRb788supG0KkPffcc5m3lzjiiCNCCC1btmzfvn1q5ueff75V0v/yl7+swyuaM2dOevrkk09u1qxZ+uHYsWPrsEEAdh9XGQVgh15++eX0AaJ27dp99tln6d5IW7t2bbt27VL3MJg/f/4777xz5JFH1rjlnj17HnrooR988EEIIX190eOPP75Dhw6Zq5WUlKTPSr322mvHjh2b7s9169alD+IdeOCBO/XltEceeSR9QmMIYdOmTXPmzHn++efTG+zRo0fqAFo92G+//dKvceHChUcffXS6RTdt2pS6iGtK+pIwmb8Lmed5tmvX7oc//GGqKkMIQ4YMefjhhwcPHlxZWTl27Ngf/vCH6TVvvPHG9E/siiuuSIffFVdcsWXLlm9/+9vLly8fOXLkQw89VIdXlHlNnT/+8Y/nnHPOwQcfvGbNml/84heZ10EFoCEQhADs0FbXF922BkMIbdq0GTx48Isvvph6OHr06NoEYQjhwgsvTAVh2rbniw4ZMqRNmzZr164NIbz11lsdOnTo2rVrYWHhihUrMk9lPOWUU2r3gv6u+lNM8/Pz03fzqwc9evQ4/PDDU0fzli9f3r9//86dO7du3XrdunWpC4Gm9OvXL32dmMw7Jf7ud79btGjR0Ucf/c///M8hhFtvvXXMmDGpSvzyyy9PP/30goKCqqqqzDNge/XqlXkZ1Z/+9Kf33Xdf6l6OmzZt+sEPfrCLr+iwww5LT0+fPr1v377NmzffuHHjVqtVVVXt4o4A2HVOGQVg+zZs2PD888+nH251MmemzLsmPP3008lksjbbHzp0aCKRSD/My8vLvNN9SqdOncaOHZs+NbSiomLevHkzZ87MrMGjjz76tttuq80ea6Nz585PPvlk6nTKejNu3LguXbqkHy5ZsmTGjBmZNVhSUjJmzJj0w2OPPTZ9/ZgtW7aMGzcufXZomzZt/vjHP3bv3j29cllZWWYN9u/ff8yYMZkHVFu1avX4449v934P/fr1q/Eqo9s66KCDLrnkksw5qRps3rz51VdfnZ45ffr0nd0yAF87QQjA9j333HPpi6y0a9du4MCBO1rzrLPOSt+/bunSpW+88UZttt+5c+fjjz8+/XDw4MFb3c0vZdCgQbNnz77mmmu2vSFez549f/3rX0+aNKmoqKg2e9yR5s2b9+nT55xzzrnrrrvmzJmT2bf1Y5999pk+ffrdd9+deYmXlJKSkp/97GcfffRRZuO1b99+7NixhxxyyHa3duyxx3788cfXX3/9Vj/Pjh07jhgx4p133tn2Yq2nnnrqe++9d9xxx6XntG7devjw4W+88UY1Nwasxm9+85vrrrsufVGc3Nzcb33rW++///7PfvazdN7/6U9/GjduXB02DsDXKFHL/8cFgKxbu3bt0qVLV69evffee3fu3Hln7//eKGzatGnp0qXLli1r1apVp06dqr8v/JYtW1auXNm8efNWrVpte7OKZDI5b968FStW5OTktG/ffqv7eWzXF1988be//W3vvffu3r176vhtjx495s6dG0LYb7/95s+fv1OvZfPmzXPnzl2/fn2PHj3atm27U88FoH4IQgCI2ieffJL+Ol/Pnj0zzyYtLS3dY489UteAPfPMM5977rnsDBGA3cYpowAQtWHDhvX5HzfeeGN6fmVl5VVXXZW+M2E9f68SgPrhCCEARO2uu+5KX3Q0kUicdNJJAwcOLCsrGz9+fPq6LwcccMC7775bt+8TAtCQCUIAiN3VV19977337mhpt27dXnjhhW0vRQNAEyAIAYDw4Ycfjhw58vXXX//ss8+2bNmSk5PToUOH7t27f+973xs2bFj6KrIANDGCEAD4X8lkcvXq1a1atcq8ugwATZUgBAAAiJSrjAIAAERKEAIAAERKEAIAAERKEAIAAERKEAIAAETKbYV2VSKRyPYQAACAJmu33hjCEUIAAIBIOUL49XA7R9jK4sWLQwhdunTJ9kCgYfHWgO3y1oDtqoezER0hBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiFRetgcAAAA0cYlEIttDaKCSyWR2B+AIIQAAQKQcIQQAAOpD1o+GNSgN5KipI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AOrP7NmzJ06cuGTJkpKSkoMPPviUU04pKCjI9qAAAIAQQpgxI4wZk4X99u4dzjsvC/ttIKIIwlWrVl1++eVjx47NnNmzZ8/f/e53AwcOzNaoAAAAsqvpnzJaWlo6aNCgVA127Nhx6NChgwYNysnJmTNnzre+9a1PP/002wMEAADIjqYfhFdfffWMGTMSicRDDz302WefjR49esqUKX/5y19atmy5fv36yy67LNsDBAAAyI4mHoRz5879wx/+EEK45ZZbMttvwIABt9xySwjhrbfe+uyzz7I2PgAAgOxp4t8hfPzxxysrKwsLC3/0ox9ttWjYsGGp80WXL1/eqVOnbIwOAAAgm5p4EP7pT38KIXz7299u3br1Vovatm173333ZWNQAAAADUJTPmW0srLy448/DiEcfvjh6Znr1q1LJpPZGxQAAEBD0ZSDcOHChVu2bAkhtG/ffsGCBRdffHHr1q1bt27dqlWrY4455s4776ysrMz2GAEAALKmKZ8y+uWXX6Ym5s6d+6Mf/WjDhg2ph+vXr586derUqVOfeuqpP/7xj507d65+O3vuuWeN+3JlGtjKF198EULIyWnK/+sEdeCtAdvlrUGj8+WXX65atSqEkJ+f37179zpvJ+sd0ZSDcP369amJX/3qV4lE4kc/+tHZZ5/dtWvXefPm/fd///fTTz/93nvvXXHFFRMmTKh+O2vWrKlxX1VVVV/DiKEJSZ2b7a1BA9ds5Uv5WxbV5x7bf/VVCKFFVesQwvq9zq0qaFufe4cGy6cGjc53v/vdyZMnhxBycnKWLl3avn37um0n63/sm3IQVlRUpCaSyeSYMWPOOeec1MPu3bufcsop++677x133DFx4sSxY8eeffbZ1Wxn9erV1SxNHT90nVLYSupvN28NGrhEZXFYl1uvuyzPDSG0bp4bQmjVoX0oaleve4eGyqcGjcvnn38+ZcqU1HRVVdVTTz111VVX1W1TWf9j35SDsHnz5qmJb33rW+kaTLv55pvvv//+devWvfrqq9UH4R577FHjvpzhAFtJvSm8NWjoEomQSNTvDhP/+2tOTvAegRCCTw0amyeffDL1vxjFxcUbNmx44okn6hyEWf9j35Tfdenv/h177LHbLi0uLj7ooINCCKkrkQIAANTG448/HkI48MADL7/88hDCO++8M3/+/GwPqo6achDuv//+qeBu2bLldldIFePmzZvrdVgAAECjNWvWrA8++CCEcNFFFw0dOjQ184knnsjqoOquKQdhUVFR6hjgzJkzt7vCrFmzQgh9+/at12EBAACN1mOPPRZCSCQSw4YNGzBgQJcuXYIgbLDOOOOMEMLo0aOXL1++1aJJkyb97W9/CyH0798/CyMDAAAam2QymWq/4447rmvXrolE4rzzzgshzJ49O3XYsNFp4kH4wx/+sKioaO3atUOHDk3d3yZl2rRp3//+90MI3bt3/4d/+IfsDRAAAGg03nrrrYULF4YQLr744tSc888/PzWR+mJho9PEg7Bz58633HJLCOH1118/6KCDzj333Guvvfa000476qijFi9enJub+8ADDzRr1izbwwQAABqBVPUVFhamDgyGEI488sh99903hDB69Ois31SwDpp4EIYQfvrTn44YMaKwsHDt2rV//OMf77rrrokTJ5aXl/fp0+evf/3riSeemO0BAgAAjUB5efkzzzwTQjj99NPbtGmTnp+Kw6VLl77xxhtZG1xdNeX7EKZdd911w4YNe/bZZ2fOnLl58+aDDjrokEMOOemkk/Lz87M9NAAAoHGYOHHiqlWrQggXXXRR5vyhQ4feeeedIYQnnnhi0KBBWRlbnUURhCGEDh06XHnlldkeBQAA0Filri/aqlWrY445Zu3aten5+++/f+fOnZcsWfLss8/++te/blyHnWIJQgAAgDorLS0dP358CGHdunXt2rXb7jqrV6+eOHHit7/97fod2i5p+t8hBAAA2EXPPvvspk2balyt0d2Q0BFCAACAGqSuL9q8efNp06YVFhZuu8LgwYPnz58/bty4DRs2FBcX1/sA60gQAgAAVOeLL7549dVXQwhnnHFGz549t7vOBRdccOutt27cuPG5554bNmxY/Q6w7pwyCgAAUJ0nn3wydY/BCy+8cEfrDB06NDXRuO5QLwgBAACqk2q8Pffc89RTT93ROn369Ondu3cI4ZVXXlm5cmX9DW7XCEIAAIAdmjVr1rRp00II3/nOd6q/pUTqIGFFRUXq/vWNgiAEAADYofQpoNWcL5qSPmu0EV1r1EVlAAAAdui8884bPHhwIpEYOHBg9Wv26NHjz3/+c3l5eU5OoznwJggBAAB26JBDDqn9yscee+zuG8nu0GjKFQAAgK+XIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUG9MDAADZd/DB4eCDsz2I+DhCCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClXGQUAABqAtTPC4jFZ2G/r3mHf87Kw34bBEUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBIuTE9AABAdZLJ5Jw5c7a7qEWLFh07dkwkEvU8pK+LIAQAAKjOhg0bevXqtaOlxcXFPXv2/Kd/+qdLLrmk0ZWhU0YBAADqbsOGDdOmTbv00ktPOOGELVu2ZHs4O0cQAgAA1Mqll146N8OcOXOmTJkycuTI7t27hxDefPPNn/3sZ9ke485xyigAAECttG7dev/998+c06NHj0GDBv3DP/zDoYceOn/+/F//+te33357fn5+tka4sxwhBAAA2CUtW7a84oorQghlZWUzZszI9nB2giAEAADYVR07dkxNbNiwIbsj2SmCEAAAYFfNnj07hJCbm9uzZ89sj2UnCEIAAIBd8umnn44cOTKEcMEFF+y1117ZHs5OcFEZAACAWpk9e/Zjjz2WflhVVbVs2bIZM2Y89dRTZWVlRx555KhRo7I4vDoQhAAAALXy0ksvvfTSS9td1KtXrxdffLFVq1b1PKRd5JRRAACAWikoKGi9jUQiEUKYNWvWAQcc8Mwzz2R7jDtHEAIAANTK8OHD126jtLR08uTJffr0WbNmzQUXXDB+/PhsD3MnCEIAAIC6Ky4uPumkk6ZMmdK2bduqqqobb7wx2yPaCYIQAABgV7Vt2/aCCy4IIcyYMWPt2rXZHk5tCUIAAICvQZcuXVITX375ZXZHUnuCEAAA4Gswf/78EEJBQUG3bt2yPZbaEoQAAAC7aunSpU8++WQIoW/fvnl5jeb2fo1moAAAANlVWVm5efPmrWYuW7Zs6tSpN9xwQ2lpaQjhlltuycbQ6kgQAgAA1Mp999133333VbPCNddcc8opp9TbeHadIAQAANglubm5vXv3HjFiROOqwSAIAQAAqtesWbMpU6bsaGmbNm0OPPDAoqKi+hzS10UQAgAAVCc3N3fQoEHZHsVu4SqjAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkXJjegAAoAFoc3Boc3C2BxEdRwgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAilZftAQAAAFFIJBLZHgJbc4QQAAAgUg/wyWAAACAASURBVI4QAgAAu1cymcz2ENg+RwgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAilZftAex2H3744Z///OcdLd1rr72GDh1an+MBAABoIJp+ED7yyCP33HPPjpYecsghghAAAIhT0z9ldO7cudkeAgAAQEPU9INw3rx5IYR/+7d/K9+e999/P9sDBAAAyI4mfspoVVXVggULQgi9evXKy2viLxYAAGCnNPEjhIsXLy4rKwsh9OzZM9tjAQAAaFiaeBCmvkCYSCQOOOCA1JxUHwIAANDEgzD1BcIuXbq89957p5xySklJSVFRUbdu3c4888zx48dne3QAAADZ1MS/Vpc6Qrh06dKBAwemZy5cuHDhwoXjxo0bOnTogw8+2KJFi+o3MmnSpBp3tHnz5l0cKjQxW7ZsCd4aNHi55eWJior63GNlZWUIoaKiIoRQuWVLMniPQAg+NSB7mngQpo4QVlRU9OjR48orrzziiCPy8vI++uij2267bd68eU899VRJScl9991X/Ua+8Y1v1LijFStWfD0jhqZi1apVIYTCwsJsDwSq0/yrr/I3bajPPW7cuDGEkJubG0JYv3JlZX597hwaLp8akC1NPAiXLFlSWFg4YMCAF198sbi4ODXzsMMO++53vztkyJDXXnvtN7/5zcUXXzxgwIBqNjJ48OBqlqaOHxYVFX2Nw4YmIPWh7q1BA1dQUJBbXq8fhalLXqd+LSwsrCrwHoEQfGpA9jTxIPzggw+2O79Zs2ajRo06+OCDq6qqxo8fX30QvvLKK9UsTSQSIYS99957V8YJTU/qtB9vDRq6ja1CKK7PHaZOFk39H2VxSUko8h6BEHxqQPY08YvKVKNXr1777bdfCOHjjz/O9lgAAACyIN4gDCH06NEjhLBo0aJsDwQAACALmvIpo+vXr1+/fn1OTs6OTj9Ys2ZNCCF9i0IAAICoNOUjhBMnTtxnn33atWs3c+bMbZeWl5fPmjUrhNCnT596HxoAAED2NeUgPP3001u2bBlCuPXWW7ddevfdd69duzaRSJx66qn1PjQAAIDsa8pBWFRU9P3vfz+E8OSTT/7kJz8pLS1NzS8rK7v11lv/9V//NYTwj//4j0ceeWQ2RwkAAJAliWQyme0x7EZlZWUnnXTSW2+9FUJo1qzZAQccUFlZOXfu3LKyshDCkUce+fLLL7du3XpXdpG67UTT/jFCHSxevDiE0KVLl2wPBKq18Mmwbk597vCrr74KIfz9o6fH8FDUrj73Dg2WTw3YrnpojaZ8hDCEUFBQ8MILL1x//fXFxcWbNm2aPn36zJkzy8rKiouLb7/99r/85S+7WIMAAACNV1O+ymhKmzZtbr/99p/97GeffPLJwoULc3Nz+/bt26NHj9zc3GwPDQAAIJuafhCmtGnT5phjjjnmmGOyPRAAAICGoomfMgoAAMCOCEIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBIRRqEEyZMGD169KZNm7I9EAAAgKzJy/YAsuC55547++yzQwhLlizp1KlTtocDAACQHdEdIVy6dOn3v//9bI8CAAAg++IKwqqqqosuumj16tXZHggAAED2xRWEt91222uvvZZIJLI9EAAAgOyLKAjffvvtX/ziF/n5+VdddVW2xwIAAJB9sVxUZt26dRdeeGFFRcXtt9/eoUOHbA8HAAAg+2I5Qjh8+PAFCxaceOKJ1157bbbHAgAA0CBEEYSPPPLIE088seeeez766KM5OVG8ZAAAgBo1/VNG582b9+Mf/ziE8MADD3Ts2LEOWzj//PNrXGflypV12DI0YanL+TZv3jzbA4HqFJaW5m7cWJ973LRpUwghPz8/hLB59eqqgtz63Ds0WD41IFuaeBCWl5dfeOGFpaWll19++TnnnFO3jTzzzDM1rrOxfv89AQ3f5s2bg7dGlrzxRtHGjY3jbIjc3FBZmc0B7J8XWtf6ytO5ucnKyl29TvWmTfkhhGbNQghh9Sd/DcnddeHrDh0q2rWrqmaFjW0Hh0QT/2cAjYhPDciWJv5JcNNNN7377rs9e/b8z//8zzpv5Omnn65maer4YUlJSZ23D01S6jCIt0ZWLFuWt2ZN47i/Tn5+KC/P5gBat2oeCotquXJBQbKsbFd/sFu2JEIIZWWFIYSq5LL8xKZd3OCONC+rap1MVrfCnnuE3MLdtHfYWT41IFuachBOnjz5jjvuyM/Pf/zxx3flDITzzjuvxnWc4QBbadasWfDWyJKCgpCfn+1B1E7Wx5mXl1v775bn5oZd/x56anepX3NDTs5u+zJ/Xl5O9T/e/ObNBSENh08NyJamHIR33XVXMpns06fPK6+88sorr6Tnf/jhh6mJUaNGtWrVKoTw05/+ND/r/yoBAACoX005CKuqqkII06ZNmzZt2nZXuO2221ITP/7xjwUhAAAQm6YchH379k19QXkry5cvnz17dgjhqKOOKiwsDCHk5rrIGwAAEJ2mHIQjRozY7vzHHnvs4osvDiE888wznTp1qt9BAQAANBSN47rkAAAAfO0EIQAAQKQEIQAAQKSa8ncId6Rv374333xzCCF1zwkAAIA4RRqEffv2zfYoAAAAsswpowAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJHKy/YA6snMmTM//PDDOXPmVFRU9OjRo1+/fv369cv2oAAAALKp/oKwsrJyzZo1dX5669at8/Pz6/DElStXXnPNNY8++uhW888888y77757v/32q/OQAAAAGrX6C8K5c+f26tWrzk+fMmXKoEGDdvZZlZWVJ5988vTp00MIvXr16tevX15e3rvvvjt79uznn3/+448//uijj1q0aFHnUQEAADReTfw7hPfdd1+qBu++++6ZM2c+8cQTjzzyyCeffPIf//EfIYQFCxbcdNNN2R4jAABAdtTfEcJ99tnngQceqP3669atGzFixPLly1MP8/LqMtSHHnoohDBo0KCf/OQn6ZmJROKGG24YP378W2+9NWnSpDpsFgAAoAmovyBs3br1D37wg1qu/Pzzz//iF79I1WC7du3uvffe4447bmf3WFlZ+emnn4YQzjjjjG2XHnfccW+99dacOXPKysoKCgp2duMAAACNXYO7yuiyZcuuvPLKMWPGpB5+73vfu+uuu/bYY486bGr58uUHHnhgCOGQQw7ZdmkymUxN5Obm1nWwAAAAjVgDCsJkMvnQQw9dd911a9euDSHsv//+v/vd70488cQ6b7BDhw4ffvjhdheVlZW9/PLLIYQBAwYIQgAAIE4NJQg//fTTK6644vXXXw8h5OXl/fSnP/3FL35RVFT0Ne6ioqKitLR01apVb7/99m9/+9sPP/ywWbNmI0aM+Bp3AQAA0IhkPwjLy8vvuOOOf//3f9+8eXMI4fDDD3/wwQe3e5LnLnrhhRfOPvvs9MPDDz981KhRRxxxRI1PTCQSNa6zePHiXRocNDmff/55tocQrzVrWn71VeO4iHReXqioyOYANuZubFG0pZYrJ5PJsrKaPxGqt2XL/+6uPJnIT9R27ztrw4aKr76q7oe7bsmSZI6v0NNQ+NSAbMlyEL7zzjs/+MEPPv744xBCcXHxL3/5y6uuuqp+zuGcNWvW008/3bdv38LCwnrYHQA0KK2W/CaEqqzsOpnbbF2nH2bOGT26xRdfNI5vcCQS4eqrv8r2KAC+NlkLwvXr1990000jR46sqqoKIZxyyim//e1vu3btuvv2eOaZZ5aXl69du3bevHn333//I488cuedd06fPn3ixInVHwNMX35mu1LP7dKly9c8XGgSvDWyYo89QrV/bzUg+fmhvDybA2jevHlhfm3/W7CwMNTilJFabqowhJAbivLC7vqtKi4ubN26+lVyshWEIa95m//7l8Oee4aNG7Mzlp2VSIQuXWr4yVJnPjWg/mXnnKIJEyb07t373nvvraqqKikpefTRRydOnLhbazCEkEgk8vLySkpKjjrqqIcffvjnP/95COHll1+eMGHCbt0vAABAw1TfQfjll19eeOGFQ4YMSX3p7qKLLpo1a9ZFF11Uz8MIIVx//fWpg3uvvfZa/e8dAAAg6+o1CP/whz/06tXrySefDCF069btpZdeevTRR0tKSnbT7h588MHBgwefe+65213aokWLdu3ahRBWrVq1mwYAAADQkNXfdwjnzJlz6aWXpqYLCwsHDRo0bty4cePG1fLpV1111QEHHLBTeywqKpo8eXIIYeXKldtm56ZNm1asWBFC6NGjx05tFgAAoGmovyDMvDTLli1bHn744Z16+ne+852dDcLDDz88NfH000//v//3/7ZaOnbs2NT1bPr167dTmwUAAGga6i8I8/Pz99133zo/vQ43qe/Zs+eAAQPefvvtm266qV+/fsccc0x60V/+8perr746hNC7d+9BgwbVeVQAAACNV/0FYffu3RcuXFhvuwshJBKJBx98sH///mvWrDnuuONOOumkXr16JRKJmTNnTpkyJZlM5ufnP/bYY+5DCAAAxCnLN6bf3Q4++OAJEyZceeWVs2bNmjx5cuorhSnHHnvsyJEjnS8KAABEq4kHYQjh5JNP/uijj1544YXZs2fPnz+/oKCgV69effr0caYoAAAQuaYfhCGE/Pz8s88+O9ujAAAAaFjq+8b0AAAANBCCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFLRBWFpaWm2hwAAANAgRBGE69ev/+d//uf+/fu3bNmyVatW7dq1O/nkkx977LFsjwsAACCb8rI9gN3uL3/5y/nnn7906dL0nBUrVrz66quvvvrqgw8+OGbMmJKSkiwODwAAIFua+BHCsrKySy+9dOnSpXl5eT//+c/feeedJUuWvPTSS6eeemoI4fXXX7/88suzPUYAAIDsaOJBeM8998ydOzeE8Pvf//6WW2454ogjOnXq9M1vfnPChAnDhw8PITz33HPjxo3L9jABAACyoIkH4dNPPx1C6Nu374UXXrjVojvvvLNZs2YhhDfeeCMLIwMAAMi2phyEVVVV06dPDyEMHDgwkUhstbR58+Z9+vQJIXz44YdZGBwAAEC2NeWLypSWlh5yyCEhhOOPP367K2zYsCGE0KpVq3odFgAAQMPQlIOwdevW77333o6WTp8+/ZNPPgkh9O/fvx4HBQAA0FA05SCsxpo1a4YNG5ZMJlu0aJG6ukw1nnnmmRo3uHHjxq9paNBEbNq0KXhrZElZWV55+dbnyTdY5eXZ3HtFRWVVblUtV66sTFZV7eoPtqqqKv1rZbIqJ1Hbve+sioqq8vJktavkhLC79l6DZHn5//3LoRH9oU0kwsaNWf1T20T51IBsiTEIp0yZctllly1cuDCRSPz2t79t27Zt9euff/75NW5z5cqVX9PooIlYs2ZNCCF16aYdrJCzbFmj+SuoQ4eK1q2z9E/nnbdhQ8uNGxvHV8Tz8kJxYllxXtb+Ck2Wry3Pqe0/7hOJ5K5HS3l5eQghJycnhFCezA2J3ZUWW7ZUbNxYUe0qWQvCZG5y3f/93Fy/vsXGjblZGczOSiTCypVfZXsUTVCNnxrAbtJo/jX2tZg3b971118/duzYEEKzZs1Gjhw5bNiwGp913nnnVbM0dfywefPmX9cgoWkoKioK1b415s7Nmzy5oB5HtEuGDCnbZ5/q/23dgBQUFOTnN46DLXl5oXOz2V2av5OtAWypaplqs9rIzQ21XneHUrv7+6/J3JzE7kr3vLy8Gv4YJHJCMltBmL/VXw4FBQX5+Y3jfzESCR/6u0WNnxrAbhJLEG7cuPGWW2656667ysrKQgjHH3/8gw8+2KNHj9o8N3Xvih1JXb+0pKTkaxknNBmp036qeWu0aRMa0ed+mzbNG9G7vLg4bNmS7UHUTn5+KMwvzM/Pz9YAksn8/ERt956fH6p2OaBSJ4umXnIi5OeF3fUfDYWFNb7FsnfKaF7z4v/7jmrRotH8hZBIhJKSRjLWRqXGTw1gN4kiCD/44IOhQ4em7lB/4IEH3nbbbWeddVa2BwUAAJBlTT8IP/jgg0GDBq1bt65Fixa33nrrj370o9zcxvEtBQAAgN2qiQfh4sWLTz311HXr1vXs2XPChAndunXL9ogAAAAaiiYehCNGjFixYsVee+31xhtv7L333tkeDgAAQAPSOK7oVTelpaWPPPJICOG6665TgwAAAFtpykcI33333dLS0hDC+PHj33777R2tdtxxx1199dX1OC4AAIAGoSkH4fz581MTb775ZjWr5eU15R8CAADAjjTlFsrNzT3hhBNqXO2ggw6qh8EAAAA0NE05CC+77LLLLrss26MAAABooJryRWUAAACohiAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAPj/7d17kBTV3T/gM7O7LCBCUJCgXKJR8MLFoEXyAkqIWmoFUkoklCHGVC6KsRKNVAotMRhjLlopo8bgBc3rJRpRSqNGxCjoG0UDi5ICcRWQIAoCIirhspdh5vdH/7JFYHdhgZmGPc/zB9Xb58z0d4Y9e/oz3dMNECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACRii4Qvvnmmw8//PDHH3+cdiEAAAApiy4QXnHFFeeff/4777yTdiEAAAApiysQLlu2bNasWWlXAQAAsF+IKBBWV1ePHj06l8ulXQgAAMB+oTztAorumWee+dvf/jZ//vw5c+YUCoW0ywEAANhftP5AeN99902bNi3tKgAAAPY7rT8QXnLJJWeddVay/NZbb91www3p1gMAALCfaP2BcPjw4cOHD0+WX3zxRYEQAAAgEdFFZQAAANhe6z9CuPfOOOOMXfZZt25dCSqBA8hHH30UQmjbtm1THTZsKN+8ubKEFe2VDRtq1607YK5R/O9/t9u8+cD4vK+8PNS0q6kvq0+rgLp8XSa7u1vPZAr19Zm93GJ9fX0IIZvNhhDqC+WFTLFee03Nts2btzXbJRtCvkhbb16hLL/lv+fNA+iXNpMJ69ZtTruKVmiXswZQJALhrj3//PO77FNTU1OCSuAAUltbG5odGnV1bXK5shJWtFf++c/CwoVFrLZDdnXPNi/vq2fr2yZb26kF/XP5tuXZdP6IlZWFbL4mn08nloQQtm3blt/tUJTPF/L5vQ2EyYv9//8WtuUzxXrtH35Y+Oij5iJWIWT39sXsqVzIzn/lvwbUJ5/kcrkSBcKDyj86rtNze/zwTCaUrdy6xw8vZCozhdo9fvheKmTbZvKp7bHUHvyFXLsjm2ytrV2+vP3//d8BMy/8z//UdO/e/GcucGAQCHftueeamzaS44eHHXZYqcqBA0MSCJsZGocckj3ooAPjgEAIIZcLGzcWcwNt1lZ0/GBfPdlh7UKuogX9a/Kd2mY/3Vdbb5GysrClvlNFtiXl7lOF8sqKTN1udm7TJuz93YuSKFhRkbzkNhWhiDuUW7Y011oI2UxKRwjrC23Xf/RfH1ocdFDYVqpd647ln3TvsGqPH57JhE7ZvXjfyjuGXFH/mjSn0KZTpi6dwR5CyHesyHduclKora1dsaLd+vUt+TQrVe3adTjsMPczozUQCHft9NNP32UfZzjADiorK0OzQ6NNm1B+4PwFKi8vbrXl5WXJOYT7RDYbWvRkZWFfbr1FstmQzWbT2noIIVvIZjO7u/WWvrFNPEm24d+ykM0W7cv8u6w2xSOE2UK2/L9HVLGH2H9vq3xvfuUymVBevhf/a+Xlae59VVSEfHpbb9MmND0pVFZWVlRUlB84E0NlZbm9P1qHA+bjeQAAAPYtgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABE6oC52cs+8bnPfW7y5MkhhMMPPzztWgAAAFIWXSC89tpr064CAABgv+CUUQAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBS+BgZLgAAFAJJREFUAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAARKo87QJK5NVXX7333nsXL168ZcuWXr16jRo16lvf+lZlZWXadQEAAKQmikA4YcKEm266qeHHBQsWPPHEE7fccstTTz3Vu3fvFAsDAABIUesPhDfeeGOSBvv06XPOOed89rOffe6555555plFixaNGjVq3rx5bdu2TbtGAACAFLTy7xCuW7fu5z//eQihX79+8+fPv+GGG37yk5/MmDFj8uTJIYRFixbdddddadcIAACQjlYeCO+5554tW7ZkMpnp06cffPDBDeuvvfbaL33pSyGE3//+9+lVBwAAkKZWHgj/+te/hhCGDh3at2/fHZpGjx4dQli2bNnSpUtTqAwAACBtrTkQ5vP5119/PYQwbNiwnVtHjhyZLMybN6+kZQEAAOwfWnMgXLlyZU1NTQihT58+O7f27du3vLw8hOAIIQAAEKfWfJXRNWvWJAvdu3ffuTWbzXbr1m3VqlUffPBB88/z8ccf73Jb+Xx+DyqEViwZFM0MjXw+FAqZEla0VwqFUCgU9fmL+ez78dYLhf3gtZf213D711sohOJtfdfvazG3vstt7/D/XuwhtsO29+7he/kMJXypjWw8za0X8vnQ3KSQLxR2/MXYn+XzBXt/tA6tORBu3rw5WWjfvn2jHdq1a7d9t6Yccsghu9zW+++/38LqoJVLPpHJZps8DWHDhopcrl0JK9ortbX5XK6Ip1TUZbfW7LvnLyuEbdta0L9mWwiFdE4YyWZDbT6T1tZDCHX5TKHp39Id5LOFutzeRqiaXFkIIeSyIYRcPrNtt7feUoWyQm2z1RYKZZmUAmF9oSyX+3T7NXV1hdxev7e7u/WweW+GWyYTPt1cu8cPz2drsvncHj98L+Vrtma3pbb1mvUf121tcn9pzZo1n37aIZc7YG4Gtn79loMOSu3NhH2oNQfCurq6ZCE5NXRnyfrktNJmdO7cuZnW5PhhM3u9EKdMJhOaHRonnLDthBM2lbCi/VzXEL6bdg2UwqpVq0IIRxxxRNqFpOwLIcXhf9BeDjd/ufZYM3tLmUymX7/NZ555YL27dv9oDVpzIGw4MFhb2/gneUkUTI4TNmPDhg3NtCZ7vT169NiTEqH1Sk4WNTRgB4YGNMrQgLS05g82Gm48uHHjxkY7JOu3vz8hAABAPFpzIDzyyCOThUa/4Ld169bk0F9DNwAAgKi05kDYuXPnbt26hRAWLly4c+uiRYuSheOOO66kZQEAAOwfWnMgDCF85StfCSHMnj1756ZZs2aFECoqKk499dRSlwUAALAfaOWBcMyYMSGEZcuWzZw5c/v1tbW1d999dwjhrLPO6tixYzrFAQAApKqVB8Jzzjmnf//+IYSLL7546dKlycq6urrx48cvX748k8lMmjQp1QIBAABS05pvOxFCyGQyDz744JAhQ1auXNm3b9+TTjqpa9euL7300qZNm0IIkydPHjx4cNo1AgAApKOVHyEMIfTv33/OnDmDBg0qFArz589/5plnNm3a1Llz5ylTpkyePDnt6gAAAFLTyo8QJgYMGPDaa68tXLhw8eLFW7du7dWr1ymnnFJZWZl2XQAAAGmKIhAmBgwYMGDAgLSrAAAA2F+0/lNGAQAAaJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASJWnXUArkclk0i4BAACgZRwhBAAAiJQjhPtGoVBIuwTYvySHzQ0N2IGhAY0yNKBRJTgP0RFCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEhlCoVC2jUAAACQAkcIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAESqPO0CDmzV1dXLly8vKyvr06fPUUcdlXY5AOxH3nzzzYULF5555pmdO3duplsul1uwYMHq1as7duzYr1+/rl27lqxCSMVuDg2Ix8aNG5csWfLBBx8cffTRxxxzTHl5cxltn88amUKhsJdPEafZs2f/6Ec/evPNNxvWDB48+Pbbbx80aFCKVUG6Ro8e/fe//72p1vHjx19//fWlrAfSddZZZz377LNVVVUnn3xyU31uu+22X/ziF+vWrUt+LC8vP/fcc//whz+IhbRizQ+NfD7fo0ePurq6ph7+wAMPnH322cUsEErntddeu/TSS+fOnduwpk2bNhdccMFvfvObLl267Ny/GLOGI4R74rHHHhszZkw+nw8hHHzwwfX19TU1NfPmzRsyZMisWbOGDh2adoGQjtdff/2jjz5qqnXTpk2lLAbStWzZslmzZjXf5/LLL7/llluS5S5dumzYsCGXyz366KNVVVXz5s2TCWmVdjk0Vq5c+cEHHzTToba2dl8XBem45557LrrooiRTdOjQoVu3bitWrKirq7vnnnsef/zx2bNnDxw4cPv+RZo1BMIWW7du3YUXXpjP57t06TJt2rRTTjkll8vNmDHjggsu2Lp16ze+8Y133nmnbdu2aZcJpVZbW/vee++FEL75zW8eeeSRO3cYMmRIyYuCdFRXV48dOzaXyzXTZ8aMGcm8PmTIkDvuuKN///7r16+fMmXK5MmTV6xYcfHFFz/22GOlqhdKZHeGxtKlS5OFK6+8sqysbOcOffv2LUpxUFpr166dMGFCPp/v2bPnH//4x9NOOy2TyWzduvXWW2+99tprN2zYMG7cuPnz5zfEiiLOGgVaaOLEiSGE8vLyl19+efv1jzzySPKW3nbbbWnVBilqOIO6uro67VogHTNmzLj88suHDRuWyWQa5tmqqqpGO3/xi18MIfTq1WvdunXbr//hD38YQshkMosWLSpJ1VB0LRoaU6ZMCSF069atxEVCiV166aXJWJg7d+4OTbfffnvSNHXq1IaVxZs1XGW0xaZNmxZCGDVq1A6nho4ZM+bzn/98CKEhGUJUks90y8rKkoEAEbrvvvtuvvnm5OPC5nu+++67yTdGJkyYsMNJPldddVUIoVAoPProo8UrFUpp94dG+M9s0qdPn+LXBWmaOXNmCOH0008fPHjwDk3jx48/5JBDQghVVVXJmqLOGgJhyyxbtmzFihUhhJEjR+7cOmrUqBDCK6+8snXr1hIXBqlbtmxZCOHII4+sqKhIuxZIxyWXXPK//5GcTtKU5557LlnYeTbp0aPHiSeeGEJ4/vnni1QnlNjuD43wn9nEeaG0bvX19cuXLw8hnHTSSY12OP7440MIb7/9dvJjUWcN3yFsmYaT4r7whS/s3DpixIibb745l8stW7asf//+pS0NUpZ8pnvsscfmcrmZM2dWV1dv2bKlX79+AwcOPProo9OuDkph+PDhw4cPT5ZffPHFG264oameyWzSqVOnRm9ZNGLEiH/+859vvfVWkeqEEtv9oRG2m00+/vjjmTNnLlmypF27dgMGDBg0aNBhhx1WinKh+Gpra6+44ooQwjnnnNNoh5UrV4YQevTokfxY1FlDIGyZJMqHEHr37r1za8PKd955RyAkNslnuuvWrTv++OMbLgmQGDdu3C233HLooYemVBrsd5LZpFevXo22JrPJhg0bPvnkk8985jMlrQxSlc/nk9HxwgsvXH/99Z988klDU2Vl5TXXXDNx4sTmb9EGB4QOHTr89re/bar18ccfTwLhl7/85WRNUWcNp4y2zMaNG5OFRt/rhpWffvpp6WqC/UMSAufNm7d06dLevXt//etfHzFiRHLT4QcffLBfv34ffvhh2jXC/iKZTZqats0mRGvlypXJHQiffvrpf//73/379x87duzgwYPbtm1bW1s7adKks88+e3e+iAgHrnnz5n33u98NIfTu3fvb3/52srKos4ZA2DJbtmwJIVRUVGSzjbx17dq1SxY2b95c0rIgbQ33nOjevfucOXNWrFgxffr02bNnv//++5dddlkIYc2aNckCEP4zmzR1jyKzCdFqOMFk6NChK1asWLhw4cMPPzx37twlS5acdtppIYTnn39+6tSpqdYIxbJly5bJkycPGzYsOdD3xBNPtGnTpqEpFG3WEAhbJjlLYdu2bY221tfXJwvbX1UZYlBbW/vLX/7y17/+9ezZs7e/32D79u1vvvnmr33tayGEP//5zw3fwoXImU2gUd27d//1r3994403zpw5s+HbUyGEnj17/uUvfzniiCNCCJMmTUqvQCiKQqHwwAMP9OnT57rrrquvrz/uuONmzZq1/V3pizprOAm7ZQ466KAQQj6fr6+v3/lSijU1NclChw4dSl0ZpKpjx45XXnllU63XXHPNk08+GUJYsGBBctUsiFwymzTMGjswmxCtfv369evXr9GmDh06XH755T/96U8//PDDVatWJeEQWoE33njj4osvfuWVV0II7du3nzBhwtVXX11ZWbl9n6LOGo4QtkzDfT/Wrl27c+uaNWuShS5dupSuJtjvnXDCCclZ1osWLUq7FtgvJLNJo1NJ+M9skslkXIoJttdwxT6zCa3G3XffffLJJ7/yyitlZWU/+MEPli5det111+2QBkORZw2BsGUa7orTcLnR7f3rX/9KFo499tjS1QT7vXbt2rVv3z6EsPMfOIhTMpu89957Def5bC+ZTXr27JkMHCDRsLNrNqF1uP/++y+66KLa2toTTzyxqqrqrrvuOvzwwxvtWdRZQyBsmQEDBiSn8P7jH//YuXXu3LkhhEMPPbTRm1JAK3bnnXeOHz/+V7/6VaOtq1ev3rRpUwihqROBIDbJnYjr6uoWLFiwc2symwwaNKjUZUHaJkyYMH78+OnTpzfaumTJkmTBbEIr8Oqrr37ve98rFApjxoyZO3duozc5b1DUWUMgbJlOnToNGzYshPDII4/s0LRt27bHHnsshPDVr3610WuQQut25513Tpo0qeE4+faeeOKJZGH7r0dDzEaMGJFcFG7n2aS6uvqNN94IISRXY4KorF69+s4775w4cWI+n9+5NZlNunfv3vAVHjhw3XjjjblcbuDAgQ899FDD1USbUtRZQ25psUsuuSSE8Nprr02bNm379b/73e9Wr17d0AGict5551VUVBQKhQsvvDC5hVSDxYsXX3311SGEsWPH9unTJ6UCYf/Srl2773znOyGEO+64Y/vvIBQKhYkTJ4YQunbtOmbMmLTKg7Scf/75IYTly5dfddVVOzQ99NBDya7wz372sxQqg31q1apVTz31VAjhsssuS04/bF5RZ42Mm3u2VKFQOPXUU19++eXKysoJEyaMHDly06ZNTz755JQpU/L5/Lhx4/70pz+lXSOk4KabbpowYUII4eijj7700kuPOeaY9evXV1VVTZ06ta6urnPnztXV1d26dUu7TCiRF198ccSIESGEqqqqk08+eecOq1evPvHEEz/88MOePXteccUVI0aMePvtt++7774ZM2aEEKZOnfr973+/1EVD8TU/NAqFwrnnnpscCRwxYsS4ceMOP/zwFStWPPvss8nKoUOHvvTSS+7IwoHu6aefHjlyZAihU6dOzQTC0aNH33XXXclyEWeNAi23du3aRk/zPfPMM7ds2ZJ2dZCaH//4x42eLz148ODFixenXR2U1AsvvJD8/ldVVTXVZ86cOTuf+ZbJZCZNmlTKUqGUdjk0Nm7ceMoppzS613rBBRds2LChxAVDMdx66627k9TGjh27/aOKNGs4QriH6urq7r777unTpy9fvrysrOzYY48dN27c+eef7yMrIrd48eJbb721urr63Xff7dq168CBA4cOHXrhhReWlZWlXRqU1IoVK+69994QwkUXXdTUVeNCCGvXrr3tttueffbZ1atXd+zY8aSTTho/fvzQoUNLVyiU1m4OjRkzZtx///3Lly9fs2bNUUcdNWDAgFGjRp1xxhmlKxSKadasWS+99NIuu/Xr1++8887bfk0xZg2BEAAAIFIuKgMAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUv8PQmhgkpl2PO0AAAAASUVORK5CYII=", "text/html": [ - "<img width=600 height=450 style='object-fit: contain; height: auto;' src=\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAABLAAAAOECAIAAAA+D1+tAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeZwU5YH44bfnhuFSRkEuQRREBBEPPBGVRCXGM4oRdY2JbvglrsZ4bIy7ZrMaV7zWxZAYdU08UTEoGEEF8YghXqgIAnKEQxSQS4Zzrv790dneXo6ZYZDpmXmf5w8+1VXVVW8PNM2Xqq5KJJPJAAAAQHxysj0AAAAAskMQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAARCov2wMAoDGZN2/epEmT0g+POeaYvn37ZnE8tffggw9WVFRsd1Hr1q179uzZs2fP4uLi2m9wzpw5U6ZMSU0feuihAwYMqPEpa9asOeKII1LT3bt3f+mll2q/OwDYHQQhADthxIgRDzzwQPrhWWedNXbs2CyOp/Z+/OMfb9mypZoVEonEOeecM2LEiP322682G5w6derw4cNT0zfccENtgrCysnL+/Pmp6bw8H8EAZJ9TRgGorbKysmeeeSZzzoQJE9atW5et8Xy9ksnks88+26tXrwkTJmR7LDX4/e9/v///GDVqVLaHA0AjJggBqK0XX3xx7dq1mXO2bNnSWI4Q1lJZWdnFF1/82WefZXsg1Vm7du38/7F69epsDweARkwQAlBbjz/++LYzn3zyyfofyS56/vnnv8jw0Ucf3Xnnnc2bN08tXbVq1SOPPLI79tu2bds1/+Pdd9/dHbsAgJ3iCwwA1MpXX331wgsvpKbbtm27adOmjRs3hhAmT568cuXKkpKS2mxk+fLl5eXlqemSkpKioqLMpRs2bFizZk1quqioaKttlpeXL1y4cP78+RUVFd26devatetOXQMm05577tm+ffv0w/bt2/ft27eysvKGG25IzXn77bfrtuVPP/109uzZzZo16927d4cOHbZaWlVVtX79+tR0YWFhy5Ytt11h6dKlCxYsWL16dZcuXbp27dq2bdu6jSSEsGHDhg8++GD58uW5ubnt27c/9NBDCwsLq3/KggULZs6cmZube9hhh7Vr1y5k/Jbl5eWlf2jr1q1Lnyq8xx57pH4jPv300xkzZpx22mnNmjVLb7C8vHzJkiWLFi1avXp1+/btO3Xq1KVLl0QisdWr/vzzz1PTBQUFe++9dwhh7ty5M2fOzM/P79OnT5cuXdIrb9y48e233169enXXrl0PPPDAOv8ZAODvkgBQCw899FD6s+OKK674zne+k344atSoWm7ku9/9bvpZd9xxx1ZLr7766vTS66+/Pj1/zZo1N91001b5lJOTc8EFF8yYMaOWu85soTfffHPbFTK/OvjNb36zxg0+/PDD6fVvuOGGBQsWnHDCCZkjPOuss5YsWZL5lL/97W/ppQMGDMhcVF5e/tBDD+27775bfUwfffTRL774Ynq1F1988bDDDuvcuXN6hQ4dOhx22GGZP65kMrly5cpLLrmkoKAgc1PNmjW78sorS0tLt/tyli9f/o1vfCO9ckFBwXXXXVdRUdG7d+/UnI4dO6ZXvvnmm9Nrjhw58quvvjrzzDNTD9MvubS09Fe/+tW2/1Nw4IEH/u53v6uqqkpv7csvv0wvPeSQQ7744oshQ4ak5yQSiTPOOGPFihWVlZW33nprZgG2bNnyrrvuqqysrPE3C4AdEYQA1MpJJ52U/of4K6+88tRTT6UfDhw4sJYbGTduXPpZJ5xwwlZLe/XqlV46bdq01MzS0tLM+VvJy8t79dVXa7PrGoPw2muvTa/w7//+7zVuMDMIL7nkkm2PB4YQDj744LKysvRTqgnCiy66aEevMYTwy1/+MrXao48+ut0Vzj333PSmXnjhhdRBtu3q0qXLti//o48+yjwKl3b55ZfXGIT33nvvcccdl36YCsLy8vKBAwdW84r+5V/+Jb21zCBMHffbdv0BAwakr+m6lXvuuafG3ywAdkQQAlCzpUuX5uT8/Wvne+21V0VFxfr169NfukskEp999llttlNWVrbnnnumnpWXl7dmzZr0osWLF6f/id+jR4/0/O9973uZ//rv2bPnMcccs8cee6TntG3bdsWKFTXuOjMI77zzzgkZHn300UsuuSR9HmPPnj0zB7YjmUGYttXJkCGEe++9N/2UHQXhH/7wh8yn7LPPPgMHDsw8DJhIJCZNmpSsxRHCZcuWtW7dOnNrHTp02GuvvTLndO7cecOGDem9V1ZWHnTQQZkrFBYWpl9I+vYYOwrCww8/PPO5qSD8t3/7t6322KdPnzZt2mS+otmzZ6e2lhmEmStsO3O7i4qLi7ds2VLj7xcA2+WiMgDUbPTo0VVVVanpc845Jzc3t7i4OH1eXzKZzDxgWI38/Pxzzz03NV1RUZF5Z/bM6QsuuCA9nfnFxQULFsyePfutt976/PPPL7zwwtT8VatWvfrqqzv1cq699trTMlx88cWPPPJIMpkMIQwYMOCVV17JTJdaOvHEEz/44IOysrIZM2b069cvPf/Pf/5zjc8dP358enrcuHGff/7566+/vmjRov/6r/9KzUwmk2PGjAkhnHbaae+9994111yTXn/48OHvvffe7bffnn5pX331VWq6e/fu06ZNW7p06YoVK95444199tknNX/JkiW33npreguPPvroJ598kppu0aLFs88+u27duuXLl1933XUhhIqKiuoH/95774UQBg4cOHz48OHDh6dO6UyNNoSQn58/efLkxYsXT58+fcWKFekDoclkckeX1enXr9/7779fVlY2bdq0bt26ZS4aNmzY4sWLN2/e/Mwzz+Tn56dmbtiw4dNPP61+kADsiCAEoGaZ1xc977zzUhOZXyOs/bVG0yEXMmIv7CAIP//88/Tho6KionTSFBUV3Xjjjcf+j6/x1gtDhgzp2LHjzj6rc+fO48aN69evX15eXu/eve++++70olmzZtX49I8++ig93bVr19REIpH48Y9/fPLJJ6deY2VlZY3b+eyzzx577LHUdE5Ozp/+9KdDDz009fD4448fPXp0es177rmnrKwsNX3nnXem599///3nnHNOQUHBXnvtNWLEiMsuu6zGnSYSieeff/71118fNWrUqFGj9thjj40bN27YsGHffffdd999zz333PTJxvn5+ZknHs+dO3e7Gxw9enT//v3z8vIOPfTQzPTt2rXrww8/3Llz54KCgu985zuZ3zPMPPQKwE5xlVEAajB79uxp06alpvfee+9Bgwalpk8//fRmzZpt2rQphPDee+/Nmzdv//33r3FrAwcO7Nix49KlS0MIEyZMqKqqysnJqaysnDx5cmqFvn37pr80mHme59KlS7t163bmmWcOGTLkpJNO6t27d20Ovu2sm2+++Z133hk7dmz6AFRtfPOb32zRokX64SGHHJKeTl83tRqZL/Ooo44aMmTIt771rVNPPbV9+/aTJk2q/TDefPPN9PTpp5/es2fPzKUDBw7s379/6rdy06ZN77///tFHH11eXj579uzUCu3btz///PMzn/Lzn//8v//7v6vf6VlnnXXGGWdkzmnevPn8+fO3Wm3t2rXvv//+vffem56z3cRt37595rAzr0lz7LHHZv6mZC6qTS0DsF2OEAJQg8zDg6nzRVPTxcXFp512WnpR5gGoauTk5AwdOjQ1vWrVqr/+9a8hhHfffTcdTpnni7Zt2zbz0p3Lli27//77zzzzzLZt237jG9+455576nYH+fvvv39qhldffXXUqFEHHHBAaumf/vSnzAvM1MZW19JMf7uyltKn0YYQNm7cOGbMmO9973upLwf+y7/8S7rGa7RkyZL0dN++fbdd4eCDD05Pp760uWDBgvRJob17905/YzBlv/32S3/nc0f69++/3fnJZHLq1Kk333zzN77xjfbt2++xxx6DBw/OPBa6XVt9ATJTHc7jBaBGghCAGjzxxBPp6VmzZv0gQ+pAX0otgzBs76zRHX2BMIQwZsyY008/fastlJWVTZo06ZprrunWrds//dM/1fg9t60cdNBBR2U48cQThw8f/uabb6avVfPb3/72iy++2Klt7oqbbrrp2muv3eomgclkctq0abfccsthhx02ePDgFStW1Lid0tLS9HTqLoJbSZ9zG0JIfdVw0aJF212a1qlTp+p3ut1OW7Ro0UknnXTMMcf88pe/nDRp0vLly1Pzd+q4KwD1QBACUJ2pU6cuWLAg/fD1119/KEPmDdxnzpw5Y8aM2mzzsMMOyzwcFzKCcMCAAVtdR6SkpGT8+PFz5sy58cYbt7oYZgihoqJi5MiR//qv/7rzr2xr7dq1O/roo1PTZWVl77///q5vs5by8vLuuOOOpUuX/ud//ufAgQPTx2DTJk+efNZZZ9W4nVatWqWn07d6z5QZ8Kn7OmZegHS7zVmHMK6qqjrvvPNee+211MO99trrwgsvvPvuu1977bXf//73O7s1AHYrQQhAdTLPF61R7S8tk75D/fTp06dPn/7OO++kHm51eDCtR48et95668yZM+fOnXvHHXcce+yxmUsfeOCB2g+yGhs2bEhP7+xRx13Xtm3bq6666vXXX1++fPnDDz981llnZR4znDp16syZM6vfQmZLbzdoM88+3XfffUMImV/7nDFjxlZfxlu8ePF27wlRvTfeeCN9BdHjjz9+0aJFjz/++E9+8pMTTjghfagQgAZCEAKwQxUVFU8//XT64T777NNxG5mHmGp584nwf88aveaaa1IdkpOTs9VFTX71q1+lT+xMfdtw//33v/baa//85z+///77BQUFqdVWrVpVXl5e11f5d1OnTn3rrbfSD9PX59zdJk6cmH6No0aNCiG0bdv20ksvHTt27KJFi9L3hQ8hLFu2rPpNHX/88enbRb788supG0KkPffcc5m3lzjiiCNCCC1btmzfvn1q5ueff75V0v/yl7+swyuaM2dOevrkk09u1qxZ+uHYsWPrsEEAdh9XGQVgh15++eX0AaJ27dp99tln6d5IW7t2bbt27VL3MJg/f/4777xz5JFH1rjlnj17HnrooR988EEIIX190eOPP75Dhw6Zq5WUlKTPSr322mvHjh2b7s9169alD+IdeOCBO/XltEceeSR9QmMIYdOmTXPmzHn++efTG+zRo0fqAFo92G+//dKvceHChUcffXS6RTdt2pS6iGtK+pIwmb8Lmed5tmvX7oc//GGqKkMIQ4YMefjhhwcPHlxZWTl27Ngf/vCH6TVvvPHG9E/siiuuSIffFVdcsWXLlm9/+9vLly8fOXLkQw89VIdXlHlNnT/+8Y/nnHPOwQcfvGbNml/84heZ10EFoCEQhADs0FbXF922BkMIbdq0GTx48Isvvph6OHr06NoEYQjhwgsvTAVh2rbniw4ZMqRNmzZr164NIbz11lsdOnTo2rVrYWHhihUrMk9lPOWUU2r3gv6u+lNM8/Pz03fzqwc9evQ4/PDDU0fzli9f3r9//86dO7du3XrdunWpC4Gm9OvXL32dmMw7Jf7ud79btGjR0Ucf/c///M8hhFtvvXXMmDGpSvzyyy9PP/30goKCqqqqzDNge/XqlXkZ1Z/+9Kf33Xdf6l6OmzZt+sEPfrCLr+iwww5LT0+fPr1v377NmzffuHHjVqtVVVXt4o4A2HVOGQVg+zZs2PD888+nH251MmemzLsmPP3008lksjbbHzp0aCKRSD/My8vLvNN9SqdOncaOHZs+NbSiomLevHkzZ87MrMGjjz76tttuq80ea6Nz585PPvlk6nTKejNu3LguXbqkHy5ZsmTGjBmZNVhSUjJmzJj0w2OPPTZ9/ZgtW7aMGzcufXZomzZt/vjHP3bv3j29cllZWWYN9u/ff8yYMZkHVFu1avX4449v934P/fr1q/Eqo9s66KCDLrnkksw5qRps3rz51VdfnZ45ffr0nd0yAF87QQjA9j333HPpi6y0a9du4MCBO1rzrLPOSt+/bunSpW+88UZttt+5c+fjjz8+/XDw4MFb3c0vZdCgQbNnz77mmmu2vSFez549f/3rX0+aNKmoqKg2e9yR5s2b9+nT55xzzrnrrrvmzJmT2bf1Y5999pk+ffrdd9+deYmXlJKSkp/97GcfffRRZuO1b99+7NixhxxyyHa3duyxx3788cfXX3/9Vj/Pjh07jhgx4p133tn2Yq2nnnrqe++9d9xxx6XntG7devjw4W+88UY1Nwasxm9+85vrrrsufVGc3Nzcb33rW++///7PfvazdN7/6U9/GjduXB02DsDXKFHL/8cFgKxbu3bt0qVLV69evffee3fu3Hln7//eKGzatGnp0qXLli1r1apVp06dqr8v/JYtW1auXNm8efNWrVpte7OKZDI5b968FStW5OTktG/ffqv7eWzXF1988be//W3vvffu3r176vhtjx495s6dG0LYb7/95s+fv1OvZfPmzXPnzl2/fn2PHj3atm27U88FoH4IQgCI2ieffJL+Ol/Pnj0zzyYtLS3dY489UteAPfPMM5977rnsDBGA3cYpowAQtWHDhvX5HzfeeGN6fmVl5VVXXZW+M2E9f68SgPrhCCEARO2uu+5KX3Q0kUicdNJJAwcOLCsrGz9+fPq6LwcccMC7775bt+8TAtCQCUIAiN3VV19977337mhpt27dXnjhhW0vRQNAEyAIAYDw4Ycfjhw58vXXX//ss8+2bNmSk5PToUOH7t27f+973xs2bFj6KrIANDGCEAD4X8lkcvXq1a1atcq8ugwATZUgBAAAiJSrjAIAAERKEAIAAERKEAIAAERKEAIAAERKEAIAAETKbYV2VSKRyPYQAACAJmu33hjCEUIAAIBIOUL49XA7R9jK4sWLQwhdunTJ9kCgYfHWgO3y1oDtqoezER0hBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiFRetgcAAAA0cYlEIttDaKCSyWR2B+AIIQAAQKQcIQQAAOpD1o+GNSgN5KipI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AOrP7NmzJ06cuGTJkpKSkoMPPviUU04pKCjI9qAAAIAQQpgxI4wZk4X99u4dzjsvC/ttIKIIwlWrVl1++eVjx47NnNmzZ8/f/e53AwcOzNaoAAAAsqvpnzJaWlo6aNCgVA127Nhx6NChgwYNysnJmTNnzre+9a1PP/002wMEAADIjqYfhFdfffWMGTMSicRDDz302WefjR49esqUKX/5y19atmy5fv36yy67LNsDBAAAyI4mHoRz5879wx/+EEK45ZZbMttvwIABt9xySwjhrbfe+uyzz7I2PgAAgOxp4t8hfPzxxysrKwsLC3/0ox9ttWjYsGGp80WXL1/eqVOnbIwOAAAgm5p4EP7pT38KIXz7299u3br1Vovatm173333ZWNQAAAADUJTPmW0srLy448/DiEcfvjh6Znr1q1LJpPZGxQAAEBD0ZSDcOHChVu2bAkhtG/ffsGCBRdffHHr1q1bt27dqlWrY4455s4776ysrMz2GAEAALKmKZ8y+uWXX6Ym5s6d+6Mf/WjDhg2ph+vXr586derUqVOfeuqpP/7xj507d65+O3vuuWeN+3JlGtjKF198EULIyWnK/+sEdeCtAdvlrUGj8+WXX65atSqEkJ+f37179zpvJ+sd0ZSDcP369amJX/3qV4lE4kc/+tHZZ5/dtWvXefPm/fd///fTTz/93nvvXXHFFRMmTKh+O2vWrKlxX1VVVV/DiKEJSZ2b7a1BA9ds5Uv5WxbV5x7bf/VVCKFFVesQwvq9zq0qaFufe4cGy6cGjc53v/vdyZMnhxBycnKWLl3avn37um0n63/sm3IQVlRUpCaSyeSYMWPOOeec1MPu3bufcsop++677x133DFx4sSxY8eeffbZ1Wxn9erV1SxNHT90nVLYSupvN28NGrhEZXFYl1uvuyzPDSG0bp4bQmjVoX0oaleve4eGyqcGjcvnn38+ZcqU1HRVVdVTTz111VVX1W1TWf9j35SDsHnz5qmJb33rW+kaTLv55pvvv//+devWvfrqq9UH4R577FHjvpzhAFtJvSm8NWjoEomQSNTvDhP/+2tOTvAegRCCTw0amyeffDL1vxjFxcUbNmx44okn6hyEWf9j35Tfdenv/h177LHbLi0uLj7ooINCCKkrkQIAANTG448/HkI48MADL7/88hDCO++8M3/+/GwPqo6achDuv//+qeBu2bLldldIFePmzZvrdVgAAECjNWvWrA8++CCEcNFFFw0dOjQ184knnsjqoOquKQdhUVFR6hjgzJkzt7vCrFmzQgh9+/at12EBAACN1mOPPRZCSCQSw4YNGzBgQJcuXYIgbLDOOOOMEMLo0aOXL1++1aJJkyb97W9/CyH0798/CyMDAAAam2QymWq/4447rmvXrolE4rzzzgshzJ49O3XYsNFp4kH4wx/+sKioaO3atUOHDk3d3yZl2rRp3//+90MI3bt3/4d/+IfsDRAAAGg03nrrrYULF4YQLr744tSc888/PzWR+mJho9PEg7Bz58633HJLCOH1118/6KCDzj333Guvvfa000476qijFi9enJub+8ADDzRr1izbwwQAABqBVPUVFhamDgyGEI488sh99903hDB69Ois31SwDpp4EIYQfvrTn44YMaKwsHDt2rV//OMf77rrrokTJ5aXl/fp0+evf/3riSeemO0BAgAAjUB5efkzzzwTQjj99NPbtGmTnp+Kw6VLl77xxhtZG1xdNeX7EKZdd911w4YNe/bZZ2fOnLl58+aDDjrokEMOOemkk/Lz87M9NAAAoHGYOHHiqlWrQggXXXRR5vyhQ4feeeedIYQnnnhi0KBBWRlbnUURhCGEDh06XHnlldkeBQAA0Filri/aqlWrY445Zu3aten5+++/f+fOnZcsWfLss8/++te/blyHnWIJQgAAgDorLS0dP358CGHdunXt2rXb7jqrV6+eOHHit7/97fod2i5p+t8hBAAA2EXPPvvspk2balyt0d2Q0BFCAACAGqSuL9q8efNp06YVFhZuu8LgwYPnz58/bty4DRs2FBcX1/sA60gQAgAAVOeLL7549dVXQwhnnHFGz549t7vOBRdccOutt27cuPG5554bNmxY/Q6w7pwyCgAAUJ0nn3wydY/BCy+8cEfrDB06NDXRuO5QLwgBAACqk2q8Pffc89RTT93ROn369Ondu3cI4ZVXXlm5cmX9DW7XCEIAAIAdmjVr1rRp00II3/nOd6q/pUTqIGFFRUXq/vWNgiAEAADYofQpoNWcL5qSPmu0EV1r1EVlAAAAdui8884bPHhwIpEYOHBg9Wv26NHjz3/+c3l5eU5OoznwJggBAAB26JBDDqn9yscee+zuG8nu0GjKFQAAgK+XIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUG9MDAADZd/DB4eCDsz2I+DhCCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClXGQUAABqAtTPC4jFZ2G+b3qHLeVnYb8PgCCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECk3JgeAACgOslkcs6cOdtd1KJFi44dOyYSiXoe0tdFEAIAAFRnw4YNvXr12tHS4uLinj17/tM//dMll1zS6MrQKaMAAAB1t2HDhmnTpl166aUnnHDCli1bsj2cnSMIAQAAauXSSy+dm2HOnDlTpkwZOXJk9+7dQwhvvvnmz372s2yPcec4ZRQAAKBWWrduvf/++2fO6dGjx6BBg/7hH/7h0EMPnT9//q9//evbb789Pz8/WyPcWY4QAgAA7JKWLVteccUVIYSysrIZM2Zkezg7QRACAADsqo4dO6YmNmzYkN2R7BRBCAAAsKtmz54dQsjNze3Zs2e2x7ITBCEAAMAu+fTTT0eOHBlCuOCCC/baa69sD2cnuKgMAABArcyePfuxxx5LP6yqqlq2bNmMGTOeeuqpsrKyI488ctSoUVkcXh0IQgAAgFp56aWXXnrppe0u6tWr14svvtiqVat6HtIucsooAABArRQUFLTeRiKRCCHMmjXrgAMOeOaZZ7I9xp0jCAEAAGpl+PDha7dRWlo6efLkPn36rFmz5oILLhg/fny2h7kTBCEAAEDdFRcXn3TSSVOmTGnbtm1VVdWNN96Y7RHtBEEIAACwq9q2bXvBBReEEGbMmLF27dpsD6e2BCEAAMDXoEuXLqmJL7/8MrsjqT1BCAAA8DWYP39+CKGgoKBbt27ZHkttCUIAAIBdtXTp0ieffDKE0Ldv37y8RnN7v0YzUAAAgOyqrKzcvHnzVjOXLVs2derUG264obS0NIRwyy23ZGNodSQIAQAAauW+++677777qlnhmmuuOeWUU+ptPLtOEAIAAOyS3Nzc3r17jxgxonHVYBCEAAAA1WvWrNmUKVN2tLRNmzYHHnhgUVFRfQ7p6yIIAQAAqpObmzto0KBsj2K3cJVRAACASAlCAACASAlCAACASAlCAACASAlCAACASAlCAACASAlCAACASAlCAACASLkxPQAA0AC0OTi0OTjbg4iOI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AAAAgCgkEolsD4GtOUIIAAAQKXq0/pcAACAASURBVEcIAQCA3SuZTGZ7CGyfI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AHa7Dz/88M9//vOOlu61115Dhw6tz/EAAAA0EE0/CB955JF77rlnR0sPOeQQQQgAAMSp6Z8yOnfu3GwPAQAAoCFq+kE4b968EMK//du/lW/P+++/n+0BAgAAZEcTP2W0qqpqwYIFIYRevXrl5TXxFwsAALBTmvgRwsWLF5eVlYUQevbsme2xAAAANCxNPAhTXyBMJBIHHHBAak6qDwEAAGjiQZj6AmGXLl3ee++9U045paSkpKioqFu3bmeeeeb48eOzPToAAIBsauJfq0sdIVy6dOnAgQPTMxcuXLhw4cJx48YNHTr0wQcfbNGiRfUbmTRpUo072rx58y4OFZqYLVu2BG8NGrzc8vJERUV97rGysjKEUFFREUKo3LIlGbxHIASfGpA9TTwIU0cIKyoqevToceWVVx5xxBF5eXkfffTRbbfdNm/evKeeeqqkpOS+++6rfiPf+MY3atzRihUrvp4RQ1OxatWqEEJhYWG2BwLVaf7VV/mbNtTnHjdu3BhCyM3NDSGsX7myMr8+dw4Nl08NyJYmHoRLliwpLCwcMGDAiy++WFxcnJp52GGHffe73x0yZMhrr732m9/85uKLLx4wYEA1Gxk8eHA1S1PHD4uKir7GYUMTkPpQ99aggSsoKMgtr9ePwtQlr1O/FhYWVhV4j0AIPjUge5p4EH7wwQfbnd+sWbNRo0YdfPDBVVVV48ePrz4IX3nllWqWJhKJEMLee++9K+OEpid12o+3Bg3dxlYhFNfnDlMni6b+j7K4pCQUeY9ACD41IHua+EVlqtGrV6/99tsvhPDxxx9neywAAABZEG8QhhB69OgRQli0aFG2BwIAAJAFTfmU0fXr169fvz4nJ2dHpx+sWbMmhJC+RSEAAEBUmvIRwokTJ+6zzz7t2rWbOXPmtkvLy8tnzZoVQujTp0+9Dw0AACD7mnIQnn766S1btgwh3Hrrrdsuvfvuu9euXZtIJE499dR6HxoAAED2NeUgLCoq+v73vx9CePLJJ3/yk5+Ulpam5peVld16663/+q//GkL4x3/8xyOPPDKbowQAAMiSRDKZzPYYdqOysrKTTjrprbfeCiE0a9bsgAMOqKysnDt3bllZWQjhyCOPfPnll1u3br0ru0jddqJp/xihDhYvXhxC6NKlS7YHAtVa+GRYN6c+d/jVV1+FEP7+0dNjeChqV597hwbLpwZsVz20RlM+QhhCKCgoeOGFF66//vri4uJNmzZNnz595syZZWVlxcXFt99++1/+8pddrEEAAIDGqylfZTSlTZs2t99++89+9rNPPvlk4cKFubm5ffv27dGjR25ubraHBgAAkE1NPwhT2rRpc8wxxxxzzDHZHggAAEBD0cRPGQUAAGBHBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkBCEAAECkIg3CCRMmjB49etOmTdkeCAAAQNbkZXsAWfDcc8+dffbZIYQlS5Z06tQp28MBAADIjuiOEC5duvT73/9+tkcBAACQfXEFYVVV1UUXXbR69epsDwQAACD74grC22677bXXXkskEtkeCAAAQPZFFIRvv/32L37xi/z8/KuuuirbYwEAAMi+WC4qs27dugsvvLCiouL222/v0KFDtocDAACQfbEcIRw+fPiCBQtOPPHEa6+9NttjAQAAaBCiCMJHHnnkiSee2HPPPR999NGcnCheMgAAQI2a/imj8+bN+/GPfxxCeOCBBzp27FiHLZx//vk1rrNy5co6bBmasNTlfJs3b57tgUB1CktLczdurM89btq0KYSQn58fQti8enVVQW597h0aLJ8akC1NPAjLy8svvPDC0tLSyy+//JxzzqnbRp555pka19lYv/+egIZv8+bNwVsjS954o2jjxsZxNkRubqiszOYA9s8LrWt95enc3GRl5a5ep3rTpvwQQrNmIYSw+pO/huTuuvB1hw4V7dpVVbPCxraDQ6KJ/zOARsSnBmRLE/8kuOmmm959992ePXv+53/+Z5038vTTT1ezNHX8sKSkpM7bhyYpdRjEWyMrli3LW7OmcdxfJz8/lJdncwCtWzUPhUW1XLmgIFlWtqs/2C1bEiGEsrLCEEJVcll+YtMubnBHmpdVtU4mq1thzz1CbuFu2jvsLJ8akC1NOQgnT558xx135OfnP/7447tyBsJ5551X4zrOcICtNGvWLHhrZElBQcjPz/Ygaifr48zLy639d8tzc8Oufw89tbvUr7khJ2e3fZk/Ly+n+h9vfvPmgpCGw6cGZEtTDsK77rormUz26dPnlVdeeeWVV9LzP/zww9TEqFGjWrVqFUL46U9/mp/1f5UAAADUr6YchFVVVSGEadOmTZs2bbsr3HbbbamJH//4x4IQAACITVMOwr59+6a+oLyV5cuXz549O4Rw1FFHFRYWhhByc13kDQAAiE5TDsIRI0Zsd/5jjz128cUXhxCeeeaZTp061e+gAAAAGorGcV1yAAAAvnaCEAAAIFKCEAAAIFJN+TuEO9K3b9+bb745hJC65wQAAECcIg3Cvn37ZnsUAAAAWeaUUQAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEgJQgAAgEjlZXsA9WTmzJkffvjhnDlzKioqevTo0a9fv379+mV7UAAAANlUf0FYWVm5Zs2aOj+9devW+fn5dXjiypUrr7nmmkcffXSr+Weeeebdd9+933771XlIAAAAjVr9BeHcuXN79epV56dPmTJl0KBBO/usysrKk08+efr06SGEXr169evXLy8v79133509e/bzzz//8ccff/TRRy1atKjzqAAAABqvJv4dwvvuuy9Vg3fffffMmTOfeOKJRx555JNPPvmP//iPEMKCBQtuuummbI8RAAAgO+rvCOE+++zzwAMP1H79devWjRgxYvny5amHeXl1GepDDz0UQhg0aNBPfvKT9MxEInHDDTeMHz/+rbfemjRpUh02CwAA0ATUXxC2bt36Bz/4QS1Xfv7553/xi1+karBdu3b33nvvcccdt7N7rKys/PTTT0MIZ5xxxrZLjzvuuLfeemvOnDllZWUFBQU7u3EAAIDGrsFdZXTZsmVXXnnlmDFjUg+/973v3XXXXXvssUcdNrV8+fIDDzwwhHDIIYdsuzSZTKYmcnNz6zpYAACARqwBBWEymXzooYeuu+66tWvXhhD233//3/3udyeeeGKdN9ihQ4cPP/xwu4vKyspefvnlEMKAAQMEIQAAEKeGEoSffvrpFVdc8frrr4cQ8vLyfvrTn/7iF78oKir6GndRUVFRWlq6atWqt99++7e//e2HH37YrFmzESNGfI27AAAAaESyH4Tl5eV33HHHv//7v2/evDmEcPjhhz/44IPbPclzF73wwgtnn312+uHhhx8+atSoI444osYnJhKJGtdZvHjxLg0OmpzPP/8820OI15o1Lb/6qnFcRDovL1RUZHMAG3M3tijaUsuVk8lkWVnNnwjV27Llf3dXnkzkJ2q79521YUPFV19V98Ndt2RJMsdX6GkofGpAtmQ5CN95550f/OAHH3/8cQihuLj4l7/85VVXXVU/53DOmjXr6aef7tu3b2FhYT3sDgAalFZLfhNCVVZ2ncxttq7TDzPnjB7d4osvGsc3OBKJcPXVX2V7FABfm6wF4fr162+66aaRI0dWVVWFEE455ZTf/va3Xbt23X17PPPMM8vLy9euXTtv3rz777//kUceufPOO6dPnz5x4sTqjwGmLz+zXanndunS5WseLjQJ3hpZscceodq/txqQ/PxQXp7NATRv3rwwv7b/LVhYGGpxykgtN1UYQsgNRXlhd/1WFRcXtm5d/So52QrCkNe8zf/9y2HPPcPGjdkZy85KJEKXLjX8ZKkznxpQ/7JzTtGECRN69+597733VlVVlZSUPProoxMnTtytNRhCSCQSeXl5JSUlRx111MMPP/zzn/88hPDyyy9PmDBht+4XAACgYarvIPzyyy8vvPDCIUOGpL50d9FFF82aNeuiiy6q52GEEK6//vrUwb3XXnut/vcOAACQdfUahH/4wx969er15JNPhhC6dev20ksvPfrooyUlJbtpdw8++ODgwYPPPffc7S5t0aJFu3btQgirVq3aTQMAAABoyOrvO4Rz5sy59NJLU9OFhYWDBg0aN27cuHHjavn0q6666oADDtipPRYVFU2ePDmEsHLlym2zc9OmTStWrAgh9OjRY6c2CwAA0DTUXxBmXpply5YtDz/88E49/Tvf+c7OBuHhhx+emnj66af/3//7f1stHTt2bOp6Nv369dupzQIAADQN9ReE+fn5++67b52fXoeb1Pfs2XPAgAFvv/32TTfd1K9fv2OOOSa96C9/+cvVV18dQujdu/egQYPqPCoAAIDGq/6CsHv37gsXLqy33YUQEonEgw8+2L9//zVr1hx33HEnnXRSr169EonEzJkzp0yZkkwm8/PzH3vsMfchBAAA4pTlG9PvbgcffPCECROuvPLKWbNmTZ48OfWVwpRjjz125MiRzhcFAACi1cSDMIRw8sknf/TRRy+88MLs2bPnz59fUFDQq1evPn36OFMUAACIXNMPwhBCfn7+2Wefne1RAAAANCz1fWN6AAAAGghBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEKnogrC0tDTbQwAAAGgQogjC9evX//M//3P//v1btmzZqlWrdu3anXzyyY899li2xwUAAJBNedkewG73l7/85fzzz1+6dGl6zooVK1599dVXX331wQcfHDNmTElJSRaHBwAAkC1N/AhhWVnZpZdeunTp0ry8vJ///OfvvPPOkiVLXnrppVNPPTWE8Prrr19++eXZHiMAAEB2NPEgvOeee+bOnRtC+P3vf3/LLbccccQRnTp1+uY3vzlhwoThw4eHEJ577rlx48Zle5gAAABZ0MSD8Omnnw4h9O3b98ILL9xq0Z133tmsWbMQwhtvvJGFkQEAAGRbUw7Cqqqq6dOnhxAGDhyYSCS2Wtq8efM+ffqEED788MMsDA4AACDbmvJFZUpLSw855JAQwvHHH7/dFTZs2BBCaNWqVb0OCwAAoGFoykHYunXr9957b0dLp0+f/sknn4QQ+vfvX4+DAgAAaCiachBWY82aNcOGDUsmky1atEhdXaYazzzzTI0b3Lhx49c0NGgiNm3aFLw1sqSsLK+8fOvz5Bus8vJs7r2iorIqt6qWK1dWJquqdvUHW1VVlf61MlmVk6jt3ndWRUVVeXmy2lVyQthde69Bsrz8//7l0Ij+0CYSYePGrP6pbaJ8akC2xBiEU6ZMueyyyxYuXJhIJH7729+2bdu2+vXPP//8Gre5cuXKr2l00ESsWbMmhJC6dNMOVshZtqzR/BXUoUNF69ZZ+qfzztuwoeXGjY3jK+J5eaE4saw4L2t/hSbL15bn1PYf94lEctejpby8PISQk5MTQihP5obE7kqLLVsqNm6sqHaVrAVhMje57v9+bq5f32LjxtysDGZnJRJh5cqvsj2KJqjGTw1gN2k0/xr7WsybN+/6668fO3ZsCKFZs2YjR44cNmxYjc8677zzqlmaOn7YvHnzr2uQ0DQUFRWFat8ac+fmTZ5cUI8j2iVDhpTts0/1/7ZuQAoKCvLzG8fBlry80LnZ7C7N38nWALZUtUy1WW3k5oZar7tDqd39/ddkbk5id6V7Xl5eDX8MEjkhma0gzN/qL4eCgoL8/MbxvxiJhA/93aLGTw1gN4klCDdu3HjLLbfcddddZWVlIYTjjz/+wQcf7NGjR22em7p3xY6krl9aUlLytYwTmozUaT/VvDXatAmN6HO/TZvmjehdXlwctmzJ9iBqJz8/FOYX5ufnZ2sAyWR+fqK2e8/PD1W7HFCpk0VTLzkR8vPC7vqPhsLCGt9i2TtlNK958f99R7Vo0Wj+QkgkQklJIxlro1Ljpwawm0QRhB988MHQoUNTd6g/8MADb7vttrPOOivbgwIAAMiyph+EH3zwwaBBg9atW9eiRYtbb731Rz/6UW5u4/iWAgAAwG7VxINw8eLFp5566rp163r27DlhwoRu3bple0QAAAANRRMPwhEjRqxYsWKvvfZ644039t5772wPBwAAoAFpHFf0qpvS0tJHHnkkhHDdddepQQAAgK005SOE7777bmlpaQhh/Pjxb7/99o5WO+64466++up6HBcAAECD0JSDcP78+amJN998s5rV8vKa8g8BAABgR5pyC+Xm5p5wwgk1rnbQQQfVw2AAAAAamqYchJdddtlll12W7VEAAAA0UE35ojIAAABUQxACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAABEShACAPz/9u49SIrq7h/wmdldFhAhKEhQLtEoeOFi0CJ5ASVELbUCKSUSyhBjKhfFWIlGKoWWGIwxF62UUWPwgub1Eo0opVEjYhT0jaKBRUmBuApIEAUBEZVw2csw8/ujf9kisLuwwEzDnuf5g+rtc2b6O8OePf2Z7ukGiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBIRRcI33zzzYcffvjjjz9OuxAAAICURRcIr7jiivPPP/+dd95JuxAAAICUxRUIly1bNmvWrLSrAAAA2C9EFAirq6tHjx6dy+XSLgQAAGC/UJ52AUX3zDPP/O1vf5s/f/6cOXMKhULa5QAAAOwvWn8gvO+++6ZNm5Z2FQAAAPud1h8IL7nkkrPOOitZfuutt2644YZ06wEAANhPtP5AOHz48OHDhyfLL774okAIAACQiOiiMgAAAGyv9R8h3HtnnHHGLvusW7euBJXAAeSjjz4KIbRt27apDhs2lG/eXFnCivbKhg2169YdMNco/ve/223efGB83ldeHmra1dSX1adVQF2+LpPd3a1nMoX6+sxebrG+vj6EkM1mQwj1hfJCplivvaZm2+bN25rtkg0hX6StN69Qlt/y3/PmAfRLm8mEdes2p11FK7TLWQMoEoFw155//vld9qmpqSlBJXAAqa2tDc0Ojbq6NrlcWQkr2iv//Gdh4cIiVtshu7pnm5f31bP1bZOt7dSC/rl82/JsOn/EyspCNl+Tz6cTS0II27Zty+92KMrnC/n83gbC5MX+/38L2/KZYr32Dz8sfPRRcxGrELJ7+2L2VC5k57/yXwPqk09yuVyJAuFB5R8d1+m5PX54JhPKVm7d44cXMpWZQu0eP3wvFbJtM/nU9lhqD/5Crt2RTbbW1i5f3v7//u+AmRf+539qundv/jMXODAIhLv23HPNTRvJ8cPDDjusVOXAgSEJhM0MjUMOyR500IFxQCCEkMuFjRuLuYE2ays6frCvnuywdiFX0YL+NflObbOf7qutt0hZWdhS36ki25Jy96lCeWVFpm43O7dpE/b+7kVJFKyoSF5ym4pQxB3KLVuaay2EbCalI4T1hbbrP/qvDy0OOihsK9WudcfyT7p3WLXHD89kQqfsXrxv5R1Drqh/TZpTaNMpU5fOYA8h5DtW5Ds3OSnU1tauWNFu/fqWfJqVqnbtOhx2mPuZ0RoIhLt2+umn77KPMxxgB5WVlaHZodGmTSg/cP4ClZcXt9ry8rLkHMJ9IpsNLXqysrAvt94i2WzIZrNpbT2EkC1ks5nd3XpL39gmniTb8G9ZyGaL9mX+XVab4hHCbCFb/t8jqthD7L+3Vb43v3KZTCgv34v/tfLyNPe+KipCPr2tt2kTmp4UKisrKyoqyg+ciaGystzeH63DAfPxPAAAAPuWQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAidcDc7GWf+NznPjd58uQQwuGHH552LQAAACmLLhBee+21aVcBAACwX3DKKAAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApsjzjXwAAFAJJREFUgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIlWedgEl8uqrr957772LFy/esmVLr169Ro0a9a1vfauysjLtugAAAFITRSCcMGHCTTfd1PDjggULnnjiiVtuueWpp57q3bt3ioUBAACkqPUHwhtvvDFJg3369DnnnHM++9nPPvfcc88888yiRYtGjRo1b968tm3bpl0jAABAClr5dwjXrVv385//PITQr1+/+fPn33DDDT/5yU9mzJgxefLkEMKiRYvuuuuutGsEAABIRysPhPfcc8+WLVsymcz06dMPPvjghvXXXnvtl770pRDC73//+/SqAwAASFMrD4R//etfQwhDhw7t27fvDk2jR48OISxbtmzp0qUpVAYAAJC21hwI8/n866+/HkIYNmzYzq0jR45MFubNm1fSsgAAAPYPrTkQrly5sqamJoTQp0+fnVv79u1bXl4eQnCEEAAAiFNrvsromjVrkoXu3bvv3JrNZrt167Zq1aoPPvig+ef5+OOPd7mtfD6/BxVCK5YMimaGRj4fCoVMCSvaK4VCKBSK+vzFfPb9eOuFwn7w2kv7a7j96y0UQvG2vuv3tZhb3+W2d/h/L/YQ22Hbe/fwvXyGEr7URjae5tYL+XxoblLIFwo7/mLsz/L5gr0/WofWHAg3b96cLLRv377RDu3atdu+W1MOOeSQXW7r/fffb2F10Moln8hks02ehrBhQ0Uu166EFe2V2tp8LlfEUyrqsltr9t3zlxXCtm0t6F+zLYRCOieMZLOhNp9Ja+shhLp8ptD0b+kO8tlCXW5vI1RNriyEEHLZEEIun9m221tvqUJZobbZaguFskxKgbC+UJbLfbr9mrq6Qm6v39vd3XrYvDfDLZMJn26u3eOH57M12Xxujx++l/I1W7PbUtt6zfqP67Y2ub+0Zs2aTz/tkMsdMDcDW79+y0EHpfZmwj7UmgNhXV1dspCcGrqzZH1yWmkzOnfu3Exrcvywmb1eiFMmkwnNDo0TTth2wgmbSljRfq5rCN9NuwZKYdWqVSGEI444Iu1CUvaFkOLwP2gvh5u/XHusmb2lTCbTr9/mM888sN5du3+0Bq05EDYcGKytbfyTvCQKJscJm7Fhw4ZmWpO93h49euxJidB6JSeLGhqwA0MDGmVoQFpa8wcbDTce3LhxY6MdkvXb358QAAAgHq05EB555JHJQqNf8Nu6dWty6K+hGwAAQFRacyDs3Llzt27dQggLFy7cuXXRokXJwnHHHVfSsgAAAPYPrTkQhhC+8pWvhBBmz569c9OsWbNCCBUVFaeeemqpywIAANgPtPJAOGbMmBDCsmXLZs6cuf362trau+++O4Rw1llndezYMZ3iAAAAUtXKA+E555zTv3//EMLFF1+8dOnSZGVdXd348eOXL1+eyWQmTZqUaoEAAACpac23nQghZDKZBx98cMiQIStXruzbt+9JJ53UtWvXl156adOmTSGEyZMnDx48OO0aAQAA0tHKjxCGEPr37z9nzpxBgwYVCoX58+c/88wzmzZt6ty585QpUyZPnpx2dQAAAKlp5UcIEwMGDHjttdcWLly4ePHirVu39urV65RTTqmsrEy7LgAAgDRFEQgTAwYMGDBgQNpVAAAA7C9a/ymjAAAANEogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApMrTLqCVyGQyaZcAAADQMo4QAgAARMoRwn2jUCikXQLsX5LD5oYG7MDQgEYZGtCoEpyH6AghAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQyhUIh7RoAAABIgSOEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACJVnnYBB7bq6urly5eXlZX16dPnqKOOSrscAPYjb7755sKFC88888zOnTs30y2Xyy1YsGD16tUdO3bs169f165dS1YhpGI3hwbEY+PGjUuWLPnggw+OPvroY445pry8uYy2z2eNTKFQ2MuniNPs2bN/9KMfvfnmmw1rBg8efPvttw8aNCjFqiBdo0eP/vvf/95U6/jx46+//vpS1gPpOuuss5599tmqqqqTTz65qT633XbbL37xi3Xr1iU/lpeXn3vuuX/4wx/EQlqx5odGPp/v0aNHXV1dUw9/4IEHzj777GIWCKXz2muvXXrppXPnzm1Y06ZNmwsuuOA3v/lNly5ddu5fjFnDEcI98dhjj40ZMyafz4cQDj744Pr6+pqamnnz5g0ZMmTWrFlDhw5Nu0BIx+uvv/7RRx811bpp06ZSFgPpWrZs2axZs5rvc/nll99yyy3JcpcuXTZs2JDL5R599NGqqqp58+bJhLRKuxwaK1eu/OCDD5rpUFtbu6+LgnTcc889F110UZIpOnTo0K1btxUrVtTV1d1zzz2PP/747NmzBw4cuH3/Is0aAmGLrVu37sILL8zn8126dJk2bdopp5ySy+VmzJhxwQUXbN269Rvf+MY777zTtm3btMuEUqutrX3vvfdCCN/85jePPPLInTsMGTKk5EVBOqqrq8eOHZvL5ZrpM2PGjGReHzJkyB133NG/f//169dPmTJl8uTJK1asuPjiix977LFS1QslsjtDY+nSpcnClVdeWVZWtnOHvn37FqU4KK21a9dOmDAhn8/37Nnzj3/842mnnZbJZLZu3Xrrrbdee+21GzZsGDdu3Pz58xtiRRFnjQItNHHixBBCeXn5yy+/vP36Rx55JHlLb7vttrRqgxQ1nEFdXV2ddi2QjhkzZlx++eXDhg3LZDIN82xVVVWjnb/4xS+GEHr16rVu3brt1//whz8MIWQymUWLFpWkaii6Fg2NKVOmhBC6detW4iKhxC699NJkLMydO3eHpttvvz1pmjp1asPK4s0arjLaYtOmTQshjBo1aodTQ8eMGfP5z38+hNCQDCEqyWe6ZWVlyUCACN13330333xz8nFh8z3ffffd5BsjEyZM2OEkn6uuuiqEUCgUHn300eKVCqW0+0Mj/Gc26dOnT/HrgjTNnDkzhHD66acPHjx4h6bx48cfcsghIYSqqqpkTVFnDYGwZZYtW7ZixYoQwsiRI3duHTVqVAjhlVde2bp1a4kLg9QtW7YshHDkkUdWVFSkXQuk45JLLvnf/0hOJ2nKc889lyzsPJv06NHjxBNPDCE8//zzRaoTSmz3h0b4z2zivFBat/r6+uXLl4cQTjrppEY7HH/88SGEt99+O/mxqLOG7xC2TMNJcV/4whd2bh0xYsTNN9+cy+WWLVvWv3//0pYGKUs+0z322GNzudzMmTOrq6u3bNnSr1+/gQMHHn300WlXB6UwfPjw4cOHJ8svvvjiDTfc0FTPZDbp1KlTo7csGjFixD//+c+33nqrSHVCie3+0AjbzSYff/zxzJkzlyxZ0q5duwEDBgwaNOiwww4rRblQfLW1tVdccUUI4Zxzzmm0w8qVK0MIPXr0SH4s6qwhELZMEuVDCL179965tWHlO++8IxASm+Qz3XXr1h1//PENlwRIjBs37pZbbjn00ENTKg32O8ls0qtXr0Zbk9lkw4YNn3zyyWc+85mSVgapyufzyeh44YUXrr/++k8++aShqbKy8pprrpk4cWLzt2iDA0KHDh1++9vfNtX6+OOPJ4Hwy1/+crKmqLOGU0ZbZuPGjclCo+91w8pPP/20dDXB/iEJgfPmzVu6dGnv3r2//vWvjxgxIrnp8IMPPtivX78PP/ww7Rphf5HMJk1N22YTorVy5crkDoRPP/30v//97/79+48dO3bw4MFt27atra2dNGnS2WefvTtfRIQD17x587773e+GEHr37v3tb387WVnUWUMgbJktW7aEECoqKrLZRt66du3aJQubN28uaVmQtoZ7TnTv3n3OnDkrVqyYPn367Nmz33///csuuyyEsGbNmmQBCP+ZTZq6R5HZhGg1nGAydOjQFStWLFy48OGHH547d+6SJUtOO+20EMLzzz8/derUVGuEYtmyZcvkyZOHDRuWHOh74okn2rRp09AUijZrCIQtk5ylsG3btkZb6+vrk4Xtr6oMMaitrf3lL3/561//evbs2dvfb7B9+/Y333zz1772tRDCn//854Zv4ULkzCbQqO7du//617++8cYbZ86c2fDtqRBCz549//KXvxxxxBEhhEmTJqVXIBRFoVB44IEH+vTpc91119XX1x933HGzZs3a/q70RZ01nITdMgcddFAIIZ/P19fX73wpxZqammShQ4cOpa4MUtWxY8crr7yyqdZrrrnmySefDCEsWLAguWoWRC6ZTRpmjR2YTYhWv379+vXr12hThw4dLr/88p/+9KcffvjhqlWrknAIrcAbb7xx8cUXv/LKKyGE9u3bT5gw4eqrr66srNy+T1FnDUcIW6bhvh9r167duXXNmjXJQpcuXUpXE+z3TjjhhOQs60WLFqVdC+wXktmk0akk/Gc2yWQyLsUE22u4Yp/ZhFbj7rvvPvnkk1955ZWysrIf/OAHS5cuve6663ZIg6HIs4ZA2DINd8VpuNzo9v71r38lC8cee2zpaoL9Xrt27dq3bx9C2PkPHMQpmU3ee++9hvN8tpfMJj179kwGDpBo2Nk1m9A63H///RdddFFtbe2JJ55YVVV11113HX744Y32LOqsIRC2zIABA5JTeP/xj3/s3Dp37twQwqGHHtroTSmgFbvzzjvHjx//q1/9qtHW1atXb9q0KYTQ1IlAEJvkTsR1dXULFizYuTWZTQYNGlTqsiBtEyZMGD9+/PTp0xttXbJkSbJgNqEVePXVV7/3ve8VCoUxY8bMnTu30ZucNyjqrCEQtkynTp2GDRsWQnjkkUd2aNq2bdtjjz0WQvjqV7/a6DVIoXW78847J02a1HCcfHtPPPFEsrD916MhZiNGjEguCrfzbFJdXf3GG2+EEJKrMUFUVq9efeedd06cODGfz+/cmswm3bt3b/gKDxy4brzxxlwuN3DgwIceeqjhaqJNKeqsIbe02CWXXBJCeO2116ZNm7b9+t/97nerV69u6ABROe+88yoqKgqFwoUXXpjcQqrB4sWLr7766hDC2LFj+/Tpk1KBsH9p167dd77znRDCHXfcsf13EAqFwsSJE0MIXbt2HTNmTFrlQVrOP//8EMLy5cuvuuqqHZoeeuihZFf4Zz/7WQqVwT61atWqp556KoRw2WWXJacfNq+os0bGzT1bqlAonHrqqS+//HJlZeWECRNGjhy5adOmJ598csqUKfl8fty4cX/605/SrhFScNNNN02YMCGEcPTRR1966aXHHHPM+vXrq6qqpk6dWldX17lz5+rq6m7duqVdJpTIiy++OGLEiBBCVVXVySefvHOH1atXn3jiiR9++GHPnj2vuOKKESNGvP322/fdd9+MGTNCCFOnTv3+979f6qKh+JofGoVC4dxzz02OBI4YMWLcuHGHH374ihUrnn322WTl0KFDX3rpJXdk4UD39NNPjxw5MoTQqVOnZgLh6NGj77rrrmS5iLNGgZZbu3Zto6f5nnnmmVu2bEm7OkjNj3/840bPlx48ePDixYvTrg5K6oUXXkh+/6uqqprqM2fOnJ3PfMtkMpMmTSplqVBKuxwaGzduPOWUUxrda73gggs2bNhQ4oKhGG699dbdSWpjx47d/lFFmjUcIdxDdXV1d9999/Tp05cvX15WVnbssceOGzfu/PPP95EVkVu8ePGtt95aXV397rvvdu3adeDAgUOHDr3wwgvLysrSLg1KasWKFffee28I4aKLLmrqqnEhhLVr1952223PPvvs6tWrO3bseNJJJ40fP37o0KGlKxRKazeHxowZM+6///7ly5evWbPmqKOOGjBgwKhRo84444zSFQrFNGvWrJdeemmX3fr163feeedtv6YYs4ZACAAAECkXlQEAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQqf8HQmtgkt6F9dYAAAAASUVORK5CYII=\"/>" + "<img width=600 height=450 style='object-fit: contain; height: auto;' src=\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAABLAAAAOECAIAAAA+D1+tAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeZwU5YH44bfnhuFSRkEuQRREBBEPPBGVRCXGM4oRdY2JbvglrsZ4bIy7ZrMaV7zWxZAYdU08UTEoGEEF8YghXqgIAnKEQxSQS4Zzrv790dneXo6ZYZDpmXmf5w8+1VXVVW8PNM2Xqq5KJJPJAAAAQHxysj0AAAAAskMQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAAREoQAgAARCov2wMAoDGZN2/epEmT0g+POeaYvn37ZnE8tffggw9WVFRsd1Hr1q179uzZs2fP4uLi2m9wzpw5U6ZMSU0feuihAwYMqPEpa9asOeKII1LT3bt3f+mll2q/OwDYHQQhADthxIgRDzzwQPrhWWedNXbs2CyOp/Z+/OMfb9mypZoVEonEOeecM2LEiP322682G5w6derw4cNT0zfccENtgrCysnL+/Pmp6bw8H8EAZJ9TRgGorbKysmeeeSZzzoQJE9atW5et8Xy9ksnks88+26tXrwkTJmR7LDX4/e9/v///GDVqVLaHA0AjJggBqK0XX3xx7dq1mXO2bNnSWI4Q1lJZWdnFF1/82WefZXsg1Vm7du38/7F69epsDweARkwQAlBbjz/++LYzn3zyyfofyS56/vnnv8jw0Ucf3Xnnnc2bN08tXbVq1SOPPLI79tu2bds1/+Pdd9/dHbsAgJ3iCwwA1MpXX331wgsvpKbbtm27adOmjRs3hhAmT568cuXKkpKS2mxk+fLl5eXlqemSkpKioqLMpRs2bFizZk1quqioaKttlpeXL1y4cP78+RUVFd26devatetOXQMm05577tm+ffv0w/bt2/ft27eysvKGG25IzXn77bfrtuVPP/109uzZzZo16927d4cOHbZaWlVVtX79+tR0YWFhy5Ytt11h6dKlCxYsWL16dZcuXbp27dq2bdu6jSSEsGHDhg8++GD58uW5ubnt27c/9NBDCwsLq3/KggULZs6cmZube9hhh7Vr1y5k/Jbl5eWlf2jr1q1Lnyq8xx57pH4jPv300xkzZpx22mnNmjVLb7C8vHzJkiWLFi1avXp1+/btO3Xq1KVLl0QisdWr/vzzz1PTBQUFe++9dwhh7ty5M2fOzM/P79OnT5cuXdIrb9y48e233169enXXrl0PPPDAOv8ZAODvkgBQCw899FD6s+OKK674zne+k344atSoWm7ku9/9bvpZd9xxx1ZLr7766vTS66+/Pj1/zZo1N91001b5lJOTc8EFF8yYMaOWu85soTfffHPbFTK/OvjNb36zxg0+/PDD6fVvuOGGBQsWnHDCCZkjPOuss5YsWZL5lL/97W/ppQMGDMhcVF5e/tBDD+27775bfUwfffTRL774Ynq1F1988bDDDuvcuXN6hQ4dOhx22GGZP65kMrly5cpLLrmkoKAgc1PNmjW78sorS0tLt/tyli9f/o1vfCO9ckFBwXXXXVdRUdG7d+/UnI4dO6ZXvvnmm9Nrjhw58quvvjrzzDNTD9MvubS09Fe/+tW2/1Nw4IEH/u53v6uqqkpv7csvv0wvPeSQQ7744oshQ4ak5yQSiTPOOGPFihWVlZW33nprZgG2bNnyrrvuqqysrPE3C4AdEYQA1MpJJ52U/of4K6+88tRTT6UfDhw4sJYbGTduXPpZJ5xwwlZLe/XqlV46bdq01MzS0tLM+VvJy8t79dVXa7PrGoPw2muvTa/w7//+7zVuMDMIL7nkkm2PB4YQDj744LKysvRTqgnCiy66aEevMYTwy1/+MrXao48+ut0Vzj333PSmXnjhhdRBtu3q0qXLti//o48+yjwKl3b55ZfXGIT33nvvcccdl36YCsLy8vKBAwdW84r+5V/+Jb21zCBMHffbdv0BAwakr+m6lXvuuafG3ywAdkQQAlCzpUuX5uT8/Wvne+21V0VFxfr169NfukskEp999llttlNWVrbnnnumnpWXl7dmzZr0osWLF6f/id+jR4/0/O9973uZ//rv2bPnMcccs8cee6TntG3bdsWKFTXuOjMI77zzzgkZHn300UsuuSR9HmPPnj0zB7YjmUGYttXJkCGEe++9N/2UHQXhH/7wh8yn7LPPPgMHDsw8DJhIJCZNmpSsxRHCZcuWtW7dOnNrHTp02GuvvTLndO7cecOGDem9V1ZWHnTQQZkrFBYWpl9I+vYYOwrCww8/PPO5qSD8t3/7t6322KdPnzZt2mS+otmzZ6e2lhmEmStsO3O7i4qLi7ds2VLj7xcA2+WiMgDUbPTo0VVVVanpc845Jzc3t7i4OH1eXzKZzDxgWI38/Pxzzz03NV1RUZF5Z/bM6QsuuCA9nfnFxQULFsyePfutt976/PPPL7zwwtT8VatWvfrqqzv1cq699trTMlx88cWPPPJIMpkMIQwYMOCVV17JTJdaOvHEEz/44IOysrIZM2b069cvPf/Pf/5zjc8dP358enrcuHGff/7566+/vmjRov/6r/9KzUwmk2PGjAkhnHbaae+9994111yTXn/48OHvvffe7bffnn5pX331VWq6e/fu06ZNW7p06YoVK95444199tknNX/JkiW33npreguPPvroJ598kppu0aLFs88+u27duuXLl1933XUhhIqKiuoH/95774UQBg4cOHz48OHDh6dO6UyNNoSQn58/efLkxYsXT58+fcWKFekDoclkckeX1enXr9/7779fVlY2bdq0bt26ZS4aNmzY4sWLN2/e/Mwzz+Tn56dmbtiw4dNPP61+kADsiCAEoGaZ1xc977zzUhOZXyOs/bVG0yEXMmIv7CAIP//88/Tho6KionTSFBUV3Xjjjcf+j6/x1gtDhgzp2LHjzj6rc+fO48aN69evX15eXu/eve++++70olmzZtX49I8++ig93bVr19REIpH48Y9/fPLJJ6deY2VlZY3b+eyzzx577LHUdE5Ozp/+9KdDDz009fD4448fPXp0es177rmnrKwsNX3nnXem599///3nnHNOQUHBXnvtNWLEiMsuu6zGnSYSieeff/71118fNWrUqFGj9thjj40bN27YsGHffffdd999zz333PTJxvn5+ZknHs+dO3e7Gxw9enT//v3z8vIOPfTQzPTt2rXrww8/3Llz54KCgu985zuZ3zPMPPQKwE5xlVEAajB79uxp06alpvfee+9Bgwalpk8//fRmzZpt2rQphPDee+/Nmzdv//33r3FrAwcO7Nix49KlS0MIEyZMqKqqysnJqaysnDx5cmqFvn37pr80mHme59KlS7t163bmmWcOGTLkpJNO6t27d20Ovu2sm2+++Z133hk7dmz6AFRtfPOb32zRokX64SGHHJKeTl83tRqZL/Ooo44aMmTIt771rVNPPbV9+/aTJk2q/TDefPPN9PTpp5/es2fPzKUDBw7s379/6rdy06ZN77///tFHH11eXj579uzUCu3btz///PMzn/Lzn//8v//7v6vf6VlnnXXGGWdkzmnevPn8+fO3Wm3t2rXvv//+vffem56z3cRt37595rAzr0lz7LHHZv6mZC6qTS0DsF2OEAJQg8zDg6nzRVPTxcXFp512WnpR5gGoauTk5AwdOjQ1vWrVqr/+9a8hhHfffTcdTpnni7Zt2zbz0p3Lli27//77zzzzzLZt237jG9+455576nYH+fvvv39qhldffXXUqFEHHHBAaumf/vSnzAvM1MZW19JMf7uyltKn0YYQNm7cOGbMmO9973upLwf+y7/8S7rGa7RkyZL0dN++fbdd4eCDD05Pp760uWDBgvRJob17905/YzBlv/32S3/nc0f69++/3fnJZHLq1Kk333zzN77xjfbt2++xxx6DBw/OPBa6XVt9ATJTHc7jBaBGghCAGjzxxBPp6VmzZv0gQ+pAX0otgzBs76zRHX2BMIQwZsyY008/fastlJWVTZo06ZprrunWrds//dM/1fg9t60cdNBBR2U48cQThw8f/uabb6avVfPb3/72iy++2Klt7oqbbrrp2muv3eomgclkctq0abfccsthhx02ePDgFStW1Lid0tLS9HTqLoJbSZ9zG0JIfdVw0aJF212a1qlTp+p3ut1OW7Ro0UknnXTMMcf88pe/nDRp0vLly1Pzd+q4KwD1QBACUJ2pU6cuWLAg/fD1119/KEPmDdxnzpw5Y8aM2mzzsMMOyzwcFzKCcMCAAVtdR6SkpGT8+PFz5sy58cYbt7oYZgihoqJi5MiR//qv/7rzr2xr7dq1O/roo1PTZWVl77///q5vs5by8vLuuOOOpUuX/ud//ufAgQPTx2DTJk+efNZZZ9W4nVatWqWn07d6z5QZ8Kn7OmZegHS7zVmHMK6qqjrvvPNee+211MO99trrwgsvvPvuu1977bXf//73O7s1AHYrQQhAdTLPF61R7S8tk75D/fTp06dPn/7OO++kHm51eDCtR48et95668yZM+fOnXvHHXcce+yxmUsfeOCB2g+yGhs2bEhP7+xRx13Xtm3bq6666vXXX1++fPnDDz981llnZR4znDp16syZM6vfQmZLbzdoM88+3XfffUMImV/7nDFjxlZfxlu8ePF27wlRvTfeeCN9BdHjjz9+0aJFjz/++E9+8pMTTjghfagQgAZCEAKwQxUVFU8//XT64T777NNxG5mHmGp584nwf88aveaaa1IdkpOTs9VFTX71q1+lT+xMfdtw//33v/baa//85z+///77BQUFqdVWrVpVXl5e11f5d1OnTn3rrbfSD9PX59zdJk6cmH6No0aNCiG0bdv20ksvHTt27KJFi9L3hQ8hLFu2rPpNHX/88enbRb788supG0KkPffcc5m3lzjiiCNCCC1btmzfvn1q5ueff75V0v/yl7+swyuaM2dOevrkk09u1qxZ+uHYsWPrsEEAdh9XGQVgh15++eX0AaJ27dp99tln6d5IW7t2bbt27VL3MJg/f/4777xz5JFH1rjlnj17HnrooR988EEIIX190eOPP75Dhw6Zq5WUlKTPSr322mvHjh2b7s9169alD+IdeOCBO/XltEceeSR9QmMIYdOmTXPmzHn++efTG+zRo0fqAFo92G+//dKvceHChUcffXS6RTdt2pS6iGtK+pIwmb8Lmed5tmvX7oc//GGqKkMIQ4YMefjhhwcPHlxZWTl27Ngf/vCH6TVvvPHG9E/siiuuSIffFVdcsWXLlm9/+9vLly8fOXLkQw89VIdXlHlNnT/+8Y/nnHPOwQcfvGbNml/84heZ10EFoCEQhADs0FbXF922BkMIbdq0GTx48Isvvph6OHr06NoEYQjhwgsvTAVh2rbniw4ZMqRNmzZr164NIbz11lsdOnTo2rVrYWHhihUrMk9lPOWUU2r3gv6u+lNM8/Pz03fzqwc9evQ4/PDDU0fzli9f3r9//86dO7du3XrdunWpC4Gm9OvXL32dmMw7Jf7ud79btGjR0Ucf/c///M8hhFtvvXXMmDGpSvzyyy9PP/30goKCqqqqzDNge/XqlXkZ1Z/+9Kf33Xdf6l6OmzZt+sEPfrCLr+iwww5LT0+fPr1v377NmzffuHHjVqtVVVXt4o4A2HVOGQVg+zZs2PD888+nH251MmemzLsmPP3008lksjbbHzp0aCKRSD/My8vLvNN9SqdOncaOHZs+NbSiomLevHkzZ87MrMGjjz76tttuq80ea6Nz585PPvlk6nTKejNu3LguXbqkHy5ZsmTGjBmZNVhSUjJmzJj0w2OPPTZ9/ZgtW7aMGzcufXZomzZt/vjHP3bv3j29cllZWWYN9u/ff8yYMZkHVFu1avX4449v934P/fr1q/Eqo9s66KCDLrnkksw5qRps3rz51VdfnZ45ffr0nd0yAF87QQjA9j333HPpi6y0a9du4MCBO1rzrLPOSt+/bunSpW+88UZttt+5c+fjjz8+/XDw4MFb3c0vZdCgQbNnz77mmmu2vSFez549f/3rX0+aNKmoqKg2e9yR5s2b9+nT55xzzrnrrrvmzJmT2bf1Y5999pk+ffrdd9+deYmXlJKSkp/97GcfffRRZuO1b99+7NixhxxyyHa3duyxx3788cfXX3/9Vj/Pjh07jhgx4p133tn2Yq2nnnrqe++9d9xxx6XntG7devjw4W+88UY1Nwasxm9+85vrrrsufVGc3Nzcb33rW++///7PfvazdN7/6U9/GjduXB02DsDXKFHL/8cFgKxbu3bt0qVLV69evffee3fu3Hln7//eKGzatGnp0qXLli1r1apVp06dqr8v/JYtW1auXNm8efNWrVpte7OKZDI5b968FStW5OTktG/ffqv7eWzXF1988be//W3vvffu3r176vhtjx495s6dG0LYb7/95s+fv1OvZfPmzXPnzl2/fn2PHj3atm27U88FoH4IQgCI2ieffJL+Ol/Pnj0zzyYtLS3dY489UteAPfPMM5977rnsDBGA3cYpowAQtWHDhvX5HzfeeGN6fmVl5VVXXZW+M2E9f68SgPrhCCEARO2uu+5KX3Q0kUicdNJJAwcOLCsrGz9+fPq6LwcccMC7775bt+8TAtCQCUIAiN3VV19977337mhpt27dXnjhhW0vRQNAEyAIAYDw4Ycfjhw58vXXX//ss8+2bNmSk5PToUOH7t27f+973xs2bFj6KrIANDGCEAD4X8lkcvXq1a1atcq8ugwATZUgBAAAiJSrjAIAAERKEAIAAERKEAIAAERKEAIAAERKEAIAAETKbYV2VSKRyPYQAACAJmu33hjCEUIAAIBIOUL49XA7R9jK4sWLQwhdunTJ9kCgYfHWgO3y1oDtqoezER0hBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiFRetgcAAAA0cYlEIttDaKCSyWR2B+AIIQAAQKQcIQQAAOpD1o+GNSgN5KipI4QAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACREoQAAACRysv2AOrP7NmzJ06cuGTJkpKSkoMPPviUU04pKCjI9qAAAIAQQpgxI4wZk4X99u4dzjsvC/ttIKIIwlWrVl1++eVjx47NnNmzZ8/f/e53AwcOzNaoAAAAsqvpnzJaWlo6aNCgVA127Nhx6NChgwYNysnJmTNnzre+9a1PP/002wMEAADIjqYfhFdfffWMGTMSicRDDz302WefjR49esqUKX/5y19atmy5fv36yy67LNsDBAAAyI4mHoRz5879wx/+EEK45ZZbMttvwIABt9xySwjhrbfe+uyzz7I2PgAAgOxp4t8hfPzxxysrKwsLC3/0ox9ttWjYsGGp80WXL1/eqVOnbIwOAAAgm5p4EP7pT38KIXz7299u3br1Vovatm173333ZWNQAAAADUJTPmW0srLy448/DiEcfvjh6Znr1q1LJpPZGxQAAEBD0ZSDcOHChVu2bAkhtG/ffsGCBRdffHHr1q1bt27dqlWrY4455s4776ysrMz2GAEAALKmKZ8y+uWXX6Ym5s6d+6Mf/WjDhg2ph+vXr586derUqVOfeuqpP/7xj507d65+O3vuuWeN+3JlGtjKF198EULIyWnK/+sEdeCtAdvlrUGj8+WXX65atSqEkJ+f37179zpvJ+sd0ZSDcP369amJX/3qV4lE4kc/+tHZZ5/dtWvXefPm/fd///fTTz/93nvvXXHFFRMmTKh+O2vWrKlxX1VVVV/DiKEJSZ2b7a1BA9ds5Uv5WxbV5x7bf/VVCKFFVesQwvq9zq0qaFufe4cGy6cGjc53v/vdyZMnhxBycnKWLl3avn37um0n63/sm3IQVlRUpCaSyeSYMWPOOeec1MPu3bufcsop++677x133DFx4sSxY8eeffbZ1Wxn9erV1SxNHT90nVLYSupvN28NGrhEZXFYl1uvuyzPDSG0bp4bQmjVoX0oaleve4eGyqcGjcvnn38+ZcqU1HRVVdVTTz111VVX1W1TWf9j35SDsHnz5qmJb33rW+kaTLv55pvvv//+devWvfrqq9UH4R577FHjvpzhAFtJvSm8NWjoEomQSNTvDhP/+2tOTvAegRCCTw0amyeffDL1vxjFxcUbNmx44okn6hyEWf9j35Tfdenv/h177LHbLi0uLj7ooINCCKkrkQIAANTG448/HkI48MADL7/88hDCO++8M3/+/GwPqo6achDuv//+qeBu2bLldldIFePmzZvrdVgAAECjNWvWrA8++CCEcNFFFw0dOjQ184knnsjqoOquKQdhUVFR6hjgzJkzt7vCrFmzQgh9+/at12EBAACN1mOPPRZCSCQSw4YNGzBgQJcuXYIgbLDOOOOMEMLo0aOXL1++1aJJkyb97W9/CyH0798/CyMDAAAam2QymWq/4447rmvXrolE4rzzzgshzJ49O3XYsNFp4kH4wx/+sKioaO3atUOHDk3d3yZl2rRp3//+90MI3bt3/4d/+IfsDRAAAGg03nrrrYULF4YQLr744tSc888/PzWR+mJho9PEg7Bz58633HJLCOH1118/6KCDzj333Guvvfa000476qijFi9enJub+8ADDzRr1izbwwQAABqBVPUVFhamDgyGEI488sh99903hDB69Ois31SwDpp4EIYQfvrTn44YMaKwsHDt2rV//OMf77rrrokTJ5aXl/fp0+evf/3riSeemO0BAgAAjUB5efkzzzwTQjj99NPbtGmTnp+Kw6VLl77xxhtZG1xdNeX7EKZdd911w4YNe/bZZ2fOnLl58+aDDjrokEMOOemkk/Lz87M9NAAAoHGYOHHiqlWrQggXXXRR5vyhQ4feeeedIYQnnnhi0KBBWRlbnUURhCGEDh06XHnlldkeBQAA0Filri/aqlWrY445Zu3aten5+++/f+fOnZcsWfLss8/++te/blyHnWIJQgAAgDorLS0dP358CGHdunXt2rXb7jqrV6+eOHHit7/97fod2i5p+t8hBAAA2EXPPvvspk2balyt0d2Q0BFCAACAGqSuL9q8efNp06YVFhZuu8LgwYPnz58/bty4DRs2FBcX1/sA60gQAgAAVOeLL7549dVXQwhnnHFGz549t7vOBRdccOutt27cuPG5554bNmxY/Q6w7pwyCgAAUJ0nn3wydY/BCy+8cEfrDB06NDXRuO5QLwgBAACqk2q8Pffc89RTT93ROn369Ondu3cI4ZVXXlm5cmX9DW7XCEIAAIAdmjVr1rRp00II3/nOd6q/pUTqIGFFRUXq/vWNgiAEAADYofQpoNWcL5qSPmu0EV1r1EVlAAAAdui8884bPHhwIpEYOHBg9Wv26NHjz3/+c3l5eU5OoznwJggBAAB26JBDDqn9yscee+zuG8nu0GjKFQAAgK+XIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUIAQAAIiUG9MDAADZd/DB4eCDsz2I+DhCCAAAEClBCAAAEClBCAAAEClBCAAAEClBCAAAEClXGQUAABqAtTPC4jFZ2G/r3mHf87Kw34bBEUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBIuTE9AABAdZLJ5Jw5c7a7qEWLFh07dkwkEvU8pK+LIAQAAKjOhg0bevXqtaOlxcXFPXv2/Kd/+qdLLrmk0ZWhU0YBAADqbsOGDdOmTbv00ktPOOGELVu2ZHs4O0cQAgAA1Mqll146N8OcOXOmTJkycuTI7t27hxDefPPNn/3sZ9ke485xyigAAECttG7dev/998+c06NHj0GDBv3DP/zDoYceOn/+/F//+te33357fn5+tka4sxwhBAAA2CUtW7a84oorQghlZWUzZszI9nB2giAEAADYVR07dkxNbNiwIbsj2SmCEAAAYFfNnj07hJCbm9uzZ89sj2UnCEIAAIBd8umnn44cOTKEcMEFF+y1117ZHs5OcFEZAACAWpk9e/Zjjz2WflhVVbVs2bIZM2Y89dRTZWVlRx555KhRo7I4vDoQhAAAALXy0ksvvfTSS9td1KtXrxdffLFVq1b1PKRd5JRRAACAWikoKGi9jUQiEUKYNWvWAQcc8Mwzz2R7jDtHEAIAANTK8OHD126jtLR08uTJffr0WbNmzQUXXDB+/PhsD3MnCEIAAIC6Ky4uPumkk6ZMmdK2bduqqqobb7wx2yPaCYIQAABgV7Vt2/aCCy4IIcyYMWPt2rXZHk5tCUIAAICvQZcuXVITX375ZXZHUnuCEAAA4Gswf/78EEJBQUG3bt2yPZbaEoQAAAC7aunSpU8++WQIoW/fvnl5jeb2fo1moAAAANlVWVm5efPmrWYuW7Zs6tSpN9xwQ2lpaQjhlltuycbQ6kgQAgAA1Mp999133333VbPCNddcc8opp9TbeHadIAQAANglubm5vXv3HjFiROOqwSAIAQAAqtesWbMpU6bsaGmbNm0OPPDAoqKi+hzS10UQAgAAVCc3N3fQoEHZHsVu4SqjAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkRKEAAAAkXJjegAAoAFoc3Boc3C2BxEdRwgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAilZftAQAAAFFIJBLZHgJbc4QQAAAgUg/wyWAAACAASURBVI4QAgAAu1cymcz2ENg+RwgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAiJQgBAAAilZftAex2H3744Z///OcdLd1rr72GDh1an+MBAABoIJp+ED7yyCP33HPPjpYecsghghAAAIhT0z9ldO7cudkeAgAAQEPU9INw3rx5IYR/+7d/K9+e999/P9sDBAAAyI4mfspoVVXVggULQgi9evXKy2viLxYAAGCnNPEjhIsXLy4rKwsh9OzZM9tjAQAAaFiaeBCmvkCYSCQOOOCA1JxUHwIAANDEgzD1BcIuXbq89957p5xySklJSVFRUbdu3c4888zx48dne3QAAADZ1MS/Vpc6Qrh06dKBAwemZy5cuHDhwoXjxo0bOnTogw8+2KJFi+o3MmnSpBp3tHnz5l0cKjQxW7ZsCd4aNHi55eWJior63GNlZWUIoaKiIoRQuWVLMniPQAg+NSB7mngQpo4QVlRU9OjR48orrzziiCPy8vI++uij2267bd68eU899VRJScl9991X/Ua+8Y1v1LijFStWfD0jhqZi1apVIYTCwsJsDwSq0/yrr/I3bajPPW7cuDGEkJubG0JYv3JlZX597hwaLp8akC1NPAiXLFlSWFg4YMCAF198sbi4ODXzsMMO++53vztkyJDXXnvtN7/5zcUXXzxgwIBqNjJ48OBqlqaOHxYVFX2Nw4YmIPWh7q1BA1dQUJBbXq8fhalLXqd+LSwsrCrwHoEQfGpA9jTxIPzggw+2O79Zs2ajRo06+OCDq6qqxo8fX30QvvLKK9UsTSQSIYS99957V8YJTU/qtB9vDRq6ja1CKK7PHaZOFk39H2VxSUko8h6BEHxqQPY08YvKVKNXr1777bdfCOHjjz/O9lgAAACyIN4gDCH06NEjhLBo0aJsDwQAACALmvIpo+vXr1+/fn1OTs6OTj9Ys2ZNCCF9i0IAAICoNOUjhBMnTtxnn33atWs3c+bMbZeWl5fPmjUrhNCnT596HxoAAED2NeUgPP3001u2bBlCuPXWW7ddevfdd69duzaRSJx66qn1PjQAAIDsa8pBWFRU9P3vfz+E8OSTT/7kJz8pLS1NzS8rK7v11lv/9V//NYTwj//4j0ceeWQ2RwkAAJAliWQyme0x7EZlZWUnnXTSW2+9FUJo1qzZAQccUFlZOXfu3LKyshDCkUce+fLLL7du3XpXdpG67UTT/jFCHSxevDiE0KVLl2wPBKq18Mmwbk597vCrr74KIfz9o6fH8FDUrj73Dg2WTw3YrnpojaZ8hDCEUFBQ8MILL1x//fXFxcWbNm2aPn36zJkzy8rKiouLb7/99r/85S+7WIMAAACNV1O+ymhKmzZtbr/99p/97GeffPLJwoULc3Nz+/bt26NHj9zc3GwPDQAAIJuafhCmtGnT5phjjjnmmGOyPRAAAICGoomfMgoAAMCOCEIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBICUIAAIBIRRqEEyZMGD169KZNm7I9EAAAgKzJy/YAsuC55547++yzQwhLlizp1KlTtocDAACQHdEdIVy6dOn3v//9bI8CAAAg++IKwqqqqosuumj16tXZHggAAED2xRWEt91222uvvZZIJLI9EAAAgOyLKAjffvvtX/ziF/n5+VdddVW2xwIAAJB9sVxUZt26dRdeeGFFRcXtt9/eoUOHbA8HAAAg+2I5Qjh8+PAFCxaceOKJ1157bbbHAgAA0CBEEYSPPPLIE088seeeez766KM5OVG8ZAAAgBo1/VNG582b9+Mf/ziE8MADD3Ts2LEOWzj//PNrXGflypV12DI0YanL+TZv3jzbA4HqFJaW5m7cWJ973LRpUwghPz8/hLB59eqqgtz63Ds0WD41IFuaeBCWl5dfeOGFpaWll19++TnnnFO3jTzzzDM1rrOxfv89AQ3f5s2bg7dGlrzxRtHGjY3jbIjc3FBZmc0B7J8XWtf6ytO5ucnKyl29TvWmTfkhhGbNQghh9Sd/DcnddeHrDh0q2rWrqmaFjW0Hh0QT/2cAjYhPDciWJv5JcNNNN7377rs9e/b8z//8zzpv5Omnn65maer4YUlJSZ23D01S6jCIt0ZWLFuWt2ZN47i/Tn5+KC/P5gBat2oeCotquXJBQbKsbFd/sFu2JEIIZWWFIYSq5LL8xKZd3OCONC+rap1MVrfCnnuE3MLdtHfYWT41IFuachBOnjz5jjvuyM/Pf/zxx3flDITzzjuvxnWc4QBbadasWfDWyJKCgpCfn+1B1E7Wx5mXl1v775bn5oZd/x56anepX3NDTs5u+zJ/Xl5O9T/e/ObNBSENh08NyJamHIR33XVXMpns06fPK6+88sorr6Tnf/jhh6mJUaNGtWrVKoTw05/+ND/r/yoBAACoX005CKuqqkII06ZNmzZt2nZXuO2221ITP/7xjwUhAAAQm6YchH379k19QXkry5cvnz17dgjhqKOOKiwsDCHk5rrIGwAAEJ2mHIQjRozY7vzHHnvs4osvDiE888wznTp1qt9BAQAANBSN47rkAAAAfO0EIQAAQKQEIQAAQKSa8ncId6Rv374333xzCCF1zwkAAIA4RRqEffv2zfYoAAAAsswpowAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJEShAAAAJHKy/YA6snMmTM//PDDOXPmVFRU9OjRo1+/fv369cv2oAAAALKp/oKwsrJyzZo1dX5669at8/Pz6/DElStXXnPNNY8++uhW888888y77757v/32q/OQAAAAGrX6C8K5c+f26tWrzk+fMmXKoEGDdvZZlZWVJ5988vTp00MIvXr16tevX15e3rvvvjt79uznn3/+448//uijj1q0aFHnUQEAADReTfw7hPfdd1+qBu++++6ZM2c+8cQTjzzyyCeffPIf//EfIYQFCxbcdNNN2R4jAABAdtTfEcJ99tnngQceqP3669atGzFixPLly1MP8/LqMtSHHnoohDBo0KCf/OQn6ZmJROKGG24YP378W2+9NWnSpDpsFgAAoAmovyBs3br1D37wg1qu/Pzzz//iF79I1WC7du3uvffe4447bmf3WFlZ+emnn4YQzjjjjG2XHnfccW+99dacOXPKysoKCgp2duMAAACNXYO7yuiyZcuuvPLKMWPGpB5+73vfu+uuu/bYY486bGr58uUHHnhgCOGQQw7ZdmkymUxN5Obm1nWwAAAAjVgDCsJkMvnQQw9dd911a9euDSHsv//+v/vd70488cQ6b7BDhw4ffvjhdheVlZW9/PLLIYQBAwYIQgAAIE4NJQg//fTTK6644vXXXw8h5OXl/fSnP/3FL35RVFT0Ne6ioqKitLR01apVb7/99m9/+9sPP/ywWbNmI0aM+Bp3AQAA0IhkPwjLy8vvuOOOf//3f9+8eXMI4fDDD3/wwQe3e5LnLnrhhRfOPvvs9MPDDz981KhRRxxxRI1PTCQSNa6zePHiXRocNDmff/55tocQrzVrWn71VeO4iHReXqioyOYANuZubFG0pZYrJ5PJsrKaPxGqt2XL/+6uPJnIT9R27ztrw4aKr76q7oe7bsmSZI6v0NNQ+NSAbMlyEL7zzjs/+MEPPv744xBCcXHxL3/5y6uuuqp+zuGcNWvW008/3bdv38LCwnrYHQA0KK2W/CaEqqzsOpnbbF2nH2bOGT26xRdfNI5vcCQS4eqrv8r2KAC+NlkLwvXr1990000jR46sqqoKIZxyyim//e1vu3btuvv2eOaZZ5aXl69du3bevHn333//I488cuedd06fPn3ixInVHwNMX35mu1LP7dKly9c8XGgSvDWyYo89QrV/bzUg+fmhvDybA2jevHlhfm3/W7CwMNTilJFabqowhJAbivLC7vqtKi4ubN26+lVyshWEIa95m//7l8Oee4aNG7Mzlp2VSIQuXWr4yVJnPjWg/mXnnKIJEyb07t373nvvraqqKikpefTRRydOnLhbazCEkEgk8vLySkpKjjrqqIcffvjnP/95COHll1+eMGHCbt0vAABAw1TfQfjll19eeOGFQ4YMSX3p7qKLLpo1a9ZFF11Uz8MIIVx//fWpg3uvvfZa/e8dAAAg6+o1CP/whz/06tXrySefDCF069btpZdeevTRR0tKSnbT7h588MHBgwefe+65213aokWLdu3ahRBWrVq1mwYAAADQkNXfdwjnzJlz6aWXpqYLCwsHDRo0bty4cePG1fLpV1111QEHHLBTeywqKpo8eXIIYeXKldtm56ZNm1asWBFC6NGjx05tFgAAoGmovyDMvDTLli1bHn744Z16+ne+852dDcLDDz88NfH000//v//3/7ZaOnbs2NT1bPr167dTmwUAAGga6i8I8/Pz99133zo/vQ43qe/Zs+eAAQPefvvtm266qV+/fsccc0x60V/+8perr746hNC7d+9BgwbVeVQAAACNV/0FYffu3RcuXFhvuwshJBKJBx98sH///mvWrDnuuONOOumkXr16JRKJmTNnTpkyJZlM5ufnP/bYY+5DCAAAxCnLN6bf3Q4++OAJEyZceeWVs2bNmjx5cuorhSnHHnvsyJEjnS8KAABEq4kHYQjh5JNP/uijj1544YXZs2fPnz+/oKCgV69effr0caYoAAAQuaYfhCGE/Pz8s88+O9ujAAAAaFjq+8b0AAAANBCCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFKCEAAAIFLRBWFpaWm2hwAAANAgRBGE69ev/+d//uf+/fu3bNmyVatW7dq1O/nkkx977LFsjwsAACCb8rI9gN3uL3/5y/nnn7906dL0nBUrVrz66quvvvrqgw8+OGbMmJKSkiwODwAAIFua+BHCsrKySy+9dOnSpXl5eT//+c/feeedJUuWvPTSS6eeemoI4fXXX7/88suzPUYAAIDsaOJBeM8998ydOzeE8Pvf//6WW2454ogjOnXq9M1vfnPChAnDhw8PITz33HPjxo3L9jABAACyoIkH4dNPPx1C6Nu374UXXrjVojvvvLNZs2YhhDfeeCMLIwMAAMi2phyEVVVV06dPDyEMHDgwkUhstbR58+Z9+vQJIXz44YdZGBwAAEC2NeWLypSWlh5yyCEhhOOPP367K2zYsCGE0KpVq3odFgAAQMPQlIOwdevW77333o6WTp8+/ZNPPgkh9O/fvx4HBQAA0FA05SCsxpo1a4YNG5ZMJlu0aJG6ukw1nnnmmRo3uHHjxq9paNBEbNq0KXhrZElZWV55+dbnyTdY5eXZ3HtFRWVVblUtV66sTFZV7eoPtqqqKv1rZbIqJ1Hbve+sioqq8vJktavkhLC79l6DZHn5//3LoRH9oU0kwsaNWf1T20T51IBsiTEIp0yZctllly1cuDCRSPz2t79t27Zt9euff/75NW5z5cqVX9PooIlYs2ZNCCF16aYdrJCzbFmj+SuoQ4eK1q2z9E/nnbdhQ8uNGxvHV8Tz8kJxYllxXtb+Ck2Wry3Pqe0/7hOJ5K5HS3l5eQghJycnhFCezA2J3ZUWW7ZUbNxYUe0qWQvCZG5y3f/93Fy/vsXGjblZGczOSiTCypVfZXsUTVCNnxrAbtJo/jX2tZg3b971118/duzYEEKzZs1Gjhw5bNiwGp913nnnVbM0dfywefPmX9cgoWkoKioK1b415s7Nmzy5oB5HtEuGDCnbZ5/q/23dgBQUFOTnN46DLXl5oXOz2V2av5OtAWypaplqs9rIzQ21XneHUrv7+6/J3JzE7kr3vLy8Gv4YJHJCMltBmL/VXw4FBQX5+Y3jfzESCR/6u0WNnxrAbhJLEG7cuPGWW2656667ysrKQgjHH3/8gw8+2KNHj9o8N3Xvih1JXb+0pKTkaxknNBmp036qeWu0aRMa0ed+mzbNG9G7vLg4bNmS7UHUTn5+KMwvzM/Pz9YAksn8/ERt956fH6p2OaBSJ4umXnIi5OeF3fUfDYWFNb7FsnfKaF7z4v/7jmrRotH8hZBIhJKSRjLWRqXGTw1gN4kiCD/44IOhQ4em7lB/4IEH3nbbbWeddVa2BwUAAJBlTT8IP/jgg0GDBq1bt65Fixa33nrrj370o9zcxvEtBQAAgN2qiQfh4sWLTz311HXr1vXs2XPChAndunXL9ogAAAAaiiYehCNGjFixYsVee+31xhtv7L333tkeDgAAQAPSOK7oVTelpaWPPPJICOG6665TgwAAAFtpykcI33333dLS0hDC+PHj33777R2tdtxxx1199dX1OC4AAIAGoSkH4fz581MTb775ZjWr5eU15R8CAADAjjTlFsrNzT3hhBNqXO2ggw6qh8EAAAA0NE05CC+77LLLLrss26MAAABooJryRWUAAACohiAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAACIlCAEAPj/7d17kBTV3T/gM7O7LCBCUJCgXKJR8MLFoEXyAkqIWmoFUkoklCHGVC6KsRKNVAotMRhjLlopo8bgBc3rJRpRSqNGxCjoG0UDi5ICcRWQIAoCIirhspdh5vdH/7JFYHdhgZmGPc/zB9Xb58z0d4Y9e/oz3dMNECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACRii4Qvvnmmw8//PDHH3+cdiEAAAApiy4QXnHFFeeff/4777yTdiEAAAApiysQLlu2bNasWWlXAQAAsF+IKBBWV1ePHj06l8ulXQgAAMB+oTztAorumWee+dvf/jZ//vw5c+YUCoW0ywEAANhftP5AeN99902bNi3tKgAAAPY7rT8QXnLJJWeddVay/NZbb91www3p1gMAALCfaP2BcPjw4cOHD0+WX3zxRYEQAAAgEdFFZQAAANhe6z9CuPfOOOOMXfZZt25dCSqBA8hHH30UQmjbtm1THTZsKN+8ubKEFe2VDRtq1607YK5R/O9/t9u8+cD4vK+8PNS0q6kvq0+rgLp8XSa7u1vPZAr19Zm93GJ9fX0IIZvNhhDqC+WFTLFee03Nts2btzXbJRtCvkhbb16hLL/lv+fNA+iXNpMJ69ZtTruKVmiXswZQJALhrj3//PO77FNTU1OCSuAAUltbG5odGnV1bXK5shJWtFf++c/CwoVFrLZDdnXPNi/vq2fr2yZb26kF/XP5tuXZdP6IlZWFbL4mn08nloQQtm3blt/tUJTPF/L5vQ2EyYv9//8WtuUzxXrtH35Y+Oij5iJWIWT39sXsqVzIzn/lvwbUJ5/kcrkSBcKDyj86rtNze/zwTCaUrdy6xw8vZCozhdo9fvheKmTbZvKp7bHUHvyFXLsjm2ytrV2+vP3//d8BMy/8z//UdO/e/GcucGAQCHftueeamzaS44eHHXZYqcqBA0MSCJsZGocckj3ooAPjgEAIIZcLGzcWcwNt1lZ0/GBfPdlh7UKuogX9a/Kd2mY/3Vdbb5GysrClvlNFtiXl7lOF8sqKTN1udm7TJuz93YuSKFhRkbzkNhWhiDuUW7Y011oI2UxKRwjrC23Xf/RfH1ocdFDYVqpd647ln3TvsGqPH57JhE7ZvXjfyjuGXFH/mjSn0KZTpi6dwR5CyHesyHduclKora1dsaLd+vUt+TQrVe3adTjsMPczozUQCHft9NNP32UfZzjADiorK0OzQ6NNm1B+4PwFKi8vbrXl5WXJOYT7RDYbWvRkZWFfbr1FstmQzWbT2noIIVvIZjO7u/WWvrFNPEm24d+ykM0W7cv8u6w2xSOE2UK2/L9HVLGH2H9vq3xvfuUymVBevhf/a+Xlae59VVSEfHpbb9MmND0pVFZWVlRUlB84E0NlZbm9P1qHA+bjeQAAAPYtgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABE6oC52cs+8bnPfW7y5MkhhMMPPzztWgAAAFIWXSC89tpr064CAABgv+CUUQAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBS+BgZLgAAFAJJREFUAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAARKo87QJK5NVXX7333nsXL168ZcuWXr16jRo16lvf+lZlZWXadQEAAKQmikA4YcKEm266qeHHBQsWPPHEE7fccstTTz3Vu3fvFAsDAABIUesPhDfeeGOSBvv06XPOOed89rOffe6555555plFixaNGjVq3rx5bdu2TbtGAACAFLTy7xCuW7fu5z//eQihX79+8+fPv+GGG37yk5/MmDFj8uTJIYRFixbdddddadcIAACQjlYeCO+5554tW7ZkMpnp06cffPDBDeuvvfbaL33pSyGE3//+9+lVBwAAkKZWHgj/+te/hhCGDh3at2/fHZpGjx4dQli2bNnSpUtTqAwAACBtrTkQ5vP5119/PYQwbNiwnVtHjhyZLMybN6+kZQEAAOwfWnMgXLlyZU1NTQihT58+O7f27du3vLw8hOAIIQAAEKfWfJXRNWvWJAvdu3ffuTWbzXbr1m3VqlUffPBB88/z8ccf73Jb+Xx+DyqEViwZFM0MjXw+FAqZEla0VwqFUCgU9fmL+ez78dYLhf3gtZf213D711sohOJtfdfvazG3vstt7/D/XuwhtsO29+7he/kMJXypjWw8za0X8vnQ3KSQLxR2/MXYn+XzBXt/tA6tORBu3rw5WWjfvn2jHdq1a7d9t6Yccsghu9zW+++/38LqoJVLPpHJZps8DWHDhopcrl0JK9ortbX5XK6Ip1TUZbfW7LvnLyuEbdta0L9mWwiFdE4YyWZDbT6T1tZDCHX5TKHp39Id5LOFutzeRqiaXFkIIeSyIYRcPrNtt7feUoWyQm2z1RYKZZmUAmF9oSyX+3T7NXV1hdxev7e7u/WweW+GWyYTPt1cu8cPz2drsvncHj98L+Vrtma3pbb1mvUf121tcn9pzZo1n37aIZc7YG4Gtn79loMOSu3NhH2oNQfCurq6ZCE5NXRnyfrktNJmdO7cuZnW5PhhM3u9EKdMJhOaHRonnLDthBM2lbCi/VzXEL6bdg2UwqpVq0IIRxxxRNqFpOwLIcXhf9BeDjd/ufZYM3tLmUymX7/NZ555YL27dv9oDVpzIGw4MFhb2/gneUkUTI4TNmPDhg3NtCZ7vT169NiTEqH1Sk4WNTRgB4YGNMrQgLS05g82Gm48uHHjxkY7JOu3vz8hAABAPFpzIDzyyCOThUa/4Ld169bk0F9DNwAAgKi05kDYuXPnbt26hRAWLly4c+uiRYuSheOOO66kZQEAAOwfWnMgDCF85StfCSHMnj1756ZZs2aFECoqKk499dRSlwUAALAfaOWBcMyYMSGEZcuWzZw5c/v1tbW1d999dwjhrLPO6tixYzrFAQAApKqVB8Jzzjmnf//+IYSLL7546dKlycq6urrx48cvX748k8lMmjQp1QIBAABS05pvOxFCyGQyDz744JAhQ1auXNm3b9+TTjqpa9euL7300qZNm0IIkydPHjx4cNo1AgAApKOVHyEMIfTv33/OnDmDBg0qFArz589/5plnNm3a1Llz5ylTpkyePDnt6gAAAFLTyo8QJgYMGPDaa68tXLhw8eLFW7du7dWr1ymnnFJZWZl2XQAAAGmKIhAmBgwYMGDAgLSrAAAA2F+0/lNGAQAAaJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASJWnXUArkclk0i4BAACgZRwhBAAAiJQjhPtGoVBIuwTYvySHzQ0N2IGhAY0yNKBRJTgP0RFCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEhlCoVC2jUAAACQAkcIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAESqPO0CDmzV1dXLly8vKyvr06fPUUcdlXY5AOxH3nzzzYULF5555pmdO3duplsul1uwYMHq1as7duzYr1+/rl27lqxCSMVuDg2Ix8aNG5csWfLBBx8cffTRxxxzTHl5cxltn88amUKhsJdPEafZs2f/6Ec/evPNNxvWDB48+Pbbbx80aFCKVUG6Ro8e/fe//72p1vHjx19//fWlrAfSddZZZz377LNVVVUnn3xyU31uu+22X/ziF+vWrUt+LC8vP/fcc//whz+IhbRizQ+NfD7fo0ePurq6ph7+wAMPnH322cUsEErntddeu/TSS+fOnduwpk2bNhdccMFvfvObLl267Ny/GLOGI4R74rHHHhszZkw+nw8hHHzwwfX19TU1NfPmzRsyZMisWbOGDh2adoGQjtdff/2jjz5qqnXTpk2lLAbStWzZslmzZjXf5/LLL7/llluS5S5dumzYsCGXyz366KNVVVXz5s2TCWmVdjk0Vq5c+cEHHzTToba2dl8XBem45557LrrooiRTdOjQoVu3bitWrKirq7vnnnsef/zx2bNnDxw4cPv+RZo1BMIWW7du3YUXXpjP57t06TJt2rRTTjkll8vNmDHjggsu2Lp16ze+8Y133nmnbdu2aZcJpVZbW/vee++FEL75zW8eeeSRO3cYMmRIyYuCdFRXV48dOzaXyzXTZ8aMGcm8PmTIkDvuuKN///7r16+fMmXK5MmTV6xYcfHFFz/22GOlqhdKZHeGxtKlS5OFK6+8sqysbOcOffv2LUpxUFpr166dMGFCPp/v2bPnH//4x9NOOy2TyWzduvXWW2+99tprN2zYMG7cuPnz5zfEiiLOGgVaaOLEiSGE8vLyl19+efv1jzzySPKW3nbbbWnVBilqOIO6uro67VogHTNmzLj88suHDRuWyWQa5tmqqqpGO3/xi18MIfTq1WvdunXbr//hD38YQshkMosWLSpJ1VB0LRoaU6ZMCSF069atxEVCiV166aXJWJg7d+4OTbfffnvSNHXq1IaVxZs1XGW0xaZNmxZCGDVq1A6nho4ZM+bzn/98CKEhGUJUks90y8rKkoEAEbrvvvtuvvnm5OPC5nu+++67yTdGJkyYsMNJPldddVUIoVAoPProo8UrFUpp94dG+M9s0qdPn+LXBWmaOXNmCOH0008fPHjwDk3jx48/5JBDQghVVVXJmqLOGgJhyyxbtmzFihUhhJEjR+7cOmrUqBDCK6+8snXr1hIXBqlbtmxZCOHII4+sqKhIuxZIxyWXXPK//5GcTtKU5557LlnYeTbp0aPHiSeeGEJ4/vnni1QnlNjuD43wn9nEeaG0bvX19cuXLw8hnHTSSY12OP7440MIb7/9dvJjUWcN3yFsmYaT4r7whS/s3DpixIibb745l8stW7asf//+pS0NUpZ8pnvsscfmcrmZM2dWV1dv2bKlX79+AwcOPProo9OuDkph+PDhw4cPT5ZffPHFG264oameyWzSqVOnRm9ZNGLEiH/+859vvfVWkeqEEtv9oRG2m00+/vjjmTNnLlmypF27dgMGDBg0aNBhhx1WinKh+Gpra6+44ooQwjnnnNNoh5UrV4YQevTokfxY1FlDIGyZJMqHEHr37r1za8PKd955RyAkNslnuuvWrTv++OMbLgmQGDdu3C233HLooYemVBrsd5LZpFevXo22JrPJhg0bPvnkk8985jMlrQxSlc/nk9HxwgsvXH/99Z988klDU2Vl5TXXXDNx4sTmb9EGB4QOHTr89re/bar18ccfTwLhl7/85WRNUWcNp4y2zMaNG5OFRt/rhpWffvpp6WqC/UMSAufNm7d06dLevXt//etfHzFiRHLT4QcffLBfv34ffvhh2jXC/iKZTZqats0mRGvlypXJHQiffvrpf//73/379x87duzgwYPbtm1bW1s7adKks88+e3e+iAgHrnnz5n33u98NIfTu3fvb3/52srKos4ZA2DJbtmwJIVRUVGSzjbx17dq1SxY2b95c0rIgbQ33nOjevfucOXNWrFgxffr02bNnv//++5dddlkIYc2aNckCEP4zmzR1jyKzCdFqOMFk6NChK1asWLhw4cMPPzx37twlS5acdtppIYTnn39+6tSpqdYIxbJly5bJkycPGzYsOdD3xBNPtGnTpqEpFG3WEAhbJjlLYdu2bY221tfXJwvbX1UZYlBbW/vLX/7y17/+9ezZs7e/32D79u1vvvnmr33tayGEP//5zw3fwoXImU2gUd27d//1r3994403zpw5s+HbUyGEnj17/uUvfzniiCNCCJMmTUqvQCiKQqHwwAMP9OnT57rrrquvrz/uuONmzZq1/V3pizprOAm7ZQ466KAQQj6fr6+v3/lSijU1NclChw4dSl0ZpKpjx45XXnllU63XXHPNk08+GUJYsGBBctUsiFwymzTMGjswmxCtfv369evXr9GmDh06XH755T/96U8//PDDVatWJeEQWoE33njj4osvfuWVV0II7du3nzBhwtVXX11ZWbl9n6LOGo4QtkzDfT/Wrl27c+uaNWuShS5dupSuJtjvnXDCCclZ1osWLUq7FtgvJLNJo1NJ+M9skslkXIoJttdwxT6zCa3G3XffffLJJ7/yyitlZWU/+MEPli5det111+2QBkORZw2BsGUa7orTcLnR7f3rX/9KFo499tjS1QT7vXbt2rVv3z6EsPMfOIhTMpu89957Def5bC+ZTXr27JkMHCDRsLNrNqF1uP/++y+66KLa2toTTzyxqqrqrrvuOvzwwxvtWdRZQyBsmQEDBiSn8P7jH//YuXXu3LkhhEMPPbTRm1JAK3bnnXeOHz/+V7/6VaOtq1ev3rRpUwihqROBIDbJnYjr6uoWLFiwc2symwwaNKjUZUHaJkyYMH78+OnTpzfaumTJkmTBbEIr8Oqrr37ve98rFApjxoyZO3duozc5b1DUWUMgbJlOnToNGzYshPDII4/s0LRt27bHHnsshPDVr3610WuQQut25513Tpo0qeE4+faeeOKJZGH7r0dDzEaMGJFcFG7n2aS6uvqNN94IISRXY4KorF69+s4775w4cWI+n9+5NZlNunfv3vAVHjhw3XjjjblcbuDAgQ899FDD1USbUtRZQ25psUsuuSSE8Nprr02bNm379b/73e9Wr17d0AGict5551VUVBQKhQsvvDC5hVSDxYsXX3311SGEsWPH9unTJ6UCYf/Srl2773znOyGEO+64Y/vvIBQKhYkTJ4YQunbtOmbMmLTKg7Scf/75IYTly5dfddVVOzQ99NBDya7wz372sxQqg31q1apVTz31VAjhsssuS04/bF5RZ42Mm3u2VKFQOPXUU19++eXKysoJEyaMHDly06ZNTz755JQpU/L5/Lhx4/70pz+lXSOk4KabbpowYUII4eijj7700kuPOeaY9evXV1VVTZ06ta6urnPnztXV1d26dUu7TCiRF198ccSIESGEqqqqk08+eecOq1evPvHEEz/88MOePXteccUVI0aMePvtt++7774ZM2aEEKZOnfr973+/1EVD8TU/NAqFwrnnnpscCRwxYsS4ceMOP/zwFStWPPvss8nKoUOHvvTSS+7IwoHu6aefHjlyZAihU6dOzQTC0aNH33XXXclyEWeNAi23du3aRk/zPfPMM7ds2ZJ2dZCaH//4x42eLz148ODFixenXR2U1AsvvJD8/ldVVTXVZ86cOTuf+ZbJZCZNmlTKUqGUdjk0Nm7ceMoppzS613rBBRds2LChxAVDMdx66627k9TGjh27/aOKNGs4QriH6urq7r777unTpy9fvrysrOzYY48dN27c+eef7yMrIrd48eJbb721urr63Xff7dq168CBA4cOHXrhhReWlZWlXRqU1IoVK+69994QwkUXXdTUVeNCCGvXrr3tttueffbZ1atXd+zY8aSTTho/fvzQoUNLVyiU1m4OjRkzZtx///3Lly9fs2bNUUcdNWDAgFGjRp1xxhmlKxSKadasWS+99NIuu/Xr1++8887bfk0xZg2BEAAAIFIuKgMAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUgIhAABApARCAACASAmEAAAAkRIIAQAAIiUQAgAAREogBAAAiJRACAAAECmBEAAAIFICIQAAQKQEQgAAgEgJhAAAAJESCAEAACIlEAIAAERKIAQAAIiUQAgAABApgRAAACBSAiEAAECkBEIAAIBICYQAAACREggBAAAiJRACAABESiAEAACIlEAIAAAQKYEQAAAgUv8PQmhgkpl2PO0AAAAASUVORK5CYII=\"/>" ] }, "execution_count": 16, @@ -1424,7 +1424,7 @@ "source": [ "**Copyright**\n", "\n", - "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the examples, unless obtained from other properly quoted sources, under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Stefano Covino, Time Domain Astrophysics - Lecture notes featuring computational examples, 2024*." + "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the examples, unless obtained from other properly quoted sources, under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Stefano Covino, Time Domain Astrophysics - Lecture notes featuring computational examples, 2025*." ] }, { @@ -1438,15 +1438,15 @@ ], "metadata": { "kernelspec": { - "display_name": "Julia 1.10.0", + "display_name": "Julia 1.11.3", "language": "julia", - "name": "julia-1.10" + "name": "julia-1.11" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "1.10.0" + "version": "1.11.3" } }, "nbformat": 4, diff --git a/Lectures/Lecture - Statistics Reminder/Manifest.toml b/Lectures/Lecture - Statistics Reminder/Manifest.toml index 15a0608ba5e00fa9d67dff671039db4929293c3a..a8fa203a966d317833a3d8595a5abcb23930d637 100644 --- a/Lectures/Lecture - Statistics Reminder/Manifest.toml +++ b/Lectures/Lecture - Statistics Reminder/Manifest.toml @@ -1,20 +1,22 @@ # This file is machine-generated - editing it directly is not advised -julia_version = "1.10.4" +julia_version = "1.11.3" manifest_format = "2.0" -project_hash = "49306a66373ca72d87e182082fc4e05d9af11b2b" +project_hash = "ebeec4ef0b268375fcb43f6f831262f0c0be00c5" [[deps.ADTypes]] -git-tree-sha1 = "fc02d55798c1af91123d07915a990fbb9a10d146" +git-tree-sha1 = "fb97701c117c8162e84dfcf80215caa904aef44f" uuid = "47edcb42-4c32-4615-8424-f2b9edc5f35b" -version = "1.3.0" +version = "1.13.0" [deps.ADTypes.extensions] ADTypesChainRulesCoreExt = "ChainRulesCore" + ADTypesConstructionBaseExt = "ConstructionBase" ADTypesEnzymeCoreExt = "EnzymeCore" [deps.ADTypes.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9" EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" [[deps.ANSIColoredPrinters]] @@ -35,15 +37,21 @@ weakdeps = ["ChainRulesCore", "Test"] [[deps.AbstractMCMC]] deps = ["BangBang", "ConsoleProgressMonitor", "Distributed", "FillArrays", "LogDensityProblems", "Logging", "LoggingExtras", "ProgressLogging", "Random", "StatsBase", "TerminalLoggers", "Transducers"] -git-tree-sha1 = "b0489adc45a7c8cf0d8e2ddf764f89c1c3decebd" +git-tree-sha1 = "aa469a7830413bd4c855963e3f648bd9d145c2c3" uuid = "80f14c24-f653-4e6a-9b94-39d6b0f70001" -version = "5.2.0" +version = "5.6.0" [[deps.AbstractPPL]] -deps = ["AbstractMCMC", "Accessors", "DensityInterface", "Random"] -git-tree-sha1 = "6380a9a03a4207bac53ac310dd3a283bb4df54ef" +deps = ["AbstractMCMC", "Accessors", "DensityInterface", "JSON", "Random", "StatsBase"] +git-tree-sha1 = "b155685b5daa9d9d19dfe42684a53fa8cbbb83b8" uuid = "7a57a42e-76ec-4ea3-a279-07e840d6d9cf" -version = "0.8.4" +version = "0.10.1" + +[[deps.AbstractPlutoDingetjes]] +deps = ["Pkg"] +git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a" +uuid = "6e696c72-6542-2067-7265-42206c756150" +version = "1.3.2" [[deps.AbstractTrees]] git-tree-sha1 = "2d9c9a55f9c93e8887ad391fbae72f8ef55e1177" @@ -51,41 +59,50 @@ uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" version = "0.4.5" [[deps.Accessors]] -deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "LinearAlgebra", "MacroTools", "Markdown", "Test"] -git-tree-sha1 = "c0d491ef0b135fd7d63cbc6404286bc633329425" +deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "MacroTools"] +git-tree-sha1 = "0ba8f4c1f06707985ffb4804fdad1bf97b233897" uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697" -version = "0.1.36" +version = "0.1.41" [deps.Accessors.extensions] - AccessorsAxisKeysExt = "AxisKeys" - AccessorsIntervalSetsExt = "IntervalSets" - AccessorsStaticArraysExt = "StaticArrays" - AccessorsStructArraysExt = "StructArrays" - AccessorsUnitfulExt = "Unitful" + AxisKeysExt = "AxisKeys" + IntervalSetsExt = "IntervalSets" + LinearAlgebraExt = "LinearAlgebra" + StaticArraysExt = "StaticArrays" + StructArraysExt = "StructArrays" + TestExt = "Test" + UnitfulExt = "Unitful" [deps.Accessors.weakdeps] AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5" IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" + LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" Requires = "ae029012-a4dd-5104-9daa-d747884805df" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" + Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" [[deps.Adapt]] deps = ["LinearAlgebra", "Requires"] -git-tree-sha1 = "6a55b747d1812e699320963ffde36f1ebdda4099" +git-tree-sha1 = "50c3c56a52972d78e8be9fd135bfb91c9574c140" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" -version = "4.0.4" +version = "4.1.1" weakdeps = ["StaticArrays"] [deps.Adapt.extensions] AdaptStaticArraysExt = "StaticArrays" +[[deps.AdaptivePredicates]] +git-tree-sha1 = "7e651ea8d262d2d74ce75fdf47c4d63c07dba7a6" +uuid = "35492f91-a3bd-45ad-95db-fcad7dcfedb7" +version = "1.2.0" + [[deps.AdvancedHMC]] deps = ["AbstractMCMC", "ArgCheck", "DocStringExtensions", "InplaceOps", "LinearAlgebra", "LogDensityProblems", "LogDensityProblemsAD", "ProgressMeter", "Random", "Requires", "Setfield", "SimpleUnPack", "Statistics", "StatsBase", "StatsFuns"] -git-tree-sha1 = "dfa0e3508fc3df81d28624b328f3b937c1df8bc2" +git-tree-sha1 = "6f6a228808fe00ad05b47d74747c800d3df18acb" uuid = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d" -version = "0.6.1" +version = "0.6.4" [deps.AdvancedHMC.extensions] AdvancedHMCCUDAExt = "CUDA" @@ -98,10 +115,10 @@ version = "0.6.1" OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" [[deps.AdvancedMH]] -deps = ["AbstractMCMC", "Distributions", "FillArrays", "LinearAlgebra", "LogDensityProblems", "Random", "Requires"] -git-tree-sha1 = "fa4e8d6f9bae913aaa40224cf9407163e693d829" +deps = ["AbstractMCMC", "Distributions", "DocStringExtensions", "FillArrays", "LinearAlgebra", "LogDensityProblems", "Random", "Requires"] +git-tree-sha1 = "6e3d18037861bf220ed77f1a2c5f24a21a68d4b7" uuid = "5b7e9947-ddc0-4b3f-9b55-0d8042f74170" -version = "0.8.2" +version = "0.8.5" weakdeps = ["DiffResults", "ForwardDiff", "MCMCChains", "StructArrays"] [deps.AdvancedMH.extensions] @@ -111,9 +128,9 @@ weakdeps = ["DiffResults", "ForwardDiff", "MCMCChains", "StructArrays"] [[deps.AdvancedPS]] deps = ["AbstractMCMC", "Distributions", "Random", "Random123", "Requires", "SSMProblems", "StatsFuns"] -git-tree-sha1 = "5dcd3de7e7346f48739256e71a86d0f96690b8c8" +git-tree-sha1 = "c017e6cded5495294ff82d5c8a176492f752b22e" uuid = "576499cb-2369-40b2-a588-c64705576edc" -version = "0.6.0" +version = "0.6.1" weakdeps = ["Libtask"] [deps.AdvancedPS.extensions] @@ -121,9 +138,9 @@ weakdeps = ["Libtask"] [[deps.AdvancedVI]] deps = ["ADTypes", "Bijectors", "DiffResults", "Distributions", "DistributionsAD", "DocStringExtensions", "ForwardDiff", "LinearAlgebra", "ProgressMeter", "Random", "Requires", "StatsBase", "StatsFuns", "Tracker"] -git-tree-sha1 = "3e97de1a2ccce08978cd80570d8cbb9ff3f08bd3" +git-tree-sha1 = "e45e57cea1879400952fe34b0cbc971950408af8" uuid = "b5ca4192-6429-45e5-a2d9-87aec30a685c" -version = "0.2.6" +version = "0.2.11" [deps.AdvancedVI.extensions] AdvancedVIEnzymeExt = ["Enzyme"] @@ -145,18 +162,18 @@ version = "1.1.3" [[deps.Animations]] deps = ["Colors"] -git-tree-sha1 = "e81c509d2c8e49592413bfb0bb3b08150056c79d" +git-tree-sha1 = "e092fa223bf66a3c41f9c022bd074d916dc303e7" uuid = "27a7e980-b3e6-11e9-2bcd-0b925532e340" -version = "0.4.1" +version = "0.4.2" [[deps.ArgCheck]] -git-tree-sha1 = "a3a402a35a2f7e0b87828ccabbd5ebfbebe356b4" +git-tree-sha1 = "680b3b8759bd4c54052ada14e52355ab69e07876" uuid = "dce04be8-c92d-5529-be00-80e4d2c0e197" -version = "2.3.0" +version = "2.4.0" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" -version = "1.1.1" +version = "1.1.2" [[deps.Arpack]] deps = ["Arpack_jll", "Libdl", "LinearAlgebra", "Logging"] @@ -171,19 +188,21 @@ uuid = "68821587-b530-5797-8361-c406ea357684" version = "3.5.1+1" [[deps.ArrayInterface]] -deps = ["Adapt", "LinearAlgebra", "SparseArrays", "SuiteSparse"] -git-tree-sha1 = "ed2ec3c9b483842ae59cd273834e5b46206d6dda" +deps = ["Adapt", "LinearAlgebra"] +git-tree-sha1 = "017fcb757f8e921fb44ee063a7aafe5f89b86dd1" uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" -version = "7.11.0" +version = "7.18.0" [deps.ArrayInterface.extensions] ArrayInterfaceBandedMatricesExt = "BandedMatrices" ArrayInterfaceBlockBandedMatricesExt = "BlockBandedMatrices" ArrayInterfaceCUDAExt = "CUDA" ArrayInterfaceCUDSSExt = "CUDSS" + ArrayInterfaceChainRulesCoreExt = "ChainRulesCore" ArrayInterfaceChainRulesExt = "ChainRules" ArrayInterfaceGPUArraysCoreExt = "GPUArraysCore" ArrayInterfaceReverseDiffExt = "ReverseDiff" + ArrayInterfaceSparseArraysExt = "SparseArrays" ArrayInterfaceStaticArraysCoreExt = "StaticArraysCore" ArrayInterfaceTrackerExt = "Tracker" @@ -193,25 +212,40 @@ version = "7.11.0" CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" +version = "1.11.0" [[deps.Atomix]] deps = ["UnsafeAtomics"] -git-tree-sha1 = "c06a868224ecba914baa6942988e2f2aade419be" +git-tree-sha1 = "93da6c8228993b0052e358ad592ee7c1eccaa639" uuid = "a9b6321e-bd34-4604-b9c9-b65b8de01458" -version = "0.1.0" +version = "1.1.0" + + [deps.Atomix.extensions] + AtomixCUDAExt = "CUDA" + AtomixMetalExt = "Metal" + AtomixOpenCLExt = "OpenCL" + AtomixoneAPIExt = "oneAPI" + + [deps.Atomix.weakdeps] + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + Metal = "dde4c033-4e86-420c-a63e-0dd931031962" + OpenCL = "08131aa3-fb12-5dee-8b74-c09406e224a2" + oneAPI = "8f75cd03-7ff8-4ecb-9b8f-daf728133b1b" [[deps.Automa]] -deps = ["PrecompileTools", "TranscodingStreams"] -git-tree-sha1 = "588e0d680ad1d7201d4c6a804dcb1cd9cba79fbb" +deps = ["PrecompileTools", "SIMD", "TranscodingStreams"] +git-tree-sha1 = "a8f503e8e1a5f583fbef15a8440c8c7e32185df2" uuid = "67c07d97-cdcb-5c2c-af73-a7f9c32a568b" -version = "1.0.3" +version = "1.1.0" [[deps.AxisAlgorithms]] deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"] @@ -226,10 +260,10 @@ uuid = "39de3d68-74b9-583c-8d2d-e117c070f3a9" version = "0.4.7" [[deps.BangBang]] -deps = ["Accessors", "Compat", "ConstructionBase", "InitialValues", "LinearAlgebra", "Requires"] -git-tree-sha1 = "08e5fc6620a8d83534bf6149795054f1b1e8370a" +deps = ["Accessors", "ConstructionBase", "InitialValues", "LinearAlgebra", "Requires"] +git-tree-sha1 = "e2144b631226d9eeab2d746ca8880b7ccff504ae" uuid = "198e06fe-97b7-11e9-32a5-e1d131e6ad66" -version = "0.4.2" +version = "0.4.3" [deps.BangBang.extensions] BangBangChainRulesCoreExt = "ChainRulesCore" @@ -249,44 +283,48 @@ version = "0.4.2" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" +version = "1.11.0" [[deps.Baselet]] git-tree-sha1 = "aebf55e6d7795e02ca500a689d326ac979aaf89e" uuid = "9718e550-a3fa-408a-8086-8db961cd8217" version = "0.1.1" +[[deps.Bessels]] +git-tree-sha1 = "4435559dc39793d53a9e3d278e185e920b4619ef" +uuid = "0e736298-9ec6-45e8-9647-e4fc86a2fe38" +version = "0.2.8" + [[deps.Bijectors]] -deps = ["ArgCheck", "ChainRules", "ChainRulesCore", "ChangesOfVariables", "Compat", "Distributions", "Functors", "InverseFunctions", "IrrationalConstants", "LinearAlgebra", "LogExpFunctions", "MappedArrays", "Random", "Reexport", "Requires", "Roots", "SparseArrays", "Statistics"] -git-tree-sha1 = "2173b2974d6afb2dbc72002c51c84803c08e8aa0" +deps = ["ArgCheck", "ChainRulesCore", "ChangesOfVariables", "Distributions", "DocStringExtensions", "Functors", "InverseFunctions", "IrrationalConstants", "LinearAlgebra", "LogExpFunctions", "MappedArrays", "Random", "Reexport", "Roots", "SparseArrays", "Statistics"] +git-tree-sha1 = "af42d5383609f5cd167a2f9b1b2371c2d6604d02" uuid = "76274a88-744f-5084-9051-94815aaf08c4" -version = "0.13.13" +version = "0.15.4" [deps.Bijectors.extensions] BijectorsDistributionsADExt = "DistributionsAD" + BijectorsEnzymeCoreExt = "EnzymeCore" BijectorsForwardDiffExt = "ForwardDiff" BijectorsLazyArraysExt = "LazyArrays" + BijectorsMooncakeExt = "Mooncake" BijectorsReverseDiffExt = "ReverseDiff" BijectorsTrackerExt = "Tracker" BijectorsZygoteExt = "Zygote" [deps.Bijectors.weakdeps] DistributionsAD = "ced4e74d-a319-5a8a-b0ac-84af2272839c" + EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02" + Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6" ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" -[[deps.BinaryProvider]] -deps = ["Libdl", "Logging", "SHA"] -git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058" -uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232" -version = "0.5.10" - [[deps.BitFlags]] -git-tree-sha1 = "2dc09997850d68179b69dafb58ae806167a32b1b" +git-tree-sha1 = "0691e34b3bb8be9307330f88d1a3c3f25466c24d" uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35" -version = "0.1.8" +version = "0.1.9" [[deps.Bootstrap]] deps = ["DataFrames", "Distributions", "Random", "Statistics", "StatsBase", "StatsModels"] @@ -295,10 +333,10 @@ uuid = "e28b5b4c-05e8-5b66-bc03-6f0c0a0a06e0" version = "2.4.0" [[deps.Bzip2_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd" +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "1b96ea4a01afe0ea4090c5c8039690672dd13f2e" uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" -version = "1.0.8+1" +version = "1.0.9+0" [[deps.CEnum]] git-tree-sha1 = "389ad5c84de1ae7cf0e28e381131c98ea87d54fc" @@ -319,6 +357,7 @@ version = "4.4.0+0" [[deps.CRC32c]] uuid = "8bf52ea8-c179-5cab-976a-9e18b702a9bc" +version = "1.11.0" [[deps.CRlibm_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] @@ -328,89 +367,88 @@ version = "1.0.1+0" [[deps.Cairo]] deps = ["Cairo_jll", "Colors", "Glib_jll", "Graphics", "Libdl", "Pango_jll"] -git-tree-sha1 = "d0b3f8b4ad16cb0a2988c6788646a5e6a17b6b1b" +git-tree-sha1 = "71aa551c5c33f1a4415867fe06b7844faadb0ae9" uuid = "159f3aea-2a34-519c-b102-8c37f9878175" -version = "1.0.5" +version = "1.1.1" [[deps.CairoMakie]] -deps = ["CRC32c", "Cairo", "Colors", "FileIO", "FreeType", "GeometryBasics", "LinearAlgebra", "Makie", "PrecompileTools"] -git-tree-sha1 = "9e8eaaff3e5951d8c61b7c9261d935eb27e0304b" +deps = ["CRC32c", "Cairo", "Cairo_jll", "Colors", "FileIO", "FreeType", "GeometryBasics", "LinearAlgebra", "Makie", "PrecompileTools"] +git-tree-sha1 = "6d76f05dbc8b7a52deaa7cdabe901735ae7b6724" uuid = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0" -version = "0.12.2" +version = "0.13.1" [[deps.Cairo_jll]] deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] -git-tree-sha1 = "a2f1c8c668c8e3cb4cca4e57a8efdb09067bb3fd" +git-tree-sha1 = "009060c9a6168704143100f36ab08f06c2af4642" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" -version = "1.18.0+2" - -[[deps.Calculus]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad" -uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9" -version = "0.5.1" +version = "1.18.2+1" [[deps.ChainRules]] deps = ["Adapt", "ChainRulesCore", "Compat", "Distributed", "GPUArraysCore", "IrrationalConstants", "LinearAlgebra", "Random", "RealDot", "SparseArrays", "SparseInverseSubset", "Statistics", "StructArrays", "SuiteSparse"] -git-tree-sha1 = "5ec157747036038ec70b250f578362268f0472f1" +git-tree-sha1 = "4312d7869590fab4a4f789e97bd82f0a04eaaa05" uuid = "082447d4-558c-5d27-93f4-14fc19e9eca2" -version = "1.68.0" +version = "1.72.2" [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra"] -git-tree-sha1 = "575cd02e080939a33b6df6c5853d14924c08e35b" +git-tree-sha1 = "1713c74e00545bfe14605d2a2be1712de8fbcb58" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" -version = "1.23.0" +version = "1.25.1" weakdeps = ["SparseArrays"] [deps.ChainRulesCore.extensions] ChainRulesCoreSparseArraysExt = "SparseArrays" [[deps.ChangesOfVariables]] -deps = ["LinearAlgebra", "Test"] -git-tree-sha1 = "2fba81a302a7be671aefe194f0525ef231104e7f" +deps = ["LinearAlgebra"] +git-tree-sha1 = "799b25ca3a8a24936ae7b5c52ad194685fc3e6ef" uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" -version = "0.1.8" -weakdeps = ["InverseFunctions"] +version = "0.1.9" +weakdeps = ["InverseFunctions", "Test"] [deps.ChangesOfVariables.extensions] ChangesOfVariablesInverseFunctionsExt = "InverseFunctions" + ChangesOfVariablesTestExt = "Test" [[deps.Clustering]] deps = ["Distances", "LinearAlgebra", "NearestNeighbors", "Printf", "Random", "SparseArrays", "Statistics", "StatsBase"] -git-tree-sha1 = "9ebb045901e9bbf58767a9f34ff89831ed711aae" +git-tree-sha1 = "3e22db924e2945282e70c33b75d4dde8bfa44c94" uuid = "aaaa29a8-35af-508c-8bc3-b662a17a0fe5" -version = "0.15.7" +version = "0.15.8" [[deps.CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] -git-tree-sha1 = "59939d8a997469ee05c4b4944560a820f9ba0d73" +git-tree-sha1 = "962834c22b66e32aa10f7611c08c8ca4e20749a9" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" -version = "0.7.4" +version = "0.7.8" [[deps.ColorBrewer]] -deps = ["Colors", "JSON", "Test"] -git-tree-sha1 = "61c5334f33d91e570e1d0c3eb5465835242582c4" +deps = ["Colors", "JSON"] +git-tree-sha1 = "e771a63cc8b539eca78c85b0cabd9233d6c8f06f" uuid = "a2cac450-b92f-5266-8821-25eda20663c8" -version = "0.4.0" +version = "0.4.1" [[deps.ColorSchemes]] deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"] -git-tree-sha1 = "4b270d6465eb21ae89b732182c20dc165f8bf9f2" +git-tree-sha1 = "26ec26c98ae1453c692efded2b17e15125a5bea1" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" -version = "3.25.0" +version = "3.28.0" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] -git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" +git-tree-sha1 = "c7acce7a7e1078a20a285211dd73cd3941a871d6" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" -version = "0.11.5" +version = "0.12.0" +weakdeps = ["StyledStrings"] + + [deps.ColorTypes.extensions] + StyledStringsExt = "StyledStrings" [[deps.ColorVectorSpace]] deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"] -git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249" +git-tree-sha1 = "8b3b6f87ce8f65a2b4f857528fd8d70086cd72b1" uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4" -version = "0.10.0" +version = "0.11.0" weakdeps = ["SpecialFunctions"] [deps.ColorVectorSpace.extensions] @@ -418,9 +456,9 @@ weakdeps = ["SpecialFunctions"] [[deps.Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] -git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0" +git-tree-sha1 = "64e15186f0aa277e174aa81798f7eb8598e0157e" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" -version = "0.12.11" +version = "0.13.0" [[deps.Combinatorics]] git-tree-sha1 = "08c8b6831dc00bfea825826be0bc8336fc369860" @@ -433,16 +471,16 @@ uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2" version = "0.2.4" [[deps.CommonSubexpressions]] -deps = ["MacroTools", "Test"] -git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7" +deps = ["MacroTools"] +git-tree-sha1 = "cda2cfaebb4be89c9084adaca7dd7333369715c5" uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" -version = "0.3.0" +version = "0.3.1" [[deps.Compat]] deps = ["TOML", "UUIDs"] -git-tree-sha1 = "b1c55339b7c6c350ee89f2c1604299660525b248" +git-tree-sha1 = "8ae8d32e09f0dcf42a36b90d4e17f5dd2e4c4215" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" -version = "4.15.0" +version = "4.16.0" weakdeps = ["Dates", "LinearAlgebra"] [deps.Compat.extensions] @@ -464,9 +502,9 @@ weakdeps = ["InverseFunctions"] [[deps.ConcurrentUtilities]] deps = ["Serialization", "Sockets"] -git-tree-sha1 = "6cbbd4d241d7e6579ab354737f4dd95ca43946e1" +git-tree-sha1 = "d9d26935a0bcffc87d2613ce14c527c99fc543fd" uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb" -version = "2.4.1" +version = "2.5.0" [[deps.ConsoleProgressMonitor]] deps = ["Logging", "ProgressMeter"] @@ -475,14 +513,14 @@ uuid = "88cd18e8-d9cc-4ea6-8889-5259c0d15c8b" version = "0.1.2" [[deps.ConstructionBase]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "260fd2400ed2dab602a7c15cf10c1933c59930a2" +git-tree-sha1 = "76219f1ed5771adbb096743bff43fb5fdd4c1157" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" -version = "1.5.5" -weakdeps = ["IntervalSets", "StaticArrays"] +version = "1.5.8" +weakdeps = ["IntervalSets", "LinearAlgebra", "StaticArrays"] [deps.ConstructionBase.extensions] ConstructionBaseIntervalSetsExt = "IntervalSets" + ConstructionBaseLinearAlgebraExt = "LinearAlgebra" ConstructionBaseStaticArraysExt = "StaticArrays" [[deps.Contour]] @@ -496,10 +534,14 @@ uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" version = "4.1.1" [[deps.DSP]] -deps = ["Compat", "FFTW", "IterTools", "LinearAlgebra", "Polynomials", "Random", "Reexport", "SpecialFunctions", "Statistics"] -git-tree-sha1 = "f7f4319567fe769debfcf7f8c03d8da1dd4e2fb0" +deps = ["Bessels", "FFTW", "IterTools", "LinearAlgebra", "Polynomials", "Random", "Reexport", "SpecialFunctions", "Statistics"] +git-tree-sha1 = "60b9e054b777bb8bf0fae29b1c9d17f6876b2b44" uuid = "717857b8-e6f2-59f4-9121-6e50c889abd2" -version = "0.7.9" +version = "0.8.2" +weakdeps = ["OffsetArrays"] + + [deps.DSP.extensions] + OffsetArraysExt = "OffsetArrays" [[deps.DataAPI]] git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe" @@ -507,10 +549,10 @@ uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.16.0" [[deps.DataFrames]] -deps = ["Compat", "DataAPI", "DataStructures", "Future", "InlineStrings", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrecompileTools", "PrettyTables", "Printf", "REPL", "Random", "Reexport", "SentinelArrays", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"] -git-tree-sha1 = "04c738083f29f86e62c8afc341f0967d8717bdb8" +deps = ["Compat", "DataAPI", "DataStructures", "Future", "InlineStrings", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrecompileTools", "PrettyTables", "Printf", "Random", "Reexport", "SentinelArrays", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"] +git-tree-sha1 = "fb61b4812c49343d7ef0b533ba982c46021938a6" uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" -version = "1.6.1" +version = "1.7.0" [[deps.DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] @@ -526,6 +568,13 @@ version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" +version = "1.11.0" + +[[deps.Dbus_jll]] +deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "fc173b380865f70627d7dd1190dc2fce6cc105af" +uuid = "ee1fde0b-3d02-5ea6-8484-8dfef6360eab" +version = "1.14.10+0" [[deps.DefineSingletons]] git-tree-sha1 = "0fba8b706d0178b4dc7fd44a96a92382c9065c2c" @@ -533,10 +582,10 @@ uuid = "244e2a9f-e319-4986-a169-4d1fe445cd52" version = "0.1.2" [[deps.DelaunayTriangulation]] -deps = ["EnumX", "ExactPredicates", "Random"] -git-tree-sha1 = "1755070db557ec2c37df2664c75600298b0c1cfc" +deps = ["AdaptivePredicates", "EnumX", "ExactPredicates", "Random"] +git-tree-sha1 = "5620ff4ee0084a6ab7097a27ba0c19290200b037" uuid = "927a84f5-c5f4-47a5-9785-b46e178433df" -version = "1.0.3" +version = "1.6.4" [[deps.DelimitedFiles]] deps = ["Mmap"] @@ -562,11 +611,57 @@ git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272" uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" version = "1.15.1" +[[deps.DifferentiationInterface]] +deps = ["ADTypes", "LinearAlgebra"] +git-tree-sha1 = "087720e4391faac4bc5b5f4315794b3309264c6f" +uuid = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63" +version = "0.6.40" + + [deps.DifferentiationInterface.extensions] + DifferentiationInterfaceChainRulesCoreExt = "ChainRulesCore" + DifferentiationInterfaceDiffractorExt = "Diffractor" + DifferentiationInterfaceEnzymeExt = ["EnzymeCore", "Enzyme"] + DifferentiationInterfaceFastDifferentiationExt = "FastDifferentiation" + DifferentiationInterfaceFiniteDiffExt = "FiniteDiff" + DifferentiationInterfaceFiniteDifferencesExt = "FiniteDifferences" + DifferentiationInterfaceForwardDiffExt = ["ForwardDiff", "DiffResults"] + DifferentiationInterfaceGTPSAExt = "GTPSA" + DifferentiationInterfaceMooncakeExt = "Mooncake" + DifferentiationInterfacePolyesterForwardDiffExt = "PolyesterForwardDiff" + DifferentiationInterfaceReverseDiffExt = ["ReverseDiff", "DiffResults"] + DifferentiationInterfaceSparseArraysExt = "SparseArrays" + DifferentiationInterfaceSparseMatrixColoringsExt = "SparseMatrixColorings" + DifferentiationInterfaceStaticArraysExt = "StaticArrays" + DifferentiationInterfaceSymbolicsExt = "Symbolics" + DifferentiationInterfaceTrackerExt = "Tracker" + DifferentiationInterfaceZygoteExt = ["Zygote", "ForwardDiff"] + + [deps.DifferentiationInterface.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" + Diffractor = "9f5e2b26-1114-432f-b630-d3fe2085c51c" + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" + EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" + FastDifferentiation = "eb9bf01b-bf85-4b60-bf87-ee5de06c00be" + FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41" + FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" + Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6" + PolyesterForwardDiff = "98d1487c-24ca-40b6-b7ab-df2af84e126b" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + [[deps.Distances]] deps = ["LinearAlgebra", "Statistics", "StatsAPI"] -git-tree-sha1 = "66c4c81f259586e8f002eacebc177e1fb06363b0" +git-tree-sha1 = "c7e3a542b999843086e2f29dac96a618c105be1d" uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" -version = "0.10.11" +version = "0.10.12" weakdeps = ["ChainRulesCore", "SparseArrays"] [deps.Distances.extensions] @@ -576,12 +671,13 @@ weakdeps = ["ChainRulesCore", "SparseArrays"] [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" +version = "1.11.0" [[deps.Distributions]] deps = ["AliasTables", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SpecialFunctions", "Statistics", "StatsAPI", "StatsBase", "StatsFuns"] -git-tree-sha1 = "22c595ca4146c07b16bcf9c8bea86f731f7109d2" +git-tree-sha1 = "03aa5d44647eaec98e1920635cdfed5d5560a8b9" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" -version = "0.25.108" +version = "0.25.117" weakdeps = ["ChainRulesCore", "DensityInterface", "Test"] [deps.Distributions.extensions] @@ -591,9 +687,9 @@ weakdeps = ["ChainRulesCore", "DensityInterface", "Test"] [[deps.DistributionsAD]] deps = ["Adapt", "ChainRules", "ChainRulesCore", "Compat", "Distributions", "FillArrays", "LinearAlgebra", "PDMats", "Random", "Requires", "SpecialFunctions", "StaticArrays", "StatsFuns", "ZygoteRules"] -git-tree-sha1 = "f4dd7727b07b4b7fff5ff4149118ee06e83dfab7" +git-tree-sha1 = "02c2e6e6a137069227439fe884d729cca5b70e56" uuid = "ced4e74d-a319-5a8a-b0ac-84af2272839c" -version = "0.6.55" +version = "0.6.57" [deps.DistributionsAD.extensions] DistributionsADForwardDiffExt = "ForwardDiff" @@ -615,41 +711,37 @@ version = "0.9.3" [[deps.Documenter]] deps = ["ANSIColoredPrinters", "AbstractTrees", "Base64", "CodecZlib", "Dates", "DocStringExtensions", "Downloads", "Git", "IOCapture", "InteractiveUtils", "JSON", "LibGit2", "Logging", "Markdown", "MarkdownAST", "Pkg", "PrecompileTools", "REPL", "RegistryInstances", "SHA", "TOML", "Test", "Unicode"] -git-tree-sha1 = "5461b2a67beb9089980e2f8f25145186b6d34f91" +git-tree-sha1 = "182a9a3fe886587ba230a417f1651a4cbc2b92d4" uuid = "e30172f5-a6a5-5a46-863b-614d45cd2de4" -version = "1.4.1" +version = "1.8.1" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" -[[deps.DualNumbers]] -deps = ["Calculus", "NaNMath", "SpecialFunctions"] -git-tree-sha1 = "5837a837389fccf076445fce071c8ddaea35a566" -uuid = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74" -version = "0.6.8" - [[deps.DynamicPPL]] -deps = ["ADTypes", "AbstractMCMC", "AbstractPPL", "Accessors", "BangBang", "Bijectors", "Compat", "ConstructionBase", "Distributions", "DocStringExtensions", "LinearAlgebra", "LogDensityProblems", "LogDensityProblemsAD", "MacroTools", "OrderedCollections", "Random", "Requires", "Test"] -git-tree-sha1 = "882510df0da64bae763a65240b07fb4b1c462317" +deps = ["ADTypes", "AbstractMCMC", "AbstractPPL", "Accessors", "BangBang", "Bijectors", "Compat", "ConstructionBase", "Distributions", "DocStringExtensions", "InteractiveUtils", "KernelAbstractions", "LinearAlgebra", "LogDensityProblems", "LogDensityProblemsAD", "MacroTools", "OrderedCollections", "Random", "Requires", "Test"] +git-tree-sha1 = "18fcc77ba683967339473b731143fa269ea671f5" uuid = "366bfd00-2699-11ea-058f-f148b4cae6d8" -version = "0.27.1" +version = "0.34.2" [deps.DynamicPPL.extensions] DynamicPPLChainRulesCoreExt = ["ChainRulesCore"] DynamicPPLEnzymeCoreExt = ["EnzymeCore"] DynamicPPLForwardDiffExt = ["ForwardDiff"] + DynamicPPLJETExt = ["JET"] DynamicPPLMCMCChainsExt = ["MCMCChains"] - DynamicPPLReverseDiffExt = ["ReverseDiff"] + DynamicPPLMooncakeExt = ["Mooncake"] DynamicPPLZygoteRulesExt = ["ZygoteRules"] [deps.DynamicPPL.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + JET = "c3a54625-cd67-489e-a8e7-0a5a0ff4e31b" MCMCChains = "c7f686f2-ff18-58e9-bc7b-31028e88f75d" - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6" ZygoteRules = "700de1a5-db45-46bc-99cf-38207098b444" [[deps.EarCut_jll]] @@ -671,9 +763,9 @@ version = "1.0.4" [[deps.EpollShim_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "8e9441ee83492030ace98f9789a654a6d0b1f643" +git-tree-sha1 = "8a4be429317c42cfae6a7fc03c31bad1970c310d" uuid = "2702e6a9-849d-5ed8-8c21-79e8b8f9ee43" -version = "0.0.20230411+0" +version = "0.0.20230411+1" [[deps.ExactPredicates]] deps = ["IntervalArithmetic", "Random", "StaticArrays"] @@ -683,61 +775,76 @@ version = "2.2.8" [[deps.ExceptionUnwrapping]] deps = ["Test"] -git-tree-sha1 = "dcb08a0d93ec0b1cdc4af184b26b591e9695423a" +git-tree-sha1 = "d36f682e590a83d63d1c7dbd287573764682d12a" uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4" -version = "0.1.10" +version = "0.1.11" [[deps.Expat_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "1c6317308b9dc757616f0b5cb379db10494443a7" +git-tree-sha1 = "d55dffd9ae73ff72f1c0482454dcf2ec6c6c4a63" uuid = "2e619515-83b5-522b-bb60-26c02a35a201" -version = "2.6.2+0" +version = "2.6.5+0" [[deps.ExprTools]] git-tree-sha1 = "27415f162e6028e81c72b82ef756bf321213b6ec" uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04" version = "0.1.10" +[[deps.Expronicon]] +deps = ["MLStyle", "Pkg", "TOML"] +git-tree-sha1 = "fc3951d4d398b5515f91d7fe5d45fc31dccb3c9b" +uuid = "6b7a57c9-7cc1-4fdf-b7f5-e857abae3636" +version = "0.8.5" + [[deps.Extents]] -git-tree-sha1 = "2140cd04483da90b2da7f99b2add0750504fc39c" +git-tree-sha1 = "063512a13dbe9c40d999c439268539aa552d1ae6" uuid = "411431e0-e8b7-467b-b5e0-f676ba4f2910" -version = "0.1.2" +version = "0.1.5" [[deps.FFMPEG]] -deps = ["BinaryProvider", "Libdl"] -git-tree-sha1 = "9143266ba77d3313a4cf61d8333a1970e8c5d8b6" +deps = ["FFMPEG_jll"] +git-tree-sha1 = "53ebe7511fa11d33bec688a9178fac4e49eeee00" uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a" -version = "0.2.4" +version = "0.4.2" [[deps.FFMPEG_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] -git-tree-sha1 = "ab3f7e1819dba9434a3a5126510c8fda3a4e7000" +git-tree-sha1 = "466d45dc38e15794ec7d5d63ec03d776a9aff36e" uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" -version = "6.1.1+0" +version = "4.4.4+1" [[deps.FFTW]] deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"] -git-tree-sha1 = "4820348781ae578893311153d69049a93d05f39d" +git-tree-sha1 = "7de7c78d681078f027389e067864a8d53bd7c3c9" uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341" -version = "1.8.0" +version = "1.8.1" [[deps.FFTW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea" +git-tree-sha1 = "4d81ed14783ec49ce9f2e168208a12ce1815aa25" uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a" -version = "3.3.10+0" +version = "3.3.10+3" [[deps.FITSIO]] deps = ["CFITSIO", "Printf", "Reexport", "Tables"] -git-tree-sha1 = "a8924c203d66d4c5d72980572c6810213422a59d" +git-tree-sha1 = "8b68d078e8ec3660b7e95528f1a888c5222d2fb4" uuid = "525bcba6-941b-5504-bd06-fd0dc1a4d2eb" -version = "0.17.1" +version = "0.17.4" + +[[deps.FastClosures]] +git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef" +uuid = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a" +version = "0.3.2" [[deps.FileIO]] deps = ["Pkg", "Requires", "UUIDs"] -git-tree-sha1 = "82d8afa92ecf4b52d78d869f038ebfb881267322" +git-tree-sha1 = "2dd20384bf8c6d411b5c7370865b1e9b26cb2ea3" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" -version = "1.16.3" +version = "1.16.6" +weakdeps = ["HTTP"] + + [deps.FileIO.extensions] + HTTPExt = "HTTP" [[deps.FilePaths]] deps = ["FilePathsBase", "MacroTools", "Reexport", "Requires"] @@ -746,19 +853,25 @@ uuid = "8fc22ac5-c921-52a6-82fd-178b2807b824" version = "0.8.3" [[deps.FilePathsBase]] -deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"] -git-tree-sha1 = "9f00e42f8d99fdde64d40c8ea5d14269a2e2c1aa" +deps = ["Compat", "Dates"] +git-tree-sha1 = "2ec417fc319faa2d768621085cc1feebbdee686b" uuid = "48062228-2e41-5def-b9a4-89aafe57970f" -version = "0.9.21" +version = "0.9.23" +weakdeps = ["Mmap", "Test"] + + [deps.FilePathsBase.extensions] + FilePathsBaseMmapExt = "Mmap" + FilePathsBaseTestExt = "Test" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" +version = "1.11.0" [[deps.FillArrays]] deps = ["LinearAlgebra"] -git-tree-sha1 = "0653c0a2396a6da5bc4766c43041ef5fd3efbe57" +git-tree-sha1 = "6a70198746448456524cb442b8af316927ff3e1a" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" -version = "1.11.0" +version = "1.13.0" weakdeps = ["PDMats", "SparseArrays", "Statistics"] [deps.FillArrays.extensions] @@ -767,19 +880,21 @@ weakdeps = ["PDMats", "SparseArrays", "Statistics"] FillArraysStatisticsExt = "Statistics" [[deps.FiniteDiff]] -deps = ["ArrayInterface", "LinearAlgebra", "Requires", "Setfield", "SparseArrays"] -git-tree-sha1 = "2de436b72c3422940cbe1367611d137008af7ec3" +deps = ["ArrayInterface", "LinearAlgebra", "Setfield"] +git-tree-sha1 = "f089ab1f834470c525562030c8cfde4025d5e915" uuid = "6a86dc24-6348-571c-b903-95158fe2bd41" -version = "2.23.1" +version = "2.27.0" [deps.FiniteDiff.extensions] FiniteDiffBandedMatricesExt = "BandedMatrices" FiniteDiffBlockBandedMatricesExt = "BlockBandedMatrices" + FiniteDiffSparseArraysExt = "SparseArrays" FiniteDiffStaticArraysExt = "StaticArrays" [deps.FiniteDiff.weakdeps] BandedMatrices = "aae01518-5342-5314-be14-df237901396f" BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.FixedPointNumbers]] @@ -790,9 +905,9 @@ version = "0.8.5" [[deps.Fontconfig_jll]] deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Zlib_jll"] -git-tree-sha1 = "db16beca600632c95fc8aca29890d83788dd8b23" +git-tree-sha1 = "21fac3c77d7b5a9fc03b0ec503aa1a6392c34d2b" uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" -version = "2.13.96+0" +version = "2.15.0+0" [[deps.Format]] git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc" @@ -801,9 +916,9 @@ version = "1.3.7" [[deps.ForwardDiff]] deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"] -git-tree-sha1 = "cf0fe81336da9fb90944683b8c41984b08793dad" +git-tree-sha1 = "a2df1b776752e3f344e5116c06d75a10436ab853" uuid = "f6369f11-7733-5829-9624-2563aa707210" -version = "0.10.36" +version = "0.10.38" weakdeps = ["StaticArrays"] [deps.ForwardDiff.extensions] @@ -817,21 +932,21 @@ version = "4.1.1" [[deps.FreeType2_jll]] deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"] -git-tree-sha1 = "5c1d8ae0efc6c2e7b1fc502cbe25def8f661b7bc" +git-tree-sha1 = "786e968a8d2fb167f2e4880baba62e0e26bd8e4e" uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" -version = "2.13.2+0" +version = "2.13.3+1" [[deps.FreeTypeAbstraction]] deps = ["ColorVectorSpace", "Colors", "FreeType", "GeometryBasics"] -git-tree-sha1 = "2493cdfd0740015955a8e46de4ef28f49460d8bc" +git-tree-sha1 = "d52e255138ac21be31fa633200b65e4e71d26802" uuid = "663a7486-cb36-511b-a19d-713bb74d65c9" -version = "0.10.3" +version = "0.10.6" [[deps.FriBidi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "1ed150b39aebcc805c26b93a8d0122c940f64ce2" +git-tree-sha1 = "846f7026a9decf3679419122b49f8a1fdb48d2d5" uuid = "559328eb-81f9-559d-9380-de523a88c83c" -version = "1.0.14+0" +version = "1.0.16+0" [[deps.FunctionWrappers]] git-tree-sha1 = "d62485945ce5ae9c0c48f124a84998d755bae00e" @@ -845,50 +960,56 @@ uuid = "77dc65aa-8811-40c2-897b-53d922fa7daf" version = "0.1.3" [[deps.Functors]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "8a66c07630d6428eaab3506a0eabfcf4a9edea05" +deps = ["Compat", "ConstructionBase", "LinearAlgebra", "Random"] +git-tree-sha1 = "60a0339f28a233601cb74468032b5c302d5067de" uuid = "d9f16b24-f501-4c13-a1f2-28368ffc5196" -version = "0.4.11" +version = "0.5.2" [[deps.Future]] deps = ["Random"] uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" +version = "1.11.0" [[deps.GLFW_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"] -git-tree-sha1 = "ff38ba61beff76b8f4acad8ab0c97ef73bb670cb" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll", "libdecor_jll", "xkbcommon_jll"] +git-tree-sha1 = "fcb0584ff34e25155876418979d4c8971243bb89" uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89" -version = "3.3.9+0" +version = "3.4.0+2" [[deps.GPUArraysCore]] deps = ["Adapt"] -git-tree-sha1 = "ec632f177c0d990e64d955ccc1b8c04c485a0950" +git-tree-sha1 = "83cf05ab16a73219e5f6bd1bdfa9848fa24ac627" uuid = "46192b85-c4d5-4398-a991-12ede77f4527" -version = "0.1.6" +version = "0.2.0" [[deps.GR]] -deps = ["Artifacts", "Base64", "DelimitedFiles", "Downloads", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Preferences", "Printf", "Random", "Serialization", "Sockets", "TOML", "Tar", "Test", "p7zip_jll"] -git-tree-sha1 = "ddda044ca260ee324c5fc07edb6d7cf3f0b9c350" +deps = ["Artifacts", "Base64", "DelimitedFiles", "Downloads", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Preferences", "Printf", "Qt6Wayland_jll", "Random", "Serialization", "Sockets", "TOML", "Tar", "Test", "p7zip_jll"] +git-tree-sha1 = "9bf00ba4c45867c86251a7fd4cb646dcbeb41bf0" uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71" -version = "0.73.5" +version = "0.73.12" [[deps.GR_jll]] deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "FreeType2_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Qt6Base_jll", "Zlib_jll", "libpng_jll"] -git-tree-sha1 = "278e5e0f820178e8a26df3184fcb2280717c79b1" +git-tree-sha1 = "36d5430819123553bf31dfdceb3653ca7d9e62d7" uuid = "d2c73de3-f751-5644-a686-071e5b155ba9" -version = "0.73.5+0" +version = "0.73.12+0" + +[[deps.GeoFormatTypes]] +git-tree-sha1 = "8e233d5167e63d708d41f87597433f59a0f213fe" +uuid = "68eda718-8dee-11e9-39e7-89f7f65f511f" +version = "0.4.4" [[deps.GeoInterface]] -deps = ["Extents"] -git-tree-sha1 = "801aef8228f7f04972e596b09d4dba481807c913" +deps = ["DataAPI", "Extents", "GeoFormatTypes"] +git-tree-sha1 = "294e99f19869d0b0cb71aef92f19d03649d028d5" uuid = "cf35fbd7-0cd7-5166-be24-54bfbe79505f" -version = "1.3.4" +version = "1.4.1" [[deps.GeometryBasics]] -deps = ["EarCut_jll", "Extents", "GeoInterface", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] -git-tree-sha1 = "b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134" +deps = ["EarCut_jll", "Extents", "GeoInterface", "IterTools", "LinearAlgebra", "PrecompileTools", "Random", "StaticArrays"] +git-tree-sha1 = "f0895e73ba6c469ec8efaa13712eb5ee1a3647a3" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" -version = "0.4.11" +version = "0.5.2" [[deps.Gettext_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] @@ -896,6 +1017,12 @@ git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046" uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" version = "0.21.0+0" +[[deps.Giflib_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "6570366d757b50fabae9f4315ad74d2e40c0560a" +uuid = "59f7168a-df46-5410-90c8-f2779963d0ec" +version = "5.2.3+0" + [[deps.Git]] deps = ["Git_jll"] git-tree-sha1 = "04eff47b1354d702c3a85e8ab23d539bb7d5957e" @@ -904,33 +1031,33 @@ version = "1.3.1" [[deps.Git_jll]] deps = ["Artifacts", "Expat_jll", "JLLWrappers", "LibCURL_jll", "Libdl", "Libiconv_jll", "OpenSSL_jll", "PCRE2_jll", "Zlib_jll"] -git-tree-sha1 = "d18fb8a1f3609361ebda9bf029b60fd0f120c809" +git-tree-sha1 = "399f4a308c804b446ae4c91eeafadb2fe2c54ff9" uuid = "f8c6e375-362e-5223-8a59-34ff63f689eb" -version = "2.44.0+2" +version = "2.47.1+0" [[deps.Glib_jll]] deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE2_jll", "Zlib_jll"] -git-tree-sha1 = "7c82e6a6cd34e9d935e9aa4051b66c6ff3af59ba" +git-tree-sha1 = "b0036b392358c80d2d2124746c2bf3d48d457938" uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" -version = "2.80.2+0" +version = "2.82.4+0" [[deps.Graphics]] deps = ["Colors", "LinearAlgebra", "NaNMath"] -git-tree-sha1 = "d61890399bc535850c4bf08e4e0d3a7ad0f21cbd" +git-tree-sha1 = "a641238db938fff9b2f60d08ed9030387daf428c" uuid = "a2bd30eb-e257-5431-a919-1863eab51364" -version = "1.1.2" +version = "1.1.3" [[deps.Graphite2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011" +git-tree-sha1 = "01979f9b37367603e2848ea225918a3b3861b606" uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472" -version = "1.3.14+0" +version = "1.3.14+1" [[deps.GridLayoutBase]] deps = ["GeometryBasics", "InteractiveUtils", "Observables"] -git-tree-sha1 = "fc713f007cff99ff9e50accba6373624ddd33588" +git-tree-sha1 = "dc6bed05c15523624909b3953686c5f5ffa10adc" uuid = "3955a311-db13-416c-9275-1d80ed98e5e9" -version = "0.11.0" +version = "0.11.1" [[deps.Grisu]] git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" @@ -938,40 +1065,52 @@ uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" version = "1.0.2" [[deps.HTTP]] -deps = ["Base64", "CodecZlib", "ConcurrentUtilities", "Dates", "ExceptionUnwrapping", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"] -git-tree-sha1 = "d1d712be3164d61d1fb98e7ce9bcbc6cc06b45ed" +deps = ["Base64", "CodecZlib", "ConcurrentUtilities", "Dates", "ExceptionUnwrapping", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "PrecompileTools", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"] +git-tree-sha1 = "c67b33b085f6e2faf8bf79a61962e7339a81129c" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" -version = "1.10.8" +version = "1.10.15" [[deps.HarfBuzz_jll]] -deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"] -git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3" +deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll"] +git-tree-sha1 = "55c53be97790242c29031e5cd45e8ac296dadda3" uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566" -version = "2.8.1+1" +version = "8.5.0+0" [[deps.HypergeometricFunctions]] -deps = ["DualNumbers", "LinearAlgebra", "OpenLibm_jll", "SpecialFunctions"] -git-tree-sha1 = "f218fe3736ddf977e0e772bc9a586b2383da2685" +deps = ["LinearAlgebra", "OpenLibm_jll", "SpecialFunctions"] +git-tree-sha1 = "2bd56245074fab4015b9174f24ceba8293209053" uuid = "34004b35-14d8-5ef3-9330-4cdb6864b03a" -version = "0.3.23" +version = "0.3.27" + +[[deps.Hyperscript]] +deps = ["Test"] +git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" +uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" +version = "0.0.4" + +[[deps.HypertextLiteral]] +deps = ["Tricks"] +git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653" +uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" +version = "0.9.5" [[deps.HypothesisTests]] deps = ["Combinatorics", "Distributions", "LinearAlgebra", "Printf", "Random", "Rmath", "Roots", "Statistics", "StatsAPI", "StatsBase"] -git-tree-sha1 = "4b5d5ba51f5f473737ed9de6d8a7aa190ad8c72f" +git-tree-sha1 = "6c3ce99fdbaf680aa6716f4b919c19e902d67c9c" uuid = "09f84164-cd44-5f33-b23f-e6b0d136a0d5" -version = "0.11.0" +version = "0.11.3" [[deps.IOCapture]] deps = ["Logging", "Random"] -git-tree-sha1 = "8b72179abc660bfab5e28472e019392b97d0985c" +git-tree-sha1 = "b6d6bfdd7ce25b0f9b2f6b3dd56b2673a66c8770" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" -version = "0.2.4" +version = "0.2.5" [[deps.ImageAxes]] deps = ["AxisArrays", "ImageBase", "ImageCore", "Reexport", "SimpleTraits"] -git-tree-sha1 = "2e4520d67b0cef90865b3ef727594d2a58e0e1f8" +git-tree-sha1 = "e12629406c6c4442539436581041d372d69c55ba" uuid = "2803e5a7-5153-5ecf-9a86-9b4c37f5f5ac" -version = "0.6.11" +version = "0.6.12" [[deps.ImageBase]] deps = ["ImageCore", "Reexport"] @@ -981,21 +1120,21 @@ version = "0.1.7" [[deps.ImageCore]] deps = ["ColorVectorSpace", "Colors", "FixedPointNumbers", "MappedArrays", "MosaicViews", "OffsetArrays", "PaddedViews", "PrecompileTools", "Reexport"] -git-tree-sha1 = "b2a7eaa169c13f5bcae8131a83bc30eff8f71be0" +git-tree-sha1 = "8c193230235bbcee22c8066b0374f63b5683c2d3" uuid = "a09fc81d-aa75-5fe9-8630-4744c3626534" -version = "0.10.2" +version = "0.10.5" [[deps.ImageIO]] -deps = ["FileIO", "IndirectArrays", "JpegTurbo", "LazyModules", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs"] -git-tree-sha1 = "437abb322a41d527c197fa800455f79d414f0a3c" +deps = ["FileIO", "IndirectArrays", "JpegTurbo", "LazyModules", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs", "WebP"] +git-tree-sha1 = "696144904b76e1ca433b886b4e7edd067d76cbf7" uuid = "82e4d734-157c-48bb-816b-45c225c6df19" -version = "0.6.8" +version = "0.6.9" [[deps.ImageMetadata]] deps = ["AxisArrays", "ImageAxes", "ImageBase", "ImageCore"] -git-tree-sha1 = "355e2b974f2e3212a75dfb60519de21361ad3cb7" +git-tree-sha1 = "2a81c3897be6fbcde0802a0ebe6796d0562f63ec" uuid = "bc367c6b-8a6b-528e-b4bd-a4b897500b49" -version = "0.9.9" +version = "0.9.10" [[deps.Imath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] @@ -1009,9 +1148,9 @@ uuid = "9b13fd28-a010-5f03-acff-a1bbcff69959" version = "1.0.0" [[deps.Inflate]] -git-tree-sha1 = "ea8031dea4aff6bd41f1df8f2fdfb25b33626381" +git-tree-sha1 = "d1b1b796e47d94588b3757fe84fbf65a5ec4a80d" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" -version = "0.1.4" +version = "0.1.5" [[deps.InitialValues]] git-tree-sha1 = "4da0f88e9a39111c2fa3add390ab15f3a44f3ca3" @@ -1019,10 +1158,17 @@ uuid = "22cec73e-a1b8-11e9-2c92-598750a2cf9c" version = "0.3.1" [[deps.InlineStrings]] -deps = ["Parsers"] -git-tree-sha1 = "9cc2baf75c6d09f9da536ddf58eb2f29dedaf461" +git-tree-sha1 = "45521d31238e87ee9f9732561bfee12d4eebd52d" uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48" -version = "1.4.0" +version = "1.4.2" + + [deps.InlineStrings.extensions] + ArrowTypesExt = "ArrowTypes" + ParsersExt = "Parsers" + + [deps.InlineStrings.weakdeps] + ArrowTypes = "31f734f8-188a-4ce0-8406-c8a06bd891cd" + Parsers = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" [[deps.InplaceOps]] deps = ["LinearAlgebra", "Test"] @@ -1031,14 +1177,15 @@ uuid = "505f98c9-085e-5b2c-8e89-488be7bf1f34" version = "0.3.0" [[deps.IntelOpenMP_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "be50fe8df3acbffa0274a744f1a99d29c45a57f4" +deps = ["Artifacts", "JLLWrappers", "LazyArtifacts", "Libdl"] +git-tree-sha1 = "0f14a5456bdc6b9731a5682f439a672750a09e48" uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0" -version = "2024.1.0+0" +version = "2025.0.4+0" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" +version = "1.11.0" [[deps.Interpolations]] deps = ["Adapt", "AxisAlgorithms", "ChainRulesCore", "LinearAlgebra", "OffsetArrays", "Random", "Ratios", "Requires", "SharedArrays", "SparseArrays", "StaticArrays", "WoodburyMatrices"] @@ -1051,15 +1198,16 @@ weakdeps = ["Unitful"] InterpolationsUnitfulExt = "Unitful" [[deps.IntervalArithmetic]] -deps = ["CRlibm_jll", "MacroTools", "RoundingEmulator"] -git-tree-sha1 = "e75c4e33afbc631aa62671ebba12863321c1d46e" +deps = ["CRlibm_jll", "LinearAlgebra", "MacroTools", "RoundingEmulator"] +git-tree-sha1 = "0fcf2079f918f68c6412cab5f2679822cbd7357f" uuid = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253" -version = "0.22.12" -weakdeps = ["DiffRules", "ForwardDiff", "RecipesBase"] +version = "0.22.23" +weakdeps = ["DiffRules", "ForwardDiff", "IntervalSets", "RecipesBase"] [deps.IntervalArithmetic.extensions] IntervalArithmeticDiffRulesExt = "DiffRules" IntervalArithmeticForwardDiffExt = "ForwardDiff" + IntervalArithmeticIntervalSetsExt = "IntervalSets" IntervalArithmeticRecipesBaseExt = "RecipesBase" [[deps.IntervalSets]] @@ -1074,24 +1222,24 @@ weakdeps = ["Random", "RecipesBase", "Statistics"] IntervalSetsStatisticsExt = "Statistics" [[deps.InverseFunctions]] -deps = ["Test"] -git-tree-sha1 = "e7cbed5032c4c397a6ac23d1493f3289e01231c4" +git-tree-sha1 = "a779299d77cd080bf77b97535acecd73e1c5e5cb" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" -version = "0.1.14" -weakdeps = ["Dates"] +version = "0.1.17" +weakdeps = ["Dates", "Test"] [deps.InverseFunctions.extensions] - DatesExt = "Dates" + InverseFunctionsDatesExt = "Dates" + InverseFunctionsTestExt = "Test" [[deps.InvertedIndices]] -git-tree-sha1 = "0dc7b50b8d436461be01300fd8cd45aa0274b038" +git-tree-sha1 = "6da3c4316095de0f5ee2ebd875df8721e7e0bdbe" uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f" -version = "1.3.0" +version = "1.3.1" [[deps.IrrationalConstants]] -git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2" +git-tree-sha1 = "e2222959fbc6c19554dc15174c81bf7bf3aa691c" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" -version = "0.2.2" +version = "0.2.4" [[deps.Isoband]] deps = ["isoband_jll"] @@ -1111,15 +1259,15 @@ version = "1.0.0" [[deps.JLFzf]] deps = ["Pipe", "REPL", "Random", "fzf_jll"] -git-tree-sha1 = "a53ebe394b71470c7f97c2e7e170d51df21b17af" +git-tree-sha1 = "71b48d857e86bf7a1838c4736545699974ce79a2" uuid = "1019f520-868f-41f5-a6de-eb00f4b6a39c" -version = "0.1.7" +version = "0.1.9" [[deps.JLLWrappers]] deps = ["Artifacts", "Preferences"] -git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca" +git-tree-sha1 = "a007feb38b422fbdab534406aeca1b86823cb4d6" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" -version = "1.5.0" +version = "1.7.0" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] @@ -1135,21 +1283,25 @@ version = "0.1.5" [[deps.JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "c84a835e1a09b289ffcd2271bf2a337bbdda6637" +git-tree-sha1 = "eac1206917768cb54957c65a615460d87b455fc1" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" -version = "3.0.3+0" +version = "3.1.1+0" [[deps.KernelAbstractions]] -deps = ["Adapt", "Atomix", "InteractiveUtils", "LinearAlgebra", "MacroTools", "PrecompileTools", "Requires", "SparseArrays", "StaticArrays", "UUIDs", "UnsafeAtomics", "UnsafeAtomicsLLVM"] -git-tree-sha1 = "8e5a339882cc401688d79b811d923a38ba77d50a" +deps = ["Adapt", "Atomix", "InteractiveUtils", "MacroTools", "PrecompileTools", "Requires", "StaticArrays", "UUIDs"] +git-tree-sha1 = "b9a838cd3028785ac23822cded5126b3da394d1a" uuid = "63c18a36-062a-441e-b654-da1e3ab1ce7c" -version = "0.9.20" +version = "0.9.31" [deps.KernelAbstractions.extensions] EnzymeExt = "EnzymeCore" + LinearAlgebraExt = "LinearAlgebra" + SparseArraysExt = "SparseArrays" [deps.KernelAbstractions.weakdeps] EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" + LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.KernelDensity]] deps = ["Distributions", "DocStringExtensions", "FFTW", "Interpolations", "StatsBase"] @@ -1170,34 +1322,16 @@ uuid = "5be7bae1-8223-5378-bac3-9e7378a2f6e6" version = "0.4.1" [[deps.LERC_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "bf36f528eec6634efc60d7ec062008f171071434" +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "aaafe88dccbd957a8d82f7d05be9b69172e0cee3" uuid = "88015f11-f218-50d7-93a8-a6af411a945d" -version = "3.0.0+1" - -[[deps.LLVM]] -deps = ["CEnum", "LLVMExtra_jll", "Libdl", "Preferences", "Printf", "Requires", "Unicode"] -git-tree-sha1 = "389aea28d882a40b5e1747069af71bdbd47a1cae" -uuid = "929cbde3-209d-540e-8aea-75f648917ca0" -version = "7.2.1" - - [deps.LLVM.extensions] - BFloat16sExt = "BFloat16s" - - [deps.LLVM.weakdeps] - BFloat16s = "ab4f0b2a-ad5b-11e8-123f-65d77653426b" - -[[deps.LLVMExtra_jll]] -deps = ["Artifacts", "JLLWrappers", "LazyArtifacts", "Libdl", "TOML"] -git-tree-sha1 = "88b916503aac4fb7f701bb625cd84ca5dd1677bc" -uuid = "dad2f222-ce93-54a1-a47d-0025e8a3acab" -version = "0.0.29+0" +version = "4.0.1+0" [[deps.LLVMOpenMP_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "d986ce2d884d49126836ea94ed5bfb0f12679713" +git-tree-sha1 = "78211fb6cbc872f77cad3fc0b6cf647d923f4929" uuid = "1d63c593-3942-5779-bab2-d838dc0a180e" -version = "15.0.7+0" +version = "18.1.7+0" [[deps.LRUCache]] git-tree-sha1 = "b3cc6698599b10e652832c2f23db3cab99d51b59" @@ -1210,9 +1344,9 @@ weakdeps = ["Serialization"] [[deps.LZO_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "70c5da094887fd2cae843b8db33920bac4b6f07d" +git-tree-sha1 = "1c602b1127f4751facb671441ca72715cc95938a" uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" -version = "2.10.2+0" +version = "2.10.3+0" [[deps.L_BFGS_B_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] @@ -1221,32 +1355,35 @@ uuid = "81d17ec3-03a1-5e46-b53e-bddc35a13473" version = "3.0.1+0" [[deps.LaTeXStrings]] -git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec" +git-tree-sha1 = "dda21b8cbd6a6c40d9d02a73230f9d70fed6918c" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" -version = "1.3.1" +version = "1.4.0" [[deps.Latexify]] deps = ["Format", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "OrderedCollections", "Requires"] -git-tree-sha1 = "e0b5cd21dc1b44ec6e64f351976f961e6f31d6c4" +git-tree-sha1 = "cd714447457c660382fe634710fb56eb255ee42e" uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316" -version = "0.16.3" +version = "0.16.6" [deps.Latexify.extensions] DataFramesExt = "DataFrames" + SparseArraysExt = "SparseArrays" SymEngineExt = "SymEngine" [deps.Latexify.weakdeps] DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" SymEngine = "123dc426-2d89-5057-bbad-38513e3affd8" [[deps.LazilyInitializedFields]] -git-tree-sha1 = "8f7f3cabab0fd1800699663533b6d5cb3fc0e612" +git-tree-sha1 = "0f2da712350b020bc3957f269c9caad516383ee0" uuid = "0e77f7df-68c5-4e49-93ce-4cd80f5598bf" -version = "1.2.2" +version = "1.3.0" [[deps.LazyArtifacts]] deps = ["Artifacts", "Pkg"] uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" +version = "1.11.0" [[deps.LazyModules]] git-tree-sha1 = "a560dd966b386ac9ae60bdd3a3d3a326062d3c3e" @@ -1267,16 +1404,17 @@ version = "0.6.4" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" -version = "8.4.0+0" +version = "8.6.0+0" [[deps.LibGit2]] deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" +version = "1.11.0" [[deps.LibGit2_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" -version = "1.6.4+0" +version = "1.7.2+0" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] @@ -1285,85 +1423,88 @@ version = "1.11.0+1" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" +version = "1.11.0" [[deps.Libffi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290" +git-tree-sha1 = "27ecae93dd25ee0909666e6835051dd684cc035e" uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" -version = "3.2.2+1" +version = "3.2.2+2" [[deps.Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll"] -git-tree-sha1 = "9fd170c4bbfd8b935fdc5f8b7aa33532c991a673" +git-tree-sha1 = "8be878062e0ffa2c3f67bb58a595375eda5de80b" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" -version = "1.8.11+0" +version = "1.11.0+0" [[deps.Libglvnd_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"] -git-tree-sha1 = "6f73d1dd803986947b2c750138528a999a6c7733" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll", "Xorg_libXext_jll"] +git-tree-sha1 = "ff3b4b9d35de638936a525ecd36e86a8bb919d11" uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29" -version = "1.6.0+0" +version = "1.7.0+0" [[deps.Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "fbb1f2bef882392312feb1ede3615ddc1e9b99ed" +git-tree-sha1 = "df37206100d39f79b3376afb6b9cee4970041c61" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" -version = "1.49.0+0" +version = "1.51.1+0" [[deps.Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "f9557a255370125b405568f9767d6d195822a175" +git-tree-sha1 = "be484f5c92fad0bd8acfef35fe017900b0b73809" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" -version = "1.17.0+0" +version = "1.18.0+0" [[deps.Libmount_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "0c4f9c4f1a50d8f35048fa0532dabbadf702f81e" +git-tree-sha1 = "89211ea35d9df5831fca5d33552c02bd33878419" uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" -version = "2.40.1+0" +version = "2.40.3+0" [[deps.Libtask]] deps = ["FunctionWrappers", "LRUCache", "LinearAlgebra", "Statistics"] -git-tree-sha1 = "ed1f362b3fd13f00b65e61d98669c652c17663ab" +git-tree-sha1 = "902ece54b0cb5c5413a8a15db0ad2aa2ec4172d2" uuid = "6f1fad26-d15e-5dc8-ae53-837a1d7b8c9f" -version = "0.8.7" +version = "0.8.8" [[deps.Libtiff_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "LERC_jll", "Libdl", "XZ_jll", "Zlib_jll", "Zstd_jll"] -git-tree-sha1 = "2da088d113af58221c52828a80378e16be7d037a" +git-tree-sha1 = "4ab7581296671007fc33f07a721631b8855f4b1d" uuid = "89763e89-9b03-5906-acba-b20f662cd828" -version = "4.5.1+1" +version = "4.7.1+0" [[deps.Libuuid_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "5ee6203157c120d79034c748a2acba45b82b8807" +git-tree-sha1 = "e888ad02ce716b319e6bdb985d2ef300e7089889" uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" -version = "2.40.1+0" +version = "2.40.3+0" [[deps.LineSearches]] deps = ["LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "Printf"] -git-tree-sha1 = "7bbea35cec17305fc70a0e5b4641477dc0789d9d" +git-tree-sha1 = "e4c3be53733db1051cc15ecf573b1042b3a712a1" uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" -version = "7.2.0" +version = "7.3.0" [[deps.LinearAlgebra]] deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" +version = "1.11.0" [[deps.LogDensityProblems]] deps = ["ArgCheck", "DocStringExtensions", "Random"] -git-tree-sha1 = "f9a11237204bc137617194d79d813069838fcf61" +git-tree-sha1 = "4e0128c1590d23a50dcdb106c7e2dbca99df85c0" uuid = "6fdf6af0-433a-55f7-b3ed-c6c6e0b8df7c" -version = "2.1.1" +version = "2.1.2" [[deps.LogDensityProblemsAD]] -deps = ["DocStringExtensions", "LogDensityProblems", "Requires", "SimpleUnPack"] -git-tree-sha1 = "98cad2db1c46f2fff70a5e305fb42c97a251422a" +deps = ["DocStringExtensions", "LogDensityProblems"] +git-tree-sha1 = "a10e798ac8c44fe1594ad7d6e02898e16e4eafa3" uuid = "996a588d-648d-4e1f-a8f0-a84b347e47b1" -version = "1.9.0" +version = "1.13.0" [deps.LogDensityProblemsAD.extensions] LogDensityProblemsADADTypesExt = "ADTypes" + LogDensityProblemsADDifferentiationInterfaceExt = ["ADTypes", "DifferentiationInterface"] LogDensityProblemsADEnzymeExt = "Enzyme" LogDensityProblemsADFiniteDifferencesExt = "FiniteDifferences" LogDensityProblemsADForwardDiffBenchmarkToolsExt = ["BenchmarkTools", "ForwardDiff"] @@ -1375,6 +1516,7 @@ version = "1.9.0" [deps.LogDensityProblemsAD.weakdeps] ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b" BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" + DifferentiationInterface = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63" Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" @@ -1384,9 +1526,9 @@ version = "1.9.0" [[deps.LogExpFunctions]] deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] -git-tree-sha1 = "18144f3e9cbe9b15b070288eef858f71b291ce37" +git-tree-sha1 = "13ca9e2586b89836fd20cccf56e57e2b9ae7f38f" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" -version = "0.3.27" +version = "0.3.29" weakdeps = ["ChainRulesCore", "ChangesOfVariables", "InverseFunctions"] [deps.LogExpFunctions.extensions] @@ -1396,54 +1538,59 @@ weakdeps = ["ChainRulesCore", "ChangesOfVariables", "InverseFunctions"] [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" +version = "1.11.0" [[deps.LoggingExtras]] deps = ["Dates", "Logging"] -git-tree-sha1 = "c1dd6d7978c12545b4179fb6153b9250c96b0075" +git-tree-sha1 = "f02b56007b064fbfddb4c9cd60161b6dd0f40df3" uuid = "e6f89c97-d47a-5376-807f-9c37f3926c36" -version = "1.0.3" +version = "1.1.0" [[deps.MCMCChains]] deps = ["AbstractMCMC", "AxisArrays", "Dates", "Distributions", "IteratorInterfaceExtensions", "KernelDensity", "LinearAlgebra", "MCMCDiagnosticTools", "MLJModelInterface", "NaturalSort", "OrderedCollections", "PrettyTables", "Random", "RecipesBase", "Statistics", "StatsBase", "StatsFuns", "TableTraits", "Tables"] -git-tree-sha1 = "d28056379864318172ff4b7958710cfddd709339" +git-tree-sha1 = "cd7aee22384792c726e19f2a22dc060b886edded" uuid = "c7f686f2-ff18-58e9-bc7b-31028e88f75d" -version = "6.0.6" +version = "6.0.7" [[deps.MCMCDiagnosticTools]] deps = ["AbstractFFTs", "DataAPI", "DataStructures", "Distributions", "LinearAlgebra", "MLJModelInterface", "Random", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Tables"] -git-tree-sha1 = "8ba8b1840d3ab5b38e7c71c23c3193bb5cbc02b5" +git-tree-sha1 = "a586f05dd16a50c490ed95415b2a829b8cf5d57f" uuid = "be115224-59cd-429b-ad48-344e309966f0" -version = "0.3.10" +version = "0.3.14" [[deps.MKL_jll]] deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "oneTBB_jll"] -git-tree-sha1 = "80b2833b56d466b3858d565adcd16a4a05f2089b" +git-tree-sha1 = "5de60bc6cb3899cd318d80d627560fae2e2d99ae" uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7" -version = "2024.1.0+0" +version = "2025.0.1+1" [[deps.MLJModelInterface]] deps = ["Random", "ScientificTypesBase", "StatisticalTraits"] -git-tree-sha1 = "88ef480f46e0506143681b3fb14d86742f3cecb1" +git-tree-sha1 = "ceaff6618408d0e412619321ae43b33b40c1a733" uuid = "e80e1ace-859a-464e-9ed9-23947d8ae3ea" -version = "1.10.0" +version = "1.11.0" + +[[deps.MLStyle]] +git-tree-sha1 = "bc38dff0548128765760c79eb7388a4b37fae2c8" +uuid = "d8e11817-5142-5d16-987a-aa16d5891078" +version = "0.4.17" [[deps.MacroTools]] -deps = ["Markdown", "Random"] -git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df" +git-tree-sha1 = "72aebe0b5051e5143a079a4685a46da330a40472" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" -version = "0.5.13" +version = "0.5.15" [[deps.Makie]] -deps = ["Animations", "Base64", "CRC32c", "ColorBrewer", "ColorSchemes", "ColorTypes", "Colors", "Contour", "Dates", "DelaunayTriangulation", "Distributions", "DocStringExtensions", "Downloads", "FFMPEG_jll", "FileIO", "FilePaths", "FixedPointNumbers", "Format", "FreeType", "FreeTypeAbstraction", "GeometryBasics", "GridLayoutBase", "ImageIO", "InteractiveUtils", "IntervalSets", "Isoband", "KernelDensity", "LaTeXStrings", "LinearAlgebra", "MacroTools", "MakieCore", "Markdown", "MathTeXEngine", "Observables", "OffsetArrays", "Packing", "PlotUtils", "PolygonOps", "PrecompileTools", "Printf", "REPL", "Random", "RelocatableFolders", "Scratch", "ShaderAbstractions", "Showoff", "SignedDistanceFields", "SparseArrays", "Statistics", "StatsBase", "StatsFuns", "StructArrays", "TriplotBase", "UnicodeFun", "Unitful"] -git-tree-sha1 = "ec3a60c9de787bc6ef119d13e07d4bfacceebb83" +deps = ["Animations", "Base64", "CRC32c", "ColorBrewer", "ColorSchemes", "ColorTypes", "Colors", "Contour", "Dates", "DelaunayTriangulation", "Distributions", "DocStringExtensions", "Downloads", "FFMPEG_jll", "FileIO", "FilePaths", "FixedPointNumbers", "Format", "FreeType", "FreeTypeAbstraction", "GeometryBasics", "GridLayoutBase", "ImageBase", "ImageIO", "InteractiveUtils", "Interpolations", "IntervalSets", "InverseFunctions", "Isoband", "KernelDensity", "LaTeXStrings", "LinearAlgebra", "MacroTools", "MakieCore", "Markdown", "MathTeXEngine", "Observables", "OffsetArrays", "PNGFiles", "Packing", "PlotUtils", "PolygonOps", "PrecompileTools", "Printf", "REPL", "Random", "RelocatableFolders", "Scratch", "ShaderAbstractions", "Showoff", "SignedDistanceFields", "SparseArrays", "Statistics", "StatsBase", "StatsFuns", "StructArrays", "TriplotBase", "UnicodeFun", "Unitful"] +git-tree-sha1 = "9680336a5b67f9f9f6eaa018f426043a8cd68200" uuid = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" -version = "0.21.2" +version = "0.22.1" [[deps.MakieCore]] deps = ["ColorTypes", "GeometryBasics", "IntervalSets", "Observables"] -git-tree-sha1 = "c1c9da1a69f6c635a60581c98da252958c844d70" +git-tree-sha1 = "c731269d5a2c85ffdc689127a9ba6d73e978a4b1" uuid = "20f20a25-4f0e-4fdf-b5d1-57303727442b" -version = "0.8.2" +version = "0.9.0" [[deps.MappedArrays]] git-tree-sha1 = "2dab0221fe2b0f2cb6754eaa743cc266339f527e" @@ -1453,6 +1600,7 @@ version = "0.4.2" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" +version = "1.11.0" [[deps.MarkdownAST]] deps = ["AbstractTrees", "Markdown"] @@ -1462,9 +1610,9 @@ version = "0.1.2" [[deps.MathTeXEngine]] deps = ["AbstractTrees", "Automa", "DataStructures", "FreeTypeAbstraction", "GeometryBasics", "LaTeXStrings", "REPL", "RelocatableFolders", "UnicodeFun"] -git-tree-sha1 = "1865d0b8a2d91477c8b16b49152a32764c7b1f5f" +git-tree-sha1 = "f45c8916e8385976e1ccd055c9874560c257ab13" uuid = "0a4f8689-d25c-4efe-a92b-7142dfc1aa53" -version = "0.6.0" +version = "0.6.2" [[deps.MbedTLS]] deps = ["Dates", "MbedTLS_jll", "MozillaCACerts_jll", "NetworkOptions", "Random", "Sockets"] @@ -1475,7 +1623,7 @@ version = "1.1.9" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" -version = "2.28.2+1" +version = "2.28.6+0" [[deps.Measures]] git-tree-sha1 = "c13304c81eec1ed3af7fc20e75fb6b26092a1102" @@ -1496,6 +1644,7 @@ version = "1.2.0" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" +version = "1.11.0" [[deps.MosaicViews]] deps = ["MappedArrays", "OffsetArrays", "PaddedViews", "StackViews"] @@ -1505,7 +1654,7 @@ version = "0.3.4" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" -version = "2023.1.10" +version = "2023.12.12" [[deps.MultivariateStats]] deps = ["Arpack", "Distributions", "LinearAlgebra", "SparseArrays", "Statistics", "StatsAPI", "StatsBase"] @@ -1520,34 +1669,38 @@ uuid = "d41bc354-129a-5804-8e4c-c37616107c6c" version = "7.8.3" [[deps.NNlib]] -deps = ["Adapt", "Atomix", "ChainRulesCore", "GPUArraysCore", "KernelAbstractions", "LinearAlgebra", "Pkg", "Random", "Requires", "Statistics"] -git-tree-sha1 = "3d4617f943afe6410206a5294a95948c8d1b35bd" +deps = ["Adapt", "Atomix", "ChainRulesCore", "GPUArraysCore", "KernelAbstractions", "LinearAlgebra", "Random", "Statistics"] +git-tree-sha1 = "bdc9d30f151590aca0af22690f5ab7dc18a551cb" uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd" -version = "0.9.17" +version = "0.9.27" [deps.NNlib.extensions] NNlibAMDGPUExt = "AMDGPU" NNlibCUDACUDNNExt = ["CUDA", "cuDNN"] NNlibCUDAExt = "CUDA" NNlibEnzymeCoreExt = "EnzymeCore" + NNlibFFTWExt = "FFTW" + NNlibForwardDiffExt = "ForwardDiff" [deps.NNlib.weakdeps] AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e" CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" + FFTW = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd" [[deps.NaNMath]] deps = ["OpenLibm_jll"] -git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4" +git-tree-sha1 = "cc0a5deefdb12ab3a096f00a6d42133af4560d71" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" -version = "1.0.2" +version = "1.1.2" [[deps.NamedArrays]] deps = ["Combinatorics", "DataStructures", "DelimitedFiles", "InvertedIndices", "LinearAlgebra", "Random", "Requires", "SparseArrays", "Statistics"] -git-tree-sha1 = "c7aab3836df3f31591a2b4167fcd87b741dacfc9" +git-tree-sha1 = "58e317b3b956b8aaddfd33ff4c3e33199cd8efce" uuid = "86f7a689-2022-50b4-a561-43c23ac3c673" -version = "0.10.2" +version = "0.10.3" [[deps.NamedTupleTools]] git-tree-sha1 = "90914795fc59df44120fe3fff6742bb0d7adb1d0" @@ -1561,9 +1714,9 @@ version = "1.0.0" [[deps.NearestNeighbors]] deps = ["Distances", "StaticArrays"] -git-tree-sha1 = "ded64ff6d4fdd1cb68dfcbb818c69e144a5b2e4c" +git-tree-sha1 = "8a3271d8309285f4db73b4f662b1b290c715e85e" uuid = "b8a86587-4115-5ab1-83bc-aa920d37bbce" -version = "0.4.16" +version = "0.4.21" [[deps.Netpbm]] deps = ["FileIO", "ImageCore", "ImageMetadata"] @@ -1581,9 +1734,9 @@ uuid = "510215fc-4207-5dde-b226-833fc4488ee2" version = "0.5.5" [[deps.OffsetArrays]] -git-tree-sha1 = "e64b4f5ea6b7389f6f046d13d4896a8f9c1ba71e" +git-tree-sha1 = "5e1897147d1ff8d98883cda2be2187dcf57d8f0c" uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" -version = "1.14.0" +version = "1.15.0" weakdeps = ["Adapt"] [deps.OffsetArrays.extensions] @@ -1598,13 +1751,13 @@ version = "1.3.5+1" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" -version = "0.3.23+4" +version = "0.3.27+1" [[deps.OpenEXR]] deps = ["Colors", "FileIO", "OpenEXR_jll"] -git-tree-sha1 = "327f53360fdb54df7ecd01e96ef1983536d1e633" +git-tree-sha1 = "97db9e07fe2091882c765380ef58ec553074e9c7" uuid = "52e1d378-f018-4a11-a4be-720524705ac7" -version = "0.3.2" +version = "0.3.3" [[deps.OpenEXR_jll]] deps = ["Artifacts", "Imath_jll", "JLLWrappers", "Libdl", "Zlib_jll"] @@ -1625,21 +1778,21 @@ version = "1.4.3" [[deps.OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "3da7367955dcc5c54c1ba4d402ccdc09a1a3e046" +git-tree-sha1 = "a9697f1d06cc3eb3fb3ad49cc67f2cfabaac31ea" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" -version = "3.0.13+1" +version = "3.0.16+0" [[deps.OpenSpecFun_jll]] -deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" +deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "1346c9208249809840c91b26703912dff463d335" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" -version = "0.5.5+0" +version = "0.5.6+0" [[deps.Optim]] deps = ["Compat", "FillArrays", "ForwardDiff", "LineSearches", "LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "PositiveFactorizations", "Printf", "SparseArrays", "StatsBase"] -git-tree-sha1 = "d9b79c4eed437421ac4285148fcadf42e0700e89" +git-tree-sha1 = "c1f51f704f689f87f28b33836fd460ecf9b34583" uuid = "429524aa-4258-5aef-a3af-852621145aeb" -version = "1.9.4" +version = "1.11.0" [deps.Optim.extensions] OptimMOIExt = "MathOptInterface" @@ -1649,59 +1802,68 @@ version = "1.9.4" [[deps.Optimisers]] deps = ["ChainRulesCore", "Functors", "LinearAlgebra", "Random", "Statistics"] -git-tree-sha1 = "6572fe0c5b74431aaeb0b18a4aa5ef03c84678be" +git-tree-sha1 = "53ff746a3a2b232a37dbcd262ac8bbb2b18202b8" uuid = "3bd65402-5787-11e9-1adc-39752487f4e2" -version = "0.3.3" +version = "0.4.4" + + [deps.Optimisers.extensions] + OptimisersAdaptExt = ["Adapt"] + OptimisersEnzymeCoreExt = "EnzymeCore" + + [deps.Optimisers.weakdeps] + Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" + EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" [[deps.Optimization]] -deps = ["ADTypes", "ArrayInterface", "ConsoleProgressMonitor", "DocStringExtensions", "LBFGSB", "LinearAlgebra", "Logging", "LoggingExtras", "OptimizationBase", "Pkg", "Printf", "ProgressLogging", "Reexport", "SciMLBase", "SparseArrays", "TerminalLoggers"] -git-tree-sha1 = "fe516248dcccd7285c0ac699eeaf32ae64d8e759" +deps = ["ADTypes", "ArrayInterface", "ConsoleProgressMonitor", "DocStringExtensions", "LBFGSB", "LinearAlgebra", "Logging", "LoggingExtras", "OptimizationBase", "Printf", "ProgressLogging", "Reexport", "SciMLBase", "SparseArrays", "TerminalLoggers"] +git-tree-sha1 = "df361b5dc1f91ffb601700a2bc4bfdcd4cc584ef" uuid = "7f7a1694-90dd-40f0-9382-eb1efda571ba" -version = "3.25.1" +version = "4.1.1" [[deps.OptimizationBase]] -deps = ["ADTypes", "ArrayInterface", "DocStringExtensions", "LinearAlgebra", "Reexport", "Requires", "SciMLBase", "SparseArrays"] -git-tree-sha1 = "f99f512915853af2825334edcb6cf33d983c842e" +deps = ["ADTypes", "ArrayInterface", "DifferentiationInterface", "DocStringExtensions", "FastClosures", "LinearAlgebra", "PDMats", "Reexport", "Requires", "SciMLBase", "SparseArrays", "SparseConnectivityTracer", "SparseMatrixColorings"] +git-tree-sha1 = "9e8569bc1c511c425fdc63f7ee41f2da057f8662" uuid = "bca83a33-5cc9-4baa-983d-23429ab6bcbb" -version = "1.1.0" +version = "2.4.0" [deps.OptimizationBase.extensions] OptimizationEnzymeExt = "Enzyme" OptimizationFiniteDiffExt = "FiniteDiff" OptimizationForwardDiffExt = "ForwardDiff" + OptimizationMLDataDevicesExt = "MLDataDevices" + OptimizationMLUtilsExt = "MLUtils" OptimizationMTKExt = "ModelingToolkit" OptimizationReverseDiffExt = "ReverseDiff" - OptimizationSparseDiffExt = ["SparseDiffTools", "Symbolics", "ReverseDiff"] - OptimizationTrackerExt = "Tracker" + OptimizationSymbolicAnalysisExt = "SymbolicAnalysis" OptimizationZygoteExt = "Zygote" [deps.OptimizationBase.weakdeps] Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + MLDataDevices = "7e8f7934-dd98-4c1a-8fe8-92b47a384d40" + MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54" ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78" ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - SparseDiffTools = "47a9eef4-7e08-11e9-0b38-333d64bd3804" - Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" - Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + SymbolicAnalysis = "4297ee4d-0239-47d8-ba5d-195ecdf594fe" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [[deps.OptimizationOptimJL]] -deps = ["Optim", "Optimization", "Reexport", "SparseArrays"] -git-tree-sha1 = "43870d726f883a47d158beebb1fc3c9fab1da9d6" +deps = ["Optim", "Optimization", "PrecompileTools", "Reexport", "SparseArrays"] +git-tree-sha1 = "980ec7190741db164a2923dc42d6f1e7ce2cc434" uuid = "36348300-93cb-4f02-beb5-3c3902f8871e" -version = "0.3.2" +version = "0.4.1" [[deps.Opus_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720" +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "6703a85cb3781bd5909d48730a67205f3f31a575" uuid = "91d4177d-7536-5919-b921-800302f37372" -version = "1.3.2+0" +version = "1.3.3+0" [[deps.OrderedCollections]] -git-tree-sha1 = "dfdf5519f235516220579f949664f1bf44e741c5" +git-tree-sha1 = "cc4054e898b852042d7b503313f7ad03de99c3dd" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" -version = "1.6.3" +version = "1.8.0" [[deps.PCRE2_jll]] deps = ["Artifacts", "Libdl"] @@ -1710,9 +1872,9 @@ version = "10.42.0+1" [[deps.PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] -git-tree-sha1 = "949347156c25054de2db3b166c52ac4728cbad65" +git-tree-sha1 = "966b85253e959ea89c53a9abebbf2e964fbf593b" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" -version = "0.11.31" +version = "0.11.32" [[deps.PNGFiles]] deps = ["Base64", "CEnum", "ImageCore", "IndirectArrays", "OffsetArrays", "libpng_jll"] @@ -1721,18 +1883,18 @@ uuid = "f57f5aa1-a3ce-4bc8-8ab9-96f992907883" version = "0.4.3" [[deps.PValue]] -deps = ["DataFrames", "Distributions", "Documenter", "Random", "Statistics", "Test"] -git-tree-sha1 = "864657bdb1e08b67167d07bf6921d73395abeaa9" +deps = ["DataFrames", "Distributions", "Documenter", "Random", "Statistics", "StatsBase", "Test"] +git-tree-sha1 = "2013856f9c89daccfe3f70365e27c3604057a13e" repo-rev = "main" repo-url = "https://github.com/stefanocovino/PValue.jl.git" uuid = "4aad55e6-3783-49d8-8c0b-540e9d18c8e0" -version = "0.8.6" +version = "1.0.0" [[deps.Packing]] deps = ["GeometryBasics"] -git-tree-sha1 = "ec3edfe723df33528e085e632414499f26650501" +git-tree-sha1 = "bc5bf2ea3d5351edf285a06b0016788a121ce92c" uuid = "19eb6ba3-879d-56ad-ad62-d5c202156566" -version = "0.5.0" +version = "0.5.1" [[deps.PaddedViews]] deps = ["OffsetArrays"] @@ -1741,10 +1903,10 @@ uuid = "5432bcbf-9aad-5242-b902-cca2824c8663" version = "0.5.12" [[deps.PairPlots]] -deps = ["Contour", "Distributions", "KernelDensity", "LinearAlgebra", "Makie", "Measures", "Missings", "NamedTupleTools", "OrderedCollections", "PolygonOps", "PrecompileTools", "Printf", "RecipesBase", "Requires", "StaticArrays", "Statistics", "StatsBase", "TableOperations", "Tables"] -git-tree-sha1 = "00f5ad02e3ab71d6b486427b19dacedc932da874" +deps = ["Contour", "Distributions", "KernelDensity", "LinearAlgebra", "MCMCDiagnosticTools", "Makie", "Measures", "Missings", "NamedTupleTools", "OrderedCollections", "PolygonOps", "PrecompileTools", "Printf", "Requires", "StaticArrays", "Statistics", "StatsBase", "TableOperations", "Tables"] +git-tree-sha1 = "ab5f2998f984de86c929b85f406112780ecb9a94" uuid = "43a3c2be-4208-490b-832a-a21dcd55d7da" -version = "2.7.3" +version = "3.0.1" [deps.PairPlots.extensions] MCMCChainsExt = "MCMCChains" @@ -1758,9 +1920,9 @@ version = "2.7.3" [[deps.Pango_jll]] deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "FriBidi_jll", "Glib_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl"] -git-tree-sha1 = "cb5a2ab6763464ae0f19c86c56c63d4a2b0f5bda" +git-tree-sha1 = "ed6834e95bd326c52d5675b4181386dfbe885afb" uuid = "36c8627f-9965-5494-a995-c6b170f724f3" -version = "1.52.2+0" +version = "1.55.5+0" [[deps.Parameters]] deps = ["OrderedCollections", "UnPack"] @@ -1786,9 +1948,13 @@ uuid = "30392449-352a-5448-841d-b1acce4e97dc" version = "0.43.4+0" [[deps.Pkg]] -deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] +deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "Random", "SHA", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" -version = "1.10.0" +version = "1.11.0" +weakdeps = ["REPL"] + + [deps.Pkg.extensions] + REPLExt = "REPL" [[deps.PkgVersion]] deps = ["Pkg"] @@ -1798,21 +1964,21 @@ version = "0.3.3" [[deps.PlotThemes]] deps = ["PlotUtils", "Statistics"] -git-tree-sha1 = "6e55c6841ce3411ccb3457ee52fc48cb698d6fb0" +git-tree-sha1 = "41031ef3a1be6f5bbbf3e8073f210556daeae5ca" uuid = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a" -version = "3.2.0" +version = "3.3.0" [[deps.PlotUtils]] -deps = ["ColorSchemes", "Colors", "Dates", "PrecompileTools", "Printf", "Random", "Reexport", "Statistics"] -git-tree-sha1 = "7b1a9df27f072ac4c9c7cbe5efb198489258d1f5" +deps = ["ColorSchemes", "Colors", "Dates", "PrecompileTools", "Printf", "Random", "Reexport", "StableRNGs", "Statistics"] +git-tree-sha1 = "3ca9a356cd2e113c420f2c13bea19f8d3fb1cb18" uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" -version = "1.4.1" +version = "1.4.3" [[deps.Plots]] -deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "JLFzf", "JSON", "LaTeXStrings", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "Pkg", "PlotThemes", "PlotUtils", "PrecompileTools", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "RelocatableFolders", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "UUIDs", "UnicodeFun", "UnitfulLatexify", "Unzip"] -git-tree-sha1 = "c4fa93d7d66acad8f6f4ff439576da9d2e890ee0" +deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "JLFzf", "JSON", "LaTeXStrings", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "Pkg", "PlotThemes", "PlotUtils", "PrecompileTools", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "RelocatableFolders", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "TOML", "UUIDs", "UnicodeFun", "UnitfulLatexify", "Unzip"] +git-tree-sha1 = "dae01f8c2e069a683d3a6e17bbae5070ab94786f" uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" -version = "1.40.1" +version = "1.40.9" [deps.Plots.extensions] FileIOExt = "FileIO" @@ -1828,16 +1994,22 @@ version = "1.40.1" ImageInTerminal = "d8c32880-2388-543b-8c61-d9f865259254" Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" +[[deps.PlutoUI]] +deps = ["AbstractPlutoDingetjes", "Base64", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] +git-tree-sha1 = "5152abbdab6488d5eec6a01029ca6697dff4ec8f" +uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" +version = "0.7.23" + [[deps.PolygonOps]] git-tree-sha1 = "77b3d3605fc1cd0b42d95eba87dfcd2bf67d5ff6" uuid = "647866c9-e3ac-4575-94e7-e3d426903924" version = "0.1.2" [[deps.Polynomials]] -deps = ["LinearAlgebra", "RecipesBase", "Setfield", "SparseArrays"] -git-tree-sha1 = "25e7f73d679e5214971620886d3416c1f5991ecc" +deps = ["LinearAlgebra", "OrderedCollections", "RecipesBase", "Requires", "Setfield", "SparseArrays"] +git-tree-sha1 = "5f6847271627572213a6b419456ffccef4c6729b" uuid = "f27b6e38-b328-58d1-80ce-0feddd5e7a45" -version = "4.0.9" +version = "4.0.16" [deps.Polynomials.extensions] PolynomialsChainRulesCoreExt = "ChainRulesCore" @@ -1877,13 +2049,14 @@ version = "1.4.3" [[deps.PrettyTables]] deps = ["Crayons", "LaTeXStrings", "Markdown", "PrecompileTools", "Printf", "Reexport", "StringManipulation", "Tables"] -git-tree-sha1 = "66b20dd35966a748321d3b2537c4584cf40387c7" +git-tree-sha1 = "1101cd475833706e4d0e7b122218257178f48f34" uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d" -version = "2.3.2" +version = "2.4.0" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" +version = "1.11.0" [[deps.ProgressLogging]] deps = ["Logging", "SHA", "UUIDs"] @@ -1893,40 +2066,66 @@ version = "0.1.4" [[deps.ProgressMeter]] deps = ["Distributed", "Printf"] -git-tree-sha1 = "763a8ceb07833dd51bb9e3bbca372de32c0605ad" +git-tree-sha1 = "8f6bc219586aef8baf0ff9a5fe16ee9c70cb65e4" uuid = "92933f4c-e287-5a05-a399-4b506db050ca" -version = "1.10.0" +version = "1.10.2" [[deps.PtrArrays]] -git-tree-sha1 = "f011fbb92c4d401059b2212c05c0601b70f8b759" +git-tree-sha1 = "1d36ef11a9aaf1e8b74dacc6a731dd1de8fd493d" uuid = "43287f4e-b6f4-7ad1-bb20-aadabca52c3d" -version = "1.2.0" +version = "1.3.0" [[deps.QOI]] deps = ["ColorTypes", "FileIO", "FixedPointNumbers"] -git-tree-sha1 = "18e8f4d1426e965c7b532ddd260599e1510d26ce" +git-tree-sha1 = "8b3fc30bc0390abdce15f8822c889f669baed73d" uuid = "4b34888f-f399-49d4-9bb3-47ed5cae4e65" -version = "1.0.0" +version = "1.0.1" [[deps.Qt6Base_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Fontconfig_jll", "Glib_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "OpenSSL_jll", "Vulkan_Loader_jll", "Xorg_libSM_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Xorg_libxcb_jll", "Xorg_xcb_util_cursor_jll", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_keysyms_jll", "Xorg_xcb_util_renderutil_jll", "Xorg_xcb_util_wm_jll", "Zlib_jll", "libinput_jll", "xkbcommon_jll"] -git-tree-sha1 = "37b7bb7aabf9a085e0044307e1717436117f2b3b" +git-tree-sha1 = "492601870742dcd38f233b23c3ec629628c1d724" uuid = "c0090381-4147-56d7-9ebc-da0b1113ec56" -version = "6.5.3+1" +version = "6.7.1+1" + +[[deps.Qt6Declarative_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Qt6Base_jll", "Qt6ShaderTools_jll"] +git-tree-sha1 = "e5dd466bf2569fe08c91a2cc29c1003f4797ac3b" +uuid = "629bc702-f1f5-5709-abd5-49b8460ea067" +version = "6.7.1+2" + +[[deps.Qt6ShaderTools_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Qt6Base_jll"] +git-tree-sha1 = "1a180aeced866700d4bebc3120ea1451201f16bc" +uuid = "ce943373-25bb-56aa-8eca-768745ed7b5a" +version = "6.7.1+1" + +[[deps.Qt6Wayland_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Qt6Base_jll", "Qt6Declarative_jll"] +git-tree-sha1 = "729927532d48cf79f49070341e1d918a65aba6b0" +uuid = "e99dba38-086e-5de3-a5b1-6e4c66e897c3" +version = "6.7.1+1" [[deps.QuadGK]] deps = ["DataStructures", "LinearAlgebra"] -git-tree-sha1 = "9b23c31e76e333e6fb4c1595ae6afa74966a729e" +git-tree-sha1 = "9da16da70037ba9d701192e27befedefb91ec284" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" -version = "2.9.4" +version = "2.11.2" + + [deps.QuadGK.extensions] + QuadGKEnzymeExt = "Enzyme" + + [deps.QuadGK.weakdeps] + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" [[deps.REPL]] -deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] +deps = ["InteractiveUtils", "Markdown", "Sockets", "StyledStrings", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" +version = "1.11.0" [[deps.Random]] deps = ["SHA"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" +version = "1.11.0" [[deps.Random123]] deps = ["Random", "RandomNumbers"] @@ -1935,10 +2134,10 @@ uuid = "74087812-796a-5b5d-8853-05524746bad3" version = "1.7.0" [[deps.RandomNumbers]] -deps = ["Random", "Requires"] -git-tree-sha1 = "043da614cc7e95c703498a491e2c21f58a2b8111" +deps = ["Random"] +git-tree-sha1 = "c6ec94d2aaba1ab2ff983052cf6a606ca5985902" uuid = "e6cf234a-135c-5ec9-84dd-332b85af5143" -version = "1.5.3" +version = "1.6.0" [[deps.RangeArrays]] git-tree-sha1 = "b9039e93773ddcfc828f12aadf7115b4b4d225f5" @@ -1974,10 +2173,10 @@ uuid = "01d81517-befc-4cb6-b9ec-a95719d0359c" version = "0.6.12" [[deps.RecursiveArrayTools]] -deps = ["Adapt", "ArrayInterface", "DocStringExtensions", "GPUArraysCore", "IteratorInterfaceExtensions", "LinearAlgebra", "RecipesBase", "SparseArrays", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "Tables"] -git-tree-sha1 = "5232d8d580a579ded0fc25d6899c42946566793c" +deps = ["Adapt", "ArrayInterface", "DocStringExtensions", "GPUArraysCore", "IteratorInterfaceExtensions", "LinearAlgebra", "RecipesBase", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "Tables"] +git-tree-sha1 = "fe9d37a17ab4d41a98951332ee8067f8dca8c4c2" uuid = "731186ca-8d62-57ce-b412-fbd966d074cd" -version = "3.23.0" +version = "3.29.0" [deps.RecursiveArrayTools.extensions] RecursiveArrayToolsFastBroadcastExt = "FastBroadcast" @@ -1985,6 +2184,8 @@ version = "3.23.0" RecursiveArrayToolsMeasurementsExt = "Measurements" RecursiveArrayToolsMonteCarloMeasurementsExt = "MonteCarloMeasurements" RecursiveArrayToolsReverseDiffExt = ["ReverseDiff", "Zygote"] + RecursiveArrayToolsSparseArraysExt = ["SparseArrays"] + RecursiveArrayToolsStructArraysExt = "StructArrays" RecursiveArrayToolsTrackerExt = "Tracker" RecursiveArrayToolsZygoteExt = "Zygote" @@ -1994,6 +2195,8 @@ version = "3.23.0" Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" @@ -2022,29 +2225,31 @@ version = "1.3.0" [[deps.Rmath]] deps = ["Random", "Rmath_jll"] -git-tree-sha1 = "f65dcb5fa46aee0cf9ed6274ccbd597adc49aa7b" +git-tree-sha1 = "852bd0f55565a9e973fcfee83a84413270224dc4" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" -version = "0.7.1" +version = "0.8.0" [[deps.Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "d483cd324ce5cf5d61b77930f0bbd6cb61927d21" +git-tree-sha1 = "58cdd8fb2201a6267e1db87ff148dd6c1dbd8ad8" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" -version = "0.4.2+0" +version = "0.5.1+0" [[deps.Roots]] -deps = ["Accessors", "ChainRulesCore", "CommonSolve", "Printf"] -git-tree-sha1 = "1ab580704784260ee5f45bffac810b152922747b" +deps = ["Accessors", "CommonSolve", "Printf"] +git-tree-sha1 = "e52cf0872526c7a0b3e1af9c58a69b90e19b022e" uuid = "f2b01f46-fcfa-551c-844a-d8ac1e96c665" -version = "2.1.5" +version = "2.2.5" [deps.Roots.extensions] + RootsChainRulesCoreExt = "ChainRulesCore" RootsForwardDiffExt = "ForwardDiff" RootsIntervalRootFindingExt = "IntervalRootFinding" RootsSymPyExt = "SymPy" RootsSymPyPythonCallExt = "SymPyPythonCall" [deps.Roots.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" IntervalRootFinding = "d2bf35a9-74e0-55ec-b149-d360ff49b807" SymPy = "24249f21-da20-56a4-8eb1-6a02cf4ae2e6" @@ -2067,9 +2272,9 @@ version = "0.7.0" [[deps.SIMD]] deps = ["PrecompileTools"] -git-tree-sha1 = "2803cab51702db743f3fda07dd1745aadfbf43bd" +git-tree-sha1 = "fea870727142270bdf7624ad675901a1ee3b4c87" uuid = "fdea26ae-647d-5447-a871-4b548cad5224" -version = "3.5.0" +version = "3.7.1" [[deps.SSMProblems]] deps = ["AbstractMCMC"] @@ -2078,10 +2283,10 @@ uuid = "26aad666-b158-4e64-9d35-0e672562fa48" version = "0.1.1" [[deps.SciMLBase]] -deps = ["ADTypes", "Accessors", "ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "PrecompileTools", "Preferences", "Printf", "RecipesBase", "RecursiveArrayTools", "Reexport", "RuntimeGeneratedFunctions", "SciMLOperators", "SciMLStructures", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "Tables"] -git-tree-sha1 = "1d1d1ff37d2917cad263fa186cbc19ce4b587ccf" +deps = ["ADTypes", "Accessors", "ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "Expronicon", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "PrecompileTools", "Preferences", "Printf", "RecipesBase", "RecursiveArrayTools", "Reexport", "RuntimeGeneratedFunctions", "SciMLOperators", "SciMLStructures", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface"] +git-tree-sha1 = "70243d458e69c82d3b928196c9feddb9af857c13" uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" -version = "2.40.0" +version = "2.73.0" [deps.SciMLBase.extensions] SciMLBaseChainRulesCoreExt = "ChainRulesCore" @@ -2103,15 +2308,21 @@ version = "2.40.0" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [[deps.SciMLOperators]] -deps = ["ArrayInterface", "DocStringExtensions", "LinearAlgebra", "MacroTools", "Setfield", "SparseArrays", "StaticArraysCore"] -git-tree-sha1 = "10499f619ef6e890f3f4a38914481cc868689cd5" +deps = ["Accessors", "ArrayInterface", "DocStringExtensions", "LinearAlgebra", "MacroTools"] +git-tree-sha1 = "6149620767866d4b0f0f7028639b6e661b6a1e44" uuid = "c0aeaf25-5076-4817-a8d5-81caf7dfa961" -version = "0.3.8" +version = "0.3.12" +weakdeps = ["SparseArrays", "StaticArraysCore"] + + [deps.SciMLOperators.extensions] + SciMLOperatorsSparseArraysExt = "SparseArrays" + SciMLOperatorsStaticArraysCoreExt = "StaticArraysCore" [[deps.SciMLStructures]] -git-tree-sha1 = "d778a74df2f64059c38453b34abad1953b2b8722" +deps = ["ArrayInterface"] +git-tree-sha1 = "0444a37a25fab98adbd90baa806ee492a3af133a" uuid = "53ae85a6-f571-4167-b2af-e1d143709226" -version = "1.2.0" +version = "1.6.1" [[deps.ScientificTypesBase]] git-tree-sha1 = "a8e18eb383b5ecf1b5e6fc237eb39255044fd92b" @@ -2126,12 +2337,13 @@ version = "1.2.1" [[deps.SentinelArrays]] deps = ["Dates", "Random"] -git-tree-sha1 = "90b4f68892337554d31cdcdbe19e48989f26c7e6" +git-tree-sha1 = "712fb0231ee6f9120e005ccd56297abbc053e7e0" uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c" -version = "1.4.3" +version = "1.4.8" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" +version = "1.11.0" [[deps.Setfield]] deps = ["ConstructionBase", "Future", "MacroTools", "StaticArraysCore"] @@ -2140,14 +2352,15 @@ uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46" version = "1.1.1" [[deps.ShaderAbstractions]] -deps = ["ColorTypes", "FixedPointNumbers", "GeometryBasics", "LinearAlgebra", "Observables", "StaticArrays", "StructArrays", "Tables"] -git-tree-sha1 = "79123bc60c5507f035e6d1d9e563bb2971954ec8" +deps = ["ColorTypes", "FixedPointNumbers", "GeometryBasics", "LinearAlgebra", "Observables", "StaticArrays"] +git-tree-sha1 = "818554664a2e01fc3784becb2eb3a82326a604b6" uuid = "65257c39-d410-5151-9873-9b3e5be5013e" -version = "0.4.1" +version = "0.5.0" [[deps.SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" +version = "1.11.0" [[deps.ShiftedArrays]] git-tree-sha1 = "503688b59397b3307443af35cd953a13e8005c16" @@ -2167,9 +2380,9 @@ uuid = "73760f76-fbc4-59ce-8f25-708e95d2df96" version = "0.4.0" [[deps.SimpleBufferStream]] -git-tree-sha1 = "874e8867b33a00e784c8a7e4b60afe9e037b74e1" +git-tree-sha1 = "f305871d2f381d21527c770d4788c06c097c9bc1" uuid = "777ac1f9-54b0-4bf8-805c-2214025038e7" -version = "1.1.0" +version = "1.2.0" [[deps.SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] @@ -2190,6 +2403,7 @@ version = "0.1.3" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" +version = "1.11.0" [[deps.SortingAlgorithms]] deps = ["DataStructures"] @@ -2200,7 +2414,27 @@ version = "1.2.1" [[deps.SparseArrays]] deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" -version = "1.10.0" +version = "1.11.0" + +[[deps.SparseConnectivityTracer]] +deps = ["ADTypes", "DocStringExtensions", "FillArrays", "LinearAlgebra", "Random", "SparseArrays"] +git-tree-sha1 = "729103d096200b80d20321c46d7703fe87ee756e" +uuid = "9f842d2f-2579-4b1d-911e-f412cf18a3f5" +version = "0.6.12" + + [deps.SparseConnectivityTracer.extensions] + SparseConnectivityTracerDataInterpolationsExt = "DataInterpolations" + SparseConnectivityTracerLogExpFunctionsExt = "LogExpFunctions" + SparseConnectivityTracerNNlibExt = "NNlib" + SparseConnectivityTracerNaNMathExt = "NaNMath" + SparseConnectivityTracerSpecialFunctionsExt = "SpecialFunctions" + + [deps.SparseConnectivityTracer.weakdeps] + DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0" + LogExpFunctions = "2ab3a3ac-af41-5b50-aa03-7779005ae688" + NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd" + NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" + SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b" [[deps.SparseInverseSubset]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] @@ -2208,11 +2442,21 @@ git-tree-sha1 = "52962839426b75b3021296f7df242e40ecfc0852" uuid = "dc90abb0-5640-4711-901d-7e5b23a2fada" version = "0.1.2" +[[deps.SparseMatrixColorings]] +deps = ["ADTypes", "DataStructures", "DocStringExtensions", "LinearAlgebra", "Random", "SparseArrays"] +git-tree-sha1 = "45b5ef11e75839e174d5728fd1e73597e7593634" +uuid = "0a514795-09f3-496d-8182-132a7b665d35" +version = "0.4.12" +weakdeps = ["Colors"] + + [deps.SparseMatrixColorings.extensions] + SparseMatrixColoringsColorsExt = "Colors" + [[deps.SpecialFunctions]] deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] -git-tree-sha1 = "2f5d4697f21388cbe1ff299430dd169ef97d7e14" +git-tree-sha1 = "64cca0c26b4f31ba18f13f6c12af7c85f478cfde" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" -version = "2.4.0" +version = "2.5.0" weakdeps = ["ChainRulesCore"] [deps.SpecialFunctions.extensions] @@ -2224,6 +2468,12 @@ git-tree-sha1 = "e08a62abc517eb79667d0a29dc08a3b589516bb5" uuid = "171d559e-b47b-412a-8079-5efa626c420e" version = "0.1.15" +[[deps.StableRNGs]] +deps = ["Random"] +git-tree-sha1 = "83e6cce8324d49dfaf9ef059227f91ed4441a8e5" +uuid = "860ef19b-820b-49d6-a774-d7a799459cd3" +version = "1.0.2" + [[deps.StackViews]] deps = ["OffsetArrays"] git-tree-sha1 = "46e589465204cd0c08b4bd97385e4fa79a0c770c" @@ -2232,9 +2482,9 @@ version = "0.1.1" [[deps.StaticArrays]] deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"] -git-tree-sha1 = "9ae599cd7529cfce7fea36cf00a62cfc56f0f37c" +git-tree-sha1 = "e3be13f448a43610f978d29b7adf78c76022467a" uuid = "90137ffa-7385-5640-81b9-e52037218182" -version = "1.9.4" +version = "1.9.12" weakdeps = ["ChainRulesCore", "Statistics"] [deps.StaticArrays.extensions] @@ -2242,20 +2492,25 @@ weakdeps = ["ChainRulesCore", "Statistics"] StaticArraysStatisticsExt = "Statistics" [[deps.StaticArraysCore]] -git-tree-sha1 = "36b3d696ce6366023a0ea192b4cd442268995a0d" +git-tree-sha1 = "192954ef1208c7019899fbf8049e717f92959682" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" -version = "1.4.2" +version = "1.4.3" [[deps.StatisticalTraits]] deps = ["ScientificTypesBase"] -git-tree-sha1 = "983c41a0ddd6c19f5607ca87271d7c7620ab5d50" +git-tree-sha1 = "542d979f6e756f13f862aa00b224f04f9e445f11" uuid = "64bff920-2084-43da-a3e6-9bb72801c0c9" -version = "3.3.0" +version = "3.4.0" [[deps.Statistics]] -deps = ["LinearAlgebra", "SparseArrays"] +deps = ["LinearAlgebra"] +git-tree-sha1 = "ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0" uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" -version = "1.10.0" +version = "1.11.1" +weakdeps = ["SparseArrays"] + + [deps.Statistics.extensions] + SparseArraysExt = ["SparseArrays"] [[deps.StatsAPI]] deps = ["LinearAlgebra"] @@ -2264,16 +2519,16 @@ uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.7.0" [[deps.StatsBase]] -deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] -git-tree-sha1 = "5cf7606d6cef84b543b483848d4ae08ad9832b21" +deps = ["AliasTables", "DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] +git-tree-sha1 = "29321314c920c26684834965ec2ce0dacc9cf8e5" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" -version = "0.34.3" +version = "0.34.4" [[deps.StatsFuns]] deps = ["HypergeometricFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] -git-tree-sha1 = "cef0472124fab0695b58ca35a77c6fb942fdab8a" +git-tree-sha1 = "b423576adc27097764a90e163157bcfc9acf0f46" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" -version = "1.3.1" +version = "1.3.2" weakdeps = ["ChainRulesCore", "InverseFunctions"] [deps.StatsFuns.extensions] @@ -2282,9 +2537,9 @@ weakdeps = ["ChainRulesCore", "InverseFunctions"] [[deps.StatsModels]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Printf", "REPL", "ShiftedArrays", "SparseArrays", "StatsAPI", "StatsBase", "StatsFuns", "Tables"] -git-tree-sha1 = "5cf6c4583533ee38639f73b880f35fc85f2941e0" +git-tree-sha1 = "9022bcaa2fc1d484f1326eaa4db8db543ca8c66d" uuid = "3eaba693-59b7-5ba5-a881-562e759f1c8d" -version = "0.7.3" +version = "0.7.4" [[deps.StatsPlots]] deps = ["AbstractFFTs", "Clustering", "DataStructures", "Distributions", "Interpolations", "KernelDensity", "LinearAlgebra", "MultivariateStats", "NaNMath", "Observables", "Plots", "RecipesBase", "RecipesPipeline", "Reexport", "StatsBase", "TableOperations", "Tables", "Widgets"] @@ -2294,23 +2549,28 @@ version = "0.15.7" [[deps.StringManipulation]] deps = ["PrecompileTools"] -git-tree-sha1 = "a04cabe79c5f01f4d723cc6704070ada0b9d46d5" +git-tree-sha1 = "725421ae8e530ec29bcbdddbe91ff8053421d023" uuid = "892a3eda-7b42-436c-8928-eab12a02cf0e" -version = "0.3.4" +version = "0.4.1" [[deps.StructArrays]] deps = ["ConstructionBase", "DataAPI", "Tables"] -git-tree-sha1 = "f4dc295e983502292c4c3f951dbb4e985e35b3be" +git-tree-sha1 = "9537ef82c42cdd8c5d443cbc359110cbb36bae10" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" -version = "0.6.18" -weakdeps = ["Adapt", "GPUArraysCore", "SparseArrays", "StaticArrays"] +version = "0.6.21" +weakdeps = ["Adapt", "GPUArraysCore", "KernelAbstractions", "LinearAlgebra", "SparseArrays", "StaticArrays"] [deps.StructArrays.extensions] StructArraysAdaptExt = "Adapt" - StructArraysGPUArraysCoreExt = "GPUArraysCore" + StructArraysGPUArraysCoreExt = ["GPUArraysCore", "KernelAbstractions"] + StructArraysLinearAlgebraExt = "LinearAlgebra" StructArraysSparseArraysExt = "SparseArrays" StructArraysStaticArraysExt = "StaticArrays" +[[deps.StyledStrings]] +uuid = "f489334b-da3d-4c2e-b8f0-e476e12c162b" +version = "1.11.0" + [[deps.SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" @@ -2318,13 +2578,13 @@ uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[deps.SuiteSparse_jll]] deps = ["Artifacts", "Libdl", "libblastrampoline_jll"] uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" -version = "7.2.1+1" +version = "7.7.0+0" [[deps.SymbolicIndexingInterface]] deps = ["Accessors", "ArrayInterface", "RuntimeGeneratedFunctions", "StaticArraysCore"] -git-tree-sha1 = "a5f6f138b740c9d93d76f0feddd3092e6ef002b7" +git-tree-sha1 = "fd2d4f0499f6bb4a0d9f5030f5c7d61eed385e03" uuid = "2efcf032-c050-4f8e-a9bb-153293bab1f5" -version = "0.3.22" +version = "0.3.37" [[deps.TOML]] deps = ["Dates"] @@ -2344,10 +2604,10 @@ uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] -deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits"] -git-tree-sha1 = "cb76cf677714c095e535e3501ac7954732aeea2d" +deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "OrderedCollections", "TableTraits"] +git-tree-sha1 = "598cd7c1f68d1e205689b1c2fe65a9f85846f297" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" -version = "1.11.1" +version = "1.12.0" [[deps.Tar]] deps = ["ArgTools", "SHA"] @@ -2369,39 +2629,37 @@ version = "0.1.7" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" +version = "1.11.0" [[deps.TiffImages]] deps = ["ColorTypes", "DataStructures", "DocStringExtensions", "FileIO", "FixedPointNumbers", "IndirectArrays", "Inflate", "Mmap", "OffsetArrays", "PkgVersion", "ProgressMeter", "SIMD", "UUIDs"] -git-tree-sha1 = "bc7fd5c91041f44636b2c134041f7e5263ce58ae" +git-tree-sha1 = "f21231b166166bebc73b99cea236071eb047525b" uuid = "731e570b-9d59-4bfa-96dc-6df516fadf69" -version = "0.10.0" +version = "0.11.3" [[deps.Tracker]] deps = ["Adapt", "ChainRulesCore", "DiffRules", "ForwardDiff", "Functors", "LinearAlgebra", "LogExpFunctions", "MacroTools", "NNlib", "NaNMath", "Optimisers", "Printf", "Random", "Requires", "SpecialFunctions", "Statistics"] -git-tree-sha1 = "5158100ed55411867674576788e710a815a0af02" +git-tree-sha1 = "c266e49953dadd0923caa17b3ea464ab6b97b3f2" uuid = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" -version = "0.2.34" +version = "0.2.37" weakdeps = ["PDMats"] [deps.Tracker.extensions] TrackerPDMatsExt = "PDMats" [[deps.TranscodingStreams]] -git-tree-sha1 = "5d54d076465da49d6746c647022f3b3674e64156" +git-tree-sha1 = "0c45878dcfdcfa8480052b6ab162cdd138781742" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" -version = "0.10.8" -weakdeps = ["Random", "Test"] - - [deps.TranscodingStreams.extensions] - TestExt = ["Test", "Random"] +version = "0.11.3" [[deps.Transducers]] -deps = ["Accessors", "Adapt", "ArgCheck", "BangBang", "Baselet", "CompositionsBase", "ConstructionBase", "DefineSingletons", "Distributed", "InitialValues", "Logging", "Markdown", "MicroCollections", "Requires", "SplittablesBase", "Tables"] -git-tree-sha1 = "5215a069867476fc8e3469602006b9670e68da23" +deps = ["Accessors", "ArgCheck", "BangBang", "Baselet", "CompositionsBase", "ConstructionBase", "DefineSingletons", "Distributed", "InitialValues", "Logging", "Markdown", "MicroCollections", "Requires", "SplittablesBase", "Tables"] +git-tree-sha1 = "7deeab4ff96b85c5f72c824cae53a1398da3d1cb" uuid = "28d57a85-8fef-5791-bfe6-a80928e7c999" -version = "0.4.82" +version = "0.4.84" [deps.Transducers.extensions] + TransducersAdaptExt = "Adapt" TransducersBlockArraysExt = "BlockArrays" TransducersDataFramesExt = "DataFrames" TransducersLazyArraysExt = "LazyArrays" @@ -2409,22 +2667,28 @@ version = "0.4.82" TransducersReferenceablesExt = "Referenceables" [deps.Transducers.weakdeps] + Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" BlockArrays = "8e7c35d0-a365-5155-bbbb-fb81a777f24e" DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02" OnlineStatsBase = "925886fa-5bf2-5e8e-b522-a9147a512338" Referenceables = "42d2dcc6-99eb-4e98-b66c-637b7d73030e" +[[deps.Tricks]] +git-tree-sha1 = "6cae795a5a9313bbb4f60683f7263318fc7d1505" +uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" +version = "0.1.10" + [[deps.TriplotBase]] git-tree-sha1 = "4d4ed7f294cda19382ff7de4c137d24d16adc89b" uuid = "981d1d27-644d-49a2-9326-4793e63143c3" version = "0.1.0" [[deps.Turing]] -deps = ["ADTypes", "AbstractMCMC", "Accessors", "AdvancedHMC", "AdvancedMH", "AdvancedPS", "AdvancedVI", "BangBang", "Bijectors", "Compat", "DataStructures", "Distributions", "DistributionsAD", "DocStringExtensions", "DynamicPPL", "EllipticalSliceSampling", "ForwardDiff", "Libtask", "LinearAlgebra", "LogDensityProblems", "LogDensityProblemsAD", "MCMCChains", "NamedArrays", "Optimization", "OptimizationOptimJL", "OrderedCollections", "Printf", "Random", "Reexport", "Requires", "SciMLBase", "SpecialFunctions", "Statistics", "StatsAPI", "StatsBase", "StatsFuns"] -git-tree-sha1 = "6ea505cb1829868b333f9615e4049d7c83e97ce7" +deps = ["ADTypes", "AbstractMCMC", "Accessors", "AdvancedHMC", "AdvancedMH", "AdvancedPS", "AdvancedVI", "BangBang", "Bijectors", "Compat", "DataStructures", "Distributions", "DistributionsAD", "DocStringExtensions", "DynamicPPL", "EllipticalSliceSampling", "ForwardDiff", "Libtask", "LinearAlgebra", "LogDensityProblems", "LogDensityProblemsAD", "MCMCChains", "NamedArrays", "Optimization", "OptimizationOptimJL", "OrderedCollections", "Printf", "Random", "Reexport", "SciMLBase", "SpecialFunctions", "Statistics", "StatsAPI", "StatsBase", "StatsFuns"] +git-tree-sha1 = "5218eb833eaaffa0021de7a550564ff6bd53b96c" uuid = "fce5fe82-541a-59a6-adf8-730c64b5f9a0" -version = "0.33.0" +version = "0.36.2" [deps.Turing.extensions] TuringDynamicHMCExt = "DynamicHMC" @@ -2442,6 +2706,7 @@ version = "1.5.1" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" +version = "1.11.0" [[deps.UnPack]] git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b" @@ -2450,6 +2715,7 @@ version = "1.0.2" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" +version = "1.11.0" [[deps.UnicodeFun]] deps = ["REPL"] @@ -2459,9 +2725,9 @@ version = "0.4.1" [[deps.Unitful]] deps = ["Dates", "LinearAlgebra", "Random"] -git-tree-sha1 = "dd260903fdabea27d9b6021689b3cd5401a57748" +git-tree-sha1 = "c0667a8e676c53d390a09dc6870b3d8d6650e2bf" uuid = "1986cc42-f94f-5a68-af5c-568840ba703d" -version = "1.20.0" +version = "1.22.0" weakdeps = ["ConstructionBase", "InverseFunctions"] [deps.Unitful.extensions] @@ -2470,20 +2736,20 @@ weakdeps = ["ConstructionBase", "InverseFunctions"] [[deps.UnitfulLatexify]] deps = ["LaTeXStrings", "Latexify", "Unitful"] -git-tree-sha1 = "e2d817cc500e960fdbafcf988ac8436ba3208bfd" +git-tree-sha1 = "975c354fcd5f7e1ddcc1f1a23e6e091d99e99bc8" uuid = "45397f5d-5981-4c77-b2b3-fc36d6e9b728" -version = "1.6.3" +version = "1.6.4" [[deps.UnsafeAtomics]] -git-tree-sha1 = "6331ac3440856ea1988316b46045303bef658278" +git-tree-sha1 = "b13c4edda90890e5b04ba24e20a310fbe6f249ff" uuid = "013be700-e6cd-48c3-b4a1-df204f14c38f" -version = "0.2.1" +version = "0.3.0" -[[deps.UnsafeAtomicsLLVM]] -deps = ["LLVM", "UnsafeAtomics"] -git-tree-sha1 = "d9f5962fecd5ccece07db1ff006fb0b5271bdfdd" -uuid = "d80eeb9a-aca5-4d75-85e5-170c8b632249" -version = "0.1.4" + [deps.UnsafeAtomics.extensions] + UnsafeAtomicsLLVM = ["LLVM"] + + [deps.UnsafeAtomics.weakdeps] + LLVM = "929cbde3-209d-540e-8aea-75f648917ca0" [[deps.Unzip]] git-tree-sha1 = "ca0969166a028236229f63514992fc073799bb78" @@ -2498,21 +2764,27 @@ version = "1.3.243+0" [[deps.Wayland_jll]] deps = ["Artifacts", "EpollShim_jll", "Expat_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg", "XML2_jll"] -git-tree-sha1 = "7558e29847e99bc3f04d6569e82d0f5c54460703" +git-tree-sha1 = "85c7811eddec9e7f22615371c3cc81a504c508ee" uuid = "a2964d1f-97da-50d4-b82a-358c7fce9d89" -version = "1.21.0+1" +version = "1.21.0+2" [[deps.Wayland_protocols_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "93f43ab61b16ddfb2fd3bb13b3ce241cafb0e6c9" +git-tree-sha1 = "5db3e9d307d32baba7067b13fc7b5aa6edd4a19a" uuid = "2381bf8a-dfd0-557d-9999-79630e7b1b91" -version = "1.31.0+0" +version = "1.36.0+0" + +[[deps.WebP]] +deps = ["CEnum", "ColorTypes", "FileIO", "FixedPointNumbers", "ImageCore", "libwebp_jll"] +git-tree-sha1 = "aa1ca3c47f119fbdae8770c29820e5e6119b83f2" +uuid = "e3aaa7dc-3e4b-44e0-be63-ffb868ccd7c1" +version = "0.1.3" [[deps.Widgets]] deps = ["Colors", "Dates", "Observables", "OrderedCollections"] -git-tree-sha1 = "fcdae142c1cfc7d89de2d11e08721d0f2f86c98a" +git-tree-sha1 = "e9aeb174f95385de31e70bd15fa066a505ea82b9" uuid = "cc8bc4a8-27d6-5769-a93b-9d913e69aa62" -version = "0.6.6" +version = "0.6.7" [[deps.WoodburyMatrices]] deps = ["LinearAlgebra", "SparseArrays"] @@ -2522,21 +2794,21 @@ version = "1.0.0" [[deps.XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Zlib_jll"] -git-tree-sha1 = "52ff2af32e591541550bd753c0da8b9bc92bb9d9" +git-tree-sha1 = "ee6f41aac16f6c9a8cab34e2f7a200418b1cc1e3" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" -version = "2.12.7+0" +version = "2.13.6+0" [[deps.XSLT_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"] -git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "XML2_jll", "Zlib_jll"] +git-tree-sha1 = "7d1671acbe47ac88e981868a078bd6b4e27c5191" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" -version = "1.1.34+0" +version = "1.1.42+0" [[deps.XZ_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "ac88fb95ae6447c8dda6a5503f3bafd496ae8632" +git-tree-sha1 = "56c6604ec8b2d82cc4cfe01aa03b00426aac7e1f" uuid = "ffd25f8a-64ca-5728-b0f7-c24cf3aae800" -version = "5.4.6+0" +version = "5.6.4+1" [[deps.Xorg_libICE_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] @@ -2552,81 +2824,81 @@ version = "1.2.4+0" [[deps.Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] -git-tree-sha1 = "afead5aba5aa507ad5a3bf01f58f82c8d1403495" +git-tree-sha1 = "9dafcee1d24c4f024e7edc92603cedba72118283" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" -version = "1.8.6+0" +version = "1.8.6+3" [[deps.Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "6035850dcc70518ca32f012e46015b9beeda49d8" +git-tree-sha1 = "e9216fdcd8514b7072b43653874fd688e4c6c003" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" -version = "1.0.11+0" +version = "1.0.12+0" [[deps.Xorg_libXcursor_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXfixes_jll", "Xorg_libXrender_jll"] -git-tree-sha1 = "12e0eb3bc634fa2080c1c37fccf56f7c22989afd" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libXfixes_jll", "Xorg_libXrender_jll"] +git-tree-sha1 = "807c226eaf3651e7b2c468f687ac788291f9a89b" uuid = "935fb764-8cf2-53bf-bb30-45bb1f8bf724" -version = "1.2.0+4" +version = "1.2.3+0" [[deps.Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "34d526d318358a859d7de23da945578e8e8727b7" +git-tree-sha1 = "89799ae67c17caa5b3b5a19b8469eeee474377db" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" -version = "1.1.4+0" +version = "1.1.5+0" [[deps.Xorg_libXext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] -git-tree-sha1 = "d2d1a5c49fae4ba39983f63de6afcbea47194e85" +git-tree-sha1 = "d7155fea91a4123ef59f42c4afb5ab3b4ca95058" uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" -version = "1.3.6+0" +version = "1.3.6+3" [[deps.Xorg_libXfixes_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] -git-tree-sha1 = "0e0dc7431e7a0587559f9294aeec269471c991a4" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] +git-tree-sha1 = "6fcc21d5aea1a0b7cce6cab3e62246abd1949b86" uuid = "d091e8ba-531a-589c-9de9-94069b037ed8" -version = "5.0.3+4" +version = "6.0.0+0" [[deps.Xorg_libXi_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXfixes_jll"] -git-tree-sha1 = "89b52bc2160aadc84d707093930ef0bffa641246" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libXext_jll", "Xorg_libXfixes_jll"] +git-tree-sha1 = "984b313b049c89739075b8e2a94407076de17449" uuid = "a51aa0fd-4e3c-5386-b890-e753decda492" -version = "1.7.10+4" +version = "1.8.2+0" [[deps.Xorg_libXinerama_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll"] -git-tree-sha1 = "26be8b1c342929259317d8b9f7b53bf2bb73b123" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libXext_jll"] +git-tree-sha1 = "a1a7eaf6c3b5b05cb903e35e8372049b107ac729" uuid = "d1454406-59df-5ea1-beac-c340f2130bc3" -version = "1.1.4+4" +version = "1.1.5+0" [[deps.Xorg_libXrandr_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll"] -git-tree-sha1 = "34cea83cb726fb58f325887bf0612c6b3fb17631" +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libXext_jll", "Xorg_libXrender_jll"] +git-tree-sha1 = "b6f664b7b2f6a39689d822a6300b14df4668f0f4" uuid = "ec84b674-ba8e-5d96-8ba1-2a689ba10484" -version = "1.5.2+4" +version = "1.5.4+0" [[deps.Xorg_libXrender_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] -git-tree-sha1 = "47e45cd78224c53109495b3e324df0c37bb61fbe" +git-tree-sha1 = "a490c6212a0e90d2d55111ac956f7c4fa9c277a6" uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" -version = "0.9.11+0" +version = "0.9.11+1" [[deps.Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "8fdda4c692503d44d04a0603d9ac0982054635f9" +git-tree-sha1 = "c57201109a9e4c0585b208bb408bc41d205ac4e9" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" -version = "0.1.1+0" +version = "0.1.2+0" [[deps.Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] -git-tree-sha1 = "b4bfde5d5b652e22b9c790ad00af08b6d042b97d" +git-tree-sha1 = "1a74296303b6524a0472a8cb12d3d87a78eb3612" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" -version = "1.15.0+0" +version = "1.17.0+3" [[deps.Xorg_libxkbfile_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] -git-tree-sha1 = "730eeca102434283c50ccf7d1ecdadf521a765a4" +git-tree-sha1 = "dbc53e4cf7701c6c7047c51e17d6e64df55dca94" uuid = "cc61e674-0454-545c-8b26-ed2c68acab7a" -version = "1.1.2+0" +version = "1.1.2+1" [[deps.Xorg_xcb_util_cursor_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_jll", "Xorg_xcb_util_renderutil_jll"] @@ -2666,9 +2938,9 @@ version = "0.4.1+1" [[deps.Xorg_xkbcomp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libxkbfile_jll"] -git-tree-sha1 = "330f955bc41bb8f5270a369c473fc4a5a4e4d3cb" +git-tree-sha1 = "ab2221d309eda71020cdda67a973aa582aa85d69" uuid = "35661453-b289-5fab-8a00-3d9160c6a3a4" -version = "1.4.6+0" +version = "1.4.6+1" [[deps.Xorg_xkeyboard_config_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_xkbcomp_jll"] @@ -2678,9 +2950,9 @@ version = "2.39.0+0" [[deps.Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "e92a1a012a10506618f10b7047e478403a046c77" +git-tree-sha1 = "6dba04dbfb72ae3ebe5418ba33d087ba8aa8cb00" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" -version = "1.5.0+0" +version = "1.5.1+0" [[deps.Zlib_jll]] deps = ["Libdl"] @@ -2689,15 +2961,15 @@ version = "1.2.13+1" [[deps.Zstd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "e678132f07ddb5bfa46857f0d7620fb9be675d3b" +git-tree-sha1 = "622cf78670d067c738667aaa96c553430b65e269" uuid = "3161d3a3-bdf6-5164-811a-617609db77b4" -version = "1.5.6+0" +version = "1.5.7+0" [[deps.ZygoteRules]] deps = ["ChainRulesCore", "MacroTools"] -git-tree-sha1 = "27798139afc0a2afa7b1824c206d5e87ea587a00" +git-tree-sha1 = "434b3de333c75fc446aa0d19fc394edafd07ab08" uuid = "700de1a5-db45-46bc-99cf-38207098b444" -version = "0.2.5" +version = "0.2.7" [[deps.eudev_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "gperf_jll"] @@ -2707,15 +2979,15 @@ version = "3.2.9+0" [[deps.fzf_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "a68c9655fbe6dfcab3d972808f1aafec151ce3f8" +git-tree-sha1 = "6e50f145003024df4f5cb96c7fce79466741d601" uuid = "214eeab7-80f7-51ab-84ad-2988db7cef09" -version = "0.43.0+0" +version = "0.56.3+0" [[deps.gperf_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "3516a5630f741c9eecb3720b1ec9d8edc3ecc033" +git-tree-sha1 = "0ba42241cb6809f1a278d0bcb976e0483c3f1f2d" uuid = "1a1c6b14-54f6-533d-8383-74cd7377aa70" -version = "3.1.1+0" +version = "3.1.1+1" [[deps.isoband_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] @@ -2725,20 +2997,26 @@ version = "0.2.3+0" [[deps.libaom_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "1827acba325fdcdf1d2647fc8d5301dd9ba43a9d" +git-tree-sha1 = "522c1df09d05a71785765d19c9524661234738e9" uuid = "a4ae2306-e953-59d6-aa16-d00cac43593b" -version = "3.9.0+0" +version = "3.11.0+0" [[deps.libass_jll]] -deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] -git-tree-sha1 = "5982a94fcba20f02f42ace44b9894ee2b140fe47" +deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Zlib_jll"] +git-tree-sha1 = "e17c115d55c5fbb7e52ebedb427a0dca79d4484e" uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" -version = "0.15.1+0" +version = "0.15.2+0" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" -version = "5.8.0+1" +version = "5.11.0+0" + +[[deps.libdecor_jll]] +deps = ["Artifacts", "Dbus_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pango_jll", "Wayland_jll", "xkbcommon_jll"] +git-tree-sha1 = "9bf7903af251d2050b467f76bdbe57ce541f7f4f" +uuid = "1183f4f0-6f2a-5f1a-908b-139f9cdfea6f" +version = "0.2.2+0" [[deps.libevdev_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] @@ -2747,10 +3025,10 @@ uuid = "2db6ffa8-e38f-5e21-84af-90c45d0032cc" version = "1.11.0+0" [[deps.libfdk_aac_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "daacc84a041563f965be61859a36e17c4e4fcd55" +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "8a22cf860a7d27e4f3498a0fe0811a7957badb38" uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" -version = "2.0.2+0" +version = "2.0.3+0" [[deps.libinput_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "eudev_jll", "libevdev_jll", "mtdev_jll"] @@ -2760,21 +3038,27 @@ version = "1.18.0+0" [[deps.libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Zlib_jll"] -git-tree-sha1 = "d7015d2e18a5fd9a4f47de711837e980519781a4" +git-tree-sha1 = "055a96774f383318750a1a5e10fd4151f04c29c5" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" -version = "1.6.43+1" +version = "1.6.46+0" [[deps.libsixel_jll]] -deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "libpng_jll"] -git-tree-sha1 = "d4f63314c8aa1e48cd22aa0c17ed76cd1ae48c3c" +deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "libpng_jll"] +git-tree-sha1 = "c1733e347283df07689d71d61e14be986e49e47a" uuid = "075b6546-f08a-558a-be8f-8157d0f608a5" -version = "1.10.3+0" +version = "1.10.5+0" [[deps.libvorbis_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] -git-tree-sha1 = "b910cb81ef3fe6e78bf6acee440bda86fd6ae00c" +git-tree-sha1 = "490376214c4721cdaca654041f635213c6165cb3" uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" -version = "1.3.7+1" +version = "1.3.7+2" + +[[deps.libwebp_jll]] +deps = ["Artifacts", "Giflib_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libglvnd_jll", "Libtiff_jll", "libpng_jll"] +git-tree-sha1 = "d2408cac540942921e7bd77272c32e58c33d8a77" +uuid = "c5f90fcd-3b7e-5836-afba-fc50a0988cb2" +version = "1.5.0+0" [[deps.mtdev_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] @@ -2785,7 +3069,7 @@ version = "1.1.6+0" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" -version = "1.52.0+1" +version = "1.59.0+0" [[deps.oneTBB_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] @@ -2812,6 +3096,6 @@ version = "3.5.0+0" [[deps.xkbcommon_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll", "Wayland_protocols_jll", "Xorg_libxcb_jll", "Xorg_xkeyboard_config_jll"] -git-tree-sha1 = "9c304562909ab2bab0262639bd4f444d7bc2be37" +git-tree-sha1 = "63406453ed9b33a0df95d570816d5366c92b7809" uuid = "d8fb68d0-12a3-5cfd-a85a-d49703b185fd" -version = "1.4.1+1" +version = "1.4.1+2" diff --git a/Lectures/Lecture - Statistics Reminder/Project.toml b/Lectures/Lecture - Statistics Reminder/Project.toml index 69c5b6ab1f76580a39f6283da4c1a02d099bc6a4..245ba2d567123408d837d7e2860891783b91beff 100644 --- a/Lectures/Lecture - Statistics Reminder/Project.toml +++ b/Lectures/Lecture - Statistics Reminder/Project.toml @@ -11,6 +11,7 @@ LaTeXStrings = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" Optim = "429524aa-4258-5aef-a3af-852621145aeb" PValue = "4aad55e6-3783-49d8-8c0b-540e9d18c8e0" PairPlots = "43a3c2be-4208-490b-832a-a21dcd55d7da" +PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd" Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"