Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
Knoten
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
aflab
astrogeology
Knoten
Commits
b60d6f76
Commit
b60d6f76
authored
Feb 6, 2020
by
Jesse Mapel
Browse files
Options
Downloads
Patches
Plain Diff
Moved data snooping functions to library
parent
a2823b27
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
knoten/bundle.py
+179
-0
179 additions, 0 deletions
knoten/bundle.py
with
179 additions
and
0 deletions
knoten/bundle.py
+
179
−
0
View file @
b60d6f76
...
@@ -373,3 +373,182 @@ def compute_residuals(network, sensors):
...
@@ -373,3 +373,182 @@ def compute_residuals(network, sensors):
V
=
V
.
reshape
(
num_meas
*
2
)
V
=
V
.
reshape
(
num_meas
*
2
)
return
V
return
V
def
compute_sigma
(
V
,
W_parameters
,
W_observations
):
"""
Computes the resulting standard deviation of the residuals for the current state of the bundle network.
Parameters
----------
V : np.array
The control network dataframe with updated ground points
W_parameters : ndarray
The parameter weight matrix (i.e.: sensor parameters and point weights)
W_observations : ndarray
The observation weight matrix (i.e.: point weights)
Returns
-------
: float64
Standard deviation of the residuals
"""
num_parameters
=
W_parameters
.
shape
[
0
]
num_observations
=
W_observations
.
shape
[
0
]
dof
=
num_observations
-
num_parameters
VTPV
=
(
V
.
dot
(
W_observations
).
dot
(
V
))
sigma0
=
np
.
sqrt
(
VTPV
/
dof
)
return
sigma0
def
bundle_iteration
(
J
,
V
,
W_parameters
,
W_observations
):
"""
Parameters
----------
J : ndarray
The control network as a dataframe generated by plio.
V : np.array
The control network dataframe with updated ground points
W_parameters : ndarray
The parameter weight matrix (i.e.: sensor parameters and point weights)
W_observations : ndarray
The observation weight matrix (i.e.: measure weights)
Returns
-------
N :
"""
N
=
J
.
T
.
dot
(
W_observations
).
dot
(
J
)
+
W_parameters
C
=
J
.
T
.
dot
(
W_observations
).
dot
(
V
)
dX
=
np
.
linalg
.
inv
(
N
).
dot
(
C
)
return
N
,
dX
# For data snooping we need to calculate updated residuals
def
compute_normalized_residual
(
J
,
V
,
N
,
W_parameters
,
W_observations
):
"""
Computes the normalized residual statistic for the data snooping method. Method derived from
Forstner 1985
"
The Reliability of Block Triangulation
"
Parameters
----------
V : np.array
The control network dataframe with updated ground points
N :
W_parameters : ndarray
The parameter weight matrix (i.e.: sensor parameters and point weights)
W_observations : ndarray
The observation weight matrix (i.e.: point weights)
Returns
-------
: np.array
Normalized residual statistic for the data snooping
"""
sigma0
=
compute_sigma
(
V
,
W_parameters
,
W_observations
)
Qxx
=
np
.
linalg
.
inv
(
N
)
Qvv
=
np
.
linalg
.
inv
(
W_observations
)
-
J
.
dot
(
Qxx
).
dot
(
J
.
T
)
qvv
=
np
.
diagonal
(
Qvv
)
sigma_vi
=
sigma0
*
np
.
sqrt
(
qvv
)
wi
=
-
V
/
sigma_vi
return
wi
def
check_network
(
network
):
"""
Check that all control points in a network have at least 2 remaining measures.
Parameters
----------
network : DataFrame
The control network as a dataframe generated by plio
Returns
-------
: list
List of measure indices that were masked out for being the only measure on a point.
"""
bad_measures
=
[]
for
point_id
,
group
in
network
.
groupby
(
'
id
'
):
if
len
(
group
)
<
2
:
for
measure_index
,
_
in
group
.
iterrows
():
bad_measures
.
append
(
measure_index
)
return
bad_measures
def
data_snooping
(
network
,
sensors
,
parameters
,
k
=
3.29
,
verbose
=
True
):
"""
Parameters
----------
network : DataFrame
The control network as a dataframe generated by plio
sensors : dict
A dictionary that maps ISIS serial numbers to CSM sensors
parameters : list
The list of CsmParameter to compute the partials W.R.T.
k : float64
Critical value used for rejection criteria; defaults to Forstner
'
s 3.29
(or Baarda
'
s 4.1??)
verbose : bool
If status prints should happen
Returns
-------
: list
Indices of the network DataFrame that were rejected during data snooping
"""
net
=
network
net
[
'
mask
'
]
=
False
rejected_indices
=
[]
awi
=
np
.
array
([
5
,
5
,
5
,
5
])
#initialize larger than k so you get into first iteration
while
(
awi
>
k
).
any
():
# weight matrices
coefficient_columns
=
compute_coefficient_columns
(
net
[
~
net
[
'
mask
'
]],
sensors
,
parameters
)
num_parameters
=
max
(
col_range
[
1
]
for
col_range
in
coefficient_columns
.
values
())
W_parameters
=
compute_parameter_weights
(
net
[
~
net
[
'
mask
'
]],
sensors
,
parameters
,
coefficient_columns
)
num_observations
=
2
*
len
(
net
[
~
net
[
'
mask
'
]])
W_observations
=
np
.
eye
(
num_observations
)
# bundle iteration (and set up)
V
=
compute_residuals
(
net
[
~
net
[
'
mask
'
]],
sensors
)
J
=
compute_jacobian
(
net
[
~
net
[
'
mask
'
]],
sensors
,
parameters
,
coefficient_columns
)
sigma0
=
compute_sigma
(
V
,
W_parameters
,
W_observations
)
N
,
dX
=
bundle_iteration
(
J
,
V
,
W_parameters
,
W_observations
)
# calculate test statistic
wi
=
compute_normalized_residual
(
J
,
V
,
N
,
W_parameters
,
W_observations
)
awi
=
abs
(
wi
)
#find maximum
imax
=
np
.
argmax
(
awi
)
if
verbose
:
print
(
f
'
max wi =
{
awi
[
imax
]
}
'
)
# display
if
awi
[
imax
]
<=
k
:
if
verbose
:
print
(
'
Data Snooping Outlier Rejection Complete
'
)
break
reject_index
=
floor
(
imax
/
2
)
reject
=
net
.
index
[
~
net
[
'
mask
'
]][
reject_index
]
net
.
loc
[
reject
,
[
'
mask
'
]]
=
True
rejected_indices
.
append
(
reject
)
if
verbose
:
print
(
f
'
max wi index =
{
imax
}
'
)
print
(
f
'
max wi measure index =
{
reject_index
}
'
)
print
(
f
'
rejecting measure
{
net
.
loc
[
reject
,
[
"
id
"
,
"
serialnumber
"
]].
values
}
'
)
not_enough_measures
=
check_network
(
net
[
~
net
[
'
mask
'
]])
if
(
not_enough_measures
):
for
measure_index
in
not_enough_measures
:
if
verbose
:
print
(
f
'
single measure point
{
net
.
loc
[
measure_index
,
"
id
"
]
}
'
)
print
(
f
'
rejecting measure
{
net
.
loc
[
measure_index
,
[
"
id
"
,
"
serialnumber
"
]].
values
}
'
)
net
.
loc
[
measure_index
,
[
'
mask
'
]]
=
True
if
verbose
:
print
(
''
)
return
rejected_indices
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment