Newer
Older
{
"cells": [
{
"cell_type": "code",
"metadata": {},
"source": [
"import os\n",
"import sys\n",
"from functools import singledispatch\n",
"import numpy as np\n",
"\n",
"from plio.io.io_bae import read_gpf, read_ipf\n",
"import plio.io.io_controlnetwork as cn\n",
"import plio.io.isis_serial_number as sn"
"# Reads a .atf file and outputs all of the \n",
"# .ipf, .gpf, .sup, .prj, and path to locate the \n",
"# .apf file (should be the same as all others) \n",
"def read_atf(atf_file):\n",
" with open(atf_file) as f:\n",
" # Extensions of files we want\n",
" files_ext = ['.prj', '.sup', '.ipf', '.gpf']\n",
" files_dict = []\n",
" files = defaultdict(list)\n",
"\n",
" for line in f:\n",
" # Check is needed for split as all do not have a space\n",
" \n",
" # If it is the .prj file, it strips the directory away and grabs file name\n",
" if ext == '.prj':\n",
" files[ext].append(line.strip().split(' ')[1].split('\\\\')[-1])\n",
" \n",
" # If the ext is in the list of files we care about, it addes to the dict\n",
" files[ext].append(line.strip().split(' ')[-1])\n",
" \n",
" else:\n",
" \n",
" # Adds to the dict even if not in files we care about\n",
" files[ext.strip()].append(line)\n",
" files['basepath'] = os.path.dirname(os.path.abspath(atf_file))\n",
" \n",
" # Creates a dict out of file lists for GPF, PRJ, IPF, and ATF\n",
" files_dict = (dict(files_dict))\n",
" \n",
" # Sets the value of IMAGE_IPF to all IPF images\n",
" files_dict['IMAGE_IPF'] = files['.ipf']\n",
" \n",
" # Sets the value of IMAGE_SUP to all SUP images\n",
" files_dict['IMAGE_SUP'] = files['.sup']\n",
" \n",
" # Sets value for GPF file\n",
" files_dict['GP_FILE'] = files['.gpf'][0]\n",
" \n",
" # Sets value for PRJ file\n",
" files_dict['PROJECT'] = files['.prj'][0]\n",
" \n",
" # Sets the value of PATH to the path of the ATF file\n",
" \n",
"# no transform applied\n",
"def line_sample_size(record, path):\n",
" with open(os.path.join(path, record['ipf_file'] + '.sup')) as f:\n",
" if i == 2:\n",
" img_index = line.split('\\\\')\n",
" img_index = img_index[-1].strip()\n",
" img_index = img_index.split('.')[0]\n",
" \n",
" line_size = line.split(' ')\n",
" line_size = line_size[-1].strip()\n",
" assert int(line_size) > 0, \"Line number {} from {} is a negative number: Invalid Data\".format(line_size, record['ipf_file'])\n",
" \n",
" if i == 4:\n",
" sample_size = line.split(' ')\n",
" sample_size = sample_size[-1].strip()\n",
" assert int(sample_size) > 0, \"Sample number {} from {} is a negative number: Invalid Data\".format(sample_size, record['ipf_file'])\n",
" \n",
" \n",
" line_size = int(line_size)/2.0 + record['l.'] + 1\n",
" sample_size = int(sample_size)/2.0 + record['s.'] + 1\n",
" \n",
"# converts known to ISIS keywords\n",
"def known(record):\n",
" if record['known'] == 0:\n",
" return 'Free'\n",
" \n",
" elif record['known'] == 1 or record['known'] == 2 or record['known'] == 3:\n",
" return 'Constrained'\n",
" \n",
"# converts +/- 180 system to 0 - 360 system\n",
"def to_360(num):\n",
" return num % 360\n",
"\n",
"# ocentric to ographic latitudes\n",
"# transform but unsure how to handle\n",
"def oc2og(dlat, dMajorRadius, dMinorRadius):\n",
" try: \n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan(((dMajorRadius / dMinorRadius)**2) * (math.tan(dlat)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in oc2og conversion\")\n",
" return dlat\n",
"\n",
"# ographic to ocentric latitudes\n",
"# transform but unsure how to handle\n",
"def og2oc(dlat, dMajorRadius, dMinorRadius):\n",
" try:\n",
" dlat = math.radians(dlat)\n",
" dlat = math.atan((math.tan(dlat) / ((dMajorRadius / dMinorRadius)**2)))\n",
" dlat = math.degrees(dlat)\n",
" except:\n",
" print (\"Error in og2oc conversion\")\n",
" return dlat\n",
"\n",
"# gets eRadius and pRadius from a .prj file\n",
"def get_axis(file):\n",
" from collections import defaultdict\n",
"\n",
" files = defaultdict(list)\n",
" \n",
" for line in f:\n",
" \n",
" ext = line.strip().split(' ')\n",
" files[ext[0]].append(ext[-1])\n",
" \n",
" eRadius = float(files['A_EARTH'][0])\n",
" pRadius = eRadius * (1 - float(files['E_EARTH'][0]))\n",
" \n",
" return eRadius, pRadius\n",
" \n",
"# function to convert lat_Y_North to ISIS_lat\n",
"def lat_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['lat_Y_North'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"\n",
"# function to convert long_X_East to ISIS_lon\n",
"def lon_ISIS_coord(record, semi_major, semi_minor):\n",
" ocentric_coord = og2oc(record['long_X_East'], semi_major, semi_minor)\n",
" coord_360 = to_360(ocentric_coord)\n",
" return coord_360\n",
"def body_fix(record, semi_major, semi_minor, inverse=False):\n",
" \"\"\"\n",
" Parameters\n",
" ----------\n",
" record : ndarray\n",
" (n,3) where columns are x, y, height or lon, lat, alt\n",
" \"\"\"\n",
" \n",
" ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n",
" lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n",
" if inverse:\n",
" lon, lat, height = pyproj.transform(ecef, lla, record[0], record[1], record[2])\n",
" return lon, lat, height\n",
" else:\n",
" y, x, z = pyproj.transform(lla, ecef, record[0], record[1], record[2])\n",
" return y, x, z\n",
"\n",
"def ignore_toggle(record):\n",
" if record['stat'] == 0:\n",
" return True\n",
" else:\n",
" return False\n",
"\n",
"# TODO: Does isis cnet need a convariance matrix for sigmas? Even with a static matrix of 1,1,1,1 \n",
"def compute_sigma_covariance_matrix(lat, lon, rad, latsigma, lonsigma, radsigma, semimajor_axis):\n",
" \n",
" \"\"\"\n",
" Given geospatial coordinates, desired accuracy sigmas, and an equitorial radius, compute a 2x3\n",
" sigma covariange matrix.\n",
" Parameters\n",
" ----------\n",
" lat : float\n",
" A point's latitude in degrees\n",
" lon : float\n",
" A point's longitude in degrees\n",
" rad : float\n",
" The radius (z-value) of the point in meters\n",
" latsigma : float\n",
" The desired latitude accuracy in meters (Default 10.0)\n",
" lonsigma : float\n",
" The desired longitude accuracy in meters (Default 10.0)\n",
" radsigma : float\n",
" The desired radius accuracy in meters (Defualt: 15.0)\n",
" semimajor_axis : float\n",
" The semi-major or equitorial radius in meters (Default: 1737400.0 - Moon)\n",
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
" Returns\n",
" -------\n",
" rectcov : ndarray\n",
" (2,3) covariance matrix\n",
" \"\"\"\n",
" \n",
" lat = math.radians(lat)\n",
" lon = math.radians(lon)\n",
" \n",
" # SetSphericalSigmasDistance\n",
" scaled_lat_sigma = latsigma / semimajor_axis\n",
"\n",
" # This is specific to each lon.\n",
" scaled_lon_sigma = lonsigma * math.cos(lat) / semimajor_axis\n",
" \n",
" # SetSphericalSigmas\n",
" cov = np.eye(3,3)\n",
" cov[0,0] = scaled_lat_sigma ** 2\n",
" cov[1,1] = scaled_lon_sigma ** 2\n",
" cov[2,2] = radsigma ** 2\n",
" \n",
" # Approximate the Jacobian\n",
" j = np.zeros((3,3))\n",
" cosphi = math.cos(lat)\n",
" sinphi = math.sin(lat)\n",
" coslambda = math.cos(lon)\n",
" sinlambda = math.sin(lon)\n",
" rcosphi = rad * cosphi\n",
" rsinphi = rad * sinphi\n",
" j[0,0] = -rsinphi * coslambda\n",
" j[0,1] = -rcosphi * sinlambda\n",
" j[0,2] = cosphi * coslambda\n",
" j[1,0] = -rsinphi * sinlambda\n",
" j[1,1] = rcosphi * coslambda\n",
" j[1,2] = cosphi * sinlambda\n",
" j[2,0] = rcosphi\n",
" j[2,1] = 0.\n",
" j[2,2] = sinphi\n",
" mat = j.dot(cov)\n",
" mat = mat.dot(j.T)\n",
" rectcov = np.zeros((2,3))\n",
" rectcov[0,0] = mat[0,0]\n",
" rectcov[0,1] = mat[0,1]\n",
" rectcov[0,2] = mat[0,2]\n",
" rectcov[1,0] = mat[1,1]\n",
" rectcov[1,1] = mat[1,2]\n",
" rectcov[1,2] = mat[2,2]\n",
" \n",
" return np.array(rectcov)\n",
"# return np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])\n",
"\n",
"\n",
"def compute_cov_matrix(record, semimajor_axis):\n",
" cov_matrix = compute_sigma_covariance_matrix(record['lat_Y_North'], record['long_X_East'], record['ht'], record['sig0'], record['sig1'], record['sig2'], semimajor_axis)\n",
" return cov_matrix.ravel().tolist()\n",
"def apply_two_isis_transformations(atf_dict, df):\n",
" prj_file = os.path.join(atf_dict['PATH'], atf_dict['PROJECT'])\n",
" lla = np.array([[df['long_X_East']], [df['lat_Y_North']], [df['ht']]])\n",
" \n",
" ecef = body_fix(lla, semi_major = eRadius, semi_minor = pRadius, inverse=False)\n",
" \n",
" df['s.'], df['l.'], df['image_index'] = (zip(*df.apply(line_sample_size, path = atf_dict['PATH'], axis=1)))\n",
" df['known'] = df.apply(known, axis=1)\n",
" df['long_X_East'] = ecef[0][0]\n",
" df['lat_Y_North'] = ecef[1][0]\n",
" df['ht'] = ecef[2][0] \n",
" df['aprioriCovar'] = df.apply(compute_cov_matrix, semimajor_axis = eRadius, axis=1)\n",
"# df['ignore'] = df.apply(ignore_toggle, axis=1)\n",
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"def socet2isis(prj_file):\n",
" # Read in and setup the atf dict of information\n",
" atf_dict = read_atf(prj_file)\n",
" \n",
" # Get the gpf and ipf files using atf dict\n",
" gpf_file = os.path.join(atf_dict['PATH'], atf_dict['GP_FILE']);\n",
" ipf_list = [os.path.join(atf_dict['PATH'], i) for i in atf_dict['IMAGE_IPF']]\n",
" \n",
" # Read in the gpf file and ipf file(s) into seperate dataframes\n",
" gpf_df = read_gpf(gpf_file)\n",
" ipf_df = read_ipf(ipf_list)\n",
"\n",
" # Check for differences between point ids using each dataframes\n",
" # point ids as a reference\n",
" gpf_pt_idx = pd.Index(pd.unique(gpf_df['point_id']))\n",
" ipf_pt_idx = pd.Index(pd.unique(ipf_df['pt_id']))\n",
"\n",
" point_diff = ipf_pt_idx.difference(gpf_pt_idx)\n",
"\n",
" if len(point_diff) != 0:\n",
" warnings.warn(\"The following points found in ipf files missing from gpf file: \\n\\n{}. \\\n",
" \\n\\nContinuing, but these points will be missing from the control network\".format(list(point_diff)))\n",
" \n",
" # Merge the two dataframes on their point id columns\n",
" socet_df = ipf_df.merge(gpf_df, left_on='pt_id', right_on='point_id')\n",
" \n",
" # Apply the transformations\n",
"# apply_two_isis_transformations(atf_dict, socet_df)\n",
" \n",
" # Define column remap for socet dataframe\n",
"# column_map = {'pt_id': 'id', 'l.': 'y', 's.': 'x',\n",
"# 'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',\n",
"# 'lat_Y_North': 'aprioriY', 'long_X_East': 'aprioriX', 'ht': 'aprioriZ',\n",
"# 'sig0': 'aprioriLatitudeSigma', 'sig1': 'aprioriLongitudeSigma', 'sig2': 'aprioriRadiusSigma',\n",
"# 'sig_l': 'linesigma', 'sig_s': 'samplesigma'}\n",
" \n",
" # Rename the columns using the column remap above\n",
"# socet_df.rename(columns = column_map, inplace=True)\n",
" \n",
" # Return the socet dataframe to be converted to a control net\n",
" return socet_df\n",
"\n",
"# creates a dict of serial numbers with the cub being the key\n",
"def serial_numbers(images, path, extension):\n",
" serial_dict = dict()\n",
" \n",
" for image in images:\n",
" snum = sn.generate_serial_number(os.path.join(path, image + extension))\n",
" snum = snum.replace('Mars_Reconnaissance_Orbiter', 'MRO')\n",
" serial_dict[image] = snum\n",
"# Setup stuffs for the cub information namely the path and extension\n",
"path = '/home/acpaquette/repos/plio/test_cubes'\n",
"targetname = 'Mars'\n",
"extension = '.8bit.cub'\n",
"atf_file = ('/home/acpaquette/repos/plio/plio/examples/SocetSet/Relative.atf')\n",
"# images = pd.unique(socet_df['ipf_file'])\n",
"# serial_dict = serial_numbers(images, path, extension)\n",
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
"# cn.to_isis('/home/acpaquette/repos/plio/plio/examples/SocetSet/cn.net', socet_df, serial_dict, targetname = targetname)"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [],
"source": [
"return_df = cn.from_isis(\"/home/acpaquette/repos/plio/plio/examples/SocetSet/cn.net\")\n",
"\n",
"columns = []\n",
"column_index = []\n",
"\n",
"for i, column in enumerate(list(return_df.columns)):\n",
" if column not in columns:\n",
" column_index.append(i)\n",
" columns.append(column)\n",
"\n",
"return_df = return_df.iloc[:, column_index]"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [],
"source": [
"column_map = {'pt_id': 'id', 'l.': 'y', 's.': 'x',\n",
" 'res_l': 'lineResidual', 'res_s': 'sampleResidual', 'known': 'Type',\n",
" 'lat_Y_North': 'aprioriY', 'long_X_East': 'aprioriX', 'ht': 'aprioriZ',\n",
" 'sig0': 'aprioriLatitudeSigma', 'sig1': 'aprioriLongitudeSigma', 'sig2': 'aprioriRadiusSigma',\n",
" 'sig_l': 'linesigma', 'sig_s': 'samplesigma'}\n",
"\n",
"column_map = {k: v for v, k in column_map.items()}\n",
"return_df.rename(columns = column_map, inplace=True)\n",
"return_df.drop(['chooserName', 'datetime', 'referenceIndex', 'jigsawRejected', 'editLock', 'aprioriSurfPointSource', 'aprioriSurfPointSourceFile','aprioriRadiusSource', 'aprioriRadiusSourceFile'] , axis = 1, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>lat_Y_North</th>\n",
" <th>long_X_East</th>\n",
" <th>ht</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>139525.230749</td>\n",
" <td>3.390974e+06</td>\n",
" <td>4506.496945</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>139525.230749</td>\n",
" <td>3.390974e+06</td>\n",
" <td>4506.496945</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>139489.278045</td>\n",
" <td>3.390969e+06</td>\n",
" <td>4516.454802</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>139489.278045</td>\n",
" <td>3.390969e+06</td>\n",
" <td>4516.454802</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>139823.489797</td>\n",
" <td>3.390990e+06</td>\n",
" <td>4536.274914</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>139823.489797</td>\n",
" <td>3.390990e+06</td>\n",
" <td>4536.274914</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>139772.738004</td>\n",
" <td>3.390936e+06</td>\n",
" <td>4518.050219</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>139772.738004</td>\n",
" <td>3.390936e+06</td>\n",
" <td>4518.050219</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>139575.914815</td>\n",
" <td>3.390952e+06</td>\n",
" <td>3816.666542</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>139575.914815</td>\n",
" <td>3.390952e+06</td>\n",
" <td>3816.666542</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>139614.756296</td>\n",
" <td>3.390953e+06</td>\n",
" <td>3791.232717</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>139614.756296</td>\n",
" <td>3.390953e+06</td>\n",
" <td>3791.232717</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>139912.041374</td>\n",
" <td>3.390914e+06</td>\n",
" <td>3875.608660</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>139912.041374</td>\n",
" <td>3.390914e+06</td>\n",
" <td>3875.608660</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>139909.452033</td>\n",
" <td>3.390930e+06</td>\n",
" <td>3845.361327</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>139909.452033</td>\n",
" <td>3.390930e+06</td>\n",
" <td>3845.361327</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>139669.826849</td>\n",
" <td>3.391120e+06</td>\n",
" <td>3270.672620</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>139669.826849</td>\n",
" <td>3.391120e+06</td>\n",
" <td>3270.672620</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>139694.517017</td>\n",
" <td>3.391205e+06</td>\n",
" <td>3289.744506</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>139694.517017</td>\n",
" <td>3.391205e+06</td>\n",
" <td>3289.744506</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>139968.793338</td>\n",
" <td>3.391126e+06</td>\n",
" <td>3274.711397</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>139968.793338</td>\n",
" <td>3.391126e+06</td>\n",
" <td>3274.711397</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>139979.200780</td>\n",
" <td>3.391138e+06</td>\n",
" <td>3298.297228</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>139979.200780</td>\n",
" <td>3.391138e+06</td>\n",
" <td>3298.297228</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>139688.031217</td>\n",
" <td>3.391041e+06</td>\n",
" <td>4253.956077</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>139688.031217</td>\n",
" <td>3.391041e+06</td>\n",
" <td>4253.956077</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>139686.910823</td>\n",
" <td>3.391089e+06</td>\n",
" <td>4216.743792</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>139686.910823</td>\n",
" <td>3.391089e+06</td>\n",
" <td>4216.743792</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>139786.205284</td>\n",
" <td>3.390979e+06</td>\n",
" <td>3579.127600</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>139786.205284</td>\n",
" <td>3.390979e+06</td>\n",
" <td>3579.127600</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>139785.010997</td>\n",
" <td>3.391002e+06</td>\n",
" <td>3546.549796</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>139785.010997</td>\n",
" <td>3.391002e+06</td>\n",
" <td>3546.549796</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" lat_Y_North long_X_East ht\n",
"0 139525.230749 3.390974e+06 4506.496945\n",
"1 139525.230749 3.390974e+06 4506.496945\n",
"2 139489.278045 3.390969e+06 4516.454802\n",
"3 139489.278045 3.390969e+06 4516.454802\n",
"4 139823.489797 3.390990e+06 4536.274914\n",
"5 139823.489797 3.390990e+06 4536.274914\n",
"6 139772.738004 3.390936e+06 4518.050219\n",
"7 139772.738004 3.390936e+06 4518.050219\n",
"8 139575.914815 3.390952e+06 3816.666542\n",
"9 139575.914815 3.390952e+06 3816.666542\n",
"10 139614.756296 3.390953e+06 3791.232717\n",
"11 139614.756296 3.390953e+06 3791.232717\n",
"12 139912.041374 3.390914e+06 3875.608660\n",
"13 139912.041374 3.390914e+06 3875.608660\n",
"14 139909.452033 3.390930e+06 3845.361327\n",
"15 139909.452033 3.390930e+06 3845.361327\n",
"16 139669.826849 3.391120e+06 3270.672620\n",
"17 139669.826849 3.391120e+06 3270.672620\n",
"18 139694.517017 3.391205e+06 3289.744506\n",
"19 139694.517017 3.391205e+06 3289.744506\n",
"20 139968.793338 3.391126e+06 3274.711397\n",
"21 139968.793338 3.391126e+06 3274.711397\n",
"22 139979.200780 3.391138e+06 3298.297228\n",
"23 139979.200780 3.391138e+06 3298.297228\n",
"24 139688.031217 3.391041e+06 4253.956077\n",
"25 139688.031217 3.391041e+06 4253.956077\n",
"26 139686.910823 3.391089e+06 4216.743792\n",
"27 139686.910823 3.391089e+06 4216.743792\n",
"28 139786.205284 3.390979e+06 3579.127600\n",
"29 139786.205284 3.390979e+06 3579.127600\n",
"30 139785.010997 3.391002e+06 3546.549796\n",
"31 139785.010997 3.391002e+06 3546.549796"
]
},
"execution_count": 129,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"return_df[['lat_Y_North', 'long_X_East', 'ht']]"
]
},
{
"cell_type": "code",
"execution_count": 128,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>lat_Y_North</th>\n",
" <th>long_X_East</th>\n",
" <th>ht</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.095708</td>\n",
" <td>2.356167</td>\n",
" <td>-2342.889214</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.095708</td>\n",
" <td>2.356167</td>\n",
" <td>-2342.889214</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.095920</td>\n",
" <td>2.355564</td>\n",
" <td>-2349.638414</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.095920</td>\n",
" <td>2.355564</td>\n",
" <td>-2349.638414</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.096339</td>\n",
" <td>2.361186</td>\n",
" <td>-2314.316425</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>0.096339</td>\n",
" <td>2.361186</td>\n",
" <td>-2314.316425</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>0.095954</td>\n",
" <td>2.360368</td>\n",
" <td>-2370.502882</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>0.095954</td>\n",
" <td>2.360368</td>\n",
" <td>-2370.502882</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>0.081058</td>\n",
" <td>2.357037</td>\n",
" <td>-2363.989968</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>0.081058</td>\n",
" <td>2.357037</td>\n",
" <td>-2363.989968</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>0.080518</td>\n",
" <td>2.357691</td>\n",
" <td>-2360.922571</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>0.080518</td>\n",
" <td>2.357691</td>\n",
" <td>-2360.922571</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>0.082311</td>\n",
" <td>2.362733</td>\n",
" <td>-2388.123298</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>0.082311</td>\n",
" <td>2.362733</td>\n",
" <td>-2388.123298</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>0.081668</td>\n",
" <td>2.362678</td>\n",
" <td>-2371.973499</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>0.081668</td>\n",
" <td>2.362678</td>\n",
" <td>-2371.973499</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>0.069458</td>\n",
" <td>2.358505</td>\n",
" <td>-2193.309629</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>0.069458</td>\n",
" <td>2.358505</td>\n",
" <td>-2193.309629</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>0.069861</td>\n",
" <td>2.358862</td>\n",
" <td>-2106.769773</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>0.069861</td>\n",
" <td>2.358862</td>\n",
" <td>-2106.769773</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>0.069543</td>\n",
" <td>2.363543</td>\n",
" <td>-2174.971745</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>0.069543</td>\n",
" <td>2.363543</td>\n",
" <td>-2174.971745</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>0.070044</td>\n",
" <td>2.363710</td>\n",
" <td>-2162.103231</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>0.070044</td>\n",
" <td>2.363710</td>\n",
" <td>-2162.103231</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>0.090342</td>\n",
" <td>2.358866</td>\n",
" <td>-2269.610862</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>0.090342</td>\n",
" <td>2.358866</td>\n",
" <td>-2269.610862</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>0.089550</td>\n",
" <td>2.358814</td>\n",
" <td>-2222.328983</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>0.089550</td>\n",
" <td>2.358814</td>\n",
" <td>-2222.328983</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>0.076012</td>\n",
" <td>2.360565</td>\n",
" <td>-2328.281125</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>0.076012</td>\n",
" <td>2.360565</td>\n",
" <td>-2328.281125</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.075320</td>\n",
" <td>2.360529</td>\n",
" <td>-2305.362047</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>0.075320</td>\n",
" <td>2.360529</td>\n",
" <td>-2305.362047</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" lat_Y_North long_X_East ht\n",
"0 0.095708 2.356167 -2342.889214\n",
"1 0.095708 2.356167 -2342.889214\n",
"2 0.095920 2.355564 -2349.638414\n",
"3 0.095920 2.355564 -2349.638414\n",
"4 0.096339 2.361186 -2314.316425\n",
"5 0.096339 2.361186 -2314.316425\n",
"6 0.095954 2.360368 -2370.502882\n",
"7 0.095954 2.360368 -2370.502882\n",
"8 0.081058 2.357037 -2363.989968\n",
"9 0.081058 2.357037 -2363.989968\n",
"10 0.080518 2.357691 -2360.922571\n",
"11 0.080518 2.357691 -2360.922571\n",
"12 0.082311 2.362733 -2388.123298\n",
"13 0.082311 2.362733 -2388.123298\n",
"14 0.081668 2.362678 -2371.973499\n",
"15 0.081668 2.362678 -2371.973499\n",
"16 0.069458 2.358505 -2193.309629\n",
"17 0.069458 2.358505 -2193.309629\n",
"18 0.069861 2.358862 -2106.769773\n",
"19 0.069861 2.358862 -2106.769773\n",
"20 0.069543 2.363543 -2174.971745\n",
"21 0.069543 2.363543 -2174.971745\n",
"22 0.070044 2.363710 -2162.103231\n",
"23 0.070044 2.363710 -2162.103231\n",
"24 0.090342 2.358866 -2269.610862\n",
"25 0.090342 2.358866 -2269.610862\n",
"26 0.089550 2.358814 -2222.328983\n",
"27 0.089550 2.358814 -2222.328983\n",
"28 0.076012 2.360565 -2328.281125\n",
"29 0.076012 2.360565 -2328.281125\n",
"30 0.075320 2.360529 -2305.362047\n",
"31 0.075320 2.360529 -2305.362047"
]
},
"execution_count": 128,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"socet_df[['lat_Y_North', 'long_X_East', 'ht']]"
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 2
}