diff --git a/Lectures/Lecture - Lomb-Scargle/Lecture-Lomb-Scargle.jl b/Lectures/Lecture - Lomb-Scargle/Lecture-Lomb-Scargle.jl
index 9c828e85d9385c6489c4e36a1b31572bb4b07fe1..cbdbf72f38d99dd48e59c278423a11b9a70edbe5 100644
--- a/Lectures/Lecture - Lomb-Scargle/Lecture-Lomb-Scargle.jl	
+++ b/Lectures/Lecture - Lomb-Scargle/Lecture-Lomb-Scargle.jl	
@@ -82,11 +82,11 @@ md"""
 
 # ╔═╡ 477704cc-f022-4cc5-a4a4-679387b819bd
 # ╠═╡ show_logs = false
-md"""
+cm"""
 ## A reminder of the CFT
 ***
 
-- Given a continuous signal g(t) the Fourier transform and its inverse are:
+- Given a continuous signal ``g(t)`` the Fourier transform and its inverse are:
 
 ```math
 \hat{g}(f) \equiv \int_{-\infty}^\infty g(t) e^{-2\pi i f t} dt \quad  g(t) \equiv \int_{-\infty}^\infty \hat{g}(f) e^{+2\pi i f t} df
@@ -98,7 +98,7 @@ md"""
 \mathcal{F}\{g\} = \hat{g} \quad    \mathcal{F}^{-1}\{\hat{g}\} = g
 ```
 
-- g and ĝ are know as a Fourier pair: $g \Longleftrightarrow \hat{g}$.
+- ``g`` and ``ĝ`` are know as a Fourier pair: ``g \Longleftrightarrow \hat{g}``.
 
 - The Fourier Transform (FT) is a linear operator:
 
@@ -107,22 +107,22 @@ md"""
        \mathcal{F}\{A f(t)\} = A\mathcal{F}\{f(t)\}
 ```
 
-- The FT of a sinusoid with frequency $f_0$ is a sum of delta functions at $\pm f_0$, where $\delta(f)\equiv\int_{-\infty}^\infty e^{-2\pi i x f}df$.
+- The FT of a sinusoid with frequency ``f_0`` is a sum of delta functions at ``\pm f_0``, where ``\delta(f)\equiv\int_{-\infty}^\infty e^{-2\pi i x f}df``.
 
-- We can write: $ \mathcal{F}\{e^{2\pi f_0 t}\} = \delta(f - f_0)$, and:
+- We can write: `` \mathcal{F}\{e^{2\pi f_0 t}\} = \delta(f - f_0)``, and:
 
 ```math
 \mathcal{F}\{\cos(2\pi f_0 t)\} = \frac{1}{2}\left[\delta(f - f_0) + \delta(f + f_0)\right] \quad
       \mathcal{F}\{\sin(2\pi f_0 t)\} = \frac{1}{2i}\left[\delta(f - f_0) - \delta(f + f_0)\right]
 ```
 
-- Relations that can be derived from Euler’s formula: $e^{ix} = \cos x + i\sin x$
+- Relations that can be derived from Euler’s formula: ``e^{ix} = \cos x + i\sin x``
 
-- A time shift imparts a phase in the FT:  $  \mathcal{F}\{g(t - t_0)\} = \mathcal{F}\{g(t)\} e^{-2\pi i ft_0}$.
+- A time shift imparts a phase in the FT:  ``  \mathcal{F}\{g(t - t_0)\} = \mathcal{F}\{g(t)\} e^{-2\pi i ft_0}``.
 
-- And, as we know, the squared amplitude of the FT of a continuous signal is known as the power spectral density (PSD):  $ \mathcal{P}_g \equiv \left|\mathcal{F}\{g\}\right|^2 $.
+- And, as we know, the squared amplitude of the FT of a continuous signal is known as the power spectral density (PSD):  `` \mathcal{P}_g \equiv \left|\mathcal{F}\{g\}\right|^2 ``.
 
-    - Note that if $g$ is real-valued, it follows that $P_g$ is an even function, {i.e.} $\mathcal{P}_g(f) = \mathcal{P}_g(-f)$.
+    - Note that if ``g`` is real-valued, it follows that ``P_g`` is an even function, {i.e.} ``\mathcal{P}_g(f) = \mathcal{P}_g(-f)``.
 
 $(LocalResource("Pics/FTpairs.png"))
 """
@@ -709,7 +709,7 @@ md"""
 # ╔═╡ 9d413d79-c9fb-4c30-ac02-92380510b607
 # ╠═╡ show_logs = false
 begin
-	fg6 = Figure(size=(2000,1000))
+	fg6 = Figure(size=(700,350))
 	
 	ax1fg6 = Axis(fg6[1, 1],
 	    title="Peak scaling with number of data points (fixed S/N=10)",
@@ -837,7 +837,7 @@ begin
 	p99 = LombScargle.fapinv(lsboot7,0.99)
 	
 	
-	fg7 = Figure(size=(1000,400))
+	fg7 = Figure(size=(700,350))
 	
 	ax1fg7 = Axis(fg7[1, 1],
 	    )
diff --git a/Lectures/Science Case - FRBs/Lecture-FRBs.ipynb b/Lectures/Science Case - FRBs/Lecture-FRBs.ipynb
index 6c2aa3fa2df5308d6d8d9042d33052e221f568bd..866f993d7967e53bd565d63fc89c9947bb649515 100644
--- a/Lectures/Science Case - FRBs/Lecture-FRBs.ipynb	
+++ b/Lectures/Science Case - FRBs/Lecture-FRBs.ipynb	
@@ -451,7 +451,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlV0lEQVR4nO3de3BUZYL38V8nITeSTkICnWQMBBcExBiCQAyo42KWjEM5UjLCWFlAdMXSiIu4CtnisuiMCegAy0UYKQGpFbk4i6vLxdGM46CGiFGUgFxEEXYgYWYxabklkDz7By/npQ2EBAKnH/x+qlJFn/P0OU8/hZ2vpy94jDFGAAAAFgpxewIAAAAXi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLXC3J7A5dbQ0KADBw4oNjZWHo/H7ekAAIBmMMbo+++/V2pqqkJCzn/d5aoPmQMHDigtLc3taQAAgIuwf/9+XXPNNefdf9WHTGxsrKTTC+H1el2eDQAAaA6/36+0tDTn9/j5XPUhc+blJK/XS8gAAGCZC70thDf7AgAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwVpjbEwCAS5E+ca3bU2ixvcWD3Z4CcNXgigwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAa7kaMvX19Zo8ebI6d+6sqKgo/d3f/Z2effZZGWOcMcYYTZkyRSkpKYqKilJubq52797t4qwBAECwcDVkpk+frgULFmjevHn68ssvNX36dM2YMUNz5851xsyYMUNz5szRwoULVVZWprZt2yovL08nTpxwceYAACAYhLl58o8++kh33323Bg8eLElKT0/Xa6+9po8//ljS6asxs2fP1qRJk3T33XdLkpYtWyafz6c33nhDv/rVrxods7a2VrW1tc5tv99/BR4JAABwg6tXZPr376+SkhLt2rVLkvT555/rgw8+0J133ilJ+uabb1RZWanc3FznPnFxccrOzlZpaek5j1lUVKS4uDjnJy0t7fI/EAAA4ApXr8hMnDhRfr9f3bt3V2hoqOrr6/Wb3/xG+fn5kqTKykpJks/nC7ifz+dz9v1QYWGhxo8f79z2+/3EDAAAVylXQ2bVqlV69dVXtXz5cvXs2VNbtmzRuHHjlJqaqlGjRl3UMSMiIhQREdHKMwUAAMHI1ZB56qmnNHHiROe9LhkZGfr2229VVFSkUaNGKTk5WZJUVVWllJQU535VVVXq1auXG1MGAABBxNX3yBw7dkwhIYFTCA0NVUNDgySpc+fOSk5OVklJibPf7/errKxMOTk5V3SuAAAg+Lh6Reauu+7Sb37zG3Xs2FE9e/bUZ599ppkzZ+qBBx6QJHk8Ho0bN06//vWv1bVrV3Xu3FmTJ09WamqqhgwZ4ubUAQBAEHA1ZObOnavJkyfr0Ucf1aFDh5SamqqHH35YU6ZMccY8/fTTOnr0qMaMGaPq6mrdcsst2rBhgyIjI12cOQAACAYec/bX6F6F/H6/4uLiVFNTI6/X6/Z0ALSy9Ilr3Z5Ci+0tHuz2FICg19zf3/xbSwAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrhbk9AQD4sUmfuNbtKbTY3uLBbk8BOCeuyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALCW6yHzl7/8Rf/4j/+oxMRERUVFKSMjQ5988omz3xijKVOmKCUlRVFRUcrNzdXu3btdnDEAAAgWrobMd999pwEDBqhNmzZav369tm/frt/+9rdKSEhwxsyYMUNz5szRwoULVVZWprZt2yovL08nTpxwceYAACAYhLl58unTpystLU1LlixxtnXu3Nn5szFGs2fP1qRJk3T33XdLkpYtWyafz6c33nhDv/rVrxods7a2VrW1tc5tv99/GR8BAABwk6tXZN5880316dNH9957rzp06KCsrCwtWrTI2f/NN9+osrJSubm5zra4uDhlZ2ertLT0nMcsKipSXFyc85OWlnbZHwcAAHCHqyHz9ddfa8GCBeratavefvttPfLII3r88cf1yiuvSJIqKyslST6fL+B+Pp/P2fdDhYWFqqmpcX72799/eR8EAABwjasvLTU0NKhPnz567rnnJElZWVmqqKjQwoULNWrUqIs6ZkREhCIiIlpzmgAAIEi5ekUmJSVF119/fcC2Hj16aN++fZKk5ORkSVJVVVXAmKqqKmcfAAD48XI1ZAYMGKCdO3cGbNu1a5c6deok6fQbf5OTk1VSUuLs9/v9KisrU05OzhWdKwAACD6uvrT0xBNPqH///nruuec0bNgwffzxx3rppZf00ksvSZI8Ho/GjRunX//61+ratas6d+6syZMnKzU1VUOGDHFz6gAAIAi4GjJ9+/bVmjVrVFhYqGeeeUadO3fW7NmzlZ+f74x5+umndfToUY0ZM0bV1dW65ZZbtGHDBkVGRro4cwAAEAw8xhjj9iQuJ7/fr7i4ONXU1Mjr9bo9HQCtLH3iWren8KOwt3iw21PAj0xzf3+7/k8UAAAAXCxCBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1wloyOCQkRB6Pp8kxHo9Hp06duqRJAQAANEeLQmbNmjXn3VdaWqo5c+aooaHhkicFAADQHC0KmbvvvrvRtp07d2rixIl66623lJ+fr2eeeabVJgcAANCUi36PzIEDB/TQQw8pIyNDp06d0pYtW/TKK6+oU6dOrTk/AACA82pxyNTU1GjChAnq0qWLtm3bppKSEr311lu64YYbLsf8AAAAzqtFLy3NmDFD06dPV3Jysl577bVzvtQEAABwpXiMMaa5g0NCQhQVFaXc3FyFhoaed9x//ud/tsrkWoPf71dcXJxqamrk9Xrdng6AVpY+ca3bU/hR2Fs82O0p4Eemub+/W3RFZuTIkRf8+DUAAMCV0qKQWbp06WWaBgAAQMvxzb4AAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKwVNCFTXFwsj8ejcePGOdtOnDihgoICJSYmKiYmRkOHDlVVVZV7kwQAAEElKEJm8+bN+t3vfqcbb7wxYPsTTzyht956S6tXr9b777+vAwcO6J577nFplgAAINi4HjJHjhxRfn6+Fi1apISEBGd7TU2NXn75Zc2cOVMDBw7UTTfdpCVLluijjz7Spk2bXJwxAAAIFq6HTEFBgQYPHqzc3NyA7eXl5Tp58mTA9u7du6tjx44qLS097/Fqa2vl9/sDfgAAwNUpzM2Tr1ixQp9++qk2b97caF9lZaXCw8MVHx8fsN3n86mysvK8xywqKtK0adNae6oAACAIuXZFZv/+/frnf/5nvfrqq4qMjGy14xYWFqqmpsb52b9/f6sdGwAABBfXQqa8vFyHDh1S7969FRYWprCwML3//vuaM2eOwsLC5PP5VFdXp+rq6oD7VVVVKTk5+bzHjYiIkNfrDfgBAABXJ9deWrrjjju0devWgG2jR49W9+7dNWHCBKWlpalNmzYqKSnR0KFDJUk7d+7Uvn37lJOT48aUAQBAkHEtZGJjY3XDDTcEbGvbtq0SExOd7Q8++KDGjx+vdu3ayev1auzYscrJydHNN9/sxpQBAECQcfXNvhcya9YshYSEaOjQoaqtrVVeXp5efPFFt6cFAACChMcYY9yexOXk9/sVFxenmpoa3i8DXIXSJ651ewo/CnuLB7s9BfzINPf3t+vfIwMAAHCxCBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1gpzewIAAFwO6RPXuj2FFttbPNjtKViHKzIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACs5WrIFBUVqW/fvoqNjVWHDh00ZMgQ7dy5M2DMiRMnVFBQoMTERMXExGjo0KGqqqpyacYAACCYuBoy77//vgoKCrRp0ya98847OnnypAYNGqSjR486Y5544gm99dZbWr16td5//30dOHBA99xzj4uzBgAAwSLMzZNv2LAh4PbSpUvVoUMHlZeX67bbblNNTY1efvllLV++XAMHDpQkLVmyRD169NCmTZt08803uzFtAAAQJILqPTI1NTWSpHbt2kmSysvLdfLkSeXm5jpjunfvro4dO6q0tPScx6itrZXf7w/4AQAAVydXr8icraGhQePGjdOAAQN0ww03SJIqKysVHh6u+Pj4gLE+n0+VlZXnPE5RUZGmTZt2uacLAECrS5+41u0ptNje4sGunj9orsgUFBSooqJCK1asuKTjFBYWqqamxvnZv39/K80QAAAEm6C4IvPYY4/pv//7v/XnP/9Z11xzjbM9OTlZdXV1qq6uDrgqU1VVpeTk5HMeKyIiQhEREZd7ygAAIAi4ekXGGKPHHntMa9as0R//+Ed17tw5YP9NN92kNm3aqKSkxNm2c+dO7du3Tzk5OVd6ugAAIMi4ekWmoKBAy5cv13/9138pNjbWed9LXFycoqKiFBcXpwcffFDjx49Xu3bt5PV6NXbsWOXk5PCJJQAA4G7ILFiwQJJ0++23B2xfsmSJ7r//fknSrFmzFBISoqFDh6q2tlZ5eXl68cUXr/BMAQBAMHI1ZIwxFxwTGRmp+fPna/78+VdgRgAAwCZB86klAACAliJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFgrzO0JAFer9Ilr3Z5Ci+0tHuz2FBCkbPz7jB8HrsgAAABrETIAAMBahAwAALAWIQMAAKxFyAAAAGsRMgAAwFqEDAAAsBbfIwPAwXeFALANV2QAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFiLkAEAANYiZAAAgLUIGQAAYC1CBgAAWIuQAQAA1iJkAACAtQgZAABgLUIGAABYi5ABAADWImQAAIC1CBkAAGAtQgYAAFgrzO0JNMf8+fP1/PPPq7KyUpmZmZo7d6769evn9rSUPnGt21O4KHuLB7s9BQAAWkXQX5FZuXKlxo8fr6lTp+rTTz9VZmam8vLydOjQIbenBgAAXBb0ITNz5kw99NBDGj16tK6//notXLhQ0dHRWrx4sdtTAwAALgvql5bq6upUXl6uwsJCZ1tISIhyc3NVWlp6zvvU1taqtrbWuV1TUyNJ8vv9rT6/htpjrX7MK+FyrAUas/XvBwC0xOX6nXLmuMaYJscFdcj87W9/U319vXw+X8B2n8+nHTt2nPM+RUVFmjZtWqPtaWlpl2WONoqb7fYMAABXi8v9O+X7779XXFzcefcHdchcjMLCQo0fP9653dDQoMOHDysxMVEej8fFmQUXv9+vtLQ07d+/X16v1+3pXNVY6yuDdb4yWOcrg3U+fSXm+++/V2pqapPjgjpkkpKSFBoaqqqqqoDtVVVVSk5OPud9IiIiFBEREbAtPj7+ck3Rel6v90f7H8mVxlpfGazzlcE6Xxk/9nVu6krMGUH9Zt/w8HDddNNNKikpcbY1NDSopKREOTk5Ls4MAAAEg6C+IiNJ48eP16hRo9SnTx/169dPs2fP1tGjRzV69Gi3pwYAAFwW9CEzfPhw/fWvf9WUKVNUWVmpXr16acOGDY3eAIyWiYiI0NSpUxu9DIfWx1pfGazzlcE6Xxmsc/N5zIU+1wQAABCkgvo9MgAAAE0hZAAAgLUIGQAAYC1CBgAAWIuQsci//du/yePxBPx07949YExpaakGDhyotm3byuv16rbbbtPx48ed/enp6Y2OUVxcHHCML774QrfeeqsiIyOVlpamGTNmNJrL6tWr1b17d0VGRiojI0Pr1q27PA/aBU2t8969exvtO/OzevVq5xj79u3T4MGDFR0drQ4dOuipp57SqVOnAs7zpz/9Sb1791ZERIS6dOmipUuXNprL/PnzlZ6ersjISGVnZ+vjjz++rI/9SmqNdT7X/hUrVgSch3Vu+nmjsrJSI0aMUHJystq2bavevXvr97//fcAxDh8+rPz8fHm9XsXHx+vBBx/UkSNHAsbwvHHp68zz80UysMbUqVNNz549zcGDB52fv/71r87+jz76yHi9XlNUVGQqKirMjh07zMqVK82JEyecMZ06dTLPPPNMwDGOHDni7K+pqTE+n8/k5+ebiooK89prr5moqCjzu9/9zhnz4YcfmtDQUDNjxgyzfft2M2nSJNOmTRuzdevWK7MQl1lT63zq1KmA7QcPHjTTpk0zMTEx5vvvv3fG3HDDDSY3N9d89tlnZt26dSYpKckUFhY65/j6669NdHS0GT9+vNm+fbuZO3euCQ0NNRs2bHDGrFixwoSHh5vFixebbdu2mYceesjEx8ebqqqqK7sgl8mlrrMxxkgyS5YsCRh3/PhxZz/rfOHnjX/4h38wffv2NWVlZWbPnj3m2WefNSEhIebTTz91xvzsZz8zmZmZZtOmTWbjxo2mS5cu5r777nP287zROuvM8/PFIWQsMnXqVJOZmXne/dnZ2WbSpElNHqNTp05m1qxZ593/4osvmoSEBFNbW+tsmzBhgunWrZtze9iwYWbw4MGNzv3www83/QAscaF1/qFevXqZBx54wLm9bt06ExISYiorK51tCxYsMF6v11nXp59+2vTs2TPgOMOHDzd5eXnO7X79+pmCggLndn19vUlNTTVFRUUtfUhB6VLX2ZjTIbNmzZrz3od1vvA6t23b1ixbtixgW7t27cyiRYuMMcZs377dSDKbN2929q9fv954PB7zl7/8xRjD84Yxl77OxvD8fLF4ackyu3fvVmpqqq699lrl5+dr3759kqRDhw6prKxMHTp0UP/+/eXz+fTTn/5UH3zwQaNjFBcXKzExUVlZWXr++ecDXvIoLS3VbbfdpvDwcGdbXl6edu7cqe+++84Zk5ubG3DMvLw8lZaWXo6H7IrzrfMPlZeXa8uWLXrwwQedbaWlpcrIyAj40sa8vDz5/X5t27bNGdPUGtbV1am8vDxgTEhIiHJzc1nnHygoKFBSUpL69eunxYsXy5z11Vis82lNrXP//v21cuVKHT58WA0NDVqxYoVOnDih22+/XdLpNYyPj1efPn2c++Tm5iokJERlZWXOGJ43Lm2dz+D5ueWC/pt98f9lZ2dr6dKl6tatmw4ePKhp06bp1ltvVUVFhb7++mtJp1+nfeGFF9SrVy8tW7ZMd9xxhyoqKtS1a1dJ0uOPP67evXurXbt2+uijj1RYWKiDBw9q5syZkk6/jtu5c+eA8575hVxZWamEhARVVlY2+mZln8+nysrKy70EV0RT6xwbGxsw9uWXX1aPHj3Uv39/Z9v51ufMvqbG+P1+HT9+XN99953q6+vPOWbHjh2t9ljddKnrLEnPPPOMBg4cqOjoaP3hD3/Qo48+qiNHjujxxx+XxDpLF17nVatWafjw4UpMTFRYWJiio6O1Zs0adenSRdLpNezQoUPAMcPCwtSuXbuAv888b1zaOks8P18sQsYid955p/PnG2+8UdnZ2erUqZNWrVqlHj16SJIefvhh59+hysrKUklJiRYvXqyioiJJp//tqrOPER4erocfflhFRUV8Ffb/09Q6n31F4Pjx41q+fLkmT57sxjSt1xrrfPa2rKwsHT16VM8//7wTMrjwOk+ePFnV1dV69913lZSUpDfeeEPDhg3Txo0blZGR4eLM7dIa68zz88XhpSWLxcfH67rrrtNXX32llJQUSdL1118fMKZHjx7nvVwvnf6/iFOnTmnv3r2SpOTkZFVVVQWMOXM7OTm5yTFn9l9tzl7ns73++us6duyYRo4cGbD9UtbQ6/UqKipKSUlJCg0NZZ11/nU+l+zsbP3P//yPamtrJbHO53L2Ou/Zs0fz5s3T4sWLdccddygzM1NTp05Vnz59NH/+fEmn1/DQoUMBxzh16pQOHz58wb/PZ/Y1NYZ1nn/eY/D83DyEjMWOHDmiPXv2KCUlRenp6UpNTdXOnTsDxuzatUudOnU67zG2bNmikJAQ59JxTk6O/vznP+vkyZPOmHfeeUfdunVTQkKCM6akpCTgOO+8845ycnJa66EFlbPX+Wwvv/yyfvGLX6h9+/YB23NycrR169aAJ/933nlHXq/XCc0LrWF4eLhuuummgDENDQ0qKSlhnZuwZcsWJSQkOP/3yjo3dvY6Hzt2TNLp9wWdLTQ0VA0NDZJOr2F1dbXKy8ud/X/84x/V0NCg7OxsZwzPG4Faus7nwvNzM7n9bmM035NPPmn+9Kc/mW+++cZ8+OGHJjc31yQlJZlDhw4ZY4yZNWuW8Xq9ZvXq1Wb37t1m0qRJJjIy0nz11VfGmNMfz541a5bZsmWL2bNnj/mP//gP0759ezNy5EjnHNXV1cbn85kRI0aYiooKs2LFChMdHd3o431hYWHmhRdeMF9++aWZOnXqVfXxvgutszHG7N6923g8HrN+/fpG9z/z8etBgwaZLVu2mA0bNpj27duf8+PXTz31lPnyyy/N/Pnzz/mx4IiICLN06VKzfft2M2bMGBMfHx/waSibXeo6v/nmm2bRokVm69atZvfu3ebFF1800dHRZsqUKc4Y1rnpda6rqzNdunQxt956qykrKzNfffWVeeGFF4zH4zFr1651jvGzn/3MZGVlmbKyMvPBBx+Yrl27Bnz8mueNS19nnp8vHiFjkeHDh5uUlBQTHh5ufvKTn5jhw4c7kXJGUVGRueaaa0x0dLTJyckxGzdudPaVl5eb7OxsExcXZyIjI02PHj3Mc889F/A9M8YY8/nnn5tbbrnFREREmJ/85CemuLi40VxWrVplrrvuOhMeHm569uwZ8KRnu+asc2FhoUlLSzP19fXnPMbevXvNnXfeaaKiokxSUpJ58sknzcmTJwPGvPfee6ZXr14mPDzcXHvttWbJkiWNjjN37lzTsWNHEx4ebvr162c2bdrUao/TbZe6zuvXrze9evUyMTExpm3btiYzM9MsXLiw0VjWuel13rVrl7nnnntMhw4dTHR0tLnxxhsbfUz4f//3f819991nYmJijNfrNaNHjw74Ph9jeN641HXm+fnieYw567OKAAAAFuE9MgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACsRcgAAABrETIAWuz+++/XkCFDXDv/iBEj9Nxzzzm309PTNXv2bNfmcz51dXVKT0/XJ5984vZUgKtWmNsTABBcPB5Pk/unTp2qf//3f5dbXwr++eefa926dVqwYIEr52+J8PBw/cu//IsmTJjQ6B/yA9A6CBkAAQ4ePOj8eeXKlZoyZUrAv6oeExOjmJgYN6YmSZo7d67uvfdeV+dwRl1dncLDw5sck5+fryeffFLbtm1Tz549r9DMgB8PXloCECA5Odn5iYuLk8fjCdgWExPT6KWl22+/XWPHjtW4ceOUkJAgn8+nRYsW6ejRoxo9erRiY2PVpUsXrV+/PuBcFRUVuvPOOxUTEyOfz6cRI0bob3/723nnVl9fr9dff1133XVXo33Hjh3TAw88oNjYWHXs2FEvvfRSwP6tW7dq4MCBioqKUmJiosaMGaMjR44EPIZx48YF3GfIkCG6//77ndvp6el69tlnNXLkSHm9Xo0ZM0Z1dXV67LHHlJKSosjISHXq1ElFRUXOfRISEjRgwACtWLGiqWUHcJEIGQCt4pVXXlFSUpI+/vhjjR07Vo888ojuvfde9e/fX59++qkGDRqkESNG6NixY5Kk6upqDRw4UFlZWfrkk0+0YcMGVVVVadiwYec9xxdffKGamhr16dOn0b7f/va36tOnjz777DM9+uijeuSRR5wrSUePHlVeXp4SEhK0efNmrV69Wu+++64ee+yxFj/OF154QZmZmfrss880efJkzZkzR2+++aZWrVqlnTt36tVXX1V6enrAffr166eNGze2+FwALoyXlgC0iszMTE2aNEmSVFhYqOLiYiUlJemhhx6SJE2ZMkULFizQF198oZtvvlnz5s1TVlZWwJt2Fy9erLS0NO3atUvXXXddo3N8++23Cg0NVYcOHRrt+/nPf65HH31UkjRhwgTNmjVL7733nrp166bly5frxIkTWrZsmdq2bStJmjdvnu666y5Nnz5dPp+v2Y9z4MCBevLJJ53b+/btU9euXXXLLbfI4/GoU6dOje6Tmpqqb7/9ttnnANB8XJEB0CpuvPFG58+hoaFKTExURkaGs+1MLBw6dEjS6Tftvvfee857bmJiYtS9e3dJ0p49e855juPHjysiIuKcb0g++/xnXg47c64vv/xSmZmZTsRI0oABA9TQ0BDw/p/m+OHVoPvvv19btmxRt27d9Pjjj+sPf/hDo/tERUU5V6IAtC6uyABoFW3atAm47fF4AradiY+GhgZJ0pEjR5wrIj+UkpJyznMkJSXp2LFj53yT7bnOf+ZczRESEtLok1gnT55sNO7sGJKk3r1765tvvtH69ev17rvvatiwYcrNzdXrr7/ujDl8+LDat2/f7LkAaD6uyABwRe/evbVt2zalp6erS5cuAT8/jIUzevXqJUnavn17i87Vo0cPff755zp69Kiz7cMPP1RISIi6desmSWrfvn3AJ7bq6+tVUVHRrON7vV4NHz5cixYt0sqVK/X73/9ehw8fdvZXVFQoKyurRXMG0DyEDABXFBQU6PDhw7rvvvu0efNm7dmzR2+//bZGjx6t+vr6c96nffv26t27tz744IMWnSs/P1+RkZEaNWqUKioq9N5772ns2LEaMWKE85LXwIEDtXbtWq1du1Y7duzQI488ourq6gsee+bMmXrttde0Y8cO7dq1S6tXr1ZycrLi4+OdMRs3btSgQYNaNGcAzUPIAHBFamqqPvzwQ9XX12vQoEHKyMjQuHHjFB8fr5CQ8z81/dM//ZNeffXVFp0rOjpab7/9tg4fPqy+ffvql7/8pe644w7NmzfPGfPAAw9o1KhRGjlypH7605/q2muv1d///d9f8NixsbGaMWOG+vTpo759+2rv3r1at26d8xhKS0tVU1OjX/7yly2aM4Dm8Ri3vp4TAC7C8ePH1a1bN61cuVI5OTluT+eChg8frszMTP3rv/6r21MBrkpckQFglaioKC1btqzJL84LFnV1dcrIyNATTzzh9lSAqxZXZAAAgLW4IgMAAKxFyAAAAGsRMgAAwFqEDAAAsBYhAwAArEXIAAAAaxEyAADAWoQMAACwFiEDAACs9X+gSVCzPAxVHwAAAABJRU5ErkJggg==",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjW0lEQVR4nO3de1DU9f7H8deCuqICih5ZSLxTKajlJZM6QeWl0rRhpjQp81SmY2bkSZPMn2iFiicPqZNpmdFFbeaMeezYKdFMLbRMs/KSmjdMQc4pWuhIqPH5/eG444aKqPjdjz4fMzvTfve7u+/9zLfh6Xd3wWWMMQIAALBUkNMDAAAAXAhiBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWq+H0ANWtvLxchw4dUmhoqFwul9PjAACAc2CMUUlJiaKjoxUUdPZzL5d9zBw6dEgxMTFOjwEAAM7DgQMH1KRJk7Puc9nHTGhoqKQTixEWFubwNAAA4FwUFxcrJibG93P8bC77mDn51lJYWBgxAwCAZc7lIyJ8ABgAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNVqOD0AAFyI5mOXOT1Cle2b0tvpEYDLCmdmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFjN0Zg5fvy4nnvuObVo0UIhISFq2bKlJk2apPLyct8+xhilp6crOjpaISEhSkpK0tatWx2cGgAABBJHY2bq1Kl69dVXNWvWLG3fvl2ZmZmaNm2aZs6c6dsnMzNT06dP16xZs7RhwwZ5PB716NFDJSUlDk4OAAACRQ0nn3zdunXq16+fevfuLUlq3ry5Fi5cqK+++krSibMyWVlZGjdunJKTkyVJ2dnZioyM1IIFCzR06NAKj1lWVqaysjLf9eLi4kvwSgAAgFMcPTNz8803a+XKldq5c6ck6ZtvvtFnn32mu+66S5K0d+9eFRQUqGfPnr77uN1uJSYmKjc397SPOXnyZIWHh/suMTEx1f9CAACAYxw9M/PMM8/I6/Xq2muvVXBwsH7//Xe9+OKLuv/++yVJBQUFkqTIyEi/+0VGRmr//v2nfcy0tDSNGjXKd724uJigAQDgMuZozLz33nt65513tGDBAsXFxWnz5s1KTU1VdHS0HnroId9+LpfL737GmArbTnK73XK73dU6NwAACByOxszo0aM1duxYDRgwQJLUrl077d+/X5MnT9ZDDz0kj8cj6cQZmqioKN/9CgsLK5ytAQAAVyZHPzNz5MgRBQX5jxAcHOz7anaLFi3k8XiUk5Pju/3o0aNavXq1EhISLumsAAAgMDl6Zubuu+/Wiy++qKZNmyouLk5ff/21pk+frocffljSibeXUlNTlZGRodjYWMXGxiojI0N16tTRwIEDnRwdAAAECEdjZubMmRo/fryGDx+uwsJCRUdHa+jQofq///s/3z5jxoxRaWmphg8frqKiInXt2lXLly9XaGiog5MDAIBA4TLGGKeHqE7FxcUKDw+X1+tVWFiY0+MAuMiaj13m9AhVtm9Kb6dHAAJeVX5+87eZAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFar4fQAAHClaT52mdMjVNm+Kb2dHgE4I87MAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsJrjMXPw4EE98MADatiwoerUqaPrrrtOGzdu9N1ujFF6erqio6MVEhKipKQkbd261cGJAQBAIHE0ZoqKinTTTTepZs2a+ve//61t27bppZdeUv369X37ZGZmavr06Zo1a5Y2bNggj8ejHj16qKSkxLnBAQBAwKjh5JNPnTpVMTExmj9/vm9b8+bNff9tjFFWVpbGjRun5ORkSVJ2drYiIyO1YMECDR06tMJjlpWVqayszHe9uLi4+l4AAABwnKNnZpYuXarOnTvr3nvvVePGjXX99dfrtdde892+d+9eFRQUqGfPnr5tbrdbiYmJys3NPe1jTp48WeHh4b5LTExMtb8OAADgHEdjZs+ePZo9e7ZiY2P18ccfa9iwYRo5cqTeeustSVJBQYEkKTIy0u9+kZGRvtv+KC0tTV6v13c5cOBA9b4IAADgKEffZiovL1fnzp2VkZEhSbr++uu1detWzZ49W4MGDfLt53K5/O5njKmw7SS32y232119QwMAgIDi6JmZqKgotW3b1m9bmzZtlJeXJ0nyeDySVOEsTGFhYYWzNQAA4MrkaMzcdNNN2rFjh9+2nTt3qlmzZpKkFi1ayOPxKCcnx3f70aNHtXr1aiUkJFzSWQEAQGBy9G2mp556SgkJCcrIyNB9992nL7/8UnPnztXcuXMlnXh7KTU1VRkZGYqNjVVsbKwyMjJUp04dDRw40MnRAQBAgHA0Zrp06aL3339faWlpmjRpklq0aKGsrCylpKT49hkzZoxKS0s1fPhwFRUVqWvXrlq+fLlCQ0MdnBwAAAQKlzHGOD1EdSouLlZ4eLi8Xq/CwsKcHgfARdZ87DKnR7gi7JvS2+kRcIWpys9vx/+cAQAAwIUgZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYrUZVdg4KCpLL5TrrPi6XS8ePH7+goQAAAM5VlWLm/fffP+Ntubm5mjlzpowxFzwUAADAuapSzPTr16/Ctu+//15paWn64IMPlJKSoueff/6iDQcAAFCZ8/7MzKFDhzRkyBC1b99ex48f1+bNm5Wdna2mTZtezPkAAADOqsox4/V69cwzz6h169baunWrVq5cqQ8++EDx8fHVMR8AAMBZVeltpszMTE2dOlUej0cLFy487dtOAAAAl5LLVOETu0FBQQoJCVH37t0VHBx8xv0WL158UYa7GIqLixUeHi6v16uwsDCnxwFwkTUfu8zpEa4I+6b0dnoEXGGq8vO7SmdmBg0aVOlXswEAAC6lKsXMm2++WU1jAAAAnB9+AzAAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsFTMxMnjxZLpdLqampvm3GGKWnpys6OlohISFKSkrS1q1bnRsSAAAEnICImQ0bNmju3Llq37693/bMzExNnz5ds2bN0oYNG+TxeNSjRw+VlJQ4NCkAAAg0jsfMr7/+qpSUFL322mtq0KCBb7sxRllZWRo3bpySk5MVHx+v7OxsHTlyRAsWLHBwYgAAEEgcj5nHH39cvXv3Vvfu3f227927VwUFBerZs6dvm9vtVmJionJzc8/4eGVlZSouLva7AACAy1cNJ5980aJF2rRpkzZs2FDhtoKCAklSZGSk3/bIyEjt37//jI85efJkTZw48eIOCgAAApZjZ2YOHDigJ598Uu+8845q1659xv1cLpffdWNMhW2nSktLk9fr9V0OHDhw0WYGAACBx7EzMxs3blRhYaE6derk2/b7779rzZo1mjVrlnbs2CHpxBmaqKgo3z6FhYUVztacyu12y+12V9/gAAAgoDh2Zub222/Xd999p82bN/sunTt3VkpKijZv3qyWLVvK4/EoJyfHd5+jR49q9erVSkhIcGpsAAAQYBw7MxMaGqr4+Hi/bXXr1lXDhg1921NTU5WRkaHY2FjFxsYqIyNDderU0cCBA50YGQAABCBHPwBcmTFjxqi0tFTDhw9XUVGRunbtquXLlys0NNTp0QAAQIBwGWOM00NUp+LiYoWHh8vr9SosLMzpcQBcZM3HLnN6hCvCvim9nR4BV5iq/Px2/PfMAAAAXAhiBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDVajg9AAAA1aH52GVOj1Bl+6b0dnoEK3FmBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNUcjZnJkyerS5cuCg0NVePGjXXPPfdox44dfvsYY5Senq7o6GiFhIQoKSlJW7dudWhiAAAQaByNmdWrV+vxxx/X+vXrlZOTo+PHj6tnz5763//+59snMzNT06dP16xZs7RhwwZ5PB716NFDJSUlDk4OAAACRQ0nn/yjjz7yuz5//nw1btxYGzdu1C233CJjjLKysjRu3DglJydLkrKzsxUZGakFCxZo6NChTowNAAACSEB9Zsbr9UqSIiIiJEl79+5VQUGBevbs6dvH7XYrMTFRubm5p32MsrIyFRcX+10AAMDly9EzM6cyxmjUqFG6+eabFR8fL0kqKCiQJEVGRvrtGxkZqf3795/2cSZPnqyJEydW77AAAFSD5mOXOT1Cle2b0tvpEQLnzMyIESP07bffauHChRVuc7lcfteNMRW2nZSWliav1+u7HDhwoFrmBQAAgSEgzsw88cQTWrp0qdasWaMmTZr4tns8HkknztBERUX5thcWFlY4W3OS2+2W2+2u3oEBAEDAcPTMjDFGI0aM0OLFi/XJJ5+oRYsWfre3aNFCHo9HOTk5vm1Hjx7V6tWrlZCQcKnHBQAAAcjRMzOPP/64FixYoH/+858KDQ31fUYmPDxcISEhcrlcSk1NVUZGhmJjYxUbG6uMjAzVqVNHAwcOdHJ0AAAQIByNmdmzZ0uSkpKS/LbPnz9fgwcPliSNGTNGpaWlGj58uIqKitS1a1ctX75coaGhl3haAAAQiByNGWNMpfu4XC6lp6crPT29+gcCAADWCZhvMwEAAJwPYgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1Wo4PQBwuWo+dpnTI1TZvim9nR4BAcrG4xlXDs7MAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAav2cGgA+/SwSAjTgzAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAajWcHuBcvPLKK5o2bZry8/MVFxenrKws/fnPf3Z6LElS87HLnB6hyvZN6e30CAAAXDQBf2bmvffeU2pqqsaNG6evv/5af/7zn3XnnXcqLy/P6dEAAEAACPiYmT59uh555BE9+uijatOmjbKyshQTE6PZs2c7PRoAAAgAAf0209GjR7Vx40aNHTvWb3vPnj2Vm5t72vuUlZWprKzMd93r9UqSiouLq2XG8rIj1fK41am61gL+bDw2AKCqqutnysnHNcZUum9Ax8x///tf/f7774qMjPTbHhkZqYKCgtPeZ/LkyZo4cWKF7TExMdUyo43Cs5yeAABwuajunyklJSUKDw8/6z4BHTMnuVwuv+vGmArbTkpLS9OoUaN818vLy/Xzzz+rYcOGZ7zPlaq4uFgxMTE6cOCAwsLCnB7nssU6Xxqs86XBOl8arPOJn/UlJSWKjo6udN+AjplGjRopODi4wlmYwsLCCmdrTnK73XK73X7b6tevX10jXhbCwsKu2P9ZLiXW+dJgnS8N1vnSuNLXubIzMicF9AeAa9WqpU6dOiknJ8dve05OjhISEhyaCgAABJKAPjMjSaNGjdKDDz6ozp07q1u3bpo7d67y8vI0bNgwp0cDAAABIOBjpn///vrpp580adIk5efnKz4+Xh9++KGaNWvm9GjWc7vdmjBhQoW35XBxsc6XBut8abDOlwbrXDUucy7feQIAAAhQAf2ZGQAAgMoQMwAAwGrEDAAAsBoxAwAArEbMWCI9PV0ul8vv4vF4/PbZvn27+vbtq/DwcIWGhurGG2/0++viSUlJFR5jwIABfo9RVFSkBx98UOHh4QoPD9eDDz6oX375xW+fvLw83X333apbt64aNWqkkSNH6ujRo9X22i+1ytb6j7edvEybNs23T1lZmZ544gk1atRIdevWVd++ffXjjz/6Pc+VvtYXY505pitX2Tr/+uuvGjFihJo0aaKQkBC1adOmwh/y5Xiu3MVYZ47nC2BghQkTJpi4uDiTn5/vuxQWFvpu/+GHH0xERIQZPXq02bRpk9m9e7f517/+ZQ4fPuzbJzEx0QwZMsTvMX755Re/57njjjtMfHy8yc3NNbm5uSY+Pt706dPHd/vx48dNfHy8ufXWW82mTZtMTk6OiY6ONiNGjKj+RbhEKlvrU7fn5+ebN954w7hcLrN7927fPsOGDTNXXXWVycnJMZs2bTK33nqr6dChgzl+/Lhvnyt9rS/GOnNMV66ydX700UdNq1atzKpVq8zevXvNnDlzTHBwsFmyZIlvH47nyl2MdeZ4Pn/EjCUmTJhgOnTocMbb+/fvbx544IGzPkZiYqJ58sknz3j7tm3bjCSzfv1637Z169YZSeb77783xhjz4YcfmqCgIHPw4EHfPgsXLjRut9t4vd5zezEBrrK1/qN+/fqZ2267zXf9l19+MTVr1jSLFi3ybTt48KAJCgoyH330kTGGtTbmwtfZGI7pc1HZOsfFxZlJkyb5bevYsaN57rnnjDEcz+fqQtfZGI7nC8HbTBbZtWuXoqOj1aJFCw0YMEB79uyRdOKPaS5btkxXX321evXqpcaNG6tr165asmRJhcd499131ahRI8XFxenpp59WSUmJ77Z169YpPDxcXbt29W278cYbFR4ertzcXN8+8fHxfn/4q1evXiorK9PGjRur6ZVfemda6z86fPiwli1bpkceecS3bePGjTp27Jh69uzp2xYdHa34+Hi/dWStL2ydT+KYrtzZ1vnmm2/W0qVLdfDgQRljtGrVKu3cuVO9evWSxPFcFReyzidxPJ+fgP8NwDiha9eueuutt3T11Vfr8OHDeuGFF5SQkKCtW7fq2LFj+vXXXzVlyhS98MILmjp1qj766CMlJydr1apVSkxMlCSlpKSoRYsW8ng82rJli9LS0vTNN9/4/vZVQUGBGjduXOG5Gzdu7PtjnwUFBRX+yGeDBg1Uq1atCn8Q1FZnW+uGDRv67Zudna3Q0FAlJyf7thUUFKhWrVpq0KCB376RkZF+63ilr/WFrrPEMX0uKlvnGTNmaMiQIWrSpIlq1KihoKAgvf7667r55pslcTyfqwtdZ4nj+UIQM5a48847ff/drl07devWTa1atVJ2drbvA2L9+vXTU089JUm67rrrlJubq1dffdUXM0OGDPE9Rnx8vGJjY9W5c2dt2rRJHTt2lHTiQ5d/ZIzx234u+9jsbGs9atQov33feOMNpaSkqHbt2pU+7vms4+W81hdjnTmmK1fZOs+YMUPr16/X0qVL1axZM61Zs0bDhw9XVFSUunfvfsbH5Xj2dzHWmeP5/PE2k6Xq1q2rdu3aadeuXWrUqJFq1Kihtm3b+u3Tpk0bv28z/VHHjh1Vs2ZN7dq1S5Lk8Xh0+PDhCvv95z//8ZW+x+OpUPdFRUU6duxYhX8NXC5OXetTrV27Vjt27NCjjz7qt93j8ejo0aMqKiry215YWOi3jqy1v6qu8+lwTFfu1HUuLS3Vs88+q+nTp+vuu+9W+/btNWLECPXv319/+9vfJHE8n6+qrvPpcDyfO2LGUmVlZdq+fbuioqJUq1YtdenSRTt27PDbZ+fOnWf9g5wn36KKioqSJHXr1k1er1dffvmlb58vvvhCXq9XCQkJvn22bNmi/Px83z7Lly+X2+1Wp06dLuZLDBinrvWp5s2bp06dOqlDhw5+2zt16qSaNWv6Tg1LUn5+vrZs2eK3jqy1v6qu8+lwTFfu1HU+duyYjh07pqAg/x8FwcHBKi8vl8TxfL6qus6nw/FcBU586hhV99e//tV8+umnZs+ePWb9+vWmT58+JjQ01Ozbt88YY8zixYtNzZo1zdy5c82uXbvMzJkzTXBwsFm7dq0x5sRXtydOnGg2bNhg9u7da5YtW2auvfZac/3111f4emX79u3NunXrzLp160y7du1O+7W/22+/3WzatMmsWLHCNGnS5LL62l9la22MMV6v19SpU8fMnj37tI8xbNgw06RJE7NixQqzadMmc9ttt532q6xX8lpf6DpzTJ+bytY5MTHRxMXFmVWrVpk9e/aY+fPnm9q1a5tXXnnF9xgcz5W70HXmeL4wxIwl+vfvb6KiokzNmjVNdHS0SU5ONlu3bvXbZ968eaZ169amdu3apkOHDn6/vyAvL8/ccsstJiIiwtSqVcu0atXKjBw50vz0009+j/HTTz+ZlJQUExoaakJDQ01KSoopKiry22f//v2md+/eJiQkxERERJgRI0aY3377rdpe+6V2Lms9Z84cExISUuF3QJxUWlpqRowYYSIiIkxISIjp06ePycvL89vnSl/rC11njulzU9k65+fnm8GDB5vo6GhTu3Ztc80115iXXnrJlJeX+/bheK7cha4zx/OFcRljjNNnhwAAAM4Xn5kBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAVBl6enpuu666xx7/vHjx+uxxx7zXU9KSlJqaqpj85xNly5dtHjxYqfHAC5rxAwAPy6X66yXwYMH6+mnn9bKlSsdme/w4cN6+eWX9eyzzzry/FU1fvx4jR079qx/UBDAhSFmAPjJz8/3XbKyshQWFua37eWXX1a9evXUsGFDR+abN2+eunXrpubNmzvy/Kc6evRopfv07t1bXq9XH3/88SWYCLgyETMA/Hg8Ht8lPDxcLperwrY/vs00ePBg3XPPPcrIyFBkZKTq16+viRMn6vjx4xo9erQiIiLUpEkTvfHGG37PdfDgQfXv318NGjRQw4YN1a9fP+3bt++s8y1atEh9+/atsL28vFxjxoxRRESEPB6P0tPT/W7Py8tTv379VK9ePYWFhem+++7T4cOHK7yGU6WmpiopKcl3PSkpSSNGjNCoUaPUqFEj9ejRQ9KJt92aNm0qt9ut6OhojRw50nef4OBg3XXXXVq4cOFZXxeA80fMALgoPvnkEx06dEhr1qzR9OnTlZ6erj59+qhBgwb64osvNGzYMA0bNkwHDhyQJB05ckS33nqr6tWrpzVr1uizzz5TvXr1dMcdd5zxjEdRUZG2bNmizp07V7gtOztbdevW1RdffKHMzExNmjRJOTk5kiRjjO655x79/PPPWr16tXJycrR7927179+/yq8zOztbNWrU0Oeff645c+boH//4h/7+979rzpw52rVrl5YsWaJ27dr53eeGG27Q2rVrq/xcAM5NDacHAHB5iIiI0IwZMxQUFKRrrrlGmZmZOnLkiO+zLWlpaZoyZYo+//xzDRgwQIsWLVJQUJBef/11uVwuSdL8+fNVv359ffrpp+rZs2eF59i/f7+MMYqOjq5wW/v27TVhwgRJUmxsrGbNmqWVK1eqR48eWrFihb799lvt3btXMTExkqS3335bcXFx2rBhg7p06XLOr7N169bKzMz0Xf/www/l8XjUvXt31axZU02bNtUNN9zgd5+rrrpKeXl5Ki8vV1AQ/4YELjb+rwJwUcTFxfn9oI6MjPQ7QxEcHKyGDRuqsLBQkrRx40b98MMPCg0NVb169VSvXj1FRETot99+0+7du0/7HKWlpZKk2rVrV7itffv2ftejoqJ8z7V9+3bFxMT4QkaS2rZtq/r162v79u1Vep1/PCt07733qrS0VC1bttSQIUP0/vvv6/jx4377hISEqLy8XGVlZVV6LgDnhjMzAC6KmjVr+l13uVyn3XbyWz3l5eXq1KmT3n333QqP9ac//em0z9GoUSNJJ95u+uM+Z3suY4zv7M+pTt0eFBQkY4zf7ceOHatwn7p16/pdj4mJ0Y4dO5STk6MVK1Zo+PDhmjZtmlavXu2b6eeff1adOnUUEhJy2tcF4MJwZgaAIzp27Khdu3apcePGat26td8lPDz8tPdp1aqVwsLCtG3btio9V9u2bZWXl+f7vI4kbdu2TV6vV23atJF0IqDy8/P97rd58+ZzevyQkBD17dtXM2bM0Keffqp169bpu+++892+ZcsWdezYsUozAzh3xAwAR6SkpKhRo0bq16+f1q5dq71792r16tV68skn9eOPP572PkFBQerevbs+++yzKj1X9+7d1b59e6WkpGjTpk368ssvNWjQICUmJvreNrrtttv01Vdf6a233tKuXbs0YcIEbdmypdLHfvPNNzVv3jxt2bJFe/bs0dtvv62QkBA1a9bMt8/atWtP+xkgABcHMQPAEXXq1NGaNWvUtGlTJScnq02bNnr44YdVWlqqsLCwM97vscce06JFi6r0S+hcLpeWLFmiBg0a6JZbblH37t3VsmVLvffee759evXqpfHjx2vMmDHq0qWLSkpKNGjQoEofu379+nrttdd00003qX379lq5cqU++OAD3+/hOXjwoHJzc/WXv/zlnOcFUDUu88c3iQEggBljdOONNyo1NVX333+/0+NUavTo0fJ6vZo7d67TowCXLc7MALCKy+XS3LlzK3xjKFA1btxYzz//vNNjAJc1zswAAACrcWYGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWO3/AQ6d7Xss9997AAAAAElFTkSuQmCC",
       "text/plain": [
        "<Figure size 640x480 with 1 Axes>"
       ]
@@ -849,7 +849,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.11"
+   "version": "3.12.7"
   }
  },
  "nbformat": 4,
diff --git a/Lectures/Science Case - FRBs/__pycache__/GL_algorithm.cpython-312.pyc b/Lectures/Science Case - FRBs/__pycache__/GL_algorithm.cpython-312.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..346ff6a789f7aec5bda7b07704de14ed2b12242e
Binary files /dev/null and b/Lectures/Science Case - FRBs/__pycache__/GL_algorithm.cpython-312.pyc differ