Newer
Older
import os
import warnings
import numpy as np
from plio.examples import get_path
from plio.io.io_bae import read_atf, read_gpf, read_ipf
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from plio.spatial.transformations import *
import plio.io.io_controlnetwork as cn
import pandas as pd
# TODO: Change script to potentially handle configuration files
# Setup the at_file and path to cubes
cub_path = '/Volumes/Blueman/'
at_file = get_path('CTX_Athabasca_Middle_step0.atf')
# Define ipf mapping to cubs
image_dict = {'P01_001540_1889_XI_08N204W' : 'P01_001540_1889_XI_08N204W.lev1.cub',
'P01_001606_1897_XI_09N203W' : 'P01_001606_1897_XI_09N203W.lev1.cub',
'P02_001804_1889_XI_08N204W' : 'P02_001804_1889_XI_08N204W.lev1.cub',
'P03_002226_1895_XI_09N203W' : 'P03_002226_1895_XI_09N203W.lev1.cub',
'P03_002371_1888_XI_08N204W' : 'P03_002371_1888_XI_08N204W.lev1.cub',
'P19_008344_1894_XN_09N203W' : 'P19_008344_1894_XN_09N203W.lev1.cub',
'P20_008845_1894_XN_09N203W' : 'P20_008845_1894_XN_09N203W.lev1.cub'}
##
# End Config
##
# Read in and setup the atf dict of information
atf_dict = read_atf(at_file)
# Get the gpf and ipf files using atf dict
gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);
ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]
# Read in the gpf file and ipf file(s) into seperate dataframes
gpf_df = read_gpf(gpf_file)
ipf_df = read_ipf(ipf_list)
# Check for differences between point ids using each dataframes
# point ids as a reference
gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id']))
ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id']))
point_diff = ipf_pt_idx.difference(gpf_pt_idx)
if len(point_diff) != 0:
warnings.warn("The following points found in ipf files missing from gpf file: \n\n{}. \
\n\nContinuing, but these points will be missing from the control network".format(list(point_diff)))
# Merge the two dataframes on their point id columns
socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')
# Apply the transformations
apply_transformations(atf_dict, socet_df)
# Define column remap for socet dataframe
column_remap = {'l.': 'y', 's.': 'x',
'res_l': 'LineResidual', 'res_s': 'SampleResidual', 'known': 'Type',
'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ',
'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma'}
# Rename the columns using the column remap above
socet_df.rename(columns = column_remap, inplace=True)
images = pd.unique(socet_df['ipf_file'])
serial_dict = serial_numbers(image_dict, cub_path)
# creates the control network
cn.to_isis('/Volumes/Blueman/test.net', socet_df, serial_dict)