Newer
Older
{
"cells": [
{
"cell_type": "code",
"metadata": {},
"source": [
"import os\n",
"import sys\n",
"from functools import singledispatch\n",
"import numpy as np\n",
"\n",
"sys.path.insert(0, \"/home/tthatcher/Desktop/Projects/Plio/plio\")\n",
"\n",
"metadata": {},
"outputs": [],
"source": [
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"# Reads a .atf file and outputs all of the \n",
"# .ipf, .gpf, .sup, .prj, and path to locate the \n",
"# .apf file (should be the same as all others) \n",
"def read_atf(atf_file):\n",
" with open(atf_file) as f:\n",
"\n",
" files = []\n",
" ipf = []\n",
" sup = []\n",
" files_dict = []\n",
" \n",
" # Grabs every PRJ, GPF, SUP, and IPF image from the ATF file\n",
" for line in f:\n",
" if line[-4:-1] == 'prj' or line[-4:-1] == 'gpf' or line[-4:-1] == 'sup' or line[-4:-1] == 'ipf' or line[-4:-1] == 'atf':\n",
" files.append(line)\n",
" \n",
" files = np.array(files)\n",
" \n",
" # Creates appropriate arrays for certain files in the right format\n",
" for file in files:\n",
" file = file.strip()\n",
" file = file.split(' ')\n",
"\n",
" # Grabs all the IPF files\n",
" if file[1].endswith('.ipf'):\n",
" ipf.append(file[1])\n",
"\n",
" # Grabs all the SUP files\n",
" if file[1].endswith('.sup'):\n",
" sup.append(file[1])\n",
"\n",
" files_dict.append(file)\n",
"\n",
" # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n",
" files_dict = (dict(files_dict))\n",
" \n",
" # Sets the value of IMAGE_IPF to all IPF images\n",
" files_dict['IMAGE_IPF'] = ipf\n",
" \n",
" # Sets the value of IMAGE_SUP to all SUP images\n",
" files_dict['IMAGE_SUP'] = sup\n",
" \n",
" # Sets the value of PATH to the path of the ATF file\n",
" files_dict['PATH'] = os.path.dirname(os.path.abspath(atf_file))\n",
" \n",
]
},
{
"cell_type": "code",
"source": [
"atf_dict = read_atf(get_path('CTX_Athabasca_Middle_step0.atf'))\n",
"\n",
"gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);\n",
"ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]\n",
"\n",
"gpf_df = read_gpf(gpf_file)\n",
"ipf_df = read_ipf(ipf_list)\n",
"\n",
"point_diff = ipf_df.index.difference(gpf_df.index)\n",
"\n",
"if len(point_diff) != 0:\n",
" warnings.warn(\"The following points found in ipf files missing from gpf file: \\n\\n{}. \\\n",
" \\n\\nContinuing, but these points will be missing from the control network\".format(list(point_diff)))\n",
"\n",
"new_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')"
"image_dict = {'P01_001540_1889_XI_08N204W' : 'P01_001540_1889_XI_08N204W.lev1.cub',\n",
" 'P01_001606_1897_XI_09N203W' : 'P01_001606_1897_XI_09N203W.lev1.cub',\n",
" 'P02_001804_1889_XI_08N204W' : 'P02_001804_1889_XI_08N204W.lev1.cub',\n",
" 'P03_002226_1895_XI_09N203W' : 'P03_002226_1895_XI_09N203W.lev1.cub',\n",
" 'P03_002371_1888_XI_08N204W' : 'P03_002371_1888_XI_08N204W.lev1.cub',\n",
" 'P19_008344_1894_XN_09N203W' : 'P19_008344_1894_XN_09N203W.lev1.cub',\n",
" 'P20_008845_1894_XN_09N203W' : 'P20_008845_1894_XN_09N203W.lev1.cub'}\n",
"\n",
"# converts columns l. and s. to isis\n",
"def line_sample_size(record):\n",
" with open(atf_dict['PATH'] + '/' + record['ipf_file'] + '.sup') as f:\n",
" for i, line in enumerate(f):\n",
" if i == 2:\n",
" img_index = line.split('\\\\')\n",
" img_index = img_index[-1].strip()\n",
" img_index = img_index.split('.')[0]\n",
" img_index = image_dict[img_index]\n",
" \n",
" line_size = line.split(' ')\n",
" line_size = line_size[-1].strip()\n",
" assert int(line_size) > 0, \"Line number {} from {} is a negative number: Invalid Data\".format(line_size, record['ipf_file'])\n",
" \n",
" if i == 4:\n",
" sample_size = line.split(' ')\n",
" sample_size = sample_size[-1].strip()\n",
" assert int(sample_size) > 0, \"Sample number {} from {} is a negative number: Invalid Data\".format(sample_size, record['ipf_file'])\n",
" \n",
" \n",
" line_size = int(line_size)/2.0 + record['l.'] + 1\n",
" sample_size = int(sample_size)/2.0 + record['s.'] + 1\n",
" \n",
"# converts known to ISIS keywords\n",
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"def known(record):\n",
" if record['known'] == 0:\n",
" return 'Free'\n",
" \n",
" elif record['known'] == 1 or record['known'] == 2 or record['known'] == 3:\n",
" return 'Constrained'\n",
" \n",
"# converts +/- 180 system to 0 - 360 system\n",
"def to_360(num):\n",
" return num % 360\n",
"\n",
"# ocentric to ographic latitudes\n",
"def oc2og(dlat, dMajorRadius, dMinorRadius):\n",
" try: \n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in oc2og conversion\")\n",
" return dlat\n",
"\n",
"# ographic to ocentric latitudes\n",
"def og2oc(dlat, dMajorRadius, dMinorRadius):\n",
" try:\n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in og2oc conversion\")\n",
" return dlat\n",
"\n",
"# gets eRadius and pRadius from a .prj file\n",
"def get_axis(file):\n",
" with open(atf_dict['PATH'] + '/' + file) as f:\n",
" from collections import defaultdict\n",
"\n",
" files = defaultdict(list)\n",
" \n",
" for line in f:\n",
" \n",
" ext = line.strip().split(' ')\n",
" files[ext[0]].append(ext[-1])\n",
" \n",
" eRadius = float(files['A_EARTH'][0])\n",
" pRadius = eRadius * (1 - float(files['E_EARTH'][0]))\n",
" \n",
" return eRadius, pRadius\n",
" \n",
"# function to convert lat_Y_North to ISIS_lat\n",
"def lat_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['lat_Y_North'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"\n",
"# function to convert long_X_East to ISIS_lon\n",
"def lon_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['long_X_East'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"def body_fix(record, semi_major, semi_minor):\n",
" ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n",
" lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n",
" lon, lat, height = pyproj.transform(lla, ecef, record['long_X_East'], record['lat_Y_North'], record['ht'])\n",
"def socet2isis(prj_file):\n",
" eRadius, pRadius = get_axis(prj_file)\n",
" new_df['s.'], new_df['l.'], new_df['image_index'] = (zip(*new_df.apply(line_sample_size, axis=1)))\n",
" new_df['known'] = new_df.apply(known, axis=1)\n",
" new_df['lat_Y_North'] = new_df.apply(lat_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n",
" new_df['long_X_East'] = new_df.apply(lon_ISIS_coord, semi_major = eRadius, semi_minor = pRadius, axis=1)\n",
" new_df['long_X_East'], new_df['lat_Y_North'], new_df['ht'] = zip(*new_df.apply(body_fix, semi_major = eRadius, semi_minor = pRadius, axis = 1))\n",
"socet2isis('CTX_Athabasca_Middle.prj')"
]
},
{
"cell_type": "code",
"new_df['image_index']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"column_remap = {'l.': 'x', 's.': 'y',\n",
"'res_l': 'LineResidual', 'res_s': 'SampleResidual', 'known': 'Type',\n",
"'lat_Y_North': 'AprioriY', 'long_X_East': 'AprioriX', 'ht': 'AprioriZ',\n",
"'sig0': 'AprioriLatitudeSigma', 'sig1': 'AprioriLongitudeSigma', 'sig2': 'AprioriRadiusSigma'}\n",
"\n",
"new_df.rename(columns=column_remap, inplace=True)\n",
"\n",
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import plio.io.io_controlnetwork as cn\n",
"import plio.io.isis_serial_number as sn\n",
"\n",
"# creates a dict of serial numbers with the cub being the key\n",
"def serial_numbers():\n",
" serial_dict = {}\n",
" image_dict = {'P01_001540_1889_XI_08N204W' : 'P01_001540_1889_XI_08N204W.lev1.cub',\n",
" 'P01_001606_1897_XI_09N203W' : 'P01_001606_1897_XI_09N203W.lev1.cub',\n",
" 'P02_001804_1889_XI_08N204W' : 'P02_001804_1889_XI_08N204W.lev1.cub',\n",
" 'P03_002226_1895_XI_09N203W' : 'P03_002226_1895_XI_09N203W.lev1.cub',\n",
" 'P03_002371_1888_XI_08N204W' : 'P03_002371_1888_XI_08N204W.lev1.cub',\n",
" 'P19_008344_1894_XN_09N203W' : 'P19_008344_1894_XN_09N203W.lev1.cub',\n",
" 'P20_008845_1894_XN_09N203W' : 'P20_008845_1894_XN_09N203W.lev1.cub'}\n",
" \n",
" for key in image_dict:\n",
" serial_dict[image_dict[key]] = sn.generate_serial_number('/home/tthatcher/Desktop/Projects/Plio/' + image_dict[key])\n",
" return serial_dict\n",
"\n",
"# serial number dictionary\n",
"serial_dict = serial_numbers()\n",
"\n",
"print(serial_dict)\n",
"\n",
"# creates the control network\n",
"cnet = cn.to_isis('/home/tthatcher/Desktop/Projects/Plio/cn.csv', new_df, serial_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"@singledispatch\n",
"def read_ipf(arg):\n",
" return str(arg)\n",
"# new_df['known'] = new_df.apply(known, axis=1)\n",
"\n",
"@read_ipf.register(str)\n",
"def read_ipf_str(input_data):\n",
" \"\"\"AttributeError: 'Series' object has no attribute 'image_index'\n",
"\n",
" Read a socet ipf file into a pandas data frame\n",
"\n",
" Parameters\n",
" ----------\n",
" input_data : str\n",
" path to the an input data file\n",
"\n",
" Returns\n",
" -------\n",
" df : pd.DataFrame\n",
" containing the ipf data with appropriate column names and indices\n",
" \"\"\"\n",
"\n",
" # Check that the number of rows is matching the expected number\n",
" with open(input_data, 'r') as f:\n",
" for i, l in enumerate(f):\n",
" if i == 1:/home/tthatcher/Desktop/Projects/Plio/plio\n",
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
" cnt = int(l)\n",
" elif i == 2:\n",
" col = l\n",
" break\n",
" \n",
" columns = np.genfromtxt(input_data, skip_header=2, dtype='unicode',\n",
" max_rows = 1, delimiter = ',')\n",
"\n",
" # TODO: Add unicode conversion\n",
" d = [line.split() for line in open(input_data, 'r')]\n",
" d = np.hstack(np.array(d[3:]))\n",
" \n",
" d = d.reshape(-1, 12)\n",
" \n",
" df = pd.DataFrame(d, columns=columns)\n",
" file = os.path.split(os.path.splitext(input_data)[0])[1]\n",
" df['ipf_file'] = pd.Series(np.full((len(df['pt_id'])), file), index = df.index)\n",
"\n",
" assert int(cnt) == len(df), 'Dataframe length {} does not match point length {}.'.format(int(cnt), len(df))\n",
" \n",
" # Soft conversion of numeric types to numerics, allows str in first col for point_id\n",
" df = df.apply(pd.to_numeric, errors='ignore')\n",
"\n",
" return df\n",
"\n",
"@read_ipf.register(list)\n",
"def read_ipf_list(input_data_list):\n",
" \"\"\"\n",
" Read a socet ipf file into a pandas data frame\n",
"\n",
" Parameters\n",
" ----------\n",
" input_data_list : list\n",
" list of paths to the a set of input data files\n",
"\n",
" Returns\n",
" -------\n",
" df : pd.DataFrame\n",
" containing the ipf data with appropriate column names and indices\n",
" \"\"\"\n",
" frames = []\n",
"\n",
" for input_file in input_data_list:\n",
" frames.append(read_ipf(input_file))\n",
"\n",
" df = pd.concat(frames)\n",
"\n",
" return df"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 2
}