Skip to content
Snippets Groups Projects
Unverified Commit d2227733 authored by delphineaz's avatar delphineaz Committed by GitHub
Browse files

Add files via upload

parent d926d0d6
No related branches found
No related tags found
No related merge requests found
...@@ -156,9 +156,9 @@ equivalent flux density is the flux density of a radio source that doubles the s ...@@ -156,9 +156,9 @@ equivalent flux density is the flux density of a radio source that doubles the s
<td>1</td> <td>1</td>
<td>linear</td> <td>linear</td>
<td>primary</td> <td>primary</td>
<td>48’</td> <td>48’(*)</td>
<td>[50-80]</td> <td>[50-80]</td>
<td>[0.52]</td> <td>0.52</td>
<td>125</td> <td>125</td>
</tr> </tr>
<tr class="row-odd"><td>L</td> <tr class="row-odd"><td>L</td>
...@@ -166,9 +166,9 @@ equivalent flux density is the flux density of a radio source that doubles the s ...@@ -166,9 +166,9 @@ equivalent flux density is the flux density of a radio source that doubles the s
<td>1</td> <td>1</td>
<td>linear</td> <td>linear</td>
<td>primary</td> <td>primary</td>
<td>11.4’</td> <td>11.4’(*)</td>
<td>25-35</td> <td>25-35</td>
<td>[0.55]</td> <td>0.55</td>
<td>36</td> <td>36</td>
</tr> </tr>
<tr class="row-even"><td>C-high</td> <tr class="row-even"><td>C-high</td>
...@@ -188,13 +188,13 @@ equivalent flux density is the flux density of a radio source that doubles the s ...@@ -188,13 +188,13 @@ equivalent flux density is the flux density of a radio source that doubles the s
<td>Gregorian</td> <td>Gregorian</td>
<td>0.8’(**)</td> <td>0.8’(**)</td>
<td>90(**)</td> <td>90(**)</td>
<td>0.45-065</td> <td>0.45-0.65</td>
<td>138(**)</td> <td>138(**)</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
<p>[ ] is an estimate <p>[ ] is an estimate
(*) at 6.7 GHz (*) at the band’s central frequency
(**) at 22.3 GHz with opacity 0.1 and ground air temperature of 293K.</p> (**) at 22.3 GHz with opacity 0.1 and ground air temperature of 293K.</p>
<p>The FWHM beam size, as a function of the frequency f, can be approximated by the following rule: FWHM(arcmin)=19.7/ f(GHz)</p> <p>The FWHM beam size, as a function of the frequency f, can be approximated by the following rule: FWHM(arcmin)=19.7/ f(GHz)</p>
<p>SRT receiver changes are quick, allowing for an efficient frequency agility. The selected receiver is set in its focal position within at most a few minutes. <p>SRT receiver changes are quick, allowing for an efficient frequency agility. The selected receiver is set in its focal position within at most a few minutes.
...@@ -581,41 +581,41 @@ and can be included in the observation schedule.</p> ...@@ -581,41 +581,41 @@ and can be included in the observation schedule.</p>
</div> </div>
<div class="section" id="gain-curve-calibration"> <div class="section" id="gain-curve-calibration">
<h2>Gain curve calibration<a class="headerlink" href="#gain-curve-calibration" title="Permalink to this headline"></a></h2> <h2>Gain curve calibration<a class="headerlink" href="#gain-curve-calibration" title="Permalink to this headline"></a></h2>
<p>From the measured gain curves (Gain vs. Elevation), one fits a 2-degree polynomial with the following parameters C0, C1 and C2:</p> <p>From the measured gain curves (Gain vs. Elevation), one fits a 2-degree polynomial with the parameters C0, C1 and C2:</p>
<ul class="simple"> <p>gain (K/Jy) = C2 El^2 + C1 El + C0</p>
<li>L-band</li>
</ul>
<p>Values adopted same as Bolli et al (2015)</p>
<ul class="simple">
<li>C-band</li>
</ul>
<table border="1" class="docutils"> <table border="1" class="docutils">
<colgroup> <colgroup>
<col width="28%" /> <col width="20%" />
<col width="36%" /> <col width="25%" />
