Skip to content
Snippets Groups Projects
Commit 7f0be77f authored by Adam Paquette's avatar Adam Paquette
Browse files

Moved io_jsc from PySAT into plio

parent 3f9640d6
Branches
Tags
No related merge requests found
import os
import numpy as np
import pandas as pd
from pandas.core.common import array_equivalent
from plio.utils.utils import file_search
# This function reads the lookup tables used to expand metadata from the file names
# This is separated from parsing the filenames so that for large lists of files the
# lookup tables don't need to be read over and over
#
# Info in the tables is stored in a dict of dataframes so that only one variable
# (the dict) needs to be passed between functions
def read_refdata(LUT_files):
ID_info = pd.read_csv(LUT_files['ID'], index_col=0)
spectrometer_info = pd.read_csv(LUT_files['spect'], index_col=0)
# spectrometer_info.reset_index(inplace=True)
laser_info = pd.read_csv(LUT_files['laser'], index_col=0)
# laser_info.reset_index(inplace=True)
exp_info = pd.read_csv(LUT_files['exp'], index_col=0)
# exp_info.reset_index(inplace=True)
sample_info = pd.read_csv(LUT_files['sample'], index_col=0)
# sample_info.reset_index(inplace=True)
refdata = {'spect': spectrometer_info, 'laser': laser_info, 'exp': exp_info, 'sample': sample_info, 'ID': ID_info}
return refdata
# This function parses the file names to record metadata related to the observation
def jsc_filename_parse(filename, refdata):
filename = os.path.basename(filename) # strip the path off of the file name
filename = filename.split('_') # split the file name on underscores
libs_ID = filename[0]
laserID = filename[4][0]
expID = filename[5]
spectID = filename[6]
try:
sampleID = refdata['ID'].loc[libs_ID].values[0]
file_info = pd.DataFrame(refdata['sample'].loc[sampleID])
if file_info.columns.shape[0] < file_info.index.shape[0]:
file_info = file_info.T
if file_info.index.shape[0] > 1:
print('More than one matching row for ' + sampleID + '!')
tempID = 'Unknown'
file_info = pd.DataFrame(refdata['sample'].loc[tempID])
if file_info.columns.shape[0] < file_info.index.shape[0]:
file_info = file_info.T
except:
sampleID = 'Unknown'
file_info = pd.DataFrame(refdata['sample'].loc[sampleID])
if file_info.columns.shape[0] < file_info.index.shape[0]:
file_info = file_info.T
file_info['Sample ID'] = sampleID
file_info['LIBS ID'] = libs_ID
file_info.reset_index(level=0, inplace=True, drop=True)
file_info['loc'] = int(filename[1])
file_info['lab'] = filename[2]
file_info['gas'] = filename[3][0]
file_info['pressure'] = float(filename[3][1:])
if laserID in refdata['laser'].index:
laser_info = pd.DataFrame(refdata['laser'].loc[laserID]).T
laser_info.index.name = 'Laser Identifier'
laser_info.reset_index(level=0, inplace=True)
file_info = pd.concat([file_info, laser_info], axis=1)
file_info['laser_power'] = float(filename[4][1:])
if expID in refdata['exp'].index:
exp_info = pd.DataFrame(refdata['exp'].loc[expID]).T
exp_info.index.name = 'Exp Identifier'
exp_info.reset_index(level=0, inplace=True)
file_info = pd.concat([file_info, exp_info], axis=1)
file_info['spectrometer'] = spectID
if spectID in refdata['spect'].index:
temp = refdata['spect'].loc[spectID]
temp = [temp[2], temp[4:]]
spect_info = pd.DataFrame(refdata['spect'].loc[spectID]).T
spect_info.index.name = 'Spectrometer Identifier'
spect_info.reset_index(level=0, inplace=True)
file_info = pd.concat([file_info, spect_info], axis=1)
return file_info
def JSC(input_files, refdata):
try:
# read the first file
data = pd.read_csv(input_files[0], skiprows=14, sep='\t', engine='c')
data = data.rename(columns={data.columns[0]: 'time1', data.columns[1]: 'time2'})
metadata = pd.concat([jsc_filename_parse(input_files[0], refdata)] * len(data.index))
metadata.drop('spectrometer', axis=1, inplace=True)
# read the next files and merge them with the first
for file in input_files[1:]:
datatemp = pd.read_csv(file, skiprows=14, sep='\t', engine='c')
datatemp = datatemp.rename(columns={datatemp.columns[0]: 'time1', datatemp.columns[1]: 'time2'})
data = data.merge(datatemp)
time = data[['time1', 'time2']] # split the two time columns from the data frame
data.drop(['time1', 'time2'], axis=1, inplace=True) # trim the data frame so it is just the spectra
# make a multiindex for each wavlength column so they can be easily isolated from metadata later
data.columns = [['wvl'] * len(data.columns), np.array(data.columns.values, dtype='float').round(4)]
metadata.index = data.index
metadata = pd.concat([metadata, time], axis=1)
compcols = ['SiO2', 'TiO2', 'Al2O3', 'Cr2O3', 'Fe2O3T', 'MnO', 'MgO', 'CaO', 'Na2O', 'K2O', 'P2O5',
'SO3 LOI Residue', 'Total', 'Total Includes', '%LOI', 'FeO',
'Fe2O3', 'SO3 Actual', 'Fe(3+)/Fe(Total)', 'Rb (ug/g)', 'Sr (ug/g)', 'Y (ug/g)', 'Zr (ug/g)',
'V (ug/g)', 'Ni (ug/g)', 'Cr (ug/g)',
'Nb (ug/g)', 'Ga (ug/g)', 'Cu (ug/g)', 'Zn (ug/g)', 'Co (ug/g)', 'Ba (ug/g)', 'La (ug/g)',
'Ce (ug/g)', 'U (ug/g)', 'Th (ug/g)', 'Sc (ug/g)',
'Pb (ug/g)', 'Ge (ug/g)', 'As (ug/g)', 'Cl (ug/g)']
compdata = metadata[compcols]
metadata.drop(compcols, axis=1, inplace=True)
metadata.columns = [['meta'] * len(metadata.columns), metadata.columns.values]
compdata.columns = [['comp'] * len(compdata.columns), compdata.columns.values]
data = pd.concat([data, metadata, compdata], axis=1)
data[('meta', 'Scan #')] = data.index
data.set_index(('meta', 'time2'), drop=False, inplace=True)
return data
except:
print('Problem reading:' + input_file)
print('Moving to Problem_Files')
os.rename(input_file,
r"Problem_Files\\" + os.path.basename(
input_file))
return None
def jsc_batch(directory, LUT_files, searchstring='*.txt', to_csv=None):
# Read in the lookup tables to expand filename metadata
refdata = read_refdata(LUT_files)
# get the list of files that match the search string in the given directory
filelist = file_search(directory, searchstring)
spectIDs = [] # create an empty list to hold the spectrometer IDs
libsIDs = []
timestamps = []
locs = []
for file in filelist:
filesplit = os.path.basename(file).split('_')
spectIDs.append(filesplit[6]) # get the spectrometer IDs for each file in the list
libsIDs.append(filesplit[0])
timestamps.append(filesplit[-1].split('.')[0])
locs.append(filesplit[1])
spectIDs_unique = np.unique(spectIDs) # get the unique spectrometer IDs
libsIDs_unique = np.unique(libsIDs)
dfs = [] # create an empty list to hold the data frames for each spectrometer
# loop through each LIBS ID
alldata = []
for ID in libsIDs_unique:
print('Working on : ' + str(ID))
sublist = filelist[np.in1d(libsIDs, ID)]
locs = []
for file in sublist:
locs.append(os.path.basename(file).split('_')[1])
locs_unique = np.unique(locs)
# loop through each location for that libs ID
for loc in locs_unique:
print(loc)
sub_sublist = sublist[np.in1d(locs, loc)] # get the files for that LIBSID and location
data = JSC(sub_sublist, refdata)
alldata.append(data)
pass
combined = pd.concat(alldata)
if to_csv is not None:
print('Writing combined data to: ' + to_csv)
combined.to_csv(to_csv)
return combined
# got this function from stack overflow: http://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns
# it's slow but doesn't crash python like combined.T.drop_duplicates().T does in some cases with very large sets of data
def duplicate_columns(frame):
groups = frame.columns.to_series().groupby(frame.dtypes).groups
dups = []
for t, v in groups.items():
cs = frame[v].columns
vs = frame[v]
lcs = len(cs)
for i in range(lcs):
ia = vs.iloc[:, i].values
for j in range(i + 1, lcs):
ja = vs.iloc[:, j].values
if array_equivalent(ia, ja):
dups.append(cs[i])
break
return dups
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment