Skip to content
Snippets Groups Projects
Commit bad9e0e1 authored by Giovanni La Mura's avatar Giovanni La Mura
Browse files

Reorganize numeric noise detection logic

parent 88402e26
No related branches found
No related tags found
No related merge requests found
......@@ -230,7 +230,7 @@ def compare_lines(f_line, c_line, config, line_num=0, num_len=4, log_file=None):
if (len(severities) > 0):
if (severities[-1] == 0):
log_line = (
log_line + c_groups[-1] + c_line[c_ends[-1]:len(c_line) - 2]
log_line + c_groups[-1] + c_line[c_ends[-1]:len(c_line) - 1]
)
elif (severities[-1] == 1):
log_line = (
......@@ -291,50 +291,73 @@ def compare_lines(f_line, c_line, config, line_num=0, num_len=4, log_file=None):
# \returns result: `array(int)` An array of severity codes ordered as the
# input numeric values.
def mismatch_severities(str_f_values, str_c_values, config):
result = []
if len(str_f_values) == len(str_c_values):
result = [0 for ri in range(len(str_f_values))]
f_values = []
c_values = []
# Convert numeric strings to numbers
for i in range(len(str_f_values)):
if (str_f_values[i] != str_c_values[i]):
# Add the exponent marker if it is missing
temp_str_value = str_f_values[i][1:]
split_temp = temp_str_value.split('-')
if len(split_temp) > 1:
if (split_temp[0][-1] != 'E'):
str_f_values[i] = str_f_values[i][0] + split_temp[0] + "E-" + split_temp[1]
f_values.append(float(str_f_values[i]))
temp_str_value = str_c_values[i][1:]
split_temp = temp_str_value.split('-')
if len(split_temp) > 1:
if (split_temp[0][-1] != 'E'):
str_c_values[i] = str_c_values[i][0] + split_temp[0] + "E-" + split_temp[1]
c_values.append(float(str_c_values[i]))
# End of missing exponent marker correction
f_values = [float(str_f_values[j]) for j in range(len(str_f_values))]
c_values = [float(str_c_values[j]) for j in range(len(str_c_values))]
if (len(f_values) != len(c_values)): return []
f_log_values = [0.0 for j in range(len(f_values))]
c_log_values = [0.0 for j in range(len(c_values))]
# End string to number conversion
# Evaluate the maximum scale
max_f_log = -1.0e12
max_c_log = -1.0e12
min_f_log = 1.0e12
min_c_log = 1.0e12
for j in range(len(f_values)) :
if f_values[j] < 0.0: f_values[j] *= -1.0
if c_values[j] < 0.0: c_values[j] *= -1.0
f_log_values[j] = log10(f_values[j]) if f_values[j] > 0.0 else -999
c_log_values[j] = log10(c_values[j]) if c_values[j] > 0.0 else -999
if (f_log_values[j] > max_f_log): max_f_log = f_log_values[j]
if (c_log_values[j] > max_c_log): max_c_log = c_log_values[j]
if (f_log_values[j] < min_f_log): min_f_log = f_log_values[j]
if (c_log_values[j] < min_c_log): min_c_log = c_log_values[j]
if (c_log_values[i] < max_c_log - 5.0 and f_log_values[i] < max_f_log - 5.0):
result[i] = 1
else:
warning_scale = 10.0**(int(max_f_log - f_log_values[i]))
difference = c_values[i] - f_values[i]
fractional = 1.0
for si in range(len(f_values)):
if (f_values[i] != 0):
sign = 1.0 if f_values[i] > 0.0 else -1.0
log_f_value = log10(sign * f_values[i])
if (log_f_value > max_f_log): max_f_log = log_f_value
if (c_values[i] != 0):
sign = 1.0 if c_values[i] > 0.0 else -1.0
log_c_value = log10(sign * c_values[i])
if (log_c_value > max_c_log): max_c_log = log_c_value
if (max_f_log == -1.0e12): max_f_log = 0.0
if (max_c_log == -1.0e12): max_c_log = 0.0
# End of maximum scale evaluation
# Compare the numbers
for i in range(len(f_values)):
if (f_values[i] != c_values[i]):
if (f_values[i] != 0.0):
fractional = difference / f_values[i]
sign = 1.0 if f_values[i] > 0.0 else -1.0
log_f_value = log10(sign * f_values[i])
if (log_f_value > max_f_log - 5.0):
scale = 10.0**(log_f_value - max_f_log)
fractional = scale * (f_values[i] - c_values[i]) / f_values[i]
if (fractional < 0.0): fractional *= -1.0
if (fractional < warning_scale * config['warning_threshold']): result[i] = 2
else: result[i] = 3
if (fractional <= config['warning_threshold']):
result[i] = 2
else:
result[i] = 3
else:
result[i] = 1
else: # f_values[i] == 0 and c_values[i] != 0
sign = 1.0 if c_values[i] > 0.0 else -1.0
log_c_value = log10(sign * c_values[i])
if (log_c_value > max_c_log - 5.0):
scale = 10.0**(log_c_value - max_c_log)
fractional = scale * (c_values[i] - f_values[i]) / c_values[i]
if (fractional < 0.0): fractional *= -1.0
if (fractional <= config['warning_threshold']):
result[i] = 2
else:
result[i] = 3
else:
result[i] = 1
# End number comparison
return result
## \brief Parse the command line arguments.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment