Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
NP_TMcode
Manage
Activity
Members
Plan
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Container registry
Analyze
Contributor analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Giacomo Mulas
NP_TMcode
Commits
d3c62b2f
Commit
d3c62b2f
authored
1 month ago
by
Giovanni La Mura
Browse files
Options
Downloads
Patches
Plain Diff
Implement compact random generator
parent
30c98dd5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/scripts/model_maker.py
+127
-3
127 additions, 3 deletions
src/scripts/model_maker.py
with
127 additions
and
3 deletions
src/scripts/model_maker.py
+
127
−
3
View file @
d3c62b2f
...
@@ -24,6 +24,7 @@
...
@@ -24,6 +24,7 @@
# The script requires python3.
# The script requires python3.
import
math
import
math
import
numpy
as
np
import
os
import
os
import
pdb
import
pdb
import
random
import
random
...
@@ -365,9 +366,13 @@ def load_model(model_file):
...
@@ -365,9 +366,13 @@ def load_model(model_file):
if
(
len_vec_x
==
0
):
if
(
len_vec_x
==
0
):
# Generate random cluster
# Generate random cluster
rnd_seed
=
int
(
model
[
'
system_settings
'
][
'
rnd_seed
'
])
rnd_seed
=
int
(
model
[
'
system_settings
'
][
'
rnd_seed
'
])
# random_aggregate() checks internally whether application is INCLUSION
max_rad
=
float
(
model
[
'
particle_settings
'
][
'
max_rad
'
])
max_rad
=
float
(
model
[
'
particle_settings
'
][
'
max_rad
'
])
random_aggregate
(
sconf
,
gconf
,
rnd_seed
,
max_rad
)
# random_aggregate() checks internally whether application is INCLUSION
#random_aggregate(sconf, gconf, rnd_seed, max_rad)
check
=
random_compact
(
sconf
,
gconf
,
rnd_seed
,
max_rad
)
if
(
check
!=
0
):
print
(
"
INFO: stopping with exit code %d.
"
%
check
)
exit
(
check
)
else
:
else
:
if
(
len
(
model
[
'
geometry_settings
'
][
'
x_coords
'
])
!=
gconf
[
'
nsph
'
]):
if
(
len
(
model
[
'
geometry_settings
'
][
'
x_coords
'
])
!=
gconf
[
'
nsph
'
]):
print
(
"
ERROR: coordinate vectors do not match the number of spheres!
"
)
print
(
"
ERROR: coordinate vectors do not match the number of spheres!
"
)
...
@@ -522,7 +527,10 @@ def print_help():
...
@@ -522,7 +527,10 @@ def print_help():
# \param seed: `int` Seed for the random sequence generation
# \param seed: `int` Seed for the random sequence generation
# \param max_rad: `float` Maximum allowed radial extension of the aggregate
# \param max_rad: `float` Maximum allowed radial extension of the aggregate
# \param max_attempts: `int` Maximum number of attempts to place a particle in any direction
# \param max_attempts: `int` Maximum number of attempts to place a particle in any direction
# \return result: `int` Function exit code (0 for success, otherwise number of
# spheres that could not be placed)
def
random_aggregate
(
scatterer
,
geometry
,
seed
,
max_rad
,
max_attempts
=
100
):
def
random_aggregate
(
scatterer
,
geometry
,
seed
,
max_rad
,
max_attempts
=
100
):
result
=
0
random
.
seed
(
seed
)
random
.
seed
(
seed
)
nsph
=
scatterer
[
'
nsph
'
]
nsph
=
scatterer
[
'
nsph
'
]
vec_thetas
=
[
0.0
for
i
in
range
(
nsph
)]
vec_thetas
=
[
0.0
for
i
in
range
(
nsph
)]
...
@@ -545,6 +553,7 @@ def random_aggregate(scatterer, geometry, seed, max_rad, max_attempts=100):
...
@@ -545,6 +553,7 @@ def random_aggregate(scatterer, geometry, seed, max_rad, max_attempts=100):
is_placed
=
False
is_placed
=
False
while
(
not
is_placed
):
while
(
not
is_placed
):
if
(
attempts
>
max_attempts
):
if
(
attempts
>
max_attempts
):
result
+=
1
print
(
"
WARNING: could not place sphere %d in allowed radius!
"
%
i
)
print
(
"
WARNING: could not place sphere %d in allowed radius!
"
%
i
)
break
# while(not is_placed)
break
# while(not is_placed)
vec_thetas
[
i
]
=
math
.
pi
*
random
.
random
()
vec_thetas
[
i
]
=
math
.
pi
*
random
.
random
()
...
@@ -618,8 +627,123 @@ def random_aggregate(scatterer, geometry, seed, max_rad, max_attempts=100):
...
@@ -618,8 +627,123 @@ def random_aggregate(scatterer, geometry, seed, max_rad, max_attempts=100):
geometry
[
'
vec_sph_y
'
][
sph_index
]
=
sphere
[
'
y
'
]
geometry
[
'
vec_sph_y
'
][
sph_index
]
=
sphere
[
'
y
'
]
geometry
[
'
vec_sph_z
'
][
sph_index
]
=
sphere
[
'
z
'
]
geometry
[
'
vec_sph_z
'
][
sph_index
]
=
sphere
[
'
z
'
]
sph_index
+=
1
sph_index
+=
1
# end random_aggregate()
return
result
## \brief Generate a random compact cluster from YAML configuration options.
#
# This function generates a random aggregate of spheres using the maximum
# compactness packaging to fill a spherical volume with given maximum radius,
# then it proceeds by subtracting random spheres from the outer layers, until
# the aggregate is reduced to the desired number of spheres. The function
# can only be used if all sphere types have the same radius. The result of the
# generated model is directly saved in the parameters of the scatterer and
# geometry configuration dictionaries.
#
# \param scatterer: `dict` Scatterer configuration dictionary (gets modified)
# \param geometry: `dict` Geometry configuration dictionary (gets modified)
# \param seed: `int` Seed for the random sequence generation
# \param max_rad: `float` Maximum allowed radial extension of the aggregate
# \return result: `int` Function exit code (0 for success, otherwise error code)
def
random_compact
(
scatterer
,
geometry
,
seed
,
max_rad
):
result
=
0
random
.
seed
(
seed
)
nsph
=
scatterer
[
'
nsph
'
]
n_types
=
scatterer
[
'
configurations
'
]
if
(
0
in
scatterer
[
'
vec_types
'
]):
tincrement
=
1
if
scatterer
[
'
application
'
]
!=
"
INCLUSION
"
else
2
for
ti
in
range
(
nsph
):
itype
=
tincrement
+
int
(
n_types
*
random
.
random
())
scatterer
[
'
vec_types
'
][
ti
]
=
itype
if
(
max
(
scatterer
[
'
ros
'
])
!=
min
(
scatterer
[
'
ros
'
])):
result
=
1
else
:
radius
=
scatterer
[
'
ros
'
][
0
]
x_centers
=
np
.
arange
(
-
1.0
*
max_rad
+
radius
,
max_rad
,
2.0
*
radius
)
y_centers
=
np
.
arange
(
-
1.0
*
max_rad
+
radius
,
max_rad
,
math
.
sqrt
(
3.0
)
*
radius
)
z_centers
=
np
.
arange
(
-
1.0
*
max_rad
+
radius
,
max_rad
,
math
.
sqrt
(
3.0
)
*
radius
)
x_offset
=
radius
y_offset
=
radius
/
math
.
sqrt
(
3.0
)
z_offset
=
0.0
tmp_spheres
=
[]
n_cells
=
len
(
x_centers
)
*
len
(
y_centers
)
*
len
(
z_centers
)
print
(
"
INFO: the cubic space would contain %d spheres.
"
%
n_cells
)
n_max_spheres
=
int
(
max_rad
*
max_rad
*
max_rad
/
(
radius
*
radius
*
radius
)
*
0.74
)
print
(
"
INFO: the maximum radius allows for %d spheres.
"
%
n_max_spheres
)
for
zi
in
range
(
len
(
z_centers
)):
if
(
y_offset
==
0.0
):
y_offset
=
radius
/
math
.
sqrt
(
3.0
)
else
:
y_offset
=
0.0
for
yi
in
range
(
len
(
y_centers
)):
if
(
x_offset
==
0.0
):
x_offset
=
radius
else
:
x_offset
=
0.0
for
xi
in
range
(
len
(
x_centers
)):
x
=
x_centers
[
xi
]
+
x_offset
y
=
y_centers
[
yi
]
+
y_offset
z
=
z_centers
[
zi
]
extent
=
radius
+
math
.
sqrt
(
x
*
x
+
y
*
y
+
z
*
z
)
if
(
extent
<
max_rad
):
tmp_spheres
.
append
({
'
itype
'
:
1
,
'
x
'
:
x
,
'
y
'
:
y
,
'
z
'
:
z
})
#tmp_spheres = [{'itype': 1, 'x': 0.0, 'y': 0.0, 'z': 0.0}]
current_n
=
len
(
tmp_spheres
)
print
(
"
INFO: before erosion there are %d spheres in use.
"
%
current_n
)
rho
=
2.0
*
max_rad
while
(
current_n
>
nsph
):
theta
=
2.0
*
math
.
pi
*
random
.
random
()
phi
=
math
.
pi
*
random
.
random
()
x0
=
rho
*
math
.
sin
(
theta
)
*
math
.
cos
(
phi
)
y0
=
rho
*
math
.
sin
(
theta
)
*
math
.
sin
(
phi
)
z0
=
rho
*
math
.
cos
(
theta
)
closest_index
=
0
minimum_distance
=
1000.0
*
max_rad
for
di
in
range
(
len
(
tmp_spheres
)):
x1
=
tmp_spheres
[
di
][
'
x
'
]
if
(
x1
==
max_rad
):
continue
y1
=
tmp_spheres
[
di
][
'
y
'
]
z1
=
tmp_spheres
[
di
][
'
z
'
]
distance
=
math
.
sqrt
(
(
x1
-
x0
)
*
(
x1
-
x0
)
+
(
y1
-
y0
)
*
(
y1
-
y0
)
+
(
z1
-
z0
)
*
(
z1
-
z0
)
)
if
(
distance
<
minimum_distance
):
closest_index
=
di
minimum_distance
=
distance
tmp_spheres
[
closest_index
][
'
x
'
]
=
max_rad
current_n
-=
1
vec_spheres
=
[]
sph_index
=
0
for
ti
in
range
(
len
(
tmp_spheres
)):
sphere
=
tmp_spheres
[
ti
]
if
(
sphere
[
'
x
'
]
<
max_rad
):
sphere
[
'
itype
'
]
=
scatterer
[
'
vec_types
'
][
sph_index
]
sph_index
+=
1
vec_spheres
.
append
(
sphere
)
#pl = pv.Plotter()
#for si in range(len(vec_spheres)):
# x = vec_spheres[si]['x'] / max_rad
# y = vec_spheres[si]['y'] / max_rad
# z = vec_spheres[si]['z'] / max_rad
# mesh = pv.Sphere(radius / max_rad, (x, y, z))
# pl.add_mesh(mesh)
#pl.export_obj("scene.obj")
sph_index
=
0
for
sphere
in
sorted
(
vec_spheres
,
key
=
lambda
item
:
item
[
'
itype
'
]):
scatterer
[
'
vec_types
'
][
sph_index
]
=
sphere
[
'
itype
'
]
geometry
[
'
vec_sph_x
'
][
sph_index
]
=
sphere
[
'
x
'
]
geometry
[
'
vec_sph_y
'
][
sph_index
]
=
sphere
[
'
y
'
]
geometry
[
'
vec_sph_z
'
][
sph_index
]
=
sphere
[
'
z
'
]
sph_index
+=
1
return
result
## \brief Write the geometry configuration dictionary to legacy format.
## \brief Write the geometry configuration dictionary to legacy format.
#
#
# \param conf: `dict` Geometry configuration dictionary.
# \param conf: `dict` Geometry configuration dictionary.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment