Skip to content
Snippets Groups Projects
Commit b60d6f76 authored by Jesse Mapel's avatar Jesse Mapel
Browse files

Moved data snooping functions to library

parent a2823b27
No related branches found
No related tags found
No related merge requests found
...@@ -373,3 +373,182 @@ def compute_residuals(network, sensors): ...@@ -373,3 +373,182 @@ def compute_residuals(network, sensors):
V = V.reshape(num_meas*2) V = V.reshape(num_meas*2)
return V return V
def compute_sigma(V, W_parameters, W_observations):
"""
Computes the resulting standard deviation of the residuals for the current state of the bundle network.
Parameters
----------
V : np.array
The control network dataframe with updated ground points
W_parameters : ndarray
The parameter weight matrix (i.e.: sensor parameters and point weights)
W_observations : ndarray
The observation weight matrix (i.e.: point weights)
Returns
-------
: float64
Standard deviation of the residuals
"""
num_parameters = W_parameters.shape[0]
num_observations = W_observations.shape[0]
dof = num_observations - num_parameters
VTPV = (V.dot(W_observations).dot(V))
sigma0 = np.sqrt(VTPV/dof)
return sigma0
def bundle_iteration(J, V, W_parameters, W_observations):
"""
Parameters
----------
J : ndarray
The control network as a dataframe generated by plio.
V : np.array
The control network dataframe with updated ground points
W_parameters : ndarray
The parameter weight matrix (i.e.: sensor parameters and point weights)
W_observations : ndarray
The observation weight matrix (i.e.: measure weights)
Returns
-------
N :
"""
N = J.T.dot(W_observations).dot(J) + W_parameters
C = J.T.dot(W_observations).dot(V)
dX = np.linalg.inv(N).dot(C)
return N, dX
# For data snooping we need to calculate updated residuals
def compute_normalized_residual(J, V, N, W_parameters, W_observations):
"""
Computes the normalized residual statistic for the data snooping method. Method derived from
Forstner 1985 "The Reliability of Block Triangulation"
Parameters
----------
V : np.array
The control network dataframe with updated ground points
N :
W_parameters : ndarray
The parameter weight matrix (i.e.: sensor parameters and point weights)
W_observations : ndarray
The observation weight matrix (i.e.: point weights)
Returns
-------
: np.array
Normalized residual statistic for the data snooping
"""
sigma0 = compute_sigma(V, W_parameters, W_observations)
Qxx = np.linalg.inv(N)
Qvv = np.linalg.inv(W_observations) - J.dot(Qxx).dot(J.T)
qvv = np.diagonal(Qvv)
sigma_vi = sigma0*np.sqrt(qvv)
wi = -V/sigma_vi
return wi
def check_network(network):
"""
Check that all control points in a network have at least 2 remaining measures.
Parameters
----------
network : DataFrame
The control network as a dataframe generated by plio
Returns
-------
: list
List of measure indices that were masked out for being the only measure on a point.
"""
bad_measures = []
for point_id, group in network.groupby('id'):
if len(group) < 2:
for measure_index, _ in group.iterrows():
bad_measures.append(measure_index)
return bad_measures
def data_snooping(network, sensors, parameters, k=3.29, verbose=True):
"""
Parameters
----------
network : DataFrame
The control network as a dataframe generated by plio
sensors : dict
A dictionary that maps ISIS serial numbers to CSM sensors
parameters : list
The list of CsmParameter to compute the partials W.R.T.
k : float64
Critical value used for rejection criteria; defaults to Forstner's 3.29
(or Baarda's 4.1??)
verbose : bool
If status prints should happen
Returns
-------
: list
Indices of the network DataFrame that were rejected during data snooping
"""
net = network
net['mask'] = False
rejected_indices = []
awi = np.array([5, 5, 5, 5]) #initialize larger than k so you get into first iteration
while (awi > k).any():
# weight matrices
coefficient_columns = compute_coefficient_columns(net[~net['mask']], sensors, parameters)
num_parameters = max(col_range[1] for col_range in coefficient_columns.values())
W_parameters = compute_parameter_weights(net[~net['mask']], sensors, parameters, coefficient_columns)
num_observations = 2 * len(net[~net['mask']])
W_observations = np.eye(num_observations)
# bundle iteration (and set up)
V = compute_residuals(net[~net['mask']], sensors)
J = compute_jacobian(net[~net['mask']], sensors, parameters, coefficient_columns)
sigma0 = compute_sigma(V, W_parameters, W_observations)
N, dX = bundle_iteration(J, V, W_parameters, W_observations)
# calculate test statistic
wi = compute_normalized_residual(J, V, N, W_parameters, W_observations)
awi = abs(wi)
#find maximum
imax = np.argmax(awi)
if verbose:
print(f'max wi = {awi[imax]}') # display
if awi[imax] <= k:
if verbose:
print('Data Snooping Outlier Rejection Complete')
break
reject_index = floor(imax/2)
reject = net.index[~net['mask']][reject_index]
net.loc[reject, ['mask']] = True
rejected_indices.append(reject)
if verbose:
print(f'max wi index = {imax}')
print(f'max wi measure index = {reject_index}')
print(f'rejecting measure {net.loc[reject, ["id", "serialnumber"]].values}')
not_enough_measures = check_network(net[~net['mask']])
if (not_enough_measures):
for measure_index in not_enough_measures:
if verbose:
print(f'single measure point {net.loc[measure_index, "id"]}')
print(f'rejecting measure {net.loc[measure_index, ["id", "serialnumber"]].values}')
net.loc[measure_index, ['mask']] = True
if verbose:
print('')
return rejected_indices
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment