Select Git revision
ale.cpp
-
Kelvin Rodriguez authored
* kernel list support added * simple spice as fixture * removed abstractmethod tags * added property tags * addressed comments * removed config, combined kernel and metakernel methods, added test for metakerenl queries * added test to env var * Add short name test for dawn * added sorted driver list * i don't remmeber * updated tests to only need one reload for ale * removed uneeded header * removed cpp load notebook * removed vis module * updated write_metakernel code to use abspaths * updated tests, removed json from repo and now is conda installed from conda-forge * removed redundant json conversion in load func * addressed commnets * updated tests as per comments
Kelvin Rodriguez authored* kernel list support added * simple spice as fixture * removed abstractmethod tags * added property tags * addressed comments * removed config, combined kernel and metakernel methods, added test for metakerenl queries * added test to env var * Add short name test for dawn * added sorted driver list * i don't remmeber * updated tests to only need one reload for ale * removed uneeded header * removed cpp load notebook * removed vis module * updated write_metakernel code to use abspaths * updated tests, removed json from repo and now is conda installed from conda-forge * removed redundant json conversion in load func * addressed commnets * updated tests as per comments
ale.cpp 14.63 KiB
#include "ale.h"
#include <nlohmann/json.hpp>
#include <gsl/gsl_interp.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_poly.h>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <iostream>
#include <Python.h>
#include <string>
#include <iostream>
#include <stdexcept>
using json = nlohmann::json;
using namespace std;
namespace ale {
// Position Data Functions
vector<double> getPosition(vector<vector<double>> coords, vector<double> times, double time,
interpolation interp) {
// Check that all of the data sizes are okay
// TODO is there a cleaner way to do this? We're going to have to do this a lot.
if (coords.size() != 3) {
throw invalid_argument("Invalid input positions, expected three vectors.");
}
// GSL setup
vector<double> coordinate = {0.0, 0.0, 0.0};
coordinate = { interpolate(coords[0], times, time, interp, 0),
interpolate(coords[1], times, time, interp, 0),
interpolate(coords[2], times, time, interp, 0) };
return coordinate;
}
vector<double> getVelocity(vector<vector<double>> coords, vector<double> times,
double time, interpolation interp) {
// Check that all of the data sizes are okay
// TODO is there a cleaner way to do this? We're going to have to do this a lot.
if (coords.size() != 3) {
throw invalid_argument("Invalid input positions, expected three vectors.");
}
// GSL setup
vector<double> coordinate = {0.0, 0.0, 0.0};
coordinate = { interpolate(coords[0], times, time, interp, 1),
interpolate(coords[1], times, time, interp, 1),
interpolate(coords[2], times, time, interp, 1) };
return coordinate;
}
// Postion Function Functions
// vector<double> coeffs = [[cx_0, cx_1, cx_2 ..., cx_n],
// [cy_0, cy_1, cy_2, ... cy_n],
// [cz_0, cz_1, cz_2, ... cz_n]]
// The equations evaluated by this function are:
// x = cx_n * t^n + cx_n-1 * t^(n-1) + ... + cx_0
// y = cy_n * t^n + cy_n-1 * t^(n-1) + ... + cy_0
// z = cz_n * t^n + cz_n-1 * t^(n-1) + ... + cz_0
vector<double> getPosition(vector<vector<double>> coeffs, double time) {
if (coeffs.size() != 3) {
throw invalid_argument("Invalid input coeffs, expected three vectors.");
}
vector<double> coordinate = {0.0, 0.0, 0.0};
coordinate[0] = evaluatePolynomial(coeffs[0], time, 0); // X
coordinate[1] = evaluatePolynomial(coeffs[1], time, 0); // Y
coordinate[2] = evaluatePolynomial(coeffs[2], time, 0); // Z
return coordinate;
}
// Velocity Function
// Takes the coefficients from the position equation
vector<double> getVelocity(vector<vector<double>> coeffs, double time) {
if (coeffs.size() != 3) {
throw invalid_argument("Invalid input coeffs, expected three vectors.");
}
vector<double> coordinate = {0.0, 0.0, 0.0};
coordinate[0] = evaluatePolynomial(coeffs[0], time, 1); // X
coordinate[1] = evaluatePolynomial(coeffs[1], time, 1); // Y
coordinate[2] = evaluatePolynomial(coeffs[2], time, 1); // Z
return coordinate;
}
// Rotation Data Functions
vector<double> getRotation(vector<vector<double>> rotations,
vector<double> times, double time, interpolation interp) {
// Check that all of the data sizes are okay
// TODO is there a cleaner way to do this? We're going to have to do this a lot.
if (rotations.size() != 4) {
throw invalid_argument("Invalid input rotations, expected four vectors.");
}
// Alot of copying and reassignment becuase conflicting data types
// probably should rethink our vector situation to guarentee contiguous
// memory. Should be easy to switch to a contiguous column-major format
// if we stick with Eigen.
for (size_t i = 0; i<rotations[0].size(); i++) {
Eigen::Quaterniond quat(rotations[0][i], rotations[1][i], rotations[2][i], rotations[3][i]);
quat.normalize();
rotations[0][i] = quat.w();
rotations[1][i] = quat.x();
rotations[2][i] = quat.y();
rotations[3][i] = quat.z();
}
// GSL setup
vector<double> coordinate = {0.0, 0.0, 0.0, 0.0};
coordinate = { interpolate(rotations[0], times, time, interp, 0),
interpolate(rotations[1], times, time, interp, 0),
interpolate(rotations[2], times, time, interp, 0),
interpolate(rotations[3], times, time, interp, 0)};
// Eigen::Map to ensure the array isn't copied, only the pointer is
Eigen::Map<Eigen::MatrixXd> quat(coordinate.data(), 4, 1);
quat.normalize();
return coordinate;
}
vector<double> getAngularVelocity(vector<vector<double>> rotations,
vector<double> times, double time, interpolation interp) {
// Check that all of the data sizes are okay
// TODO is there a cleaner way to do this? We're going to have to do this a lot.
if (rotations.size() != 4) {
throw invalid_argument("Invalid input rotations, expected four vectors.");
}
double data[] = {0,0,0,0};
for (size_t i = 0; i<rotations[0].size(); i++) {
Eigen::Quaterniond quat(rotations[0][i], rotations[1][i], rotations[2][i], rotations[3][i]);
quat.normalize();
rotations[0][i] = quat.w();
rotations[1][i] = quat.x();
rotations[2][i] = quat.y();
rotations[3][i] = quat.z();
}
// GSL setup
Eigen::Quaterniond quat(interpolate(rotations[0], times, time, interp, 0),
interpolate(rotations[1], times, time, interp, 0),
interpolate(rotations[2], times, time, interp, 0),
interpolate(rotations[3], times, time, interp, 0));
quat.normalize();
Eigen::Quaterniond dQuat(interpolate(rotations[0], times, time, interp, 1),
interpolate(rotations[1], times, time, interp, 1),
interpolate(rotations[2], times, time, interp, 1),
interpolate(rotations[3], times, time, interp, 1));
Eigen::Quaterniond avQuat = quat.conjugate() * dQuat;
vector<double> coordinate = {-2 * avQuat.x(), -2 * avQuat.y(), -2 * avQuat.z()};
return coordinate;
}
// Rotation Function Functions
std::vector<double> getRotation(vector<vector<double>> coeffs, double time) {
if (coeffs.size() != 3) {
throw invalid_argument("Invalid input coefficients, expected three vectors.");
}
vector<double> rotation = {0.0, 0.0, 0.0};
rotation[0] = evaluatePolynomial(coeffs[0], time, 0); // X
rotation[1] = evaluatePolynomial(coeffs[1], time, 0); // Y
rotation[2] = evaluatePolynomial(coeffs[2], time, 0); // Z
Eigen::Quaterniond quat;
quat = Eigen::AngleAxisd(rotation[0] * M_PI / 180, Eigen::Vector3d::UnitZ())
* Eigen::AngleAxisd(rotation[1] * M_PI / 180, Eigen::Vector3d::UnitX())
* Eigen::AngleAxisd(rotation[2] * M_PI / 180, Eigen::Vector3d::UnitZ());
quat.normalize();
vector<double> rotationQ = {quat.w(), quat.x(), quat.y(), quat.z()};
return rotationQ;
}
vector<double> getAngularVelocity(vector<vector<double>> coeffs, double time) {
if (coeffs.size() != 3) {
throw invalid_argument("Invalid input coefficients, expected three vectors.");
}
double phi = evaluatePolynomial(coeffs[0], time, 0); // X
double theta = evaluatePolynomial(coeffs[1], time, 0); // Y
double psi = evaluatePolynomial(coeffs[2], time, 0); // Z
double phi_dt = evaluatePolynomial(coeffs[0], time, 1);
double theta_dt = evaluatePolynomial(coeffs[1], time, 1);
double psi_dt = evaluatePolynomial(coeffs[2], time, 1);
Eigen::Quaterniond quat1, quat2;
quat1 = Eigen::AngleAxisd(phi * M_PI / 180, Eigen::Vector3d::UnitZ());
quat2 = Eigen::AngleAxisd(theta * M_PI / 180, Eigen::Vector3d::UnitX());
Eigen::Vector3d velocity = phi_dt * Eigen::Vector3d::UnitZ();
velocity += theta_dt * (quat1 * Eigen::Vector3d::UnitX());
velocity += psi_dt * (quat1 * quat2 * Eigen::Vector3d::UnitZ());
return {velocity[0], velocity[1], velocity[2]};
}
// Polynomial evaluation helper function
// The equation evaluated by this function is:
// x = cx_0 + cx_1 * t^(1) + ... + cx_n * t^n
// The d parameter is for which derivative of the polynomial to compute.
// Supported options are
// 0: no derivative
// 1: first derivative
// 2: second derivative
double evaluatePolynomial(vector<double> coeffs, double time, int d){
if (coeffs.empty()) {
throw invalid_argument("Invalid input coeffs, must be non-empty.");
}
if (d < 0) {
throw invalid_argument("Invalid derivative degree, must be non-negative.");
}
vector<double> derivatives(d + 1);
gsl_poly_eval_derivs(coeffs.data(), coeffs.size(), time,
derivatives.data(), derivatives.size());
return derivatives.back();
}
double interpolate(vector<double> points, vector<double> times, double time, interpolation interp, int d) {
size_t numPoints = points.size();
if (numPoints < 2) {
throw invalid_argument("At least two points must be input to interpolate over.");
}
if (points.size() != times.size()) {
throw invalid_argument("Invalid gsl_interp_type data, must have the same number of points as times.");
}
if (time < times.front() || time > times.back()) {
throw invalid_argument("Invalid gsl_interp_type time, outside of input times.");
}
// convert our interp enum into a GSL one,
// should be easy to add non GSL interp methods here later
const gsl_interp_type *interp_methods[] = {gsl_interp_linear, gsl_interp_cspline};
gsl_interp *interpolator = gsl_interp_alloc(interp_methods[interp], numPoints);
gsl_interp_init(interpolator, ×[0], &points[0], numPoints);
gsl_interp_accel *acc = gsl_interp_accel_alloc();
// GSL evaluate
double result;
switch(d) {
case 0:
result = gsl_interp_eval(interpolator, ×[0], &points[0], time, acc);
break;
case 1:
result = gsl_interp_eval_deriv(interpolator, ×[0], &points[0], time, acc);
break;
case 2:
result = gsl_interp_eval_deriv2(interpolator, ×[0], &points[0], time, acc);
break;
default:
throw invalid_argument("Invalid derivitive option, must be 0, 1 or 2.");
break;
}
// GSL clean up
gsl_interp_free(interpolator);
gsl_interp_accel_free(acc);
return result;
}
std::string getPyTraceback() {
PyObject* err = PyErr_Occurred();
if (err != NULL) {
PyObject *ptype, *pvalue, *ptraceback;
PyObject *pystr, *module_name, *pyth_module, *pyth_func;
char *str;
char *full_backtrace;
char *error_description;
PyErr_Fetch(&ptype, &pvalue, &ptraceback);
pystr = PyObject_Str(pvalue);
str = PyBytes_AS_STRING(PyUnicode_AsUTF8String(pystr));
error_description = strdup(str);
// See if we can get a full traceback
module_name = PyUnicode_FromString("traceback");
pyth_module = PyImport_Import(module_name);
Py_DECREF(module_name);
if (pyth_module == NULL) {
throw runtime_error("getPyTraceback - Failed to import Python traceback Library");
}
pyth_func = PyObject_GetAttrString(pyth_module, "format_exception");
PyObject *pyth_val;
pyth_val = PyObject_CallFunctionObjArgs(pyth_func, ptype, pvalue, ptraceback, NULL);
pystr = PyObject_Str(pyth_val);
str = PyBytes_AS_STRING(PyUnicode_AsUTF8String(pystr));
full_backtrace = strdup(str);
Py_DECREF(pyth_val);
std::string join_cmd = "trace = ''.join(list(" + std::string(full_backtrace) + "))";
PyRun_SimpleString(join_cmd.c_str());
PyObject *evalModule = PyImport_AddModule( (char*)"__main__" );
PyObject *evalDict = PyModule_GetDict( evalModule );
PyObject *evalVal = PyDict_GetItemString( evalDict, "trace" );
full_backtrace = PyBytes_AS_STRING(PyUnicode_AsUTF8String(evalVal));
return std::string(error_description) + "\n" + std::string(full_backtrace);
}
// no traceback to return
return "";
}
std::string load(std::string filename, std::string props, std::string formatter) {
static bool first_run = true;
if(first_run) {
// Initialize the Python interpreter but only once.
first_run = !first_run;
Py_Initialize();
atexit(Py_Finalize);
}
// Import the file as a Python module.
PyObject *pModule = PyImport_Import(PyUnicode_FromString("ale"));
if(!pModule) {
throw runtime_error("Failed to import ale. Make sure the ale python library is correctly installed.");
}
// Create a dictionary for the contents of the module.
PyObject *pDict = PyModule_GetDict(pModule);
// Get the add method from the dictionary.
PyObject *pFunc = PyDict_GetItemString(pDict, "loads");
if(!pFunc) {
// import errors do not set a PyError flag, need to use a custom
// error message instead.
throw runtime_error("Failed to import ale.loads function from Python."
"This Usually indicates an error in the Ale Python Library."
"Check if Installed correctly and the function ale.loads exists.");
}
// Create a Python tuple to hold the arguments to the method.
PyObject *pArgs = PyTuple_New(3);
if(!pArgs) {
throw runtime_error(getPyTraceback());
}
// Set the Python int as the first and second arguments to the method.
PyObject *pStringFileName = PyUnicode_FromString(filename.c_str());
PyTuple_SetItem(pArgs, 0, pStringFileName);
PyObject *pStringProps = PyUnicode_FromString(props.c_str());
PyTuple_SetItem(pArgs, 1, pStringProps);
PyObject *pStringFormatter = PyUnicode_FromString(formatter.c_str());
PyTuple_SetItem(pArgs, 2, pStringFormatter);
// Call the function with the arguments.
PyObject* pResult = PyObject_CallObject(pFunc, pArgs);
Py_DECREF(pArgs);
Py_DECREF(pStringFileName);
Py_DECREF(pStringProps);
Py_DECREF(pStringFormatter);
if(!pResult) {
throw invalid_argument(getPyTraceback());
}
PyObject *pResultStr = PyObject_Str(pResult);
PyObject *temp_bytes = PyUnicode_AsUTF8String(pResultStr); // Owned reference
if(!temp_bytes){
throw invalid_argument(getPyTraceback());
}
std::string cResult;
char *temp_str = PyBytes_AS_STRING(temp_bytes); // Borrowed pointer
cResult = temp_str; // copy into std::string
Py_DECREF(pResultStr);
return cResult;
}
}