Newer
Older
{
"cells": [
{
"cell_type": "code",
"metadata": {},
"source": [
"import os\n",
"import sys\n",
"from functools import singledispatch\n",
"import numpy as np\n",
"\n",
"from plio.io.io_bae import read_gpf, read_ipf\n",
"import plio.io.io_controlnetwork as cn\n",
"import plio.io.isis_serial_number as sn"
"# Reads a .atf file and outputs all of the \n",
"# .ipf, .gpf, .sup, .prj, and path to locate the \n",
"# .apf file (should be the same as all others) \n",
"def read_atf(atf_file):\n",
" with open(atf_file) as f:\n",
" # Extensions of files we want\n",
" files_ext = ['.prj', '.sup', '.ipf', '.gpf']\n",
" files_dict = []\n",
" files = defaultdict(list)\n",
"\n",
" for line in f:\n",
" # Check is needed for split as all do not have a space\n",
" \n",
" # If it is the .prj file, it strips the directory away and grabs file name\n",
" if ext == '.prj':\n",
" files[ext].append(line.strip().split(' ')[1].split('\\\\')[-1])\n",
" \n",
" # If the ext is in the list of files we care about, it addes to the dict\n",
" files[ext].append(line.strip().split(' ')[-1])\n",
" \n",
" else:\n",
" \n",
" # Adds to the dict even if not in files we care about\n",
" files[ext.strip()].append(line)\n",
" files['basepath'] = os.path.dirname(os.path.abspath(atf_file))\n",
" \n",
" # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n",
" files_dict = (dict(files_dict))\n",
" \n",
" # Sets the value of IMAGE_IPF to all IPF images\n",
" files_dict['IMAGE_IPF'] = files['.ipf']\n",
" \n",
" # Sets the value of IMAGE_SUP to all SUP images\n",
" files_dict['IMAGE_SUP'] = files['.sup']\n",
" \n",
" # Sets value for GPF file\n",
" files_dict['GP_FILE'] = files['.gpf'][0]\n",
" \n",
" # Sets value for PRJ file\n",
" files_dict['PROJECT'] = files['.prj'][0]\n",
" \n",
" # Sets the value of PATH to the path of the ATF file\n",
" \n",
"def line_sample_size(record, path):\n",
" with open(os.path.join(path, record['ipf_file'] + '.sup')) as f:\n",
" if i == 2:\n",
" img_index = line.split('\\\\')\n",
" img_index = img_index[-1].strip()\n",
" img_index = img_index.split('.')[0]\n",
" \n",
" line_size = line.split(' ')\n",
" line_size = line_size[-1].strip()\n",
" assert int(line_size) > 0, \"Line number {} from {} is a negative number: Invalid Data\".format(line_size, record['ipf_file'])\n",
" \n",
" if i == 4:\n",
" sample_size = line.split(' ')\n",
" sample_size = sample_size[-1].strip()\n",
" assert int(sample_size) > 0, \"Sample number {} from {} is a negative number: Invalid Data\".format(sample_size, record['ipf_file'])\n",
" \n",
" \n",
" line_size = int(line_size)/2.0 + record['l.'] + 1\n",
" sample_size = int(sample_size)/2.0 + record['s.'] + 1\n",
" \n",
"# converts known to ISIS keywords\n",
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"def known(record):\n",
" if record['known'] == 0:\n",
" return 'Free'\n",
" \n",
" elif record['known'] == 1 or record['known'] == 2 or record['known'] == 3:\n",
" return 'Constrained'\n",
" \n",
"# converts +/- 180 system to 0 - 360 system\n",
"def to_360(num):\n",
" return num % 360\n",
"\n",
"# ocentric to ographic latitudes\n",
"def oc2og(dlat, dMajorRadius, dMinorRadius):\n",
" try: \n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in oc2og conversion\")\n",
" return dlat\n",
"\n",
"# ographic to ocentric latitudes\n",
"def og2oc(dlat, dMajorRadius, dMinorRadius):\n",
" try:\n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in og2oc conversion\")\n",
" return dlat\n",
"\n",
"# gets eRadius and pRadius from a .prj file\n",
"def get_axis(file):\n",
" from collections import defaultdict\n",
"\n",
" files = defaultdict(list)\n",
" \n",
" for line in f:\n",
" \n",
" ext = line.strip().split(' ')\n",
" files[ext[0]].append(ext[-1])\n",
" \n",
" eRadius = float(files['A_EARTH'][0])\n",
" pRadius = eRadius * (1 - float(files['E_EARTH'][0]))\n",
" \n",
" return eRadius, pRadius\n",
" \n",
"# function to convert lat_Y_North to ISIS_lat\n",
"def lat_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['lat_Y_North'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"\n",
"# function to convert long_X_East to ISIS_lon\n",
"def lon_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['long_X_East'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"def body_fix(record, semi_major, semi_minor, inverse=False):\n",
" \"\"\"\n",
" Parameters\n",
" ----------\n",
" record : ndarray\n",
" (n,3) where columns are x, y, height or lon, lat, alt\n",
" \"\"\"\n",
" \n",
" ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n",
" lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n",
" if inverse:\n",
" lon, lat, height = pyproj.transform(ecef, lla, record[0], record[1], record[2])\n",
" return lon, lat, height\n",
" else:\n",
" y, x, z = pyproj.transform(lla, ecef, record[0], record[1], record[2])\n",
" return y, x, z\n",
"\n",
"def ignore_toggle(record):\n",
" if record['stat'] == 0:\n",
" return True\n",
" else:\n",
" return False\n",
"\n",
"# TODO: Does isis cnet need a convariance matrix for sigmas? Even with a static matrix of 1,1,1,1 \n",
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"def compute_sigma_covariance_matrix(lat, lon, rad, latsigma, lonsigma, radsigma, semimajor_axis):\n",
" \n",
" \"\"\"\n",
" Given geospatial coordinates, desired accuracy sigmas, and an equitorial radius, compute a 2x3\n",
" sigma covariange matrix.\n",
" Parameters\n",
" ----------\n",
" lat : float\n",
" A point's latitude in degrees\n",
" lon : float\n",
" A point's longitude in degrees\n",
" rad : float\n",
" The radius (z-value) of the point in meters\n",
" latsigma : float\n",
" The desired latitude accuracy in meters (Default 10.0)\n",
" lonsigma : float\n",
" The desired longitude accuracy in meters (Default 10.0)\n",
" radsigma : float\n",
" The desired radius accuracy in meters (Defualt: 15.0)\n",
" semimajor_axis : float\n",
" The semi-major or equitorial radius in meters (Default: 1737400.0 - Moon)\n",
" Returns\n",
" -------\n",
" rectcov : ndarray\n",
" (2,3) covariance matrix\n",
" \"\"\"\n",
" \n",
" lat = math.radians(lat)\n",
" lon = math.radians(lon)\n",
" \n",
" # SetSphericalSigmasDistance\n",
" scaled_lat_sigma = latsigma / semimajor_axis\n",
"\n",
" # This is specific to each lon.\n",
" scaled_lon_sigma = lonsigma * math.cos(lat) / semimajor_axis\n",
" \n",
" # SetSphericalSigmas\n",
" cov = np.eye(3,3)\n",
" cov[0,0] = scaled_lat_sigma ** 2\n",
" cov[1,1] = scaled_lon_sigma ** 2\n",
" cov[2,2] = radsigma ** 2\n",
" \n",
" # Approximate the Jacobian\n",
" j = np.zeros((3,3))\n",
" cosphi = math.cos(lat)\n",
" sinphi = math.sin(lat)\n",
" coslambda = math.cos(lon)\n",
" sinlambda = math.sin(lon)\n",
" rcosphi = rad * cosphi\n",
" rsinphi = rad * sinphi\n",
" j[0,0] = -rsinphi * coslambda\n",
" j[0,1] = -rcosphi * sinlambda\n",
" j[0,2] = cosphi * coslambda\n",
" j[1,0] = -rsinphi * sinlambda\n",
" j[1,1] = rcosphi * coslambda\n",
" j[1,2] = cosphi * sinlambda\n",
" j[2,0] = rcosphi\n",
" j[2,1] = 0.\n",
" j[2,2] = sinphi\n",
" mat = j.dot(cov)\n",
" mat = mat.dot(j.T)\n",
" rectcov = np.zeros((2,3))\n",
" rectcov[0,0] = mat[0,0]\n",
" rectcov[0,1] = mat[0,1]\n",
" rectcov[0,2] = mat[0,2]\n",
" rectcov[1,0] = mat[1,1]\n",
" rectcov[1,1] = mat[1,2]\n",
" rectcov[1,2] = mat[2,2]\n",
" \n",
" return rectcov\n",
"# return np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])\n",
"\n",
"\n",
"def compute_cov_matrix(record, semimajor_axis):\n",
" cov_matrix = compute_sigma_covariance_matrix(record['lat_Y_North'], record['long_X_East'], record['ht'], record['sig0'], record['sig1'], record['sig2'], semimajor_axis)\n",
" return cov_matrix.ravel().tolist()\n",
"def apply_transformations(atf_dict, df):\n",
" prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT'])\n",
" lla = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]])\n",
" \n",
" ecef = body_fix(lla, semi_major = eRadius, semi_minor = pRadius, inverse=False)\n",
" \n",
" df['s.'], df['l.'], df['image_index'] = (zip(*df.apply(line_sample_size, path = atf_dict['PATH'], axis=1)))\n",
" df['known'] = df.apply(known, axis=1)\n",
" df['long_X_East'] = ecef[0][0]\n",
" df['lat_Y_North'] = ecef[1][0]\n",
" df['ht'] = ecef[2][0] \n",
" df['aprioriCovar'] = df.apply(compute_cov_matrix, semimajor_axis = eRadius, axis=1)\n",
" df['ignore'] = df.apply(ignore_toggle, axis=1)\n",
" \n",
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"def socet2isis(prj_file):\n",
" # Read in and setup the atf dict of information\n",
" atf_dict = read_atf(prj_file)\n",
" \n",
" # Get the gpf and ipf files using atf dict\n",
" gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);\n",
" ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]\n",
" \n",
" # Read in the gpf file and ipf file(s) into seperate dataframes\n",
" gpf_df = read_gpf(gpf_file)\n",
" ipf_df = read_ipf(ipf_list)\n",
"\n",
" # Check for differences between point ids using each dataframes\n",
" # point ids as a reference\n",
" gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id']))\n",
" ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id']))\n",
"\n",
" point_diff = ipf_pt_idx.difference(gpf_pt_idx)\n",
"\n",
" if len(point_diff) != 0:\n",
" warnings.warn(\"The following points found in ipf files missing from gpf file: \\n\\n{}. \\\n",
" \\n\\nContinuing, but these points will be missing from the control network\".format(list(point_diff)))\n",
" \n",
" # Merge the two dataframes on their point id columns\n",
" socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')\n",
" \n",
" # Apply the transformations\n",
" apply_transformations(atf_dict, socet_df)\n",
" \n",
" # Define column remap for socet dataframe\n",
" 'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',\n",
" 'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ',\n",
" 'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma',\n",
" 'sig_l': 'linesigma', 'sig_s': 'samplesigma'}\n",
" \n",
" # Rename the columns using the column remap above\n",
" socet_df.rename(columns = column_remap, inplace=True)\n",
" \n",
" # Return the socet dataframe to be converted to a control net\n",
" return socet_df\n",
"\n",
"# creates a dict of serial numbers with the cub being the key\n",
"def serial_numbers(images, path, extension):\n",
" serial_dict = dict()\n",
" \n",
" for image in images:\n",
" snum = sn.generate_serial_number(os.path.join(path, image + extension))\n",
" snum = snum.replace('Mars_Reconnaissance_Orbiter', 'MRO')\n",
" serial_dict[image] = snum\n",
"# Setup stuffs for the cub information namely the path and extension\n",
"path = '/path/where/cub/files/are/'\n",
"\n",
"# Extension of your cub files\n",
"\n",
"# Path to atf file\n",
"atf_file = ('/path/to/atf/file')\n",
"images = pd.unique(socet_df['ipf_file'])\n",
"serial_dict = serial_numbers(images, path, extension)\n",
"cn.to_isis('/path/you/want/the/cnet/to/be/in/cn.net', socet_df, serial_dict)"
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 2
}