<col width="36%" /> <col width="29%" />
<col width="27%" />
</colgroup> </colgroup>
<thead valign="bottom"> <thead valign="bottom">
<tr class="row-odd"><th class="head">Parameter</th> <tr class="row-odd"><th class="head">Parameter</th>
<th class="head">Value (L-band)</th>
<th class="head">Value (C-band)</th> <th class="head">Value (C-band)</th>
<th class="head">Value (K-band)</th> <th class="head">Value (K-band)</th>
</tr> </tr>
</thead> </thead>
<tbody valign="top"> <tbody valign="top">
<tr class="row-even"><td>C0</td> <tr class="row-even"><td>C0</td>
<td>0.5061</td>
<td>0.545439</td> <td>0.545439</td>
<td>0.505427</td> <td>0.505427</td>
</tr> </tr>
<tr class="row-odd"><td>C1</td> <tr class="row-odd"><td>C1</td>
<td>0.002390</td>
<td>0.00525597</td> <td>0.00525597</td>
<td>0.00864506</td> <td>0.00864506</td>
</tr> </tr>
<tr class="row-even"><td>C2</td> <tr class="row-even"><td>C2</td>
<td>-0.000021</td>
<td>-4.55697e-5</td> <td>-4.55697e-5</td>
<td>-6.37184e-5</td> <td>-6.37184e-5</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
<p>L-band: from Orlati et al.</p>
<p>C-band: valid from 2018.</p> <p>C-band: valid from 2018.</p>
<p>K-band: from Prandoni et al. (2017).</p> <p>K-band: from Prandoni et al. (2017).</p>
</div> </div>
...@@ -755,7 +755,9 @@ spectra containing the signal from the noise diode (when used).</p> ...@@ -755,7 +755,9 @@ spectra containing the signal from the noise diode (when used).</p>
<p>Spectral-polarimetric techniques with SRT: <a class="reference external" href="https://arxiv.org/abs/1607.03636">Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129</a>.</p> <p>Spectral-polarimetric techniques with SRT: <a class="reference external" href="https://arxiv.org/abs/1607.03636">Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129</a>.</p>
<p>ROACH1 backend for baseband data recording and pulsar observations: <a class="reference external" href="http://www.oa-cagliari.inaf.it/area.php?page_id=10&amp;skip=3">OAC Internal Report N. 39</a>.</p> <p>ROACH1 backend for baseband data recording and pulsar observations: <a class="reference external" href="http://www.oa-cagliari.inaf.it/area.php?page_id=10&amp;skip=3">OAC Internal Report N. 39</a>.</p>
<p>SARDARA backend description: <a class="reference external" href="https://www.worldscientific.com/doi/full/10.1142/S2251171718500046">SARDARA</a>.</p> <p>SARDARA backend description: <a class="reference external" href="https://www.worldscientific.com/doi/full/10.1142/S2251171718500046">SARDARA</a>.</p>
<p>Pointing calibration: <a class="reference external" href="http://www.oa-cagliari.inaf.it/area.php?page_id=10&amp;skip=4">Tarchi et al. (2013) OAC Internal Report N. 27</a> &amp; Ricci et al (2016).</p> <p>Gain curve calibration at L-band: <a class="reference external" href="http://www.ira.inaf.it/Library/rapp-int/499-16.pdf">Orlati et al.</a>.</p>
<p>Pointing calibration: <cite>Tarchi et al. (2013) OAC Internal Report N. 27 &lt;http://www.oa-cagliari.inaf.it/area.php?page_id=10&amp;skip=4&gt;</cite></p>
<p><a class="reference external" href="http://www.ira.inaf.it/Library/rapp-int/496-16.pdf">Ricci et al., “A first extented catalogue of pointing/focus calibrators for the Sardinia Radio Telescope”</a>.</p>
</div> </div>
<div class="section" id="user-guide-and-observing-modes"> <div class="section" id="user-guide-and-observing-modes">
<h1>User guide and observing modes<a class="headerlink" href="#user-guide-and-observing-modes" title="Permalink to this headline"></a></h1> <h1>User guide and observing modes<a class="headerlink" href="#user-guide-and-observing-modes" title="Permalink to this headline"></a></h1>
......
...@@ -86,14 +86,14 @@ equivalent flux density is the flux density of a radio source that doubles the s ...@@ -86,14 +86,14 @@ equivalent flux density is the flux density of a radio source that doubles the s
======== ========================= ======= ================= =============== ========== ========== =========== ========== ======== ========================= ======= ================= =============== ========== ========== =========== ==========
Band Frequency coverage (GHz) Feeds Polarization type Focal position Beam size Tsys (K) Gain (K/Jy) Sefd (Jy) Band Frequency coverage (GHz) Feeds Polarization type Focal position Beam size Tsys (K) Gain (K/Jy) Sefd (Jy)
======== ========================= ======= ================= =============== ========== ========== =========== ========== ======== ========================= ======= ================= =============== ========== ========== =========== ==========
P 0.30 -- 0.36 1 linear primary 48' [50-80] [0.52] 125 P 0.30 -- 0.36 1 linear primary 48'(*) [50-80] 0.52 125
L 1.3 -- 1.8 1 linear primary 11.4' 25-35 [0.55] 36 L 1.3 -- 1.8 1 linear primary 11.4'(*) 25-35 0.55 36
C-high 5.7 -- 7.7 1 circular beam waveguide 2.7' 32-37(*) 0.60 43(*) C-high 5.7 -- 7.7 1 circular beam waveguide 2.7' 32-37(*) 0.60 43(*)
K 18 -- 26 7 circular Gregorian 0.8'(**) 90(**) 0.45-065 138(**) K 18 -- 26 7 circular Gregorian 0.8'(**) 90(**) 0.45-0.65 138(**)
======== ========================= ======= ================= =============== ========== ========== =========== ========== ======== ========================= ======= ================= =============== ========== ========== =========== ==========
[ ] is an estimate [ ] is an estimate
(*) at 6.7 GHz (*) at the band's central frequency
(**) at 22.3 GHz with opacity 0.1 and ground air temperature of 293K. (**) at 22.3 GHz with opacity 0.1 and ground air temperature of 293K.
The FWHM beam size, as a function of the frequency f, can be approximated by the following rule: FWHM(arcmin)=19.7/ f(GHz) The FWHM beam size, as a function of the frequency f, can be approximated by the following rule: FWHM(arcmin)=19.7/ f(GHz)
...@@ -276,21 +276,19 @@ The observer should perform a focus calibration before starting an observing ses ...@@ -276,21 +276,19 @@ The observer should perform a focus calibration before starting an observing ses
Gain curve calibration Gain curve calibration
---------------------- ----------------------
From the measured gain curves (Gain vs. Elevation), one fits a 2-degree polynomial with the following parameters C0, C1 and C2: From the measured gain curves (Gain vs. Elevation), one fits a 2-degree polynomial with the parameters C0, C1 and C2:
* L-band gain (K/Jy) = C2 El^2 + C1 El + C0
Values adopted same as Bolli et al (2015) =========== ============== ================ ===============
Parameter Value (L-band) Value (C-band) Value (K-band)
=========== ============== ================ ===============
C0 0.5061 0.545439 0.505427
C1 0.002390 0.00525597 0.00864506
C2 -0.000021 -4.55697e-5 -6.37184e-5
=========== ============== ================ ===============
* C-band L-band: from Orlati et al.
=========== ============== ==============
Parameter Value (C-band) Value (K-band)
=========== ============== ==============
C0 0.545439 0.505427
C1 0.00525597 0.00864506
C2 -4.55697e-5 -6.37184e-5
=========== ============== ==============
C-band: valid from 2018. C-band: valid from 2018.
...@@ -373,7 +371,11 @@ ROACH1 backend for baseband data recording and pulsar observations: `OAC Interna ...@@ -373,7 +371,11 @@ ROACH1 backend for baseband data recording and pulsar observations: `OAC Interna
SARDARA backend description: `SARDARA <https://www.worldscientific.com/doi/full/10.1142/S2251171718500046>`_. SARDARA backend description: `SARDARA <https://www.worldscientific.com/doi/full/10.1142/S2251171718500046>`_.
Pointing calibration: `Tarchi et al. (2013) OAC Internal Report N. 27 <http://www.oa-cagliari.inaf.it/area.php?page_id=10&skip=4>`_ & Ricci et al (2016). Gain curve calibration at L-band: `Orlati et al. <http://www.ira.inaf.it/Library/rapp-int/499-16.pdf>`_.
Pointing calibration: `Tarchi et al. (2013) OAC Internal Report N. 27 <http://www.oa-cagliari.inaf.it/area.php?page_id=10&skip=4>`
`Ricci et al., "A first extented catalogue of pointing/focus calibrators for the Sardinia Radio Telescope" <http://www.ira.inaf.it/Library/rapp-int/496-16.pdf>`_.
User guide and observing modes User guide and observing modes
============================== ==============================
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment