Skip to content
Snippets Groups Projects
Commit f96acfdd authored by David P. Mayer's avatar David P. Mayer Committed by jlaura
Browse files

Add essential functions from old transformations.py into socetnet2isi… (#90)

* Add essential functions from old transformations.py into socetnet2isis and isisnet2socet bin scripts

* Remove plio.spatial import statement from isisnet2socet
parent d6087ee4
No related branches found
No related tags found
No related merge requests found
......@@ -2,14 +2,18 @@
import os
import math
import argparse
import warnings
import pvl
import math
import pyproj
import numpy as np
import pandas as pd
from plio.io.io_bae import save_gpf, save_ipf
import plio.io.io_controlnetwork as cn
import plio.io.isis_serial_number as sn
from plio.spatial.transformations import apply_isis_transformations
from plio.utils.utils import split_all_ext
from plio.utils.utils import find_in_dict, split_all_ext
def parse_args():
parser = argparse.ArgumentParser()
......@@ -25,6 +29,181 @@ def parse_args():
return parser.parse_args()
def reverse_known(record):
"""
Converts the known field from an isis dataframe into the
socet known column
Parameters
----------
record : object
Pandas series object
Returns
-------
: str
String representation of a known field
"""
lookup = {0:0,
2:0,
1:3,
3:3,
4:3}
record_type = record['known']
return lookup[record_type]
def reproject(record, semi_major, semi_minor, source_proj, dest_proj, **kwargs):
"""
Thin wrapper around PyProj's Transform() function to transform 1 or more three-dimensional
point from one coordinate system to another. If converting between Cartesian
body-centered body-fixed (BCBF) coordinates and Longitude/Latitude/Altitude coordinates,
the values input for semi-major and semi-minor axes determine whether latitudes are
planetographic or planetocentric and determine the shape of the datum for altitudes.
If semi_major == semi_minor, then latitudes are interpreted/created as planetocentric
and altitudes are interpreted/created as referenced to a spherical datum.
If semi_major != semi_minor, then latitudes are interpreted/created as planetographic
and altitudes are interpreted/created as referenced to an ellipsoidal datum.
Parameters
----------
record : object
Pandas series object
semi_major : float
Radius from the center of the body to the equater
semi_minor : float
Radius from the pole to the center of mass
source_proj : str
Pyproj string that defines a projection space ie. 'geocent'
dest_proj : str
Pyproj string that defines a project space ie. 'latlon'
Returns
-------
: list
Transformed coordinates as y, x, z
"""
source_pyproj = pyproj.Proj(proj = source_proj, a = semi_major, b = semi_minor)
dest_pyproj = pyproj.Proj(proj = dest_proj, a = semi_major, b = semi_minor)
y, x, z = pyproj.transform(source_pyproj, dest_pyproj, record[0], record[1], record[2], **kwargs)
return y, x, z
def fix_sample_line(record, serial_dict, cub_dict):
"""
Extracts the sample, line data from a cube and computes deviation from the
center of the image
Parameters
----------
record : dict
Dict containing the key serialnumber, l., and s.
serial_dict : dict
Maps serial numbers to images
cub_dict : dict
Maps basic cub names to their assocated absoluate path cubs
Returns
-------
new_line : int
new line deviation from the center
new_sample : int
new sample deviation from the center
"""
# Cube location to load
cube = pvl.load(cub_dict[serial_dict[record['serialnumber']]])
line_size = find_in_dict(cube, 'Lines')
sample_size = find_in_dict(cube, 'Samples')
new_line = record['l.'] - (int(line_size / 2.0)) - 1
new_sample = record['s.'] - (int(sample_size / 2.0)) - 1
return new_line, new_sample
def ignore_toggle(record):
"""
Maps the stat column in a record to 0 or 1 based on True or False
Parameters
----------
record : dict
Dict containing the key stat
"""
if record['stat'] == True:
return 0
else:
return 1
def apply_isis_transformations(df, eRadius, pRadius, serial_dict, cub_dict):
"""
Takes an ISIS3 control network dataframe and applies the necessary
transformations to convert that dataframe into a Socet Set-compatible
dataframe
Parameters
----------
df : object
Pandas dataframe object
eRadius : float
Equitorial radius of the target body
pRadius : float
Polar radius of the target body
serial_dict : dict
Dictionary mapping serials as keys to images as the values
cub_dict : str
Dictionary mapping the basename of IPF files as keys to image cube names as values
"""
# Convert from geocentered coords (x, y, z), to lat lon coords (latitude, longitude, alltitude)
ecef = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]])
lla = reproject(ecef, semi_major = eRadius, semi_minor = pRadius,
source_proj = 'geocent', dest_proj = 'latlong')
df['long_X_East'], df['lat_Y_North'], df['ht'] = lla[0][0], lla[1][0], lla[2][0]
# Convert longitude and latitude from degrees to radians
df['long_X_East'] = df['long_X_East'].apply(np.radians)
df['lat_Y_North'] = df['lat_Y_North'].apply(np.radians)
# Update the stat fields and add the val field as it is just a clone of stat
df['stat'] = df.apply(ignore_toggle, axis = 1)
df['val'] = df['stat']
# Update the known field, add the ipf_file field for saving, and
# update the line, sample using data from the cubes
df['known'] = df.apply(reverse_known, axis = 1)
df['ipf_file'] = df['serialnumber'].apply(lambda serial_number: serial_dict[serial_number])
df['l.'], df['s.'] = zip(*df.apply(fix_sample_line, serial_dict = serial_dict,
cub_dict = cub_dict, axis = 1))
# Add dummy for generic value setting
x_dummy = lambda x: np.full(len(df), x)
df['sig0'] = x_dummy(1)
df['sig1'] = x_dummy(1)
df['sig2'] = x_dummy(1)
df['res0'] = x_dummy(0)
df['res1'] = x_dummy(0)
df['res2'] = x_dummy(0)
df['fid_x'] = x_dummy(0)
df['fid_y'] = x_dummy(0)
df['no_obs'] = x_dummy(1)
df['fid_val'] = x_dummy(0)
def main(args):
# Create cub dict to map ipf to cub
......
......@@ -3,14 +3,17 @@ import os
import sys
import argparse
import warnings
import pvl
import math
import pyproj
import numpy as np
import pandas as pd
from plio.io.io_bae import read_atf, read_gpf, read_ipf
import plio.io.io_controlnetwork as cn
import plio.io.isis_serial_number as sn
from plio.spatial.transformations import apply_socet_transformations
from plio.utils.utils import split_all_ext
from plio.utils.utils import find_in_dict, split_all_ext
def parse_args():
parser = argparse.ArgumentParser()
......@@ -23,7 +26,262 @@ def parse_args():
return parser.parse_args()
def line_sample_size(record, path):
"""
Converts columns l. and s. to sample size, line size, and generates an
image index
Parameters
----------
record : object
Pandas series object
path : str
Path to the associated sup files for a socet project
Returns
-------
: list
A list of sample_size, line_size, and img_index
"""
with open(os.path.join(path, record['ipf_file'] + '.sup')) as f:
for i, line in enumerate(f):
if i == 2:
img_index = line.split('\\')
img_index = img_index[-1].strip()
img_index = img_index.split('.')[0]
if i == 3:
line_size = line.split(' ')
line_size = line_size[-1].strip()
assert int(line_size) > 0, "Line number {} from {} is a negative number: Invalid Data".format(line_size, record['ipf_file'])
if i == 4:
sample_size = line.split(' ')
sample_size = sample_size[-1].strip()
assert int(sample_size) > 0, "Sample number {} from {} is a negative number: Invalid Data".format(sample_size, record['ipf_file'])
break
line_size = int(line_size)/2.0 + record['l.'] + 1
sample_size = int(sample_size)/2.0 + record['s.'] + 1
return sample_size, line_size, img_index
def get_axis(file):
"""
Gets eRadius and pRadius from a .prj file
Parameters
----------
file : str
file with path to a given socet project file
Returns
-------
: list
A list of the eRadius and pRadius of the project file
"""
with open(file) as f:
from collections import defaultdict
files = defaultdict(list)
for line in f:
ext = line.strip().split(' ')
files[ext[0]].append(ext[-1])
eRadius = float(files['A_EARTH'][0])
pRadius = eRadius * math.sqrt(1 - (float(files['E_EARTH'][0]) ** 2))
return eRadius, pRadius
def reproject(record, semi_major, semi_minor, source_proj, dest_proj, **kwargs):
"""
Thin wrapper around PyProj's Transform() function to transform 1 or more three-dimensional
point from one coordinate system to another. If converting between Cartesian
body-centered body-fixed (BCBF) coordinates and Longitude/Latitude/Altitude coordinates,
the values input for semi-major and semi-minor axes determine whether latitudes are
planetographic or planetocentric and determine the shape of the datum for altitudes.
If semi_major == semi_minor, then latitudes are interpreted/created as planetocentric
and altitudes are interpreted/created as referenced to a spherical datum.
If semi_major != semi_minor, then latitudes are interpreted/created as planetographic
and altitudes are interpreted/created as referenced to an ellipsoidal datum.
Parameters
----------
record : object
Pandas series object
semi_major : float
Radius from the center of the body to the equater
semi_minor : float
Radius from the pole to the center of mass
source_proj : str
Pyproj string that defines a projection space ie. 'geocent'
dest_proj : str
Pyproj string that defines a project space ie. 'latlon'
Returns
-------
: list
Transformed coordinates as y, x, z
"""
source_pyproj = pyproj.Proj(proj = source_proj, a = semi_major, b = semi_minor)
dest_pyproj = pyproj.Proj(proj = dest_proj, a = semi_major, b = semi_minor)
y, x, z = pyproj.transform(source_pyproj, dest_pyproj, record[0], record[1], record[2], **kwargs)
return y, x, z
# TODO: Does isis cnet need a convariance matrix for sigmas? Even with a static matrix of 1,1,1,1
def compute_sigma_covariance_matrix(lat, lon, rad, latsigma, lonsigma, radsigma, semimajor_axis):
"""
Given geospatial coordinates, desired accuracy sigmas, and an equitorial radius, compute a 2x3
sigma covariange matrix.
Parameters
----------
lat : float
A point's latitude in degrees
lon : float
A point's longitude in degrees
rad : float
The radius (z-value) of the point in meters
latsigma : float
The desired latitude accuracy in meters (Default 10.0)
lonsigma : float
The desired longitude accuracy in meters (Default 10.0)
radsigma : float
The desired radius accuracy in meters (Defualt: 15.0)
semimajor_axis : float
The semi-major or equitorial radius in meters (Default: 1737400.0 - Moon)
Returns
-------
rectcov : ndarray
(2,3) covariance matrix
"""
lat = math.radians(lat)
lon = math.radians(lon)
# SetSphericalSigmasDistance
scaled_lat_sigma = latsigma / semimajor_axis
# This is specific to each lon.
scaled_lon_sigma = lonsigma * math.cos(lat) / semimajor_axis
# SetSphericalSigmas
cov = np.eye(3,3)
cov[0,0] = math.radians(scaled_lat_sigma) ** 2
cov[1,1] = math.radians(scaled_lon_sigma) ** 2
cov[2,2] = radsigma ** 2
# Approximate the Jacobian
j = np.zeros((3,3))
cosphi = math.cos(lat)
sinphi = math.sin(lat)
cos_lmbda = math.cos(lon)
sin_lmbda = math.sin(lon)
rcosphi = rad * cosphi
rsinphi = rad * sinphi
j[0,0] = -rsinphi * cos_lmbda
j[0,1] = -rcosphi * sin_lmbda
j[0,2] = cosphi * cos_lmbda
j[1,0] = -rsinphi * sin_lmbda
j[1,1] = rcosphi * cos_lmbda
j[1,2] = cosphi * sin_lmbda
j[2,0] = rcosphi
j[2,1] = 0.
j[2,2] = sinphi
mat = j.dot(cov)
mat = mat.dot(j.T)
rectcov = np.zeros((2,3))
rectcov[0,0] = mat[0,0]
rectcov[0,1] = mat[0,1]
rectcov[0,2] = mat[0,2]
rectcov[1,0] = mat[1,1]
rectcov[1,1] = mat[1,2]
rectcov[1,2] = mat[2,2]
return rectcov
def compute_cov_matrix(record, semimajor_axis):
cov_matrix = compute_sigma_covariance_matrix(record['lat_Y_North'], record['long_X_East'], record['ht'], record['sig0'], record['sig1'], record['sig2'], semimajor_axis)
return cov_matrix.ravel().tolist()
def stat_toggle(record):
if record['stat'] == 0:
return True
else:
return False
def known(record):
"""
Converts the known field from a socet dataframe into the
isis point_type column
Parameters
----------
record : object
Pandas series object
Returns
-------
: str
String representation of a known field
"""
lookup = {0: 'Free',
1: 'Constrained',
2: 'Constrained',
3: 'Constrained'}
return lookup[record['known']]
def apply_socet_transformations(atf_dict, df):
"""
Takes a atf dictionary and a socet dataframe and applies the necessary
transformations to convert that dataframe into a isis compatible
dataframe
Parameters
----------
atf_dict : dict
Dictionary containing information from an atf file
df : object
Pandas dataframe object
"""
prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT'])
eRadius, pRadius = get_axis(prj_file)
# Convert longitude and latitude from radians to degrees
df['long_X_East'] = df['long_X_East'].apply(np.degrees)
df['lat_Y_North'] = df['lat_Y_North'].apply(np.degrees)
lla = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]])
ecef = reproject(lla, semi_major = eRadius, semi_minor = pRadius,
source_proj = 'latlon', dest_proj = 'geocent')
df['s.'], df['l.'], df['image_index'] = (zip(*df.apply(line_sample_size, path = atf_dict['PATH'], axis=1)))
df['known'] = df.apply(known, axis=1)
df['long_X_East'] = ecef[0][0]
df['lat_Y_North'] = ecef[1][0]
df['ht'] = ecef[2][0]
df['aprioriCovar'] = df.apply(compute_cov_matrix, semimajor_axis = eRadius, axis=1)
df['stat'] = df.apply(stat_toggle, axis=1)
def main(args):
# Setup the at_file, path to cubes, and control network out path
at_file = args.at_file
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment