Newer
Older
{
"cells": [
{
"cell_type": "code",
"metadata": {},
"source": [
"import os\n",
"import sys\n",
"from functools import singledispatch\n",
"import numpy as np\n",
"\n",
"sys.path.insert(0, \"/home/tthatcher/Desktop/Projects/Plio/plio\")\n",
"\n",
"metadata": {},
"outputs": [],
"source": [
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"# Reads a .atf file and outputs all of the \n",
"# .ipf, .gpf, .sup, .prj, and path to locate the \n",
"# .apf file (should be the same as all others) \n",
"def read_atf(atf_file):\n",
" with open(atf_file) as f:\n",
"\n",
" files = []\n",
" ipf = []\n",
" sup = []\n",
" files_dict = []\n",
" \n",
" # Grabs every PRJ, GPF, SUP, and IPF image from the ATF file\n",
" for line in f:\n",
" if line[-4:-1] == 'prj' or line[-4:-1] == 'gpf' or line[-4:-1] == 'sup' or line[-4:-1] == 'ipf' or line[-4:-1] == 'atf':\n",
" files.append(line)\n",
" \n",
" files = np.array(files)\n",
" \n",
" # Creates appropriate arrays for certain files in the right format\n",
" for file in files:\n",
" file = file.strip()\n",
" file = file.split(' ')\n",
"\n",
" # Grabs all the IPF files\n",
" if file[1].endswith('.ipf'):\n",
" ipf.append(file[1])\n",
"\n",
" # Grabs all the SUP files\n",
" if file[1].endswith('.sup'):\n",
" sup.append(file[1])\n",
"\n",
" files_dict.append(file)\n",
"\n",
" # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n",
" files_dict = (dict(files_dict))\n",
" \n",
" # Sets the value of IMAGE_IPF to all IPF images\n",
" files_dict['IMAGE_IPF'] = ipf\n",
" \n",
" # Sets the value of IMAGE_SUP to all SUP images\n",
" files_dict['IMAGE_SUP'] = sup\n",
" \n",
" # Sets the value of PATH to the path of the ATF file\n",
" files_dict['PATH'] = os.path.dirname(os.path.abspath(atf_file))\n",
" \n",
]
},
{
"cell_type": "code",
"source": [
"atf_dict = read_atf(get_path('CTX_Athabasca_Middle_step0.atf'))\n",
"\n",
"gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);\n",
"ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]\n",
"\n",
"gpf_df = read_gpf(gpf_file).set_index('point_id')\n",
"ipf_df = read_ipf(ipf_list).set_index('pt_id')\n",
"\n",
"point_diff = ipf_df.index.difference(gpf_df.index)\n",
"\n",
"if len(point_diff) != 0:\n",
" warnings.warn(\"The following points found in ipf files missing from gpf file: \\n\\n{}. \\\n",
" \\n\\nContinuing, but these points will be missing from the control network\".format(list(point_diff)))\n",
"\n",
"new_df = ipf_df.merge(gpf_df, left_index=True, right_index=True)"
"# converts columns l. and s. to isis\n",
"def line_sample_size(record):\n",
" with open(atf_dict['PATH'] + '/' + record['ipf_file'] + '.sup') as f:\n",
" for i, line in enumerate(f):\n",
" if i == 3:\n",
" line_size = line.split(' ')\n",
" line_size = line_size[-1].strip()\n",
" assert int(line_size) > 0, \"Line number {} from {} is a negative number: Invalid Data\".format(line_size, record['ipf_file'])\n",
" \n",
" if i == 4:\n",
" sample_size = line.split(' ')\n",
" sample_size = sample_size[-1].strip()\n",
" assert int(sample_size) > 0, \"Sample number {} from {} is a negative number: Invalid Data\".format(sample_size, record['ipf_file'])\n",
" \n",
" \n",
" line_size = int(line_size)/2.0 + record['l.'] + 1\n",
" sample_size = int(sample_size)/2.0 + record['s.'] + 1\n",
" return sample_size, line_size\n",
" \n",
"# converts known to ISIS keywords\n",
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"def known(record):\n",
" if record['known'] == 0:\n",
" return 'Free'\n",
" \n",
" elif record['known'] == 1 or record['known'] == 2 or record['known'] == 3:\n",
" return 'Constrained'\n",
" \n",
"# converts +/- 180 system to 0 - 360 system\n",
"def to_360(num):\n",
" return num % 360\n",
"\n",
"# ocentric to ographic latitudes\n",
"def oc2og(dlat, dMajorRadius, dMinorRadius):\n",
" try: \n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in oc2og conversion\")\n",
" return dlat\n",
"\n",
"# ographic to ocentric latitudes\n",
"def og2oc(dlat, dMajorRadius, dMinorRadius):\n",
" try:\n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in og2oc conversion\")\n",
" return dlat\n",
"\n",
"# gets eRadius and pRadius from a .prj file\n",
"def get_axis(file):\n",
" with open(atf_dict['PATH'] + '/' + file) as f:\n",
" from collections import defaultdict\n",
"\n",
" files = defaultdict(list)\n",
" \n",
" for line in f:\n",
" \n",
" ext = line.strip().split(' ')\n",
" files[ext[0]].append(ext[-1])\n",
" \n",
" eRadius = float(files['A_EARTH'][0])\n",
" pRadius = eRadius * (1 - float(files['E_EARTH'][0]))\n",
" \n",
" return eRadius, pRadius\n",
" \n",
"# function to convert lat_Y_North to ISIS_lat\n",
"def lat_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['lat_Y_North'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"\n",
"# function to convert long_X_East to ISIS_lon\n",
"def lon_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['long_X_East'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"\n",
"def body_fix(record, semi_major, semi_minor):\n",
" ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n",
" lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n",
" lon, lat, height = pyproj.transform(lla, ecef, record['long_X_East'], record['lat_Y_North'], record['ht'])\n",
"def socet2isis(prj_file):\n",
" eRadius, pRadius = get_axis(prj_file)\n",
" new_df['s.'], new_df['l.'] = (zip(*new_df.apply(sample_size, axis=1)))\n",
" new_df['known'] = new_df.apply(known, axis=1)\n",
" new_df['lat_Y_North'] = new_df.apply(lat_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n",
" new_df['long_X_East'] = new_df.apply(lon_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n",
" new_df['long_X_East'], new_df['lat_Y_North'], new_df['ht'] = zip(*new_df.apply(body_fix, semi_major = eRadius, semi_minor = pRadius, axis = 1))\n",
"socet2isis('CTX_Athabasca_Middle.prj')"
]
},
{
"cell_type": "code",
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"@singledispatch\n",
"def read_ipf(arg):\n",
" return str(arg)\n",
"# new_df['known'] = new_df.apply(known, axis=1)\n",
"\n",
"@read_ipf.register(str)\n",
"def read_ipf_str(input_data):\n",
" \"\"\"\n",
" Read a socet ipf file into a pandas data frame\n",
"\n",
" Parameters\n",
" ----------\n",
" input_data : str\n",
" path to the an input data file\n",
"\n",
" Returns\n",
" -------\n",
" df : pd.DataFrame\n",
" containing the ipf data with appropriate column names and indices\n",
" \"\"\"\n",
"\n",
" # Check that the number of rows is matching the expected number\n",
" with open(input_data, 'r') as f:\n",
" for i, l in enumerate(f):\n",
" if i == 1:\n",
" cnt = int(l)\n",
" elif i == 2:\n",
" col = l\n",
" break\n",
" \n",
" columns = np.genfromtxt(input_data, skip_header=2, dtype='unicode',\n",
" max_rows = 1, delimiter = ',')\n",
"\n",
" # TODO: Add unicode conversion\n",
" d = [line.split() for line in open(input_data, 'r')]\n",
" d = np.hstack(np.array(d[3:]))\n",
" \n",
" d = d.reshape(-1, 12)\n",
" \n",
" df = pd.DataFrame(d, columns=columns)\n",
" file = os.path.split(os.path.splitext(input_data)[0])[1]\n",
" df['ipf_file'] = pd.Series(np.full((len(df['pt_id'])), file), index = df.index)\n",
"\n",
" assert int(cnt) == len(df), 'Dataframe length {} does not match point length {}.'.format(int(cnt), len(df))\n",
" \n",
" # Soft conversion of numeric types to numerics, allows str in first col for point_id\n",
" df = df.apply(pd.to_numeric, errors='ignore')\n",
"\n",
" return df\n",
"\n",
"@read_ipf.register(list)\n",
"def read_ipf_list(input_data_list):\n",
" \"\"\"\n",
" Read a socet ipf file into a pandas data frame\n",
"\n",
" Parameters\n",
" ----------\n",
" input_data_list : list\n",
" list of paths to the a set of input data files\n",
"\n",
" Returns\n",
" -------\n",
" df : pd.DataFrame\n",
" containing the ipf data with appropriate column names and indices\n",
" \"\"\"\n",
" frames = []\n",
"\n",
" for input_file in input_data_list:\n",
" frames.append(read_ipf(input_file))\n",
"\n",
" df = pd.concat(frames)\n",
"\n",
" return df"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 2
}