Skip to content
Snippets Groups Projects
Commit bb07cd30 authored by lykos98's avatar lykos98
Browse files

deleted other unnecessary files

parent dd3eed92
No related branches found
No related tags found
No related merge requests found
......@@ -4,3 +4,5 @@ leo_sync.sh
bb
**.ipynb*
scalability_results
check.py
var.py
#!/usr/bin/env python
# coding: utf-8
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import NearestNeighbors
ndims = 5
k = 500
p = 10
with open("bb/top_nodes.csv","r") as f:
l = f.readlines()
def parse_lines(l,n_dims):
ll = [line.split(",") for line in l]
level = np.array([ int(line[0]) for line in ll])
owner = np.array([ int(line[1]) for line in ll])
split_dim = np.array([ int(line[2]) for line in ll])
split_val = np.array([ float(line[3]) for line in ll])
box_lb = np.array([ [float(el) for el in line[4:(4+n_dims)]] for line in ll])
box_ub = np.array([ [float(el) for el in line[4 + n_dims:]] for line in ll])
return level, owner, split_dim, split_val, box_lb, box_ub
def plot_boxes(x,d0,d1,owner, split_dim, split_val, box_lb, box_ub, ratio = 0.7):
from matplotlib.patches import Rectangle
fig, ax = plt.subplots(figsize = (12 * ratio,10 * ratio))
ax.scatter(x[:,d0],x[:,d1], s = 0.1)
procs = np.where(owner != -1)
for p in procs[0]:
lbx = box_lb[p,d0]
ubx = box_ub[p,d0]
lby = box_lb[p,d1]
uby = box_ub[p,d1]
bw = ubx - lbx
bh = uby - lby
col = (np.random.rand(),np.random.rand(),np.random.rand(),0.5)
ax.add_patch(Rectangle((lbx,lby),bw,bh, facecolor = col, label = owner[p]))
plt.legend(loc = "lower left")
#ax.add_patch(Rectangle((lbx,lby),2,2, facecolor = (np.random.rand(),np.random.rand(),np.random.rand(),0.3)))
def plot_planes(x,d0,d1,owner, split_dim, split_val, box_lb, box_ub, ratio=0.7):
from matplotlib.patches import Rectangle
fig, ax = plt.subplots(figsize = (12 * ratio,10 * ratio))
ax.scatter(x[:,d0],x[:,d1], s = 0.1)
procs = np.where(owner == -1)[0]
for p in procs:
if split_dim[p] == d0:
line_bounds = [box_lb[p,d1],box_ub[p,d1]]
line_coord = split_val[p]
#print("vline",split_dim[p],split_dim[p], line_bounds, line_coord)
plt.vlines(line_coord, line_bounds[0], line_bounds[1], color = "y")
elif split_dim[p] == d1:
line_bounds = [box_lb[p,d0],box_ub[p,d0]]
line_coord = split_val[p]
#print("hline",split_dim[p],split_dim[p], line_bounds, line_coord)
plt.hlines(line_coord, line_bounds[0], box_ub[p,d0], color = "y")
plt.show()
if __name__ == "__main__":
level, owner, split_dim, split_val, box_lb, box_ub = parse_lines(l,ndims)
#x = np.fromfile("../../robavaria/50_blobs_more_var.npy", np.float32)
print("Loading data file")
x = np.fromfile("./bb/ordered_data.npy", np.float64)
x = x.reshape((x.shape[0]//ndims,ndims))
#plot_boxes(x,0,1,owner,split_dim,split_val,box_lb,box_ub)
#plot_planes(x,0,1,owner,split_dim,split_val,box_lb,box_ub)
print("Loading ngbh results")
ngbh = []
for pp in range(p):
ngbh.append(np.fromfile(f"./bb/rank_{pp}.ngbh", dtype = [("value","f8"),("array_idx","u8")]))
ngbh = np.concatenate(ngbh)
print("Searching for neighbors")
nn = NearestNeighbors(n_jobs=-1,n_neighbors=k)
nn.fit(x)
dist, idx = nn.kneighbors(x)
idx_c = ngbh["array_idx"]
idx_c.shape
dist_c = ngbh["value"]
idx_c = idx_c.reshape((len(idx_c)//k,k))
dist_c = dist_c.reshape((len(dist_c)//k,k))
same_dist = 0
sd_el = []
abs_errors = 0
print("Check")
for i in range(len(idx_c)):
r1 = idx[i]
r2 = idx_c[i]
w = np.where(r1 != r2)
if len(w[0]) > 0:
d1 = dist[i,w[0][0]]
d2 = dist[i,w[0][1]]
#print(i, w[0])
if not np.isclose(d1,d2):
abs_errors += 1
same_dist += 1
#print(" Found error in ", w[0], d1, d2)
print(f"Found {abs_errors} errors")
import numpy as np
d = np.fromfile("../norm_data/std_LR_091_0000", dtype=np.float32)
print(d.shape)
d = d.reshape((d.shape[0]//5,5))
print(np.cov(d.T))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment