Skip to content
Snippets Groups Projects
Commit bb07cd30 authored by lykos98's avatar lykos98
Browse files

deleted other unnecessary files

parent dd3eed92
Branches
Tags
No related merge requests found
...@@ -4,3 +4,5 @@ leo_sync.sh ...@@ -4,3 +4,5 @@ leo_sync.sh
bb bb
**.ipynb* **.ipynb*
scalability_results scalability_results
check.py
var.py
#!/usr/bin/env python
# coding: utf-8
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import NearestNeighbors
ndims = 5
k = 500
p = 10
with open("bb/top_nodes.csv","r") as f:
l = f.readlines()
def parse_lines(l,n_dims):
ll = [line.split(",") for line in l]
level = np.array([ int(line[0]) for line in ll])
owner = np.array([ int(line[1]) for line in ll])
split_dim = np.array([ int(line[2]) for line in ll])
split_val = np.array([ float(line[3]) for line in ll])
box_lb = np.array([ [float(el) for el in line[4:(4+n_dims)]] for line in ll])
box_ub = np.array([ [float(el) for el in line[4 + n_dims:]] for line in ll])
return level, owner, split_dim, split_val, box_lb, box_ub
def plot_boxes(x,d0,d1,owner, split_dim, split_val, box_lb, box_ub, ratio = 0.7):
from matplotlib.patches import Rectangle
fig, ax = plt.subplots(figsize = (12 * ratio,10 * ratio))
ax.scatter(x[:,d0],x[:,d1], s = 0.1)
procs = np.where(owner != -1)
for p in procs[0]:
lbx = box_lb[p,d0]
ubx = box_ub[p,d0]
lby = box_lb[p,d1]
uby = box_ub[p,d1]
bw = ubx - lbx
bh = uby - lby
col = (np.random.rand(),np.random.rand(),np.random.rand(),0.5)
ax.add_patch(Rectangle((lbx,lby),bw,bh, facecolor = col, label = owner[p]))
plt.legend(loc = "lower left")
#ax.add_patch(Rectangle((lbx,lby),2,2, facecolor = (np.random.rand(),np.random.rand(),np.random.rand(),0.3)))
def plot_planes(x,d0,d1,owner, split_dim, split_val, box_lb, box_ub, ratio=0.7):
from matplotlib.patches import Rectangle
fig, ax = plt.subplots(figsize = (12 * ratio,10 * ratio))
ax.scatter(x[:,d0],x[:,d1], s = 0.1)
procs = np.where(owner == -1)[0]
for p in procs:
if split_dim[p] == d0:
line_bounds = [box_lb[p,d1],box_ub[p,d1]]
line_coord = split_val[p]
#print("vline",split_dim[p],split_dim[p], line_bounds, line_coord)
plt.vlines(line_coord, line_bounds[0], line_bounds[1], color = "y")
elif split_dim[p] == d1:
line_bounds = [box_lb[p,d0],box_ub[p,d0]]
line_coord = split_val[p]
#print("hline",split_dim[p],split_dim[p], line_bounds, line_coord)
plt.hlines(line_coord, line_bounds[0], box_ub[p,d0], color = "y")
plt.show()
if __name__ == "__main__":
level, owner, split_dim, split_val, box_lb, box_ub = parse_lines(l,ndims)
#x = np.fromfile("../../robavaria/50_blobs_more_var.npy", np.float32)
print("Loading data file")
x = np.fromfile("./bb/ordered_data.npy", np.float64)
x = x.reshape((x.shape[0]//ndims,ndims))
#plot_boxes(x,0,1,owner,split_dim,split_val,box_lb,box_ub)
#plot_planes(x,0,1,owner,split_dim,split_val,box_lb,box_ub)
print("Loading ngbh results")
ngbh = []
for pp in range(p):
ngbh.append(np.fromfile(f"./bb/rank_{pp}.ngbh", dtype = [("value","f8"),("array_idx","u8")]))
ngbh = np.concatenate(ngbh)
print("Searching for neighbors")
nn = NearestNeighbors(n_jobs=-1,n_neighbors=k)
nn.fit(x)
dist, idx = nn.kneighbors(x)
idx_c = ngbh["array_idx"]
idx_c.shape
dist_c = ngbh["value"]
idx_c = idx_c.reshape((len(idx_c)//k,k))
dist_c = dist_c.reshape((len(dist_c)//k,k))
same_dist = 0
sd_el = []
abs_errors = 0
print("Check")
for i in range(len(idx_c)):
r1 = idx[i]
r2 = idx_c[i]
w = np.where(r1 != r2)
if len(w[0]) > 0:
d1 = dist[i,w[0][0]]
d2 = dist[i,w[0][1]]
#print(i, w[0])
if not np.isclose(d1,d2):
abs_errors += 1
same_dist += 1
#print(" Found error in ", w[0], d1, d2)
print(f"Found {abs_errors} errors")
import numpy as np
d = np.fromfile("../norm_data/std_LR_091_0000", dtype=np.float32)
print(d.shape)
d = d.reshape((d.shape[0]//5,5))
print(np.cov(d.T))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment