Skip to content
Snippets Groups Projects
Commit 7353260b authored by jlaura's avatar jlaura Committed by GitHub
Browse files

Moves PySAT data structures into plio (#31)

* Makes gdal an optional dependency

* Refactors all bae I/O into a single namespace.

* typos

* Fixes the gdal dependency test

* Adds tests for the JSON

* Tests fail without test data

* Updates for comments from @thareUSGS

* Adds ISIS3 V2 ControlNetwork Reader

* Adds hcube mixin object
parent d7286705
No related branches found
No related tags found
No related merge requests found
import numpy as np
import gdal
class HCube(object):
"""
A Mixin class for use with the io_gdal.GeoDataset class
to optionally add support for spectral labels, label
based indexing, and lazy loading for reads.
"""
@property
def wavelengths(self):
if not hasattr(self, '_wavelengths'):
try:
info = gdal.Info(self.file_name, format='json')
wavelengths = [float(j) for i, j in sorted(info['metadata'][''].items(),
key=lambda x: float(x[0].split('_')[-1]))]
self._original_wavelengths = wavelengths
self._wavelengths = np.round(wavelengths, self.tolerance)
except:
self._wavelengths = []
return self._wavelengths
@property
def tolerance(self):
return getattr(self, '_tolerance', 2)
@tolerance.setter
def tolerance(self, val):
wv = self.wavelengths
if isinstance(val, int):
self._tolerance = val
self._reindex()
else:
raise TypeError
def _reindex(self):
if self._original_wavelengths is not None:
self._wavelengths = np.round(self._original_wavelengths, decimals=self.tolerance)
def __getitem__(self, key):
return _iLocIndexer(self)
@property
def loc(self):
return _LocIndexer(self)
@property
def iloc(self):
return _iLocIndexer(self)
def _read(self, key):
ifnone = lambda a, b: b if a is None else a
y = key[1]
x = key[2]
if isinstance(x, slice):
xstart = ifnone(x.start,0)
xstop = ifnone(x.stop,self.raster_size[0])
xstep = xstop - xstart
else:
raise TypeError("Loc style access elements must be slices, e.g., [:] or [10:100]")
if isinstance(y, slice):
ystart = ifnone(y.start, 0)
ystop = ifnone(y.stop, self.raster_size[1])
ystep = ystop - ystart
else:
raise TypeError("Loc style access elements must be slices, e.g., [:] or [10:100]")
pixels = (xstart, ystart, xstop, ystop)
arrs = []
for b in key[0]:
arrs.append(self.read_array(band=int(b+1), pixels=pixels))
return np.stack(arrs)
\ No newline at end of file
import os
import numpy as np
from .io_gdal import GeoDataset
from .hcube import HCube
import gdal
class Crism(GeoDataset, HCube):
"""
An M3 specific reader with the spectral mixin.
"""
@property
def wavelengths(self):
if not hasattr(self, '_wavelengths'):
try:
info = gdal.Info(self.file_name, format='json')
wv = dict((k,v) for (k,v) in info['metadata'][''].items() if 'Band' in k) # Only get the 'Band_###' keys
wavelengths = [float(j.split(" ")[0]) for i, j in sorted(wv.items(),
key=lambda x: int(x[0].split('_')[-1]))]
self._original_wavelengths = wavelengths
self._wavelengths = np.round(wavelengths, self.tolerance)
except:
self._wavelengths = []
return self._wavelengths
def open(input_data):
if os.path.splitext(input_data)[-1] == 'hdr':
# GDAL wants the img, but many users aim at the .hdr
input_data = os.path.splitext(input_data)[:-1] + '.img'
ds = Crism(input_data)
return ds
\ No newline at end of file
import os
import numpy as np
from .io_gdal import GeoDataset
from .hcube import HCube
import gdal
class M3(GeoDataset, HCube):
"""
An M3 specific reader with the spectral mixin.
"""
@property
def wavelengths(self):
if not hasattr(self, '_wavelengths'):
try:
info = gdal.Info(self.file_name, format='json')
wavelengths = [float(j) for i, j in sorted(info['metadata'][''].items(),
key=lambda x: float(x[0].split('_')[-1]))]
self._original_wavelengths = wavelengths
self._wavelengths = np.round(wavelengths, self.tolerance)
except:
self._wavelengths = []
return self._wavelengths
def open(input_data):
if input_data.split('.')[-1] == 'hdr':
if os.path.splitext(input_data)[-1] == 'hdr':
# GDAL wants the img, but many users aim at the .hdr
input_data = input_data.split('.')[0] + '.img'
ds = GeoDataSet(input_data)
ref_array = ds.read_array()
metadata = ds.metadata
wv_array = metadatatoband(metadata)
return wv_array, ref_array, ds
input_data = os.path.splitext(input_data)[:-1] + '.img'
ds = M3(input_data)
def metadatatoband(metadata):
wv2band = []
for k, v in metadata.items():
try:
wv2band.append(float(v))
except:
v = v.split(" ")[-1].split("(")[1].split(")")[0]
wv2band.append(float(v))
wv2band.sort(key=int)
return np.asarray(wv2band)
return ds
import warnings
import numpy as np
def is_dict_like(value):
return hasattr(value, 'keys') and hasattr(value, '__getitem__')
def expanded_indexer(key, ndim):
"""Given a key for indexing an ndarray, return an equivalent key which is a
tuple with length equal to the number of dimensions.
The expansion is done by replacing all `Ellipsis` items with the right
number of full slices and then padding the key with full slices so that it
reaches the appropriate dimensionality.
"""
if not isinstance(key, tuple):
# numpy treats non-tuple keys equivalent to tuples of length 1
key = (key,)
new_key = []
# handling Ellipsis right is a little tricky, see:
# http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing
found_ellipsis = False
for k in key:
if k is Ellipsis:
if not found_ellipsis:
new_key.extend((ndim + 1 - len(key)) * [slice(None)])
found_ellipsis = True
else:
new_key.append(slice(None))
else:
new_key.append(k)
if len(new_key) > ndim:
raise IndexError('too many indices')
new_key.extend((ndim - len(new_key)) * [slice(None)])
return tuple(new_key)
class _LocIndexer(object):
def __init__(self, data_array):
self.data_array = data_array
def __getitem__(self, key):
# expand the indexer so we can handle Ellipsis
key = expanded_indexer(key, 3)
sl = key[0]
ifnone = lambda a, b: b if a is None else a
if isinstance(sl, slice):
sl = list(range(ifnone(sl.start, 0), self.data_array.nbands, ifnone(sl.step, 1)))
idx = [self._get_idx(s) for s in sl]
key = (idx, key[1], key[2])
return self.data_array._read(key)
def _get_idx(self, value, tolerance=2):
vals = np.abs(self.data_array.wavelengths-value)
minidx = np.argmin(vals)
if vals[minidx] >= tolerance:
warning.warn("Absolute difference between requested value and found values is {}".format(vals[minidx]))
return minidx
class _iLocIndexer(object):
def __init__(self, data_array):
self.data_array = data_array
def __getitem__(self, key):
# expand the indexer so we can handle Ellipsis
key = expanded_indexer(key, 3)
sl = key[0]
ifnone = lambda a, b: b if a is None else a
if isinstance(sl, slice):
sl = list(range(ifnone(sl.start, 0),
ifnone(sl.stop, self.data_array.nbands),
ifnone(sl.step, 1)))
key = (key[0], key[1], key[2])
return self.data_array._read(key)
\ No newline at end of file
......@@ -7,6 +7,18 @@ import shutil
import tempfile
import pandas as pd
import numpy as np
def metadatatoband(metadata):
wv2band = []
for k, v in metadata.items():
try:
wv2band.append(float(v))
except:
v = v.split(" ")[-1].split("(")[1].split(")")[0]
wv2band.append(float(v))
wv2band.sort(key=int)
return np.asarray(wv2band)
def create_dir(basedir=''):
"""
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment