Newer
Older
import os
import sys
import warnings
from plio.io.io_bae import read_atf, read_gpf, read_ipf
from plio.spatial.transformations import apply_socet_transformations, serial_numbers
import plio.io.io_controlnetwork as cn
import pandas as pd
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('at_file', help='Path to the .atf file for a project.')
parser.add_argument('cub_file_path', help='Path to cube files related to ipf files.')
parser.add_argument('extension', help='Extension for all cubes being used.')
parser.add_argument('target_name', help='Name of the target body used in the control net')
parser.add_argument('--outpath', help='Directory for the control network to be output to.')
return parser.parse_args()
def main(args):
# Setup the at_file, path to cubes, and control network out path
at_file = args.at_file
cnet_out = os.path.split(os.path.splitext(at_file)[0])[1]
cub_path = args.cub_file_path
if(args.outpath):
outpath = args.outpath
else:
outpath = os.path.split(at_file)[0]
# with open(args.cub_ipf_map) as cub_ipf_map:
# reader = csv.reader(cub_ipf_map, delimiter = ',')
# image_dict = dict([(row[0], row[1]) for row in reader])
# Read in and setup the atf dict of information
atf_dict = read_atf(at_file)
# Get the gpf and ipf files using atf dict
gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);
ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]
# Read in the gpf file and ipf file(s) into seperate dataframes
gpf_df = read_gpf(gpf_file)
ipf_df = read_ipf(ipf_list)
# Check for differences between point ids using each dataframes
# point ids as a reference
gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id']))
ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id']))
point_diff = ipf_pt_idx.difference(gpf_pt_idx)
if len(point_diff) != 0:
warnings.warn("The following points found in ipf files missing from gpf file: \n\n{}. \
\n\nContinuing, but these points will be missing from the control network".format(list(point_diff)))
# Merge the two dataframes on their point id columns
socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')
# Apply the transformations
apply_socet_transformations(atf_dict, socet_df)
# Define column remap for socet dataframe
column_map = {'pt_id': 'id', 'l.': 'y', 's.': 'x',
'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',
'lat_Y_North': 'aprioriY', 'long_X_East': 'aprioriX', 'ht': 'aprioriZ',
'sig0': 'aprioriLatitudeSigma', 'sig1': 'aprioriLongitudeSigma', 'sig2': 'aprioriRadiusSigma',
'sig_l': 'linesigma', 'sig_s': 'samplesigma'}
# Rename the columns using the column remap above
socet_df.rename(columns = column_map, inplace=True)
# Build an image and serial dict assuming the cubes will be named as the IPFs are
image_dict = {i: i + args.extension for i in pd.unique(socet_df['ipf_file'])}
serial_dict = serial_numbers(image_dict, cub_path)
# creates the control network
cn.to_isis(os.path.join(outpath, cnet_out + '.net'), socet_df, serial_dict, targetname = args.target_name)
main(parse_args())