Skip to content
Snippets Groups Projects
socet2isis 3.32 KiB
Newer Older
  • Learn to ignore specific revisions
  • Jay's avatar
    Jay committed
    #!/usr/bin/env python
    import argparse
    
    import os
    import sys
    import warnings
    import csv
    import numpy as np
    
    from plio.examples import get_path
    from plio.io.io_bae import read_atf, read_gpf, read_ipf
    from plio.spatial.transformations import *
    import plio.io.io_controlnetwork as cn
    
    import pandas as pd
    
    Jay's avatar
    Jay committed
    
    def parse_args():
        parser = argparse.ArgumentParser()
    
    Jay's avatar
    Jay committed
        # Add args here
    
        parser.add_argument('at_file', help='Path to the .atf file for a project.')
        parser.add_argument('cub_file_path', help='Path to cube files related to ipf files.')
        parser.add_argument('cub_ipf_map', help='Path to map file for all ipfs and cubes.')
    
        parser.add_argument('target_name', help='Name of the target body used in the control net')
    
        parser.add_argument('--outpath', help='Directory for the control network to be output to.',
                                            required = False)
    
    Jay's avatar
    Jay committed
    
        return parser.parse_args()
    
    
    def main(args):
    
        # Setup the at_file, path to cubes, and control network out path
        at_file = args.at_file
        cnet_out = os.path.split(os.path.splitext(at_file)[0])[1]
        cub_path = args.cub_file_path
    
        if(args.outpath):
            outpath = args.outpath
        else:
            outpath = os.path.split(at_file)[0]
    
        with open(args.cub_ipf_map) as cub_ipf_map:
            reader = csv.reader(cub_ipf_map, delimiter = ',')
            image_dict = dict([(row[0], row[1]) for row in reader])
    
        # Read in and setup the atf dict of information
        atf_dict = read_atf(at_file)
    
        # Get the gpf and ipf files using atf dict
        gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);
        ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]
    
        # Read in the gpf file and ipf file(s) into seperate dataframes
        gpf_df = read_gpf(gpf_file)
        ipf_df = read_ipf(ipf_list)
    
        # Check for differences between point ids using each dataframes
        # point ids as a reference
        gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id']))
        ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id']))
    
        point_diff = ipf_pt_idx.difference(gpf_pt_idx)
    
        if len(point_diff) != 0:
            warnings.warn("The following points found in ipf files missing from gpf file: " +
            "\n\n{}\n\n".format("\n".join(point_diff)) +
            "Continuing, but these points will be missing from the control " +
            "network.", stacklevel=3)
    
        # Merge the two dataframes on their point id columns
        socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')
    
        # Apply the transformations
        apply_transformations(atf_dict, socet_df)
    
        # Define column remap for socet dataframe
        column_remap = {'l.': 'y', 's.': 'x',
    
                        'res_l': 'LineResidual', 'res_s': 'SampleResidual', 'known': 'Type',
                        'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ',
                        'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma',
                        'sig2': 'AprioriRadiusSigma'}
    
    
        # Rename the columns using the column remap above
        socet_df.rename(columns = column_remap, inplace=True)
    
        images = pd.unique(socet_df['ipf_file'])
    
        serial_dict = serial_numbers(image_dict, cub_path)
    
        # creates the control network
    
        cn.to_isis(os.path.join(outpath, cnet_out + '.net'), socet_df, serial_dict, targetname = args.target_name)
    
    Jay's avatar
    Jay committed
    
    if __name__ == '__main__